Electronic Supplementary Information

A new, *substituted* palladacycle for ppm level Pd-catalyzed Suzuki-Miyaura cross couplings in water

Balaram S. Takale, ^a Ruchita R. Thakore, ^a Sachin Handa, ^b Fabrice Gallou, ^c John Reilly, ^d and Bruce H. Lipshutz^{*a}

^aDepartment of Chemistry and Biochemistry, University of California Santa Barbara, California 93106 USA

^bDepartment of Chemistry, University of Louisville, Louisville, KY 40292 USA

°Novartis Pharma AG, CH-4057 Basel, Switzerland

^dNovartis Institutes for BioMedical Research (NIBR), Cambridge, M.A. 02139 USA

Table of Contents

1.	General information	S2	
2.	Preparation of pre-catalysts: general procedure		
	a. Synthesis of biarylamines (59a- 59e)		
	b. Preparation mesylate salts from biarylamines (60a- 60e)		
	c. Preparation of Pd-dimers from mesylate salts (61a- 61e)		
	d. Preparation of palladacycle pre-catalysts (P1- P12) from Pd-dimers		
	3. Optimization study	S5	
	4. Base screenings	S6	
	5. Surfactant study	S6	
	6. Couplings in water and aqueous organic solvents	S6	
	7. Preparation of stock solution	S6	
	8. General procedure for Suzuki-Miyaura couplings of aryl iodides and	S7	
	bromides		
	9. General procedure for Suzuki-Miyaura couplings of aryl chlorides	S7	
	10. General procedure for the synthesis of boscalid	S7-S8	
	11. ICP-MS data (12, 24 and 36 synthesized using current conditions and	S9-S11	
	literature conditions)		
	12. References	S12	
	13. Compound characterization data	S12-S36	
	14. NMR spectra of new compounds	S37-S120	

1. General information

Reagents were purchased from Sigma-Aldrich, Combi-Blocks, Alfa Aeser, or Acros Organics and used without further purifications. Palladium acetate was supplied generously by Johnson Matthey. ¹H and ¹³C NMR spectra were recorded on either a Varian Unity Inova 400 MHz (400 MHz for ¹H, 100 MHz for ¹³C), a Varian Unity Inova 500 MHz (500 MHz for ¹H, 125 MHz for ¹³C) or on a Varian Unity Inova 600 MHz spectrometer (600 MHz for ¹H); d₆-DMSO, CD₃OD, CD₃CN and CDCl₃ were used as a solvent. Residual peaks for CHCl₃ in CDCl₃ (1 H = 7.26 ppm, ${}^{13}C = 77.20$ ppm), $(CH_3)_2SO$ in $(CD_3)_2SO$ (1 H = 2.50 ppm, ${}^{13}C = 39.52$ ppm), CH_3CN in CD_3CN (${}^{1}H = 1.98$ ppm, ${}^{13}C = 0.49$ and 117.47 ppm) or MeOH in MeOD (${}^{1}H = 4.78$ ppm, ${}^{13}C = 49.00$ ppm) have been assigned. The chemical shifts are reported in ppm, the coupling constants J are given in Hz. The peak patterns are indicated as follows: bs, broad singlet; s, singlet; d, doublet; t, triplet; q, quartet; p, pentate; m, multiplet. Thin layer chromatography (TLC) was performed using Silica Gel 60 F254 plates (Merck, 0.25 mm thick). Flash chromatography was done in glass columns using Silica Gel 60 (EMD, 40-63 µm). GCMS data were recorded on a 5975C Mass Selective Detector, coupled with a 7890A Gas Chromatograph (Agilent Technologies). Cryo-electron microscopy was performed at material research laboratory (MRL-UCSB) using FEI Tecnai G2 Sphera Microscope with CCD camera (Gatan Ultrascan 1000 2Kx2K). TPGS-750-M is either prepared or supplied by PHT International (it is also available from Sigma-Aldrich, catalog #733857). The desired 2 wt% TPGS-750-M solution in HPLC water (which was degassed with argon prior to use) was prepared by dissolving 2 g of TPGS-750-M solid to 98 g of HPLC water and stored under argon.

Compounds **3**,¹ **4**, ² **6**, ³ **21**, ⁴ **27**, ⁵ **29**, ⁶ **30**, ⁷ **52**, ⁸ **54**, ⁹ **60**, ¹⁰ **67**, ¹¹ **68**, ¹² were confirmed by comparing with literature NMR. All other new compounds were characterized by ¹H-, ¹³C-, ¹⁹F-, ³¹P-NMR and HRMS.

2. Preparation of pre-catalysts: general procedure

a. Synthesis of biarylamines (59a- 59e)

Scheme S1. Synthesis of substituted biarylamines.

In a 25 mL round bottom flask containing Teflon coated magnet were added 4.0 mmol of Ar-Br (57), 5.0 mmol of Ar-B(OH)₂ (58), 1 mol % Pd(OAc)₂, 2 mol % SPhos and 8.0 mmol of K₃PO₄•H₂O. The flask was degassed and backfilled with argon (this procedure was repeated 3 times). Finally, 7.2 mL of aqueous 2 wt % TPGS-750-M solution and 0.8 mL of THF were added and the reaction mixture was stirred at 45 °C for 24 h. After completion, the reaction mixture was extracted with EtOAc, the combined organic layers were washed with brine and then dried over anhydrous MgSO₄, and then the solvent was evaporated in vacuo. The crude product was purified by flash chromatography on silica gel using hexanes/EtOAc as eluent to afford compounds **59a- 59e**.

b. Preparation of mesylate salts from biarylamines (60a- 60e)

Scheme S2. Synthesis of mesylate salts of substituted biarylamines.

In a 25 mL round bottom flask containing Teflon coated magnet was dissolved 3.0 mmol of biarylamine (**59**) in dry Et₂O. The flask is then cooled to 0 °C. Methanesulfonic acid (3.0 mmol) was added dropwise at 0 °C, and after complete addition, the reaction mixture was stirred at rt until a white precipitate forms (generally, 1-2 h). The white precipitate was filtered, washed with Et₂O and dried under vacuum overnight to give the corresponding mesylate salts, **60a- 60e** as white solids.

c. Preparation of Pd dimers from mesylate salts (61a- 61e)

Scheme S3. Synthesis of Pd dimers from mesylate salts of substituted biarylamines.

To a 10 mL round bottom flask containing a Teflon-coated magnet were added 2.0 mmol of mesylate salt (**60a- 60e**), 2.0 mmol of Pd(OAc)₂ and the flask was degassed and refilled with argon (repeated 3 times). Finally, 6 mL dry toluene was added under argon and the reaction mixture was stirred at 60 °C for 2-5 h until a clear solution formed. The reaction mixture was cooled to rt, and at this point, in some cases product precipitated out. It was filtered and washed with toluene, and dried under vacuum, while in some cases, where product remained soluble in toluene, the toluene was evaporated to 90% of its volume and dry hexanes was added to precipitate product. This product was then filtered and dried under vacuum to give the desired dimers of palladium as **61a- 61e**.

d. Preparation of palladacycle pre-catalysts (P1- P12) from Pd dimers

Scheme S4. Synthesis of palladacycle pre-catalysts.

To a 10 mL round bottom flask containing Teflon coated magnet were added 1.0 mmol of Pd dimer (**61a- 61e**), 2.0 mmol of ligand (L) and the flask was degassed and refilled with argon (repeated 3 times). Finally, 4 mL dry DCM was added under argon and the reaction mixture was stirred at rt for 2-7 h until the solution becomes clear. The DCM was evaporated to 90% of its volume and dry pentanes was added to triturate the resulting oil.

The solvent was again evaporated to give a free flowing solid (more pentane triturations were repeated until a free flowing solid has been obtained). The solid was then filtered, washed with pentanes, and dried under vacuum overnight to give the desired palladacycles **P1- P12**.

3. Optimization study:

Scheme S5. Comparison of reactivity of palladacycles (300 ppm Pd in water).

4. Base screenings

Scheme S6. Suzuki-Miyaura couplings in different bases.

5. Surfactant study:

Scheme S7. Suzuki-Miyaura couplings in different surfactant solutions.

6. Couplings in water and aqueous organic solvents:

Scheme S8. Couplings in water and in aqueous organic solvents

7. Preparation of a stock solution:

In total 10,000 ppm of Pd catalyst solution was prepared by dissolving the corresponding precatalyst or Pd(OAc)₂/HandaPhos in 3.3 mL dry and degassed THF. This stock solution was used to carry out several (~30) reactions (stock solution can either be used freshly or can be stored up to a few weeks under argon in a freezer). For 300 ppm catalyst loading, 100 μ L of this stock solution was used.

8. General procedure for Suzuki-Miyaura couplings of aryl iodides and bromides:

From the stock solution above, the desired amount (e.g., 100 μ L for 300 ppm Pd) of solution was added to a Teflon coated magnet containing 1-dram screw cap vial and covered with a rubber septum. The THF from this solution was evacuated under low pressure (~20 min). The aryl/vinyl halide (0.5 mmol; if solid or added after an evacuation/backfill sequence if liquid), 0.6 mmol boronic acid were added to this vial. The vial was evacuated and backfilled with argon (this procedure was repeated three times). Aqueous 2 wt % TPGS-750-M solution (1.0 mL) followed by Et₃N (1.0 mmol) were added under argon. The vial was quickly replaced with the screw cap and stirred at 45 °C until completion (as monitored by TLC or GC-MS). The products were then separated by either filtration, decantation of the aqueous layer, or extraction with a minimum amount of MTBE or EtOAc. The organic layer was adsorbed on silica and purified using flash column chromatography.

9. General procedure for Suzuki-Miyaura couplings of aryl chlorides:

The similar stock solution as noted above was prepared in which 100 μ L corresponds to 500 ppm Pd. An aryl chloride (0.5 mmol, if solid or added after evacuation/backfill sequence if liquid) and boronic acid (0.6 mmol) were added to a 1-dram screw cap vial containing Teflon coated magnet. The vial was evacuated and backfilled with argon (this procedure was repeated three times). From the stock solution, 100 μ L were added, along with aqueous 2 wt % TPGS-750-M (0.9 mL) and Et₃N (1.0 mmol) sequentially under argon. The vial was quickly replaced with the screw cap and stirred at 45 °C until completion (as monitored by TLC or GC-MS). The products were then separated by either filtration, decantation of the aqueous layer, or extraction with a minimum

amount of MTBE or EtOAc. The organic layer was adsorbed on silica and purified using flash column chromatography.

