Supporting Information for:

CO₂ Reduction with Protons and Electrons at a Boron-Based Reaction Center

Jordan W. Taylor, Alex McSkimming, Laura A. Essex and W. Hill Harman*

Department of Chemistry, University of California-Riverside, Riverside, CA 92501 Email: hill.harman@ucr.edu

Contents

Synthetic Procedures	
Spectroscopic Data	S6
X-Ray Crystallography	
References	S35

Synthetic Procedures

General considerations. Unless otherwise noted, all manipulations were carried out using standard Schlenk or glovebox techniques under a N2 atmosphere. Hexanes, benzene, toluene, and acetonitrile were dried and deoxygenated by argon sparge followed by passage through activated alumina in a solvent purification system from JC Meyer Solvent Systems followed by storage over 4 Å molecular sieves. THF and Et₂O were distilled from sodium-benzophenone ketyl under N₂ followed by storage over 4 Å molecular sieves for at least 24 hours prior to use. Non-halogenated and non-nitrile containing solvents were tested with a standard purple solution of sodium benzophenone ketyl in THF to confirm effective oxygen and moisture removal prior to use. Hexamethyldisiloxane (HMDSO) was distilled from sodium metal and stored over 4 Å molecular sieves for 24 hours prior to use. All reagents were purchased from commercial suppliers and used without further purification unless otherwise noted. $Au(B_2P_2)Cl$ (3), $Au(B_2P_2)$ (4), $[Au(B_2P_2)][K(18-c-6)]$ (1), ¹DBU•HCl,² and Na(C₁₀H₈) were synthesized according to literature procedures.³ Elemental analyses were performed by Midwest Microlab, LLC, Indianapolis, IN. Deuterated solvents were purchased from Cambridge Isotope Laboratories Inc., degassed, and dried over activated 3 Å molecular sieves for at least 24 h prior to use. NMR spectra were recorded on Varian Inova 500 MHz, Bruker Avance 600 MHz, and Bruker Avance 700 MHz spectrometers. ¹H and ¹³C chemical shifts are reported in ppm relative to tetramethylsilane using residual solvent as an internal standard. Original ¹¹B NMR spectra were processed using MestReNova 10.0.2 with a backwards-linear prediction applied to eliminate background signal from the borosilicate NMR tube.⁴ For ¹¹B NMR spectra with peaks overlapping the borosilicate signal, a manual baseline correction was applied. IR spectra were recorded using a Bruker Alpha FTIR with a universal sampling module collecting at 4 cm⁻¹ resolution with 32 scans. X-ray diffraction studies were performed using a Bruker-AXS diffractometer. Cyclic Voltammetry (CV) experiments were performed using a Pine AFP1 potentiostat. The cell consisted of a glassy carbon working electrode, a Pt wire auxiliary electrode and a Pt wire pseudo-reference electrode. All potentials are referenced vs. the Fc/Fc^+ couple measured as an internal standard.

Au(B₂P₂)H (2). from K[sec-Bu₃BH]: 3 (0.050 g, 0.063 mmol) was suspended in Et₂O (4 mL) before adding K[sec-Bu₃BH] (63 μ L, 0.063 mmol, 1.0 M in THF) as an Et₂O solution (2 mL). The reaction was stirred 30 minutes during which time a colorless precipitate developed in a paleyellow solution. The reaction was filtered through celite, concentrated *in vacuo* (ca. 2 mL), and hexanes (4 mL) added before further concentration *in vacuo* caused the product to precipitate. The product was rinsed with hexanes (2 x 1 mL) and dried *in vacuo*. Yield: 0.030 g, 64%.

from $HSiEt_3$: **3** (0.050 g, 0.063 mmol) was suspended in toluene (4 mL) before adding $HSiEt_3$ (0.029 g, 0.252 mmol) as a toluene solution (2 mL). The reaction was stirred 1 hour where it became homogenous. The reaction was concentrated *in vacuo* (ca. 2 mL) and HMDSO (4 mL) added before further concentration *in vacuo* caused the product to precipitate. The product was rinsed with hexanes (2 x 1 mL) and dried *in vacuo*. Additional crops could be obtained by further concentration and HMDSO (ca.1 mL) addition to the mother liquor. Yield: 0.040 g, 84%.

from H_2/DBU : **3** (0.010 g, 0.019 mmol) was dissolved in THF (0.6 mL), DBU (2.84 µL, 0.019 mmol) added, and the resulting mixture subjected to three freeze-pump-thaw cycles before the adding of 1 atm of H₂. The reaction mixture was sonicated for 10 minutes and the volatiles removed *in vacuo*. The resulting pale-yellow foam was dissolved in toluene (2 x 1 mL) and filtered through

celite. Removal of volatiles from the filtrate *in vacuo* furnished the product as a pale yellow solid. Yield: 0.009 g, 95%.

