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1. Abbreviation 

COSY: correlated spectroscopy, Et2O: diethyl ether, ESI-TOF: electrospray ionization-time-of-flight, THF: 

tetrahydrofurane, NMR: nuclear magnetic resonance, TMS: tetramethylsilane, XRD: X-ray diffraction, PXRD: 

powder X-ray diffraction, DSC: differential scanning calorimetry, 

 
2. Materials and methods 

All solvents, organic and inorganic reagents are commercially available, and were used without further 

purification. Macrocyclic ligand L1, dinuclear AgI-complex [Ag2L1X2](SbF6)2 (X = Et2O or H2O) were 

prepared according to previously reported procedures.1 

NMR spectroscopic measurements were performed using a Bruker AVANCE 500 (500 MHz for 1H) 

spectrometer. NMR spectra were calibrated as below; tetramethylsilane (Si(CH3)4) = 0 ppm for 1H in CDCl3. 

p-Dimethoxybenzene was added as an internal standard for the calibration of the concentration of samples. 

ESI-TOF mass spectra were recorded on a Micromass LCT spectrometer and a Micromass LCT Premier 

spectrometer. Single-crystal X-ray crystallographic analyses were performed using a Rigaku RAXIS-RAPID 

imaging plate diffractometer with MoK radiation, and the obtained data were calculated using a 

CrystalStructure crystallographic software package except for refinement, which was performed using 

SHELXL-97.2 Molecular modeling was performed by a Spartan’08 based on MMFF97 as a force field. 
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3. Guest binding behaviors of [Ag2L1X2](SbF6)2 

 

Complexation of [Ag2L1X2](SbF6)2 and anthracene 

1
H NMR titration experiment at 300 K 

To a solution of [Ag2L1X2](SbF6) in CDCl3 (0.11 mM, 475 L, 0.052 mol, 1.0 eq) was added a solution 

of anthracene (Ant) in CDCl3 (20 mM). Curve fitting of the obtained data determined a stability constant 

Ka(Ant) = [Ant[Ag2L1]2+]/([Ant][[Ag2L1X2]2+]) to be (3.0  0.4)  104 M–1 in CDCl3 at 300 K. 
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Fig. S1. Partial 1H NMR spectra of [Ag2L1X2](SbF6)2 (0.11 mM) in the presence of a) 0.0, b) 1.0, c) 2.0, d) 3.0, e) 4.0, 

and f) 5.0 eq of Ant (500 MHz, CDCl3, 300 K). 
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Fig. S2. 1H NMR spectra of [Ag2L1X2](SbF6)2 (0.11 mM) in the presence of a) 0.0, b) 1.0, c) 2.0, d) 3.0, e) 4.0, and f) 

5.0 eq of Ant (500 MHz, CDCl3, 300 K). 
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Ka(Ant) = 
[Ant⊂[Ag2L1]2+] 

[Ant] [[Ag2L1X2]2+] 
 

= (3.0 ± 0.4) × 104 M–1 

 
in CDCl3 at 300 K 
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Fig. S3. Stability constant analysis by the least square fitting to the shift of NMR signals (Ha–c, g) in the titration experiment 

described in Figs. S1–S2 (solid circles: observed, lines: calculated). [Ant]0 indicates the initial concentration of Ant. 
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1
H NMR titration experiment at 220 K 

To a solution of [Ag2L1X2](SbF6)2 in CDCl3 (0.07 mM, 450 L, 0.029 mol, 1.0 eq) was added a solution 

of anthracene (Ant) in CDCl3 (20 mM). 
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Fig. S4. Partial 1H NMR spectra of [Ag2L1X2](SbF6)2 (0.07 mM) in the presence of a) 0.0, b) 0.5, c) 1.0, d) 1.5, and e) 

2.0 eq of Ant (500 MHz, CDCl3, 220 K). Antin represents the signals of included Ant. 
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Fig. S5. 1H NMR spectra of [Ag2L1X2](SbF6)2 (0.07 mM) in the presence of a) 0.0, b) 0.5, c) 1.0, d) 1.5, and e) 2.0 eq of 

Ant (500 MHz, CDCl3, 220 K). 
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Fig. S6. ESI-TOF mass spectrum of a mixture of [Ag2L1X2](SbF6)2 and 5.0 eq of Ant in CHCl3. 

 

 

 

Crystallization of Ant[Ag2L1(CH2Cl2)2](SbF6)2·(C5H12)2·(CH2Cl2)2 

To a suspension of L1 (0.23 mM, 450 L, 0.10 mol, 1.0 eq) in CHCl3 was added a solution of AgSbF6 

(200 mM, 2.1 L, 0.42 mol, 4.2 eq) in acetone and a solution of Ant (200 mM, 5.2 L, 1.0 mol, 10 eq) in 

CHCl3 to obtain a clear yellow solution. The solvent was once removed by evaporation under reduced pressure. 