10. General procedure for the synthesis of boscalid:

From the stock solution above, the desired amount (e.g., 166 μ L for 500 ppm Pd) of solution was added to a 1-dram screw cap vial containing a Teflon coated magnet and covered with a rubber septum. The THF from this solution was evacuated under low pressure (~20 min). Compound **42** (1-chloro-2-nitrobenzene, 1.0 mmol, 157.5 mg) and compound **43** (4-chlorophenylboronic acid, 1.2 mmol, 187.6 mg) were added to this vial. The vial was evacuated and backfilled with argon (this procedure was repeated three times). Aqueous 2 wt % TPGS-750-M solution (2.0 mL) and Et₃N (2.0 equiv, 2.0 mmol, 279 μ L) were added sequentially under argon. The vial was quickly replaced with the screw cap and stirred at 45 °C for 24 h (24 h were required for the completion as monitored by GC-MS analysis of a separate reaction). After 24 h, CIP (carbonyl iron powder, 5 equiv, 5.0 mmol, 279 mg) and NH₄Cl (3 equiv, 3.0 mmol, 160 mg), was added and the reaction was stirred for 12 h at 45 °C. Subsequently, 2-chloronicotynyl chloride (1.2 equiv, 1.2 mmol, 211.1 mg) was added in two portions with a 1.5 h break in between, after which the reaction was stirred at 45 °C for 8 h. The product was then separated by extraction with a minimum amount of EtOAc. The organic layer was adsorbed on silica and purified using flash column chromatography to afford 80% (275 mg) overall yield of boscalid.

11. ICP-MS data (12, 24 and 36 synthesized using current conditions and literature conditions):

Min-Kyu Cho CIBO1 Novartis Institute for Biomedical Research 230 Mass. Ave. Cambridge. Massachuetts 02139 Sample #: REILJ03-002-EXP006 Test #: 1 Received: 04/11/2018 Completed: 04/12/2018 CPMS: Paladum = 0 ppm Services CPMS Prepared using current conditions Prepared using current conditions Min-Kyu Cho CIBO1 Min-Kyu Cho Min-Kyu Cho CIBO1 Min-Kyu Cho Min-Kyu Cho M
29 Mass Ave. 29 Mass Ave. Sample #: REILJ03-002-EXP006 Test #: 1 Received: 04/11/2018 Completed: 04/12/2018 CPMS Services CPMS Services CPMS CP
Sample #: REILJ03-002-EXP006 Test #: 1 Received: 04/11/2018 Completed: 04/11/2018 Services Palladium = 0 ppm Services $(-f_{ij} + f_{ij}) + f_{ij} + f_{ij}) + f_{ij} + f_{$
Sample Y: RELLO3-002-EXPOS Text Y: Received: 04/11/201 Complete: 04/12/201 CPMS Paladum = 0 ppm Services CPMS $= \frac{1}{2} \int \left(\int r_{1} r_{1} r_{2} r_{2} r_{3} r_{2} r_{3} r$
Services CPMS Services CPMS $\begin{aligned} = \int_{C} \int_{C$
Services
$(FMS) = \begin{array}{l} \label{eq:constraint} \label{eq:constraint} \\ eq:constra$
integration
image: first sector in the
$\label{eq:cfg} \end{tabular} repared using current conditions} \\ \hline \end{tabular} \label{eq:cfg} repared using current conditions \end{tabular} tabular$
$\label{eq:starting} \begin{split} & \mathcal{F}_{3} \mathcal{G}_{\mathcal{G}_{5}} \\ & \mathcal{F}_{3} \\ & \mathcal{F}_{2} \\ & \mathcal{F}_{3} \\ & F$
$F_{3}G_{\psi}G_{F_{3}}$ prepared using current conditions $Prepared using current conditions$ $Prepared$
GF3 prepared using current conditions Image: Stress of the stress of th
prepared using current conditions Protect Prepared using current conditions Prepared using current curren
Prepared using current conditions Prepared using conditions
Win-Kyu Cho ClB001 Novartis Institute for Biomedical Research 250 Mass. Ave. Cambridge, Massachusetts 02139 Test #: 1 Received: 10/23/2018 Completed: 10/23/2018 Com
1705 U.S. Highway 46 / Suite 1D / Ledgewood, NJ 07852 / (973) 966-6668 / Fax (973) 966-0136 results@robertson-microlit.com Min-Kyu Cho CIB001 Novartis Institute for Biomedical Research 250 Mass. Ave. Cambridge, Massachusetts 02139 rample #: REILLJO3-002-EXP032 Test #: 1 Received: 10/23/2018 Completed: 10/23/20 CP-MS Palladium : 349 ppm
Min-Kyu Cho Novartis Institute for Biomedical Research 250 Mass. Ave. Cambridge, Massachusetts 02139 ample #: REILLJO3-002-EXP032 CP-MS Palladium : 349 ppm ervices CP-MS
Min-Kyu Cho Novartis Institute for Biomedical Research 250 Mass. Ave. Cambridge, Massachusetts 02139 ample #: REILLJO3-002-EXP032 Test #: 1 Received: 10/23/2018 Completed: 10/23/20 CP-MS Palladium : 349 ppm ervices SP-MS
Novartis Institute for Biomedical Research 250 Mass. Ave. Cambridge, Massachusetts 02139 ample #: REILLJO3-002-EXP032 Test #: 1 Received: 10/23/2018 Completed: 10/23/20 CP-MS Palladium : 349 ppm ervices CP-MS
250 Mass. Ave. Cambridge, Massachusetts 02139 ample #: REILLJO3-002-EXP032 Test #: 1 Received: 10/23/2018 Completed: 10/23/20 CP-MS Palladium: 349 ppm ervices CP-MS
Cambridge, Massachusetts 02139 ample #: REILLJO3-002-EXP032 Test #: 1 Received: 10/23/2018 Completed: 10/23/20 CP-MS Palladium: 349 ppm ervices CP-MS
Cambridge, Massachusetts 02139 ample #: REILLJO3-002-EXP032 Test #: 1 Received: 10/23/2018 Completed: 10/23/20 CP-MS Palladium : 349 ppm ervices SP-MS
ample #: REILLJO3-002-EXP032 Test #: 1 Received: 10/23/2018 Completed: 10/23/20 CP-MS Palladium: 349 ppm ervices CP-MS
ample #: REILLJO3-002-EXP032 Test #: 1 Received: 10/23/2018 Completed: 10/23/20 CP-MS Palladium : 349 ppm ervices CP-MS
CP-MS Palladium : 349 ppm ervices CP-MS
ervices P-MS
ervices P-MS
∠CF ₃
F ₃ C

1705 U.S. Highwa	zy 46 / Suite 1D / Ledgewood, NJ 07852 / (973) 966-6668 / Fax (973) 966-0136 olit.com results@robertson-microlit.com
Min-Kyu Cho Novartis Institute for Biomedical Resea 250 Mass. Ave. Cambridge, Massachusetts 02139	CIB001
Sample #: REILJO3-002-EXP005	Test #: 1 Received: 04/11/2018 Completed: 04/12/2018
ICP-MS: Palladium	= 2 ppm
Services	
Robert	prepared using current conditions
Roberts 1705 U.S. Highway 4 www.robertson-microlif.ci	prepared using current conditions Son Microlit Laboratories () Suite 1D / Ledgewood, NJ 07852 / (973) 966-6036 results@robertson-microlit.com
Roberts 1705 U.S. Highway 4 www.robertson-microlit.cr	prepared using current conditions Son Microlit Laboratories () Suite 1D / Ledgewood, NJ 07852 / (973) 966-6668 / Fox (973) 966-0136 cresults@robertson-microlit.com CIB001
Roberts 1705 U.S. Highway 4 www.robertson-microlit.cr Min-Kyu Cho Novartis Institute for Biomedia	prepared using current conditions Son Microlit Laboratories () Suite 1D / Ledgewood, NJ 07852 / (973) 966-6668 / Fax (973) 966-0136 cresults@robertson-microit.com CIB001 cal Research
Min-Kyu Cho Novartis Institute for Biomedia 250 Mass. Ave.	prepared using current conditions
Min-Kyu Cho Novartis Institute for Biomedia 250 Mass. Ave. Cambridge, Massachusetts 02	prepared using current conditions Son Microlit Laboratories 6/ Suite 1D / Ledgewood, NJ 07852 / (973) 966-6668 / Fox (973) 966-0136 results@robertson-microlt.com CIB001 cal Research
Min-Kyu Cho Novartis Institute for Biomedia 250 Mass. Ave. Cambridge, Massachusetts 02 ample #: REILLJO3-002-EXP033 2P-MS Palladium	prepared using current conditions Son Microlit Laboratories b / Suite 1D / Ledgewood, NJ 07852 / (973) 966-6068 / Fax (973) 966-0136 com CIB001 cal Research 139 Test #: 1 Received: 10/23/2018 Completed: 10/23/20 57 ppm
Min-Kyu Cho Novartis Institute for Biomedia 250 Mass. Ave. Cambridge, Massachusetts 02 ample #: REILLJO3-002-EXP033 2P-MS Palladium ervices	prepared using current conditions Som Microlit Laboratorics by Suite 1D / Ledgewood, NJ 07852 / (973) 966-6668 / Fax (973) 966-0136 com CIB001 cal Research 139 Test #: 1 Received: 10/23/2018 Completed: 10/23/20 57 ppm