*from HSnBu*₃: **4** (0.050 g, 0.063 mmol) was dissolved in THF (2 mL) and HSnBu₃ (0.020 g, 0.069 mmol) added as a THF (1 mL) solution. The reaction was stirred 12 hours during which time a pale-yellow solution formed. The reaction was concentrated *in vacuo* (ca. 1 mL) before adding HMDSO (2 mL). Further concentration *in vacuo* induced crystallization of the product as a yellow solid that was collected, rinsed with hexanes (2 x 1 mL), and dried *in vacuo*. Yield: 0.042 g, 89%.

from DBU•HCl: 1 (0.015 g, 0.014 mmol) was dissolved in MeCN (2 mL) and DBU•HCl (0.002 g, 0.014 mmol) was added as a MeCN (1 mL) solutionThe reaction immediately became pale yellow and the volatiles were removed in vacuo. The pale-yellow residue was rinsed with hexanes (2 x 1 mL), dissolved in toluene (2 mL), and filtered through celite. Volatiles were removed from the filtrate *in vacuo* to yield the product as a pale yellow solid. Pre- and post-reaction ¹H, ³¹P, ¹¹B NMR spectra are shown in Figures S5-7. Yield: 0.011 g, 98%. X-ray quality crystals were grown by layering a concentrated toluene solution with HMDSO. ¹H NMR (500 MHz, C₆D₆) δ 8.95 (bs, 1H), 7.86 (d, J = 6.9 Hz, 2H), 7.61 (m, 1H), 7.50 (d, J = 7.4 Hz, 1H), 7.44 (d, J = 7.5 Hz, 2H), 7.31 (m, 2H), 7.27 (t, J = 7.3 Hz, 1H), 7.18 (m, 2H), 7.12 (t, J = 7.3 Hz, 1H), 7.03 (t, J = 7.2 Hz, 2H), 5.09 (m, J_{BH} = 80 Hz, 1H), 1.97 (m, 4H), 0.76 (d, J = 6.9 Hz, 6H), 0.73 (d, J = 7.1 Hz, 6H), 0.71 (d, J = 7.1 Hz, 3H), 0.68 (d, J = 6.9 Hz, 3H), 0.55 (d, J = 7.0 Hz, 3H), 0.52 (d, J = 6.9 Hz, 3H).³¹P{¹H} NMR (202 MHz, C₆D₆) δ 58.39 (d, J = 255.3 Hz), 55.91 (d, J = 255.0 Hz). ¹¹B NMR (193 MHz, THF:Benzene, 3:1) δ 52.45, -10.01 (d, J = 78.4 Hz). ¹³C NMR (126 MHz, C₆D₆) δ 145.6 (d, J = 14.2 Hz), 142.1, 138.0, 135.7, 134.5 (d, J = 11.0 Hz), 134.2 (d, J = 10.5 Hz), 131.4 (d, J = 15.2 Hz), 130.7 (d, J = 13.7 Hz), 129.9, 126.3 (d, J = 6.0 Hz), 124.9 (d, J = 6.6 Hz), 122.7, 28.7 (d, J = 26.1 Hz), 27.4 (d, J = 25.7 Hz), 20.6 (d, J = 4.9 Hz), 20.1 (m), 19.7 (d, J = 3.7 Hz), 19.4.FTIR: v_{max} (cm⁻¹) 2838, 2119 (B-H). Anal. Calcd for C₃₆H₄₅AuB₂P₂: C, 57.02 H, 5.98. Found: C, 56.89 H, 5.96.

Au(B₂P₂)(O₂CH) (5). A solution of 1 (0.020 g, 0.026 mmol) in benzene (3 mL) was subjected to three freeze-pump-thaw cycles prior to adding 1 atm CO₂. The reaction was stirred 30 minutes, and the volatiles were removed *in vacuo* to yield the product as a pale-yellow solid. Yield: 0.019 g, 90%. X-ray quality crystals were grown by layering a concentrated THF solution with hexanes. A sample suitable for element analysis was prepared by layering a concentrated CDCl₃ solution with hexanes. ¹H NMR (500 MHz, CDCl₃) δ 8.40 (bs, 1H), 8.30 (d, *J* = 7.1 Hz, 2H), 7.69 (s, 1H), 7.64 (t, *J* = 7.3 Hz, 2H), 7.54-7.49 (m, 2H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.18 (dd, *J* = 5.3, 3.4 Hz, 4H), 7.07 (dd, *J* = 5.5, 3.3 Hz, 2H), 7.03 (bs, 2H), 2.46-2.36 (m, 4H), 0.98 (d, *J* = 8.5 Hz, 6H), 0.95 (d, *J* = 8.3 Hz, 6H), 0.84 (d, *J* = 7.8 Hz, 6H), 0.81 (d, *J* = 7.8 Hz, 6H). ³¹P{¹H} NMR (202 MHz, CDCl₃) δ 56.1 (s). ¹¹B{¹H} (193 MHz, CDCl₃) δ 26.9 (bs). ¹³C NMR (126 MHz, CDCl₃) δ 168.2, 160.6, 153.1, 136.5, 136.1, 133.5 (t, *J* = 8.0 Hz), 131.6, 131.4, 131.3 (t, *J* = 26.4 Hz), 130.6, 130.2, 129.20, 128.5, 128.4, 126.0, 125.4, 28.4 (t, *J* = 14.2 Hz), 20.2, 19.7. FTIR: *v*_{max} (cm⁻¹) 1672 (C=O). Anal. Calcd for C₃₇H₄₅AuB₂O₂P₂ (1 x CDCl₃): C, 49.52 H, 5.03. Found: C, 49.49 H, 5.51.