Then a resulting solid was dissolved in CH2Cl2 (250 L). Yellow brock crystals suitable for single crystals 

XRD measurement were obtained after n-pentane vapor diffusion in the dark over about 10 days. 

 
Crystal data of Ant[Ag2L1(CH2Cl2)2](SbF6)2·(C5H12)2·(CH2Cl2)2 

Crystal data of C132H118Ag2Cl8F12N4O2Sb2 : Fw = 2763.25, crystal dimensions 0.30 × 0.30 × 0.10 mm3, 

monoclinic, space group P21/c, a = 18.8596(8), b = 13.4589(6), c = 23.972(1) Å,  = 99.096(1)°, V = 6008.3(5) 

Å3, Z = 2, calcd = 1.527 g cm–3,  = 1.0146 mm–1, T = 93 K, (MoK) = 0.71075 Å, 2max = 50.0°, 46007/10551 

reflection collected/unique (Rint = 0.0485), R1 = 0.0773 (I > 2(I)), wR2 = 0.2257 (for all data), GOF = 1.025, 

largest diff. peak and hole 2.84/–1.48 eÅ–3. CCDC deposit number 1911739. 
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Fig. S7. ORTEP view (50% probability level) of Ant[Ag2L1(CH2Cl2)2](SbF6)2·(C5H12)2·(CH2Cl2)2. (Ag: magenta, C: 

grey, C of Ant: blue, C of n-pentane: pale blue, Cl: pale green, F: yellow, H: white, N: blue, O: red, Sb: purple)  

 

 

 
Fig. S8. Crystal packing of Ant[Ag2L1(CH2Cl2)2](SbF6)2·(C5H12)2·(CH2Cl2)2. (hydrogen atoms, solvents, and counter 

anions are omitted for clarity). Views from a) b axis and b) c axis. 
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Complexation of [Ag2L1X2](SbF6)2 and triptycene 
 
 

1
H NMR titration experiment at 300 K 

To a solution of [Ag2L1X2](SbF6)2 in CDCl3 (0.07 mM, 400 L, 0.03 mol, 1.0 eq) was added a solution 

of triptycene (Trip) in CDCl3 (40 mM). Curve fitting of the obtained data determined a stability constant 

Ka(Trip) = [Trip[Ag2L1]2+]/([Trip][[Ag2L1X2]2+]) to be (3.1  0.2)  104 M–1 in CDCl3 at 300 K. 
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Fig. S9. Partial 1H NMR spectra of [Ag2L1X2](SbF6)2 (0.07 mM) in the presence of a) 0.0, b) 1.0, c) 2.0, d) 3.0, e) 4.0,  

f) 5.0, and g) 7.0 eq of Trip (500 MHz, CDCl3, 300 K). 
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Fig. S10. 1H NMR spectra of [Ag2L1X2](SbF6)2 (0.07 mM) in the presence of a) 0.0, b) 1.0, c) 2.0, d) 3.0, e) 4.0, f) 5.0, 

and g) 7.0 eq of Trip (500 MHz, CDCl3, 300 K). 
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Fig. S11. Stability constant analysis by the least square fitting to the shift of NMR signals (Ha,b) in the titration experiment 

described in Figs. S9–S10 (solid circles: observed, lines: calculated). [Trip]0 indicates the initial concentration of Trip. 

 

 
1
H NMR titration experiment at 220 K 

To a solution of [Ag2L1X2](SbF6)2 in CDCl3 (0.11 mM, 450 L, 0.05 mol, 1.0 eq) was added a solution 

of triptycene (Trip) in CDCl3 (40 mM). 
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Fig. S12. Partial 1H NMR spectra of [Ag2L1X2](SbF6)2 (0.11 mM) in the presence of a) 0.0, b) 0.5, c) 1.0, d) 1.5, and e) 

2.0 eq of Trip (500 MHz, CDCl3, 220 K). 
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Fig. S13. 1H NMR spectra of [Ag2L1X2](SbF6)2 (0.11 mM) in the presence of a) 0.0, b) 0.5, c) 1.0, d) 1.5, and e) 2.0 eq 

of Trip (500 MHz, CDCl3, 220 K). 
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Fig. S14. Partial 1H–1H COSY spectrum of a mixture of [Ag2L1X2](SbF6)2 (0.07 mM) and Trip (2.0 eq) (500 MHz, 

CDCl3, 220 K). 