Robertson 1705 U.S. Highway 46 / Suite www.robertson-microlit.com	n Microlit Laboratorie > 1D / Ledgewood, NJ 07852 / (973) 966-6668 / Fax (973) 966- result@robertson-microl	0136 ft.com
Min-Kyu Cho Novartis Institute for Biomedical Research 250 Mass. Ave. Cambridge, Massachusetts 02139	CIBO	D1
Sample #: REILJO3-002-EXP007 ICP-MS: Palladium = < 1 ppm Services ICP-MS	Test #: 1 Received: 04/11/2018 Completed: 04/12/201	8
prepared	d using current conditions	
Robertson 1705 U.S. Highway 46 / Suite 1D www.robertson-microlit.com	Microlit Laboratorie) / Ledgewood, NJ 07852 / (973) 966-6668 / Fax (973) 966-0 results@robertson-microlit.	S 1136 com
Min-Kyu Cho Novartis Institute for Biomedical Researc	CIB001	
Novalus institute for Diomedical Researc		I
250 Mass. Ave.	cn	I
250 Mass. Ave. Cambridge, Massachusetts 02139	cn	I
250 Mass. Ave. Cambridge, Massachusetts 02139 Sample #: REILLJO3-002-EXP031 ICP-MS Palladium : 3049 ppm	Test #: 1 Received: 10/23/2018 Completed: 10	/23/2018
250 Mass. Ave. Cambridge, Massachusetts 02139 Sample #: REILLJO3-002-EXP031 <i>ICP-MS</i> Palladium : 3049 ppm Services ICP-MS	Test #: 1 Received: 10/23/2018 Completed: 10	/23/2018
250 Mass. Ave. Cambridge, Massachusetts 02139 Sample #: REILLJO3-002-EXP031 ICP-MS Palladium : 3049 ppm Services ICP-MS	Test #: 1 Received: $10/23/2018$ Completed: 10	/23/2018

12. References:

- 1. Q. Chen, Z. Mao, F. Guo and X. Liu, Tetrahedron Lett., 2016, 57, 3735-3738.
- S. Sase, M. Jaric, A. Metzger, V. Malakhov and P. Knochel, J. Org. Chem., 2008, 73, 7380-7382.
- D. Garcia-Cuadrado, P. de Mendoza, A. A. C. Braga, F. Maseras and A. M. Echavarren, J. Am. Chem. Soc., 2007, 129, 6880-6886.
- 4. N. A. Isley, F. Gallou and B. H. Lipshutz, J. Am. Chem. Soc., 2013, 135, 17707-17710.
- 5. X. Cong, H. Tang and X. Zeng, J. Am. Chem. Soc., 2015, 137, 14367-14372.
- 6. T. Tu, Z. Sun, W. Fang, M. Xu and Y. Zhou, Org. Lett., 2012, 14, 4250-4253.
- M. -N. Zhao, R. -R. Hui, Z. -H. Ren, Y. -Y. Wang and Z. -H. Guan, Org. Lett., 2014, 16, 3082-3085.
- 8. L. J. Goossen, N. Rodriguez and C. Linder, J. Am. Chem. Soc., 2008, 130,15248-15249.
- 9. B. Bhayana, B. P. Fors and S. L. Buchwald, Org. Lett., 2009, 11, 3954-3957.
- 10. D. Wu and Z. -X. Wang, Org. Biomol. Chem., 2014, 12, 6414-6424.
- 11. Y. Qiao, T. Si, M. -H. Yang and R. A. Altman, J. Org. Chem., 2014, 79, 7122-7131.
- M. Begala, P. Caboni, M. J. Matos and G. L. Delogu, *Tetrahedron Lett.*, 2018, 59, 1711-1714.

13. Compound characterization data

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.42 (s, 1H), 8.34 (d, *J* = 7.9 Hz, 1H), 7.90 – 7.83 (m, 3H), 7.62 (t, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.28 – 7.21 (m, 3H), 7.19 – 7.16 (m, 2H), 6.97 (d, *J* = 0.9 Hz, 1H).

¹³C NMR (126 MHz, chloroform-*d*) δ 163.76, 155.02, 154.95, 150.70, 133.40, 130.32, 130.23, 130.20, 129.36, 128.68, 127.13, 127.10, 126.20, 124.45, 123.05, 122.03, 120.99, 111.21, 101.61.

HRMS: C₂₂H₁₃F₃O₃ ESI-MS [M⁺] calcd: 382.0817; found: 382.0813.

¹**H NMR** (500 MHz, chloroform-*d*) δ 10.09 (s, 1H), 8.28 (dt, *J* = 4.8, 1.5 Hz, 1H), 8.00 (d, *J* = 8.3 Hz, 2H), 7.94 (ddd, *J* = 9.7, 7.3, 1.9 Hz, 1H), 7.79 – 7.73 (m, 2H), 7.35 (ddd, *J* = 7.2, 4.8, 1.7 Hz, 1H).

¹³C NMR (126 MHz, chloroform-*d*) δ 191.62, 161.22, 159.30, 147.53, 147.41, 140.74, 140.71, 139.87, 139.83, 135.98, 129.99, 129.49, 129.46, 122.75, 122.53, 122.02, 121.99.

¹⁹**F NMR** (376 MHz, chloroform-*d*) δ -70.32.

HRMS: C₁₂H₈NO ESI-MS [M⁺] calcd: 201.0590; found: 201.0585.

¹**H NMR** (500 MHz, chloroform-*d*) δ 10.15 (s, 1H), 8.04 (dt, *J* = 6.6, 2.2 Hz, 1H), 8.01 – 7.95 (m, 2H), 7.91 – 7.86 (m, 1H), 7.30 – 7.24 (m, 2H).

¹³C NMR (126 MHz, chloroform-*d*): δ 193.40, 152.87, 137.74, 128.50, 128.42, 125.55 (m), 124.42 (m), 120.50, 118.16, 118.02.

¹⁹F NMR (376 MHz, chloroform-*d*): δ -137.86 – 137.91 (m), -142.91–142.97 (m).

HRMS: C₁₂H₇F₂NO ESI-MS [M⁺] calcd: 219.0496; found: 219.0496.

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.19 (d, *J* = 8.4 Hz, 1H), 7.76 (s, 1H), 7.70 (s, 2H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 1H), 7.27 (d, *J* = 7.1 Hz, 1H), 7.19

(dd, *J* = 7.8, 4.4 Hz, 2H), 7.14 (dd, *J* = 8.1, 2.0 Hz, 1H), 7.00 (d, *J* = 1.8 Hz, 1H), 5.14 (d, *J* = 14.7 Hz, 1H), 4.99 (d, *J* = 14.6 Hz, 1H), 2.03 (s, 3H), 1.57 (m, 2H), 1.18 – 1.02 (m, 2H), 0.73 (m, 3H).

¹³**C NMR** (126 MHz, chloroform-*d*) δ 173.95, 159.45, 157.44, 141.24, 140.30, 139.46, 137.30, 134.13 (d, *J* = 4.3 Hz), 132.92, 132.88, 131.51, 131.40, 131.31 – 131.18 (m), 130.16, 128.93 – 128.87 (m), 128.87, 128.82, 127.26, 127.24, 126.28, 126.26, 126.24, 126.21, 125.26, 125.24, 124.30, 123.82, 123.69, 122.13, 121.44, 121.41, 121.38, 121.35, 121.32, 121.01, 120.97, 109.01, 108.85, 52.38, 19.63, 12.86, 8.97, 8.90.

¹⁹F NMR (376 MHz, chloroform-*d*) δ -62.85, -123.29.

HRMS: cC₃₀H₂₃F₇NO ESI-MS [M+H] calcd: 546.1668; found: 546.1669.

¹**H NMR** (500 MHz, chloroform-*d*) δ 7.86 (td, *J* = 8.6, 1.7 Hz, 2H), 7.80 – 7.74 (m, 4H), 7.72 (d, *J* = 8.3 Hz, 2H), 3.77 (t, 4H), 3.06 (t, 4H).

¹³C NMR (126 MHz, chloroform-*d*) δ 144.46, 142.68, 134.75, 130.75, 130.49, 128.56, 127.99, 127.74, 126.10, 126.07, 126.04, 126.01, 125.11, 122.94, 66.10, 46.00.

¹⁹F NMR (376 MHz, chloroform-d) δ -62.63.

HRMS: C₁₇H₁₆F₃NO₃S ESI-MS [M⁺] calcd: 371.0803; found: 371.0805.

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.18 (s, 1H), 8.08 (d, *J* = 7.7 Hz, 1H), 7.51 (s, 4H), 7.45 – 7.37 (m, 3H), 7.37 – 7.29 (m, 2H), 7.26 – 7.19 (m, 2H), 6.97 (s, 2H).

¹³C NMR (126 MHz, chloroform-*d*) δ 161.33, 159.41, 141.25, 140.58, 137.54, 129.92, 128.36, 128.28, 128.20, 128.10, 127.61, 127.14, 126.18, 123.37, 123.27, 122.35, 120.47, 120.42, 120.15, 111.72, 111.67, 111.56, 111.51, 109.90, 109.59.

¹⁹F NMR (376 MHz, chloroform-*d*) δ -114.62.

HRMS: C₂₄H₁₅F₂N ESI-MS [M⁺] calcd: 355.1172; found: 355.1165.

¹**H NMR** (500 MHz, chloroform-*d*) δ 7.90 (s, 1H), 7.78 (d, *J* = 1.6 Hz, 2H), 7.75 – 7.68 (m, 4H), 7.65 – 7.61 (m, 2H), 7.48 – 7.43 (m, 2H), 5.70 (d, *J* = 8.1 Hz, 1H), 4.97 (d, *J* = 15.2 Hz, 1H), 4.16 (d, *J* = 15.3 Hz, 1H), 4.11 – 4.04 (m, 1H), 0.80 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (126 MHz, chloroform-*d*) δ 156.84, 143.89, 139.77, 137.89, 135.59, 132.39, 132.12, 129.81, 128.75, 127.87, 127.35, 126.35, 126.35, 126.33, 125.84, 125.81, 125.78, 124.04, 122.69, 122.66, 122.63, 122.59, 53.95, 45.79, 14.45.

¹⁹F NMR (376 MHz, chloroform-*d*) δ -62.51, -62.98.

HRMS: C₂₆H₁₈F₉NO₂Na ESI-MS [M+Na] calcd: 570.1091; found: 570.1091.

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.67 (s, 1H), 8.30 (s, 1H), 8.25 (s, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 7.90 (d, *J* = 1.7 Hz, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.78 (dd, *J*= 8.8, 1.7 Hz, 1H), 7.64 (t, *J* = 7.8 Hz, 1H), 7.55 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.44 – 7.36 (m, 2H), 7.09 (d, *J* = 3.1 Hz, 1H), 6.54 (dd, *J* = 3.1, 0.8 Hz, 1H), 4.02 (s, 3H), 3.84 (s, 3H).

¹³C NMR (126 MHz, chloroform-*d*): δ 140.68, 138.62, 136.10, 135.60, 134.84, 132.90, 130.63, 129.40 (d), 128.98, 128.63 (m), 128.06, 124.61 (m), 121.80, 120.64 (m), 119.64, 117.37, 109.37, 109.02, 101.28, 35.47, 32.93.