Reaction of **5** *with* $Na(C_{10}H_8)$. **5** (0.015 g, 0.019 mmol) was dissolved in THF (1 mL), and a solution of Na(C₁₀H₈) (0.004 g, 0.019 mmol) in THF (1 mL) was added at room temperature. A color change to purple occurred immediately concomitant with the formation of a small amount of precipitate. The reaction was filtered through a celite-packed pipette, and the filter was removed from the glovebox. The filter was dried with a stream of air and rinsed with D₂O into an NMR tube. ¹H NMR revealed a resonance at δ 8.28 ppm that was in agreement with the reported literature value for sodium formate.⁵ See Figure S12 for the collected spectra.

Reaction of **5** *with* $HCl \cdot Et_2O$. **5** (0.012 g, 0.015 mmol) was dissolved in CDCl₃ (1 ml), and HCl \cdot Et_2O (10 µl, 0.020 mmol, 2.0 M in Et_2O) was added at room temperature. The reaction was stirred 30 minutes before collecting ¹H and ³¹P NMR data that matched the reported spectra.¹⁹ The sample used for NMR spectroscopy was then crystallized by layering with hexanes (1 mL) and subjected to single-crystal X-ray diffraction that confirmed the formation of **3**.

Reaction of 5 with TMSCl. **5** (0.012 g, 0.015 mmol) was dissolved in CDCl₃ (0.7 mL) in an NMR tube, and TMSCl (2 μ L, 0.016 mmol) was added. The tube was vigorously shaken for 5 minutes before collecting ¹H and ³¹P NMR spectra. New resonances at δ 8.32 and 0.06 were observed for Me₃SiOCHO in addition with peaks for [Au(B₂P₂)]Cl and excess TMSCl (δ 0.43). See Figure S13 for the ¹H NMR spectra.

[Au(B₂P₂)H₂][K(Et₂O)] (6). **3** (0.034 g, 0.043 mmol) was suspended in Et₂O (4 mL). K[*sec*-Bu₃BH] (89 μL, 2 mol eq, 1.0 M in THF) was then added dropwise, causing the solution to become homogenous briefly before a colorless precipitate appeared. After stirring for 40 minutes, the product was collected via filtration, dissolved in THF (2 x 2 mL), and layered with Et₂O (*ca.* 8 mL). The next day, colorless crystals had appeared from which were separated from the mother liquor and dried *in vacuo*. Yield: 0.028 g, 75%. X-ray quality crystals were grown by layering a concentrated THF solution with Et₂O. ¹H NMR (400 MHz, THF-*d*₈) δ 7.96 (d, *J* = 6.6 Hz, 4H), 7.57 (dt, *J* = 7.4, 3.8 Hz, 4H), 7.27 (t, *J* = 7.2 Hz, 4H), 7.23 – 7.14 (m, 4H), 6.67 – 6.60 (m, 8H), 6.54 (dd, *J* = 5.4, 3.3 Hz, 8H), 3.39 (q, *J* = 7.0 Hz, 4H), 3.27 (q, *J* = 68.4 Hz, 4H) 2.46 – 2.31 (m, 8H), 1.12 (t, *J* = 7.0 Hz, 6H), 1.11 (d, *J* = 7.0 Hz, 12H), 1.06 (d, *J* = 7.0 Hz, 12H), 0.74 (d, *J* = 7.0 Hz, 12H), 0.69 (d, *J* = 7.0 Hz, 12H). ³¹P {¹H} NMR (202 MHz, THF-*d*₈) δ 174.4, 159.5, 143.8 (t, *J* = 7.3 Hz), 134.2 (t, *J* = 25.4 Hz), 133.2, 132.0, 128.9, 124.5, 123.1, 27.8 (t, *J* = 13.2 Hz), 22.6, 19.8. FTIR: v_{max} (cm⁻¹) 2089, 1985 (BH). Anal. Calcd for C₈₀H₉₂Au₂B₄K₂P₄ (2 x C₄H₁₀O): C, 55.06 H, 6.47. Found: C, 55.16 H, 6.26.