b 

c 

N N d e 

AgI 
f 

g h 

i 



S11  

d-e,f1 

f2 

Bout 
i Aout Cin 

Bin j 

Et2O 
Ain 

Ain 
Et2O 

Cin Bin–Cin 

j 

Bin 

Bin–Cin 

Aout 

i Bout–Cout 

Cout 

CHCl3 

h Bout 

d-e,f1 Bout–Cout 
f2 

ppm 

b 

d-e,f1 out 

g1 f2 

Cout Aout 
a g2 c i 

Aout 

Bout–Cout 

Cout 
 

l3 

Bout 

f2–g2 Bout–Cout 
,f1 

f2 

g1 
b–c 

c 

g2 

a f2–g2 

b 

b–c 

ppm 

Cout h CHCl3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. S15. Partial 1H–1H COSY spectrum of a mixture of [Ag2L1X2](SbF6)2 (0.07 mM) and Trip (2.0 eq) (500 MHz, 

CDCl3, 220 K). 
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Fig. S16. 1H–1H COSY spectrum of a mixture of [Ag2L1X2](SbF6)2 (0.07 mM) and Trip (2.0 eq) (500 MHz, CDCl3, 220 

K). 
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Fig. S17. Partial 1H–1H ROESY spectrum of a mixture of [Ag2L1X2](SbF6)2 (0.07 mM) and Trip (2.0 eq) (500 MHz, 

CDCl3, 220 K). 
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Fig. S18. Partial 1H–1H ROESY spectrum of a mixture of [Ag2L1X2](SbF6)2 (0.07 mM) and Trip (2.0 eq) (500 MHz, 

CDCl3, 220 K). Peaks assigned in parentheses originate from chemical exchange between free and included Trip. 
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Fig. S19. Partial 1H–1H ROESY spectrum of a mixture of [Ag2L1X2](SbF6)2 (0.07 mM) and Trip (2.0 eq) (500 MHz, 

CDCl3, 220 K). 
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Fig. S20. ESI-TOF mass spectrum of a mixture of [Ag2L1X2](SbF6)2 and 7.0 eq of Trip. 
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Fig. S21. Possible structures of Trip⊂ [Ag2L1]2+ based on molecular mechanics calculation; a) a front view and c) a side 

view of a syn-isomer; b) a front view and d) a side view of an anti-isomer. (Ag: magenta, C: grey, C of Trip: blue, H: 

white, N: blue). Side alkyloxy chains of L1 are omitted for clarity. Red arrows in Fig. S21c–d represent a possible 

rotational movement of Trip within the nano-space of [Ag2L1]2+, which causes conservation of 3-fold rotational 

symmetry of Trip in the 1H NMR time scale (Fig. S13). 
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Complexation of [Ag2L1X2](SbF6)2 and naphthalene 

1
H NMR titration experiment 

To a solution of [Ag2L1X2](SbF6)2 in CDCl3 (0.11 mM, 475 L, 0.052 mol, 1.0 eq) was added a solution 

of naphthalene in CDCl3 (20 mM). 

 

Complexation of [Ag2L1X2](SbF6)2 and p-xylene 

1
H  NMR  titration experiment 

To a solution of [Ag2L1X2](SbF6)2 in CDCl3 (0.11 mM, 475 L, 0.052 mol, 1.0 eq) was added a solution 

of p-xylene in CDCl3 (9.7 mM). 
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Fig. S22. Partial 1H NMR spectra of [Ag2L1X2](SbF6)2 (0.11 mM) in the presence of a) 0.0, b) 1.0, c) 3.0, and d) 5.0 eq 

of p-xylene (500 MHz, CDCl3, 300 K). 
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Fig. S23. Partial 1H NMR spectra of [Ag2L1X2](SbF6)2 (0.11 mM) in the presence of a) 0.0, b) 1.0, c) 3.0, and d) 5.0 eq 

of naphthalene (500 MHz, CDCl3, 300 K). 
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Fig. S24. Plots of the amounts of shift change of the 1H NMR signals (Ha–c,g) against the concentrations of a) p-xylene 

and b) naphthalene. The spectra are shown in Figs. S22–S23. [p-Xylene]0 and [Naphthalene]0 indicate the initial 

concentrations of p-xylene and naphthalene, respectively. 

 

Upon addition of p-xylene or naphthalene to a solution of [Ag2L1X2](SbF6)2 (0.11 mM) in CDCl3, 1H 

NMR signals of [Ag2L1X2](SbF6)2 at the aromatic region slightly shifted, but did not converge even in the 

presence of more than 5.0 eq of guests (Figs. S22–S23). Such almost stationary 1H NMR spectra during 

titration experiments suggest negligible host-guest interactions or a different binding mode from the 1:1 host- 

guest structure of Ant[Ag2L1]2+ or Trip[Ag2L1]2+. It should be noted that in the case of titration experiment 

using Ant or Trip as guests, the shift of the signals almost converged under the same condition (Figs. S1–S2 

and S9–S10). 
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