¹⁹**F NMR** (376 MHz, chloroform-*d*): δ -62.72

HRMS: C₂₅H₁₉F₃N₄ONa ESI-MS [M+Na] calcd: 471.1409; found: 471.1415.

¹**H NMR** (500 MHz, chloroform-*d*) δ 7.81 (d, *J* = 8.1 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.41 – 7.32 (m, 3H), 7.19 (t, *J* = 7.1 Hz, 1H), 7.11 (t, *J* = 9.2 Hz, 1H), 7.05 (dd, *J* = 8.9, 1.7 Hz, 1H), 6.93 – 6.88 (m, 2H), 5.19 (s, 2H), 2.35 (s, 3H).

¹³C NMR (126 MHz, chloroform-*d*) δ 161.46, 159.50, 158.47, 151.23, 144.66, 141.43, 133.72, 130.12, 129.88, 129.82, 129.74, 129.71, 129.60, 126.13, 124.33, 124.30, 123.96, 123.85, 123.15, 122.10, 115.90, 115.51, 115.34, 114.16, 63.86, 63.82, 16.87.

¹⁹F NMR (376 MHz, chloroform-*d*) δ -118.48.

HRMS: C₂₀H₁₆FNO₃ ESI-MS [M⁺] calcd: 337.1114; found: 337.1113.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.19 (t, *J* = 7.2 Hz, 1H), 6.97 (d, *J* = 9.9 Hz, 1H), 6.93 (d, *J* = 7.5 Hz, 3H), 3.74 (s, 2H), 2.31 (s, 3H), 2.27 (s, 6H).

¹³C NMR (126 MHz, chloroform-*d*) δ 162.55, 160.61, 141.50, 138.23, 138.20, 137.77, 137.70, 131.30, 131.23, 130.88, 130.60, 129.19, 121.52, 116.63, 116.46, 112.36, 112.20, 20.83, 17.74, 17.45.

¹⁹**F NMR** (376 MHz, chloroform-*d*) δ -117.20.

HRMS: C₁₆H₁₆FN ESI-MS [M+H] calcd: 230.1345; found: 230.1342.

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.16 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.64 (d, *J* = 7.5 Hz, 1H), 7.40 (t, *J* = 7.9 Hz, 1H), 7.27 (d, *J* = 8.3 Hz, 2H), 7.18 (t, *J* = 7.7 Hz, 1H), 7.06 – 6.86 (m, 4H), 5.00 (s, 2H), 2.71 (s, 3H).

¹³C NMR (126 MHz, chloroform-*d*) δ 163.85, 162.81, 161.89, 155.24, 150.18, 144.85, 139.18, 139.12, 132.18, 130.89, 130.57, 130.01, 129.94, 127.44, 122.41, 122.39, 122.05, 121.98, 114.75, 114.58, 113.96, 113.79, 112.27, 69.82, 69.81, 24.81.

¹⁹**F NMR** (376 MHz, chloroform-*d*) δ -112.94.

HRMS: C₁₉H₁₆FN₂O₃ ESI-MS [M+H] calcd: 339.1145; found: 339.1142.

¹H NMR (500 MHz, chloroform-*d*) δ 7.48 – 7.38 (m, 3H), 7.30 (d, *J* = 7.3 Hz, 1H), 7.20 (s, 5H), 6.87 (d, *J* = 7.6 Hz, 1H), 6.57 (d, *J* = 9.1 Hz, 2H), 3.52 (s, 2H), 1.78 (s, 3H).
¹³C NMR (126 MHz, chloroform-*d*) δ 143.14, 142.12, 141.45, 140.81, 140.43, 130.66, 130.52, 129.92, 129.37, 127.71, 127.46, 127.00, 126.47, 126.43, 117.84, 114.55, 19.01.
HRMS: C₁₉H₁₈N ESI-MS [M+H] calcd: 260.1439; found: 260.1447.

¹**H NMR** (500 MHz, chloroform-*d*) δ 9.99 (s, 1H), 7.96 (s, 1H), 7.94 (s, 1H), 7.75 (t, *J* = 7.7 Hz, 1H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.58 (s, 1H), 3.92 (s, 3H).

¹³C NMR (126 MHz, chloroform-*d*) δ 193.84, 152.68, 152.65, 137.67, 137.51, 129.27, 123.39, 122.75, 118.81, 39.27.

HRMS: C₁₀H₉N₃O ESI-MS [M⁺] calcd: 187.0746; found: 187.0746.

¹H NMR (500 MHz, chloroform-*d*) δ 7.58 (d, *J* = 6.7 Hz, 2H), 7.40 – 7.26 (m, 9H), 7.19 (s, 1H), 6.16 (t, *J* = 3.3 Hz, 1H), 6.09 (dd, *J* = 3.3, 1.8 Hz, 1H), 5.19 (s, 2H), 4.97 (s, 2H), 1.39 (s, 9H).
¹³C NMR (126 MHz, chloroform-*d*) δ 161.98, 151.66, 148.81, 138.44, 136.82, 135.49, 129.52, 129.09, 128.56, 128.46, 128.31, 128.03, 127.59, 126.98, 125.43, 123.09, 115.01, 110.39, 110.16, 83.66, 65.37, 52.28, 44.93, 27.66.

HRMS: C₂₇H₂₇N₃O₄Na ESI-MS [M⁺] calcd: 480.1899; found: 480.1889.

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.08 (d, *J* = 8.3 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.74 – 7.66 (m, 2H), 7.40 (ddd, *J* = 8.4, 7.1, 1.3 Hz, 1H), 7.36 – 7.29 (m, 3H), 7.29 – 7.24 (m, 2H), 7.16 (dd, *J* = 7.8, 0.9 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (126 MHz, chloroform-*d*) δ 145.20, 144.24, 143.15, 135.38, 135.13, 133.71, 131.67, 130.00, 129.84, 129.64, 129.25, 128.89, 126.91, 126.80, 125.16, 123.74, 123.25, 123.11, 122.69, 119.93, 113.93, 113.53, 109.83, 109.18, 21.58.

¹⁹F NMR (376 MHz, chloroform-*d*) δ -50.68.

HRMS: C₂₂H₁₅F₂NO₄SESI-MS [M⁺] calcd: 427.0690; found: 427.0707.

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.12 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.78 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.74 – 7.66 (m, 3H), 7.56 (dd, *J* = 8.3, 0.9 Hz, 1H), 7.44 (ddd, *J* = 7.5, 3.9, 1.4 Hz, 1H), 7.40 – 7.35 (m, 1H), 7.32 – 7.25 (m, 1H).

¹³C NMR (126 MHz, chloroform-*d*): δ 134.40, 134.31, 133.84, 133.19, 133.03, 128.74, 128.15, 127.59, 127.03, 125.70, 123.37, 121.93, 118.84, 11.27, 106.78.

HRMS: C₁₅H₉NO ESI-MS [M⁺] calcd: 219.0684; found: 219.0692.

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.55 (s, 1H), 8.44 (d, *J* = 1.6 Hz, 2H), 8.10 – 8.06 (m, 2H), 7.79 (dt, *J* = 8.8, 1.1 Hz, 2H), 7.51 (ddd, *J* = 8.3, 6.6, 1.2 Hz, 2H), 7.44 (ddd, *J* = 8.7, 6.5, 1.4 Hz, 2H), 3.98 (dd, *J* = 5.7, 4.0 Hz, 4H), 3.92 – 3.88 (m, 4H).

¹³C NMR (126 MHz, chloroform-*d*) δ 159.52, 131.41, 131.06, 130.08, 128.61, 127.50, 125.96, 125.94, 125.30, 120.57, 66.91, 44.37.

HRMS: C₂₂H₂₀N₃OH ESI-MS [M+H] calcd: 342.1606; found: 342.1615.

¹H NMR (500 MHz, chloroform-*d*) δ 7.50 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 1.1 Hz, 1H), 6.60 (d, J = 1.1 Hz, 1H), 3.86 – 3.81 (m, 4H), 3.62 – 3.57 (m, 4H).
¹³C NMR (126 MHz, chloroform-*d*): δ 159.59, 151.65, 150.29, 136.80, 135.35, 129.21, 128.28, 114.11, 111.16, 102.46, 66.59, 45.41.

HRMS: C₁₅H₁₄Cl₂N₂O ESI-MS [M⁺] calcd: 308.0483; found: 308.0487.

¹**H NMR** (500 MHz, chloroform-*d*) δ 7.90 (d, *J* = 1.7 Hz, 1H), 7.74 (d, *J* = 7.7 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.54 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.44 – 7.42 (m, 1H), 7.30 – 7.16 (m, 4H), 7.00 (d, *J* = 3.0 Hz, 1H), 6.46 (d, *J* = 3.1 Hz, 1H), 3.74 (s, 3H).

¹³C NMR (126 MHz, chloroform-*d*): δ 146.16, 141.09, 139.24, 129.85, 128.84, 125.88, 124.30, 123.90, 123.63, 123.10, 122.13, 120.69, 119.17, 117.97, 109.61, 101.56, 32.97.
HRMS: C₁₇H₁₃NS ESI-MS [M⁺] calcd: 263.0769; found: 263.0772.

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.25 – 8.16 (m, 4H), 8.11 (d, *J* = 1.1 Hz, 2H), 8.06 – 7.98 (m, 3H), 7.29 – 7.27 (m, 2H), 7.17 – 7.14 (m, 1H), 2.48 (s, 6H).

¹³C NMR (126 MHz, chloroform-*d*): δ 141.13, 138.10, 137.85, 131.50, 131.02, 130.44, 128.86, 128.51, 128.44, 127.55, 127.44, 127.29, 127.27, 125.94, 125.52, 124.989, 124.95, 124.73, 124.58, 21.46.

HRMS: $C_{24}H_{18}$ ESI-MS [M⁺] calcd: 306.1409; found: 306.1410.

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.64 (d, *J* = 1.8 Hz, 1H), 8.12 – 8.06 (m, 2H), 8.03 (d, *J* = 8.6 Hz, 1H), 7.94 (d, *J* = 8.6 Hz, 1H), 7.83 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.69 (dd, *J* = 8.6, 2.3 Hz, 2H), 7.58 – 7.52 (m, 2H), 7.28 (s, 1H), 4.01 (s, 3H), 1.41 (s, 9H).