[Au(B₂P₂)(O₂CH)₂][K(18-c-6)] (7). A THF (3 mL) solution of 6 (0.020 g, 0.012 mmol) and 18crown-6 (0.003 g, 0.013 mmol) was subjected to three freeze-pump-thaw cycles. 1 atm CO₂ was added and the reaction was stirred 15 minutes before removing volatiles *in vacuo*. The product was rinsed with hexanes (1 mL) and Et₂O (1 mL) before being dried *in vacuo*. Yield: 0.012 g, 87%. X-ray quality crystals were grown by layering a concentrated benzene solution with hexanes. ¹H NMR (500 MHz, C₆D₆) δ 8.69 (d, *J* = 7.5 Hz, 2H), 8.34 (s, 2H), 7.58 (t, *J* = 7.4 Hz, 2H), 7.43 (s, 2H), 7.32 (t, *J* = 7.4 Hz, 2H), 7.26 – 7.19 (m, 4H), 7.07 – 6.99 (m, 4H), 3.27 (s, 24H), 2.23 (m, 4H), δ 0.94 (q, *J* = 7.4 Hz, 12H), 0.75 (q, *J* = 8.1 Hz, 12H).³¹P {¹H} NMR (202 MHz, C₆D₆) δ 46.4 (s). ¹¹B {¹H} (160 MHz, C₆D₆) δ 1.83 (bs). ¹³C NMR (151 MHz, C₆D₆) δ 169.0, 168.7, 155.0, 136.0 (t, *J* = 6.1 Hz), 134.9 (t, *J* = 25.5 Hz), 134.4, 131.5, 129.2, 125.1, 124.5, 26.8 (t, *J* = 13.0 Hz), 22.4, 18.9. FTIR: *v*_{max} (cm⁻¹) 1678 (C=O). Anal. Calcd for C₅₀H₇₀AuB₂KO₁₀P₂ (1x C₆H₁₄): C, 54.38 H, 6.85. Found: C, 53.92 H, 6.94.

[Au(B₂P₂)(CO₃)][K(18-c-6)] (8). A solution of 1 (0.015 g, 0.014 mmol) in benzene (4 mL) was subjected to three freeze-pump-thaw cycles before adding 1 atm CO₂. The reaction was stirred 15 minutes before removing volatiles *in vacuo* to yield a colorless solid. Yield: 0.14 g, 89%. X-ray quality crystals were grown over the course of two days by letting the reaction mixture stand in benzene under a CO₂ atmosphere. ¹H NMR (500 MHz, C₆D₆) δ 8.65 (d, *J* = 8.6 Hz, 2H), 7.66 (t, *J* = 7.2 Hz, 2H), 7.50 (dt, *J* = 7.7, 3.9 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 2H), 7.07 (dd, *J* = 5.2, 3.3 Hz, 4H), 7.01 (dd, *J* = 5.1, 3.4 Hz, 4H), 3.20 (s, 24H), 2.45 – 2.37 (m, 4H), 1.02 (d, *J* = 7.0 Hz, 6H), 0.99 (d, *J* = 7.0 Hz, 6H), 0.85 (d, *J* = 7.9 Hz, 6H), 0.82 (d, *J* = 7.8 Hz, 6H). ³¹P NMR (202 MHz, C₆D₆) δ 43.59. ¹¹B{¹H} (242 MHz, C₆D₆) δ 0.83 (bs). ¹³C NMR (126 MHz, C₆D₆) δ 168.0, 158.6,

155.3, 136.3 (t, J = 25.4 Hz), 133.3 (t, J = 5.8 Hz), 131.6, 130.5, 128.6, 124.9, 123.8, 70.3, 26.0 (t, J = 12.3 Hz), 23.2, 18.8. FTIR: v_{max} 1592 cm⁻¹ (C=O). This compound is unstable in solution in the absence of CO₂, and despite numerous attempts, satisfactory elemental analysis of this compound could not obtained.

[Au(B₂P₂)](¹³CO₃)][K(18-c-6)] (8-¹³C). The ¹³C-labeled compound was synthesized similarly to 8 using ¹³CO₂. ¹H, ³¹P and ¹¹B NMR were identical to 8. The isotopically enriched carbon appears at 168.9 ppm in the ¹³C NMR spectrum. ¹H NMR (600 MHz, C₆D₆) δ 8.65 (d, *J* = 7.1 Hz, 2H), 7.67 (t, *J* = 7.2 Hz, 2H), 7.50 (s, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.09 – 7.05 (m, 4H), 7.04 – 6.99 (m, 4H), 3.20 (s, 18H), 2.41 (s, 4H), 1.02 (d, *J* = 6.9 Hz, 6H), 1.00 (d, *J* = 7.0 Hz, 6H), 0.85 (d, *J* = 8.0 Hz, 6H), 0.82 (d, *J* = 8.3 Hz, 6H). ¹³C NMR (151 MHz, C₆D₆) δ 168.9, 158.6, 158.2, 155.3, 136.3 (t, *J* = 25.0 Hz), 133.3, 131.6, 130.5, 129.0 – 128.5 (m), 124.8, 123.8, 70.2, 26.0 (t, *J* = 12.2 Hz), 23.2, 18.8. FTIR: v_{max} 1549 cm⁻¹ (C=O).