¹³C NMR (126 MHz, chloroform-*d*): δ 167.26, 150.98, 140.82, 137.60, 135.86, 131.53, 130.81, 129.78, 128.33, 127.20, 127.11, 126.38, 125.93, 125.63, 125.25, 52.22, 34.63, 31.35.
HRMS: C₂₂H₂₂O₂ ESI-MS [M⁺] calcd: 318.1620; found: 318.1615.

¹**H NMR** (500 MHz, chloroform-*d*) δ 7.78 (d, *J* = 7.8 Hz, 1H), 7.64 – 7.59 (m, 2H), 7.58 – 7.52 (m, 2H), 7.48 – 7.43 (m, 2H), 2.09 – 2.01 (m, 2H), 1.17 – 1.01 (m, 6H), 0.77 (t, *J* = 7.0 Hz, 3H), 0.72 (dd, *J* = 10.3, 5.8 Hz, 2H).

¹³**C NMR** (126 MHz, chloroform-*d*): δ 151.79, 140.20, 140.07, 138.94, 133.20, 128.90, 128.41, 125.96, 121.31, 120.16, 55.34, 40.39, 31.44, 29.66, 23.79, 22.55, 13.98.

HRMS: $C_{37}H_{40}Cl_2 ESI-MS [M^+]$ calcd: 554.2507; found: 554.2494.

¹H NMR (500 MHz, chloroform-*d*) δ 7.65 (d, J = 6.1 Hz, 8H), 7.32 (d, J = 8.3 Hz, 4H). ¹³C NMR (126 MHz, chloroform-*d*): δ 148.80, 139.17 (d), 128.34, 127.57, 121.54, 121.30, 119.50. ¹⁹F NMR (376 MHz, chloroform-*d*) δ -57.73.

HRMS: C₂₀H₁₂F₆O₂ ESI-MS [M⁺] calcd: 398.0741; found: 398.0753.

¹H NMR (500 MHz, chloroform-*d*) δ 8.15 (s, 1H), 7.88 (s, 1H), 7.56 (tt, *J* = 7.8, 1.8 Hz, 1H), 7.46 (d, *J* = 1.9 Hz, 2H), 7.36 – 7.30 (m, 1H), 7.28 – 7.19 (m, 3H), 6.65 (p, *J* = 1.6 Hz, 1H).
¹³C NMR (126 MHz, chloroform-*d*) δ 160.91, 158.95, 135.31, 131.26, 131.23, 130.37, 130.27, 128.14, 128.08, 127.60, 124.84, 124.27, 124.24, 123.47, 123.45, 121.38, 121.36, 116.10, 115.91, 110.95, 103.05.

¹⁹**F NMR** (376 MHz, chloroform-*d*) δ -118.18.

HRMS: C₁₄H₁₀FN ESI-MS [M⁺] calcd: 211.0797; found: 211.0799

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.54 (d, *J* = 5.7 Hz, 1H), 7.54 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.52 (d, *J* = 2.2 Hz, 1H), 7.37 (dd, *J* = 5.7, 1.0 Hz, 1H), 7.34 (ddd, *J* = 8.2, 7.4, 1.8 Hz, 1H), 7.15 – 7.06 (m, 2H), 7.01 (dd, *J* = 8.3, 1.0 Hz, 1H), 6.88 – 6.77 (m, 3H), 6.67 (dd, *J* = 2.2, 1.0 Hz, 1H), 4.98 (s, 2H).

¹³C NMR (126 MHz, chloroform-*d*) δ 163.76, 161.80, 159.40, 155.74, 151.81, 144.72, 144.26, 139.50, 131.61, 130.19, 129.80, 129.74, 124.33, 122.15, 122.12, 121.79, 114.52, 114.35, 113.86, 113.68, 113.57, 106.95, 105.98, 70.05.

¹⁹**F NMR** (376 MHz, chloroform-*d*) δ -113.14.

HRMS: C₂₀H₁₄FNO₂Na ESI-MS [M+Na] calcd: 342.0906; found: 342.0919

¹**H NMR** (500 MHz, chloroform-*d*) δ 7.82 (t, *J* = 7.7 Hz, 4H), 7.43 (d, *J* = 7.9 Hz, 2H), 7.20 – 7.08 (m, 3H), 6.90 (d, *J* = 8.3 Hz, 2H), 5.15 – 5.06 (m, 1H), 2.39 (s, 3H), 2.29 (s, 3H), 1.69 (s, 6H), 1.23 (d, *J* = 6.2 Hz, 6H).

¹³C NMR (126 MHz, chloroform-*d*): δ 195.28, 173.18, 159.50, 1456.91, 138.06, 137.56, 136.32, 135.04, 132.01, 131.29, 130.76, 129.68, 129.56, 129.15, 126.64, 117.20, 79.38, 69.38, 69.31, 25.39, 21.54, 21.08, 20.38.

HRMS: C₂₈H₃₀O₄Na ESI-MS [M+Na] calcd: 453.2042; found: 453.2032

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.34 – 8.31 (m, 1H), 8.22 – 8.17 (m, 2H), 7.75 (dd, *J* = 7.2, 1.3 Hz, 1H), 7.67 – 7.59 (m, 6H), 7.52 – 7.43 (m, 4H), 7.34 – 7.30 (m, 1H), 7.04 (ddd, *J* = 7.4, 4.9, 1.3 Hz, 1H), 4.03 (s, 3H).

¹³C NMR (126 MHz, chloroform-*d*) δ 161.09, 145.11, 141.28, 140.34, 138.76, 137.64, 129.90, 128.56, 127.53, 127.32, 127.10, 126.06, 125.48, 123.41, 121.01, 120.36, 120.04, 117.15, 109.87, 109.47, 53.58.

HRMS: C₂₄H₁₉N₂O ESI-MS [M+H] calcd: 351.1497; found: 351.1509

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.43 (s, 1H), 7.80 (s, 1H), 7.47 (d, *J* = 7.4 Hz, 2H), 7.28 (d, *J* = 7.8 Hz, 2H), 4.04 (s, 3H), 2.43 (s, 3H).

¹³C NMR (126 MHz, chloroform-*d*) δ 162.96, 143.08, 143.05, 143.01, 138.23, 135.10, 135.08, 132.29, 129.15, 128.96, 124.92, 120.56, 54.24, 21.24.

¹⁹F NMR (376 MHz, chloroform-d) δ -61.44.

HRMS: C₁₄H₁₂F₃NO ESI-MS [M+N] calcd: 267.0871; found: 267.0867.

¹**H NMR** (500 MHz, chloroform-*d*) δ 7.91 (s, 1H), 7.54 (d, *J* = 6.8 Hz, 1H), 7.25 (d, *J* = 7.9 Hz, 1H), 6.96 (d, *J* = 8.6 Hz, 1H), 6.66 (d, *J* = 12.1 Hz, 1H), 3.71 (s, 3H), 3.21 (p, *J* = 6.9 Hz, 1H), 1.24 (d, *J* = 6.9 Hz, 6H), 0.90 (s, 9H), -0.00 (s, 6H).

¹³**C NMR** (126 MHz, chloroform-*d*) δ 167.19, 165.24, 160.68, 160.60, 146.53, 144.74, 135.91, 135.22, 134.96, 134.35, 134.29, 132.47, 132.35, 130.97, 129.15, 128.81, 128.68, 128.67, 128.64, 128.63, 104.64, 104.42, 67.71, 61.10, 32.05, 31.29, 28.26, 23.78, -0.00.

¹⁹F NMR (376 MHz, chloroform-*d*) δ -62.57, -116.72.

HRMS: C₂₀H₂₃F₄O₂Si ESI-MS [M-C₄H₉] calcd: 399.1404; found: 399.1424.

¹**H** NMR (500 MHz, chloroform-*d*) δ 7.84 (dd, J = 7.7, 1.6 Hz, 1H), 7.35 (dd, J = 7.6, 1.6 Hz, 1H), 7.34 - 7.31 (m, 3H), 7.31 - 7.28 (m, 2H), 7.28 (s, 1H), 3.94 (s, 3H), 2.42 (s, 3H).

¹³C NMR (126 MHz, chloroform-*d*) δ 168.66, 142.34, 140.18, 136.59, 133.13, 131.57, 130.73, 129.55, 125.38, 120.66, 52.05, 18.40.

¹⁹F NMR (376 MHz, chloroform-*d*) δ -57.82.

HRMS: C₁₆H₁₃F₃O₃ ESI-MS [M⁺]+ calcd: 310.0817; found: 310.0814.

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.56 (s, 1H), 8.26 (d, *J* = 5.6 Hz, 1H), 8.11 (d, *J* = 8.5 Hz, 1H), 8.00 (s, 1H), 7.90 (d, *J* = 8.4 Hz, 1H), 7.68 – 7.58 (m, 2H), 7.46 (d, *J* = 8.4 Hz, 1H), 7.14 (d, *J* = 2.9 Hz, 1H), 6.61 (d, *J* = 2.9 Hz, 1H), 3.86 (s, 3H).

13C NMR (126 MHz, chloroform-*d*) δ 151.59, 143.01, 140.91, 136.68, 136.36, 131.48, 131.35, 129.94, 129.16, 127.48, 127.30, 123.57, 121.45, 120.59, 120.05, 109.87, 101.62, 33.01.

HRMS: C₁₈H₁₃ClN₂ESI-MS [M⁺] calcd: 292.0767; found: 292.0773.

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.19 (dt, *J* = 4.8, 1.5 Hz, 1H), 7.87 (ddd, *J* = 9.5, 7.4, 1.9 Hz, 1H), 7.51 (dd, *J* = 8.2, 1.7 Hz, 2H), 7.30 (dd, *J* = 8.8, 2.1 Hz, 2H), 7.28 – 7.26 (m, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 2.79 – 2.66 (m, 2H), 2.37 (t, *J* = 7.4 Hz, 2H), 2.01 (p, *J* = 7.5 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, chloroform-*d*) δ 173.37, 161.42, 146.12, 146.00, 141.96, 140.49, 140.46, 128.88, 128.82, 128.80, 121.79, 121.75, 60.32, 34.85, 33.66, 26.39, 14.25.

¹⁹**F** NMR (376 MHz, chloroform-*d*) δ -71.14 (d, *J* = 9.4 Hz).

HRMS: C₁₇H₁₈FNO₂ ESI-MS [M⁺] calcd: 287.1322; found: 287.1312.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.70 (t, *J* = 7.3 Hz, 1H), 7.41 (dd, *J* = 15.3, 9.0 Hz, 2H), 7.23 (t, *J* = 7.7 Hz, 1H), 7.11 (d, *J* = 7.6 Hz, 1H), 6.87 (t, *J* = 7.5 Hz, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 3.80 (s, 2H).

¹³C NMR (126 MHz, chloroform-*d*) δ 164.37, 162.30, 147.50, 147.44, 143.21, 133.75, 130.11, 125.52, 125.49, 124.24, 119.13, 117.03, 116.88, 116.32, 113.99, 99.85, 99.73.

¹⁹**F NMR** (376 MHz, chloroform-*d*) δ -105.85.

HRMS: C₁₃H₉FN₂ESI-MS [M⁺] calcd: 212.0750; found: 212.0752.

¹H NMR (500 MHz, chloroform-*d*) δ 7.78 (t, *J* = 1.3 Hz, 1H), 7.40 (d, *J* = 1.3 Hz, 2H), 7.34 (dt, *J* = 6.9, 1.4 Hz, 2H), 7.12 (ddd, *J* = 6.7, 2.9, 1.1 Hz, 2H), 6.56 (dd, *J* = 3.2, 1.0 Hz, 1H), 3.85 (s, 3H).
¹³C NMR (126 MHz, chloroform-*d*): δ 144.19, 142.49, 139.33, 136.34, 131.74, 131.64, 129.79, 128.97, 122.47, 121.18, 119.42, 109.60, 109.35, 108.70, 101.36, 32.95.

¹⁹**F NMR** (376 MHz, chloroform-*d*): δ -49.96.

HRMS: C₁₆H₁₁F₂NO₂ ESI-MS [M⁺] calcd: 287.0785; found: 287.0785.

¹**H NMR** (500 MHz, chloroform-*d*) δ 7.38 – 7.31 (m, 3H), 7.16 – 7.07 (m, 4H), 7.07 – 6.99 (m, 3H), 6.81 (tt, *J* = 9.0, 2.4 Hz, 1H), 5.12 (s, 2H).

¹³**C NMR** (126 MHz, chloroform-*d*) δ 163.93, 163.65, 163.55, 161.97, 161.69, 161.59, 155.13, 141.60, 141.52, 141.44, 139.41, 139.35, 130.70, 130.15, 130.09, 129.65, 129.55, 122.21, 122.19, 121.66, 114.79, 114.62, 113.85, 113.67, 113.29, 112.61, 112.56, 112.45, 112.40, 102.52, 102.32, 102.12, 69.79, 69.77.

¹⁹F NMR (376 MHz, chloroform-d) δ -111.02 - -111.23 (m), -112.64 - -112.83 (m).

HRMS: C₁₉H₁₃F₃O ESI-MS [M⁺] calcd: 314.0919; found: 314.0921.

¹H NMR (500 MHz, chloroform-*d*) δ 7.51 – 7.47 (m, 2H), 7.43 – 7.40 (m, 2H), 7.19 – 7.14 (m, 2H), 6.85 (td, *J* = 7.4, 1.2 Hz, 1H), 6.79 (dd, *J* = 8.5, 1.3 Hz, 1H), 3.75 (s, 2H), 1.39 (s, 9H).
¹³C NMR (126 MHz, chloroform-*d*) δ 150.01, 143.57, 136.46, 130.47, 128.69, 128.26, 127.63, 125.70, 118.63, 115.55, 34.59, 31.39.

HRMS: C₁₆H₁₉NH ESI-MS [M+H] calcd: 226.1596; found: 226.1598.

¹H NMR (500 MHz, chloroform-*d*) δ 7.51 – 7.40 (m, 4H), 7.27 (d, *J* = 1.5 Hz, 1H), 7.25 – 7.15 (m, 2H), 6.81 (d, *J* = 8.2 Hz, 1H), 4.01 (s, 2H), 1.37 (d, *J* = 1.4 Hz, 9H), 1.32 (d, *J* = 1.4 Hz, 9H).
¹³C NMR (126 MHz, chloroform-*d*) δ 149.99, 136.82, 128.81, 127.50, 125.66, 125.18, 115.88, 34.57, 34.04, 31.56, 31.38.

HRMS: C₂₀H₂₈N ESI-MS [M+H] calcd: 282.2222; found: 282.2220.

¹**H NMR** (500 MHz, chloroform-*d*) δ 7.45 – 7.39 (m, 2H), 7.37 – 7.33 (m, 2H), 7.21 – 7.15 (m, 2H), 6.86 (td, *J* = 7.4, 1.2 Hz, 1H), 6.81 – 6.77 (m, 1H), 3.79 (s, 2H), 3.00 (p, *J* = 6.9 Hz, 1H), 1.35 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (126 MHz, chloroform-*d*) δ 147.76, 143.64, 136.90, 130.49, 129.00, 128.29, 127.69, 126.87, 118.61, 115.55, 33.90, 24.05.

HRMS: C₁₅H₁₇NH ESI-MS [M+H] calcd: 212.1439; found: 212.1439.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.47 (d, *J* = 5.5 Hz, 2H), 7.37 (d, *J* = 6.0 Hz, 2H), 7.16 (dd, *J* = 7.7, 2.7 Hz, 1H), 6.79 (d, *J* = 7.7 Hz, 1H), 6.72 (s, 1H), 3.74 (s, 2H), 3.03 (dt, *J* = 13.5, 6.7 Hz, 1H), 2.93 (dt, *J* = 13.4, 6.6 Hz, 1H), 1.39 (d, *J* = 2.8 Hz, 3H), 1.38 (d, *J* = 2.8 Hz, 3H), 1.36 (d, *J* = 2.8 Hz, 3H), 1.35 (d, *J* = 2.8 Hz, 3H).

¹³**C NMR** (126 MHz, Chloroform-*d*) δ 149.26, 147.53, 143.50, 137.04, 130.49, 129.11, 126.85, 125.42, 116.98, 113.76, 33.95, 33.93, 24.11, 24.05.

HRMS: C₁₈H₂₃NH ESI-MS [M+H] calcd: 254.1909; found: 254.1907.

¹**H NMR** (500 MHz, Methanol- d_4) δ 7.62 (d, J = 8.2 Hz, 2H), 7.58 – 7.51 (m, 3H), 7.48 (d, J = 7.7 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 4.90 (s, 3H), 2.68 (s, 3H), 1.40 (s, 9H).

¹³C NMR (126 MHz, Methanol-*d*₄) δ 151.64, 137.03, 133.36, 131.60, 129.20, 128.71, 128.54, 127.69, 125.93, 123.67, 38.17, 34.21, 30.35.

HRMS: C₁₆H₂₀N ESI-MS [M-OMs] calcd: 226.1596; found: 226.1591.

¹**H NMR** (500 MHz, methanol- d_4) δ 7.60 (m, 3H), 7.48 (s, 1H), 7.45 – 7.36 (m, 3H), 2.71 (s, 3H), 1.39 (d, J = 8.0 Hz, 18H).

¹³C NMR (126 MHz, methanol-*d*₄) δ 152.73, 152.67, 151.59, 151.55, 136.57, 133.83, 133.82, 128.54, 128.51, 125.90, 125.74, 125.00, 123.34, 38.14, 34.30, 34.19, 30.36, 30.24.

HRMS: C₂₀H₂₈N ESI-MS [M-OMs] calcd: 282.2222; found: 282.2217

¹**H NMR** (500 MHz, methanol- d_4) δ 7.59 – 7.43 (m, 6H), 7.42 – 7.36 (m, 2H), 2.98 (d, J = 6.9 Hz, 1H), 2.69 (d, J = 0.8 Hz, 3H), 1.32 (d, J = 6.9 Hz, 6H).

¹³C NMR (126 MHz, methanol-*d*₄) δ 149.53, 137.10, 133.70, 131.63, 129.19, 128.76, 128.69, 127.66, 127.01, 123.48, 38.09, 33.82, 22.93.

HRMS: C₁₅H₁₇NH ESI-MS [M-OMs] calcd: 212.1439; found: 212.1440.

¹**H NMR** (500 MHz, methanol-*d*₄) δ 7.47 – 7.39 (m, 4H), 7.38 – 7.34 (m, 3H), 3.08 – 2.95 (m, 2H), 2.70 (s, 3H), 1.32 (dd, *J* = 8.7, 6.9 Hz, 12H).

¹³C NMR (126 MHz, methanol-*d*₄) δ 150.29, 149.30, 134.48, 133.73, 131.56, 128.79, 127.44, 127.30, 126.95, 121.40, 38.11, 33.81, 33.55, 22.96, 22.75.

HRMS: C₁₈H₂₄N ESI-MS [M-OMs] calcd: 254.1909; found: 254.1913.

¹**H NMR** (500 MHz, acetonitrile-*d*₃) δ 7.61 (d, *J* = 7.4 Hz, 1H), 7.44 – 7.36 (m, 2H), 7.33 – 7.18 (m, 4H), 6.30 (s, 2H), 2.59 (s, 3H), 1.36 (s, 9H).

¹³C NMR (126 MHz, acetonitrile-*d*₃) δ 150.40, 138.71, 135.49, 134.15, 133.32, 127.84, 127.74, 126.30, 124.80, 123.56, 120.62, 98.61, 39.25, 34.32, 30.80.

HRMS: C₃₃H₃₉N₂O₃Pd₂S ESI-MS [M-OMs] calcd: 757.0769; found: 757.0763.

¹**H NMR** (500 MHz, acetonitrile-*d*₃) δ 7.64 (s, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.31 (q, *J* = 8.2 Hz, 4H), 7.27 – 7.19 (m, 4H), 6.10 (s, 4H), 2.66 (s, 6H), 2.66 (s, 6H), 1.39 (dd, *J* = 12.3, 1.0 Hz, 36H).

¹³C NMR (126 MHz, acetonitrile-*d*₃) δ 150.39, 149.55, 138.24, 134.52, 133.21, 132.77, 125.07, 124.94, 124.69, 123.58, 120.08, 39.10, 34.42 (d, *J* = 23.9 Hz), 30.80, 30.77.
HRMS: C₄₁H₅₅N₂O₃Pd₂S ESI-MS [M-OMs] calcd: 867.2003; found: 867.2000.