Au(B_2P_2)(OSiⁱPr₃) (9). 1 (0.015 g, 0.014 mmol) was dissolved in benzene (5 mL) and cooled to – 196 °C prior to adding triisopropylsilyl chloride (0.003 g, 0.015 mmol) as a benzene (1 mL) solution. The mixture was briefly thawed, gently stirred to ensure homogeneity, and then subjected to three freeze-pump-thaw cycles prior to introducing 1 atm CO₂. The reaction immediately turned yellow, and after 15 minutes, the volatiles were removed in vacuo. The resulting yellow foam was washed with hexanes (3 x 1 mL), dissolved in toluene (2 x 1 mL), filtered through celite, layered with HMDSO (2 mL), and let stand overnight. The next day, the pale-yellow crystalline product was rinsed with hexanes (1 x1 mL) and dried in vacuo. Yield: 0.010 g, 73%. X-ray quality crystals were grown by layering a concentrated toluene solution with HMDSO. ¹H NMR (500 MHz, C₆D₆) δ 9.61 (ddd, J = 7.5, 4.1, 1.2 Hz, 1H), 8.06 (d, J = 7.4 Hz, 1H), 7.84 (t, J = 7.4 Hz, 1H), 7.58 (d, J= 7.4 Hz, 2H), 7.41 (t, J = 8.5 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H), 7.27 (d, J = 7.1 Hz, 2H), 7.25 -7.19 (m, 2H), 7.17–7.14 (m, 2H), 7.12 (t, J = 7.6 Hz, 1H), 6.94 (t, J = 7.3 Hz, 2H), 1.96 (tdd, J = 13.6, 7.7, 1.7 Hz, 4H), 1.20 (d, J = 7.4 Hz, 18H), 1.04 (dq, J = 15.1, 7.2 Hz, 3H), 0.75 (d, J = 6.9 Hz, 4H), 0.71 (d, J = 7.0 Hz, 4H), 0.68 (d, J = 6.9 Hz, 2H), 0.65 (d, J = 6.9 Hz, 2H), 0.49 (d, J = 6.9 7.0 Hz, 2H), 0.46 (d, J = 7.0 Hz, 2H). ³¹P NMR (202 MHz, C₆D₆) δ 56.0 (d, J = 240.0 Hz), 52.5 (d, J = 239.9 Hz). ¹¹B NMR (160 MHz, C₆D₆) δ 51.5, -3.0. ¹³C NMR (126 MHz, C₆D₆) δ 173.1, 170.7, 159.2 (d, J = 29.8 Hz), 140.7, 137.7 (d, J = 14.2 Hz), 137.4 (dd, J = 15.1, 9.0 Hz), 136.1 (d, J = 10.6 Hz), 135.2 (d, J = 9.4 Hz), 134.9 (d, J = 8.8 Hz), 132.3 (d, J = 13.6 Hz), 131.5 (t, J = 13.6 Hz), 131.5 (t14.8 Hz), 131.1, 131.0, 129.8, 129.5 (d, J = 6.9 Hz), 129.1 (d, J = 6.8 Hz), 126.7, 124.3 (d, J = 8.7Hz), 29.2, 29.0, 27.8, 27.6, 20.7, 20.2, 19.6, 14.3. MALDI MS: m/z 930.4087; Calcd. 930.4132.

Spectroscopic Data

Figure S1. ¹H NMR spectrum of $[Au(B_2P_2)]H$ (2) recorded at 500 MHz in C₆D₆.

Figure S2. ³¹P NMR spectrum of [Au(B₂P₂)]H (2) recorded at 202 MHz in C₆D₆.

Figure S4. ¹³C{¹H} NMR spectrum of $[Au(B_2P_2)]H$ (2) recorded at 126 MHz in C₆D₆.

Figure S5. ¹H NMR spectra before (cyan) and after addition (red) of DBU•HCl to $[Au(B_2P_2)][K(18-c-6)]$ (1) recorded at 500 MHz in CD₃CN.

Figure S6. ³¹P NMR spectra before (cyan) and after addition (red) of DBU•HCl to $[Au(B_2P_2)][K(18-c-6)]$ (1) recorded at 500 MHz in CD₃CN.

Figure S7. ¹¹B NMR spectra before (cyan) and after addition (red) of DBU•HCl to $[Au(B_2P_2)][K(18-c-6)]$ (1) recorded at 500 MHz in CD₃CN.

Figure S8. ¹H NMR spectrum of Au(B₂P₂)(CO₂H) (5) recorded at 500 MHz in CDCl₃.

Figure S10. ¹¹B NMR spectrum of Au(B₂P₂)(CO₂H) (5) recorded at 193 MHz in CDCl₃.

Figure S12. ¹H NMR spectrum of the filtered solid after the reaction of $Au(B_2P_2)(CO_2H)$ (5) with $Na(C_{10}H_8)$ recorded at 500 MHz in D₂O.

Figure S13. ¹H NMR spectrum after the reaction of $Au(B_2P_2)(CO_2H)$ (5) with TMSCl recorded at 500 MHz in CDCl₃. Selected peaks are for TMS-OCHO.

Figure S14. ¹H NMR spectrum of [Au(B₂P₂)H₂][K(Et₂O)] (6) recorded at 400 MHz in THF-d₈.

S13

Figure S18. ¹H NMR spectrum of [Au(B₂P₂)(CO₂H)₂][K(18-c-6)] (7) recorded at 500 MHz in C₆D₆.