¹**H NMR** (500 MHz, acetonitrile-*d*₃) δ 7.61 (dt, *J* = 7.4, 1.3 Hz, 1H), 7.40 (dd, *J* = 9.9, 7.5 Hz, 2H), 7.28 (dtd, *J* = 8.7, 7.4, 6.1 Hz, 2H), 7.08 (d, *J* = 7.8 Hz, 2H), 6.30 (s, 2H), 2.92 (p, *J* = 6.9 Hz, 1H), 2.60 (s, 3H), 1.30 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (126 MHz, acetonitrile-*d*₃) δ 148.19, 139.28, 138.85, 135.59, 134.55, 127.79, 127.68, 126.23, 125.12, 124.52, 120.66, 39.26, 33.61, 23.48.

HRMS: C₃₁H₃₅N₂O₃Pd₂S ESI-MS [M-OMs] calcd: 727.0455; found: 727.0451.

¹**H NMR** (500 MHz, acetonitrile-*d*₃) δ 7.52 (d, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.30 (s, 1H), 7.17 (dd, *J* = 8.0, 1.9 Hz, 1H), 7.09 – 7.01 (m, 2H), 6.28 (s, 2H), 3.00 – 2.87 (m, 2H), 2.60 (s, 3H), 1.29 (d, *J* = 6.9 Hz, 12H).

¹³C NMR (126 MHz, acetonitrile-*d*₃) δ 149.06, 147.94, 143.61, 136.32, 135.38, 134.57, 134.48, 127.75, 124.87, 124.48, 124.18, 118.75, 117.47, 39.28, 33.65, 33.61, 23.49, 23.34.

HRMS: C₃₇H₄₇N₂O₃Pd₂S ESI-MS [M-OMs] calcd: 811.1377; found: 811.1372.

¹**H NMR** (500 MHz, chloroform-*d*): δ 7.64 (d, *J* = 9.5 Hz, 1H), 7.37-7.29 (m, 3H), 7.26-7.25 (m, 1H, 7.19-7.35 (m, 2H), 7.02-6.99 (m, 2H), 6.88-6.85 (m, 2H), 6.77 (d, *J* = 8.5 Hz, 1H), 6.60 (t, *J* = 7.5 Hz, 1H), 6.55-6.52 (m, 2H), 6.43 (t, *J* = 7.5 Hz, 1H), 4.57 (m, 1H), 4.20 (m, 1H), 3.97 (s, 3H), 3.62 (m, 3H), 2.76 (m, 1H), 2.62 (m, 3H), 2.02 (t, *J* = 4.0 Hz, 2H), 1.93-1.15 (m, 9H), 1.05-0.955 (m, 10H), 0.86-0.79 (m, 8H).

¹³**C NMR** (126 MHz, chloroform-*d*): δ 158.36, 157.40, 146.71, 139.58, 139.36, 135.82, 135.44, 132.74, 130.09, 128.47, 127.26, 126.75, 126.24, 126.17, 125.96, 125.37, 121.39, 120.09, 111.14, 104.49, 103.79, 81.32, 81.16, 55.94, 55.51, 40.07, 33.96, 33.85, 32.51, 30.91, 29.70, 28.98, 26.79, 23.96, 23.77.

³¹**P NMR** (162 MHz, chloroform-*d*) δ 59.40.

HRMS: C47H57NO3PPd ESI-MS [M-OMs] calcd: 820.3128; found: 820.3129.

¹**H NMR** (500 MHz, chloroform-*d*) δ 7.99 (d, *J* = 5.2 Hz, 1H), 7.85 – 7.76 (m, 2H), 7.68 – 7.58 (m, 2H), 7.54 – 7.44 (m, 3H), 7.40 – 7.27 (m, 4H), 7.03 (dd, *J* = 18.7, 8.3 Hz, 2H), 5.05 (d, *J* = 11.5 Hz, 1H), 4.71 – 4.63 (m, 1H), 4.51 (s, 3H), 4.10 (s, 3H), 3.25 (p, *J* = 6.9 Hz, 1H), 3.08 (s, 3H), 2.89 (dd, *J* = 15.6, 4.8 Hz, 1H), 2.78 – 2.65 (m, 2H), 1.82 (d, *J* = 27.1 Hz, 3H), 1.69 – 1.64 (m, 9H), 1.40 (s, 9H), 1.32 – 1.24 (m, 9H).

¹³C NMR (126 MHz, chloroform-*d*) δ 164.31, 164.25, 158.55, 157.22, 150.96, 150.93, 150.03, 146.66, 139.61, 138.86, 138.80, 138.63, 138.60, 136.83, 135.57, 135.55, 132.94, 132.87, 132.41, 129.98, 129.87, 129.77, 128.80, 128.12, 127.10, 127.04, 126.97, 126.31, 126.02, 125.14, 123.52, 119.90, 119.89, 118.81, 114.71, 114.42, 111.66, 111.63, 104.53, 103.82, 77.27, 77.01, 76.76,

55.60, 55.51, 40.01, 34.81, 34.66, 34.33, 34.10, 33.87, 33.38, 33.31, 32.10, 31.93, 31.44, 31.38, 31.11, 30.33, 29.97, 29.70, 28.72, 27.98, 27.84, 25.88, 23.95, 23.83, 22.69, 22.44, 20.86, 14.12. ³¹**P NMR** (162 MHz, chloroform-*d*) δ 56.64.

HRMS: C₅₁H₆₅NO₃PPd ESI-MS [M-OMs] calcd: 876.3755; found: 876.3751.

¹H NMR (500 MHz, chloroform-*d*) δ 7.41 (d, *J* = 8.8 Hz, 1H), 7.33 – 7.21 (m, 3H), 7.16 (s, 1H), 7.11 (d, *J* = 8.1 Hz, 1H), 7.02 (d, *J* = 21.9 Hz, 3H), 6.91 – 6.87 (m, 1H), 6.81 (d, *J* = 7.7 Hz, 2H), 6.54 (d, *J* = 8.1 Hz, 2H), 4.61 (d, *J* = 11.3 Hz, 1H), 4.10 (s, 1H), 4.06 (s, 3H), 3.71 (s, 1H), 3.62 (s, 3H), 2.81 – 2.70 (m, 2H), 2.65 (s, 3H), 2.51 (d, *J* = 11.4 Hz, 1H), 1.31 – 1.17 (m, 8H), 1.14 (d, *J* = 6.0 Hz, 6H), 1.08 (s, 3H), 1.02 (s, 9H), 0.90 (s, 9H), 0.81 (s, 9H), 0.64 (d, *J* = 14.1 Hz, 1H).
¹³C NMR (126 MHz, chloroform-*d*) δ 158.48, 157.33, 147.97, 146.81, 139.23, 138.46, 137.00, 132.80, 132.79, 132.72, 132.28, 130.07, 127.17, 127.10, 126.38, 124.86, 124.14, 123.33, 121.32, 119.33, 118.86, 111.67, 111.64, 104.49, 103.86, 81.97, 81.82, 55.66, 55.56, 39.94, 34.50, 34.39, 34.15, 34.09, 33.99, 33.76, 33.68, 31.20, 31.16, 30.92, 29.69, 29.44, 29.34, 27.59, 24.05, 23.86, 23.56.

³¹**P** NMR (162 MHz, chloroform-*d*) δ 57.76 (d, *J* = 8.3 Hz).

HRMS: C₅₇H₇₃NO₃PPd ESI-MS [M-OMs] calcd: 932.4363; found: 932.4361.

¹**H NMR** (500 MHz, chloroform-*d*): δ 7.56 (d, *J* = 8.0 Hz, 1H), 7.35-7.29 (m, 2H), 7.19-7.17 (m, 2H), 7.12 (dt, *J* = 7.5, 1.5 Hz, 1H), 7.06 (d, *J* = 8.0 Hz, 1H), 6.99-6.94 (m, 1H), 6.89-6.84 (m, 3H), 6.79 (d, J = 8.5 Hz, 1H), 6.62 (dd, *J* = 6.0, 2.0 Hz, 1H), 6.58-6.52 (m, 2H), 4.57 (d, *J* = 11.0 Hz, 1H), 4.19 (q, *J* = 4.0 Hz, 1H), 3.97 (s, 3H), 3.62 (s, 3H), 2.76 (m, 1H), 2.62 (s, 3H), 2.46-2.42 (m, 1H), 2.38-2.33 (m, 1H), 2.21 (m, 1H), 1.22-1.13 (m, 10H), 0.99-0.90 (m, 10H), 0.87-0.79 (m, 10H).

¹³**C NMR** (126 MHz, chloroform-*d*): δ 164.31, 158.48, 157.35, 148.43, 146.67, 139.53, 138.94, 138.09, 136.93, 135.47, 134.84, 134.76, 132.35, 130.04, 128.07, 127.06, 126.46, 125.22, 123.67, 121.26, 119.96, 111.26, 104.46, 103.77, 81.81, 81.66, 55.61, 55.50, 40.00, 34.29, 34.15, 33.85, 33.59, 33.19, 33.12, 30.91, 29.69, 29.35, 26.57, 24.53, 23.94, 23.80, 23.58, 22.40.

³¹**P NMR** (162 MHz, chloroform-*d*): δ 58.65

HRMS: C₅₀H₆₃NO₃PPd ESI-MS [M-OMs] calcd: 862.3599; found: 862.3594.

¹**H NMR** (500 MHz, chloroform-*d*): δ 7.50 (dd, *J* = 8.0, 3.5 Hz, 1H), 7.31 (t, *J* = 8.0 Hz, 2H), 7.18 (s, 1H), 7.09 (d, *J* = 8.0 Hz, 1H), 7.03 (d, *J* = 7.5 Hz, 1H), 6.88-6.78 (m, 5 H), 6.63-6.52 (m, 3H), 4.56 (d, *J* = 6.0 Hz, 1H), 4.18 (q, *J* = 4.0 Hz, 1H), 3.98 (s, 3H), 3.72-3.65 (m, 1H), 3.61 (s, 3H), 2.85-2.73 (m, 2H), 2.61 (s, 3H), 2.45 (dd, *J* = 15.5, 4.5 Hz, 1H), 2.38-2.32 (m, 1H), 2.20-2.15 (m, 1H), 1.17-0.08 (m, 39 H)

¹³**C NMR** (126 MHz, chloroform-*d*): δ 164.36, 164.30, 158.50, 157.35, 149.10, 148.19, 148.17, 146.66, 138.96, 138.90, 137.91, 137.00, 135.21, 135.18, 134.86, 134.79, 132.33, 130.07, 129.96, 129.85, 127.09, 126.52, 126.46, 126.25, 123.59, 122.84, 121.23, 121.08, 118.86, 118.49, 114.81, 114.51, 111.29, 111.26, 104.07, 103.79, 81.86, 81.71, 55.65, 55.51, 40.06, 34.25, 34.10, 33.87, 33.69, 33.64, 33.54, 33.46, 29.70, 26.60, 24.65, 24.31, 23.97, 23.84, 23.33, 22.41.