Figure S20. ¹¹B NMR spectrum of $[Au(B_2P_2)(CO_2H)_2][K(18-c-6)]$ (7) recorded at 128 MHz in C₆D₆.

Figure S22. ¹H NMR spectrum of [Au(B₂P₂)(CO₂H)₂][K(18-c-6)] (7) recorded at 500 MHz in C₆D₆.

Figure S24. ¹¹B NMR spectrum of [Au(B₂P₂)(CO₃)][K(18-c-6)] (8) recorded at 242 MHz in C₆D₆.

Figure S26. ¹H NMR spectrum of [Au(B₂P₂)(¹³CO₃)][K(18-c-6)] (8-¹³C) recorded at 500 MHz in C₆D₆.

Figure S27. ¹³C{¹H} NMR spectrum of $[Au(B_2P_2)(^{13}CO_3)][K(18-c-6)]$ (8-¹³C) recorded at 126 MHz in C₆D₆.

Figure S28. ¹H NMR spectrum of [Au(B₂P₂)](O(SiⁱPr₃) (9) recorded at 500 MHz in C₆D₆.

Figure S30. ¹¹B NMR spectrum of $[Au(B_2P_2)](O(Si^iPr_3) (9)$ recorded at 160 MHz in C₆D₆.

Figure S32. FT-IR spectrum of [Au(B₂P₂)]H (2).

Figure S34. FT-IR spectrum of $Au(B_2P_2)(CO_2H)$ (5).

Figure S35. FT-IR spectrum of [Au(B₂P₂)(CO₂H)₂][K(18-c-6)] (7).

Figure S36. FT-IR spectrum of [Au(B₂P₂)(CO₃)][K(18c6)] (8).

Figure S37. FT-IR spectrum of [Au(B₂P₂)(¹³CO₃)][K(18-c-6)] (8-¹³C).

Figure S38. FT-IR spectrum of $[Au(B_2P_2)(OSi^iPr_3) (9)$.

X-Ray Crystallography

General Considerations. Single crystals were coated with paratone oil and mounted on cryo-loop glass fibers. X-ray intensity data were collected at 100(2) K on a Bruker APEX2⁶ platform-CCD X-ray diffractometer system using fine-focus Mo K_{α} radiation ($\lambda = 0.71073$ Å, 50kV/30mA power). The CCD detector was placed at 5.0600 cm from the crystal. Frames were integrated using the Bruker SAINT software package⁷ and using a narrow-frame integration algorithm. Absorption corrections were applied to the raw intensity data using the SADABS program.⁸ The Bruker SHELXTL software package⁹ was used for phase determination and structure refinement. Atomic coordinates, isotropic and anisotropic displacement parameters of all the non-hydrogen atoms were refined by means of a full matrix least-squares procedure on F^2 . The H-atoms were included in the refinement in calculated positions riding on the atoms to which they were attached. Relevant details for individual data collections are reported in Tables S1–S6.

Figure S39. Labelled thermal ellipsoid plot (50%) for $Au(B_2P_2)H(2)$.

Figure S40. Labelled thermal ellipsoid plot (50%) for $Au(B_2P_2)(CO_2H)$ (5).

Figure S41. Labelled thermal ellipsoid plot (50%) for [Au(B₂P₂)H][K(Et₂O)](6).

Figure S42. Labelled thermal ellipsoid plot (50%) for $[Au(B_2P_2)(CO_2H)_2][K(18-c-6)]$ (7).

Figure S43. Labelled thermal ellipsoid plot (50%) for $[Au(B_2P_2)(CO_3)][K(18-c-6)]$ (8).

Figure S44. Labelled thermal ellipsoid plot (50%) for $Au(B_2P_2)OSi^iPr_3$ (9).

Table S1. Crystal data and structure refinement for $Au(B_2P_2)H(2)$.

Identification code	hh94JT43 0m	
Empirical formula	$C_{42}H_{51}Au\overline{B}_2P_2$	
Formula weight	836.35 g/mol	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 13.6605(2) Å	$\alpha = 90^{\circ}$.
	b = 18.5231(3) Å	$\beta = 97.9128(5)^{\circ}$.
	c = 14.7583(2) Å	$\gamma = 90^{\circ}$.
Volume	3698.81(10)Å ³	
Ζ	4	
Density (calculated)	1.502 mg/m^3	
Absorption coefficient	4.093 mm^{-1}	
F(000)	1688	
Crystal size	0.508 x 0.221 x 0.162 mm	n ³
θ range for data collection	1.775 to 34.336°.	
Index ranges	$-21 \le h \le 21, -29 \le k \le 2$	$9, -23 \le l \le 23$
Reflections collected	236591	
Independent reflections	$15490 [R_{int} = 0.0303]$	
Completeness to $\theta = 25.242^{\circ}$	100.0 %	
Absorption correction	Semi-empirical from equi	ivalents
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	15490 / 0 / 435	
Goodness-of-fit on F^2	1.035	
Final <i>R</i> indices $[I > 2\sigma_I]$	$R_1 = 0.0161, wR_2 = 0.037$	3
R indices (all data)	$R_1 = 0.0203, wR_2 = 0.038$	6
Largest diff. peak and hole	1.230 and -0.708 e/Å ³	

Table S2. Crystal data and structure refinement for Au(B₂P₂)(CO₂H) (5).

Identification code	hh108JT52_0m	
Empirical formula	$C_{37}H_{45}AuB_2O_2P_2$	
Formula weight	802.25 g/mol	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 10.7350(4) Å	$\alpha = 90^{\circ}$.
	b = 19.4697(6) Å	$\beta = 107.5607(5)^{\circ}.$
	c = 16.9388(6) Å	$\gamma = 90^{\circ}$.
Volume	3375.3(2) Å ³	
Z	4	
Density (calculated)	1.579 mg/m^3	
Absorption coefficient	4.486 mm^{-1}	
F(000)	1608	
Crystal size	0.361 x 0.283 x 0.202 mm	n ³
θ range for data collection	1.638 to 30.034°.	
Index ranges	$-15 \le h \le 15, -27 \le k \le 2$	$7, -23 \le l \le 23$
Reflections collected	95114	
Independent reflections	9868 $[R_{int} = 0.0260]$	
Completeness to $\theta = 25.242^{\circ}$	100.0 %	
Absorption correction	Semi-empirical from equi	ivalents
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	9868 / 0 / 405	
Goodness-of-fit on F^2	1.049	
Final R indices $[I > 2\sigma_I]$	$R_1 = 0.0149, wR_2 = 0.035$	3
<i>R</i> indices (all data)	$R_1 = 0.0176, wR_2 = 0.036$	2
Largest diff. peak and hole	0.924 and -0.291 e/Å ³	
C 1		

Table S3. Crystal data and structure refinement for $[Au(B_2P_2)H_2][K(Et_2O)](6)$.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system	hh190JT93r_0m C ₈₈ H _{128.50} Au ₂ B ₄ K ₂ O ₄ P ₄ 1889.65 g/mol 100(2) K 0.71073 Å Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 17.3226(5) Å b = 14.0750(4) Å c = 18.5251(5) Å	$\alpha = 90^{\circ}.$ $\beta = 108.2727(5)^{\circ}.$ $\gamma = 90^{\circ}.$
Volume	4289.0(2) Å ³	
Z	2	
Density (calculated)	1.463 mg/m^3	
Absorption coefficient	3.637 mm^{-1}	
<i>F</i> (000)	1929	
Crystal size	0.321 x 0.193 x 0.102 mm	n^3
θ range for data collection	1.853 to 30.508°.	
Index ranges	$-24 \le h \le 24, -20 \le k \le 20$	$0, -26 \le l \le 26$
Reflections collected	101496	
Independent reflections	13085 [$R_{\rm int} = 0.0375$]	
Completeness to $\theta = 25.242^{\circ}$	100.0 %	
Absorption correction	Semi-empirical from equi	valents
Refinement method Data / restraints / parameters	Full-matrix least-squares (13085 / 38 / 521	on F^2
Goodness-of-fit on F^2 Final <i>R</i> indices $[I > 2\sigma_I]$ <i>R</i> indices (all data) Largest diff. peak and hole	1.060 $R_1 = 0.0211, wR_2 = 0.0398$ $R_1 = 0.0326, wR_2 = 0.0429$ 1.030 and -0.977 e/Å^3	3

Notes: There was half a molecule of $C_{72}H_{92}Au_2B_4K_2P_4$.[C4H₁₀O]₂, and one [C4H₁₀O]/[C4H₈O] disordered solvents (disordered site occupancy ratio was 87%/13%) present in the asymmetric unit of the unit cell. The $C_{72}H_{92}Au_2B_4K_2P_4$.[C4H₁₀O]₂ molecule was located at the inversion symmetry. The short intermolecular contacts H33A...H1G and C33...C1D are due to the [C4H₁₀O]/[C4H₈O] disordered solvents.

Table S4. Crystal data and structure refinement for $[Au(B_2P_2)(CO_2H)_2][K(18-c-6)]$ (7).

Identification code	hh218JT106_0m	
Empirical formula	$C_{56}H_{76}AuB_2KO_{10}P_2$	
Formula weight	1228.79 g/mol	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 9.4884(3) Å	$\alpha = 82.1272(5)^{\circ}.$
	b = 16.6011(5) Å	$\beta = 83.3368(5)^{\circ}$.
	c = 18.4187(5) Å	$\gamma = 81.8270(5)^{\circ}$.
Volume	2830.91(15) Å ³	•
Ζ	2	
Density (calculated)	1.442 mg/m^3	
Absorption coefficient	2.784 mm^{-1}	
F(000)	1260	
Crystal size	0.332 x 0.153 x 0.083 mm	1 ³
θ range for data collection	1.573 to 28.282°.	
Index ranges	$-12 \le h \le 12, -22 \le k \le 22$	$2, -24 \le l \le 24$
Reflections collected	79048	
Independent reflections	14037 [$R_{int} = 0.0329$]	
Completeness to $\theta = 25.242^{\circ}$	100.0 %	
Absorption correction	Semi-empirical from equi	valents
Refinement method	Full-matrix least-squares	$\operatorname{con} F^2$
Data / restraints / parameters	14037 / 96 / 821	
Goodness-of-fit on F^2	1.036	
Final <i>R</i> indices $[I > 2\sigma_I]$	$R_1 = 0.0191, wR_2 = 0.0427$	7
<i>R</i> indices (all data)	$R_1 = 0.0221, wR_2 = 0.0439$)
Largest diff. peak and hole	$0.800 \text{ and } -0.511 \text{ e/Å}^3$	