³¹**P** NMR (162 MHz, chloroform-*d*): δ 59.06

HRMS: C₅₃H₆₉NO₃PPd ESI-MS [M-OMs] calcd: 904.4069; found: 904.4070.

¹**H NMR** (500 MHz, chloroform-*d*): δ 7.52-7.45 (m, 2H), 7.42-7.38 (m, 2H), 7.23-7.21 (m, 2H), 7.07 (d, *J* = 7.5 Hz, 1H), 6.98-6.90 (m, 3H), 6.82 (d, *J* = 7.0 Hz, 2H), 6.61 (d, *J* = 8.5 Hz, 1H), 4.35 (d, *J* = 12.5 Hz, 1H), 4.25 (s, 1H), 4.40 (s, 3H), 3.70 (s, 3H), 2.94 (t, *J* = 7.0 Hz, 1H), 2.59 (s, 3H), 2.48 (t, *J* = 7.0 Hz, 1H), 1.29-1.25 (m, 6 H), 0.98-095 (m, 6 H), 0.91-0.87 (m, 9 H).

¹³**C NMR** (126 MHz, chloroform-*d*): δ 164.93, 158.00, 157.37, 149.16, 149.02, 136.36, 135.17, 134.79, 134.07, 133.98, 132.65, 130.02, 126.87, 126.21, 126.15, 125.97, 124.18, 122.96, 119.10, 110.86, 104.78, 103.52, 68.68, 68.50, 56.03, 55.31, 39.81, 34.43, 34.29, 33.65, 33.55, 25.73, 25.68, 23.94, 23.81, 23.67, 22.94.

³¹**P NMR** (162 MHz, chloroform-*d*): δ 37.89.

HRMS: C₃₇H₄₅NO₃PPd ESI-MS [M-OMs] calcd: 688.2186; found: 688.2159.

¹**H NMR** (500 MHz, chloroform-*d*): δ 7.79 (m, 1H), 7.69 (s, 1H), 7.55 (t, *J* = 4.5 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.06-7.02 (m, 2H), 6.98-6.91 (m, 2H), 6.70 (s, 1H), 6.45 (dd, *J* = 11.5, 4.5 Hz, 1H), 3.56-3.51 (m, 1H), 2.97-2.81 (m, 3H), 2.65-2.61 (m, 1H), 2.46 (s, 3H), 2.42-2.38 (m, 1H), 2.18-2.02 (m, 3H), 1.97 (d, *J* = 7.0 Hz, 2H), 1.92-1.79 (m, 5 H), 1.68 (d, *J* = 7.0 Hz, 3H), 1.60 (d, *J* = 7.0 Hz, 3H), 1.52-1.46 (m, 3H), 1.37-1.26 (m, 15H), 1.19-1.01 (m, 10 H), 0.95 (t, *J* = 7.0 HZ, 1H), 0.89 (d, *J* = 7.0 Hz, 3H), 0.66 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, chloroform-*d*) δ 154.81, 154.62, 149.53, 148.71, 148.52, 145.65, 145.49, 138.90, 136.99, 136.41, 136.03, 134.47, 134.19, 133.99, 133.93, 132.92, 132.83, 132.03, 131.27, 127.85, 127.16, 126.58, 125.45, 125.34, 125.31, 124.47, 123.71, 123.35, 120.28, 119.26, 39.13,

36.05, 35.82, 34.41, 33.96, 33.81, 32.75, 31.72, 31.54, 31.05, 29.45, 29.41, 29.15, 28.10, 28.03, 27.82, 27.76, 27.50, 27.39, 26.74, 26.65, 26.43, 26.32, 25.99, 25.90, 25.79, 25.59, 24.46, 24.27, 24.22, 23.98, 23.95, 23.66, 23.20.

³¹**P** NMR (162 MHz, chloroform-*d*) δ 35.40.

HRMS: C₅₁H₁₇NPPd ESI-MS [M-OMs] calcd: 833.4377; found: 833.4357.

¹**H NMR** (500 MHz, chloroform-*d*) δ 8.77 (s, 1H), 7.87 (s, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.56 (d, *J* = 2.8 Hz, 1H), 7.49 (s, 1H), 7.36 (d, *J* = 7.7 Hz, 1H), 7.26 (dd, *J* = 15.0, 7.6 Hz, 2H), 7.10 (dd, *J* = 30.7, 10.7 Hz, 3H), 4.26 (s, 3H), 3.48 (s, 3H), 3.33 – 3.20 (m, 2H), 3.13 (s, 1H), 2.97 (s, 3H), 2.80 (s, 1H), 2.59 (s, 1H), 2.34 – 2.03 (m, 7H), 1.82 (d, *J* = 12.4 Hz, 3H), 1.58 (dd, *J* = 12.6, 6.9 Hz, 14H), 1.33 – 1.21 (m, 4H), 1.18 (t, *J* = 7.0 Hz, 3H), -0.01 (s, 1H).

¹³C NMR (126 MHz, chloroform-*d*) δ 148.65, 148.05, 143.10, 139.27, 137.17, 136.86, 136.74, 134.00, 131.81, 131.38, 127.09, 126.13, 124.72, 123.01, 119.66, 106.64, 104.86, 103.42, 56.42, 55.23, 39.49, 35.24, 35.01, 34.24, 34.10, 33.85, 30.06, 28.65, 27.74, 27.62, 26.78, 26.08, 25.77, 25.22, 24.14, 24.00, 23.84, 22.31, 14.05.

³¹**P** NMR (162 MHz, chloroform-*d*) δ 43.05.

HRMS: C₄₄H₅₇NO₂PPd ESI-MS [M-OMs] calcd: 763.3178; found: 763.3156.

¹**H NMR** (500 MHz, chloroform-*d*) δ 7.58 (s, 3H), 7.41 (d, *J* = 7.9 Hz, 1H), 7.20 (d, *J* = 3.3 Hz, 2H), 7.16 (d, *J* = 7.7 Hz, 1H), 7.06 (d, *J* = 7.9 Hz, 1H), 6.79 (d, *J* = 14.4 Hz, 3H), 6.50 (d, *J* = 8.4 Hz, 1H), 6.36 (s, 3H), 2.96 – 2.83 (m, 1H), 2.57 (s, 3H), 2.46 – 2.31 (m, 1H), 1.23 (d, *J* = 6.9 Hz, 6H), 0.83 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (126 MHz, chloroform-*d*) δ 149.24, 148.73, 148.69, 147.97, 147.94, 141.50, 140.88, 140.24, 136.68, 135.62, 135.51, 135.24, 134.96, 134.93, 127.46, 126.24, 124.88, 124.70, 124.22, 123.66, 119.40, 119.38, 111.44, 111.38, 39.32, 33.76, 33.47, 23.86, 23.56.

³¹**P NMR** (162 MHz, chloroform-*d*) δ -22.50.

HRMS: C₅₁H₆₅NO₃PPd ESI-MS [M-OMs] calcd: 876.3755; found: 876.3751.

¹**H NMR** (500 MHz, chloroform-*d*) δ 7.19 (dt, *J* = 5.0, 2.7 Hz, 2H), 7.05 – 6.99 (m, 2H), 6.92 (d, *J* = 7.7 Hz, 1H), 6.82 (d, *J* = 7.5 Hz, 1H), 4.08 (dd, *J* = 8.0, 4.1 Hz, 1H), 2.85 (dtt, *J* = 9.4, 7.0, 4.2 Hz, 1H), 2.76 (d, *J* = 2.5 Hz, 3H), 2.72 (dd, *J* = 7.8, 5.5 Hz, 1H), 2.13 (s, 6H), 2.03 – 1.91 (m, 9H), 1.72 (dq, *J* = 27.2, 11.9, 11.5 Hz, 12H), 1.37 – 1.28 (m, 2H), 1.19 (ddd, *J* = 12.5, 7.6, 4.5 Hz, 12H), 1.02 – 0.94 (m, 1H), 0.88 – 0.79 (m, 2H), 0.78 (d, *J* = 11.1 Hz, 1H), 0.55 – 0.25 (m, 5H).

¹³C NMR (126 MHz, chloroform-*d*) δ 149.12, 147.61, 137.82, 137.59, 136.65, 136.63, 135.59, 135.54, 126.64, 124.65, 123.48, 122.19, 117.75, 41.19, 41.08, 40.90, 40.82, 40.62, 40.49, 40.15, 40.12, 39.83, 37.11, 36.68, 36.67, 36.60, 36.58, 36.49, 36.48, 33.98, 33.74, 29.96, 29.69, 28.90, 28.83, 28.70, 28.68, 28.63, 27.78, 27.71, 27.67, 25.34, 25.25, 24.15, 23.99, 23.81, 17.97, 17.80, 13.80.

³¹**P** NMR (162 MHz, chloroform-*d*) δ 48.07.

HRMS: C₄₂H₆₁NPPd ESI-MS [M-OMs] calcd: 716.3593; found: 716.3600.
14. NMR spectra of new compounds

S37

S41

S46

20 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -12 fl (ppm)

20 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -1; f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 f1 (ppm)

S71

88178 80038 80038 80038 80038 80038 80038 7.7554 7.7514 7.7514 7.7514 7.7514 7.7514 7.7234 7.7234 7.7235 7.7235 7.7235 7.7236 7.7235 7.7235 7.7236 7.7237 7.7236 7.7236 7.7236 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7237 7.7236 7.7236 7.7237 7.7236 7.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 fl (ppm)

S99

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -130 -150 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 f1 (ppm)

S103

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 ff (pm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 fl (ppm)

S118

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 -300 -310 f1 (ppm)