Notes: There was one molecule of $C_{38}H_{46}B_2O_4P_2Au.KC_{12}H_{24}O_6$ where the crown ether was modeled with disorder (disordered site occupancy ratio was 59%/41%), and one disordered benzene molecule (disordered site occupancy ratio was 69%/31%) present in the asymmetric unit of the unit cell.

Table S5. Crystal data and structure refinement for [Au(B₂P₂)(CO₃)][K(18-c-6)] (8).

Identification code Empirical formula Formula weight Temperature Wavelength	hh233JT117_0m C ₅₅ H ₇₄ AuB ₂ KO ₉ P ₂ 1198.76 g/mol 100(2) K 0 71073 Å	
Crystal system	Triclinic	
Space group	P _1	
Unit cell dimensions	a = 17.085(3) Å b = 17.761(3) Å c = 18.264(3) Å	$\alpha = 91.133(2)^{\circ}.$ $\beta = 91.253(2)^{\circ}.$ $\gamma = 90.383(2)^{\circ}.$
Volume	5539.7(15) Å ³	
Ζ	4	
Density (calculated)	1.437 mg/m^3	
Absorption coefficient	2.842 mm^{-1}	
<i>F</i> (000)	2456	
Crystal size	0.564 x 0.122 x 0.040 mm	n^3
θ range for data collection	1.584 to 25.681°.	
Index ranges	$-20 \le h \le 20, -21 \le k \le 21$	$1, -22 \le l \le 22$
Reflections collected	65770	
Independent reflections	20977 [$R_{int} = 0.0623$]	
Completeness to $\theta = 25.242^{\circ}$	99.8 %	
Absorption correction	Semi-empirical from equi	valents
Refinement method Data / restraints / parameters	Full-matrix least-squares 0 20977 / 18 / 1501	on F^2
Goodness-of-fit on F^2	1.036	
Final <i>R</i> indices $[I > 2\sigma_I]$	$R_1 = 0.0464, wR_2 = 0.0972$	2
<i>R</i> indices (all data)	$R_1 = 0.0677, wR_2 = 0.1063$	3
Largest diff. peak and hole	2.966 and -1.520 e/Å ³	

Notes: There were two disordered molecules of $C_{55}H_{74}B_2O_9P_2KAu$ present in the asymmetric unit of the unit cell. The two disordered benzene were coordinated to the two K-atoms (disordered site occupancy ratios were 56%/44% and 67%/33%). The two disordered ligands were coordinated to the two Au-atoms (disordered site occupancy ratios were 76%/24% and 51%/49%).

Table S6. Crystal data and structure refinement for $Au(B_2P_2)(OSi^iPr_3)$ (9).

hh241JT120_0m	
C45H65AuB2OP2Si	
930.58 g/mol	
180(2) K	
0.71073 Å	
Monoclinic	
$P2_1/c$	
a = 20.6988(5) Å	$\alpha = 90^{\circ}$.
b = 22.0547(5) Å	$\beta = 92.3184(5)^{\circ}.$
c = 19.2806(5) Å	$\gamma = 90^{\circ}$.
8794.5(4) Å ³	
8	
1.406 mg/m^3	
3.478 mm^{-1}	
3808	
light yellow	
0.406 x 0.278 x 0.182 mm	n^3
1.690 to 29.575°	
$-28 \le h \le 28, -30 \le k \le$	$30, -26 \le l \le 26$
198681	
24666 [$R_{int} = 0.0280$]	
100.0 %	
Semi-empirical from equi	valents
Full-matrix least-squares	on F^2
24666 / 381 / 1065	
1.023	
$R_1 = 0.0222, wR_2 = 0.0498$	8
$R_1 = 0.0286, wR_2 = 0.0519$	9
1.201 and -1.023 e/Å ³	
	hh241JT120_0m $C_{45}H_{65}AuB_2OP_2Si$ 930.58 g/mol 180(2) K 0.71073 Å Monoclinic P2 ₁ /c a = 20.6988(5) Å b = 22.0547(5) Å c = 19.2806(5) Å 8794.5(4) Å ³ 8 1.406 mg/m ³ 3.478 mm ⁻¹ 3808 light yellow 0.406 x 0.278 x 0.182 mm 1.690 to 29.575° $-28 \le h \le 28, -30 \le k \le$ 198681 24666 [$R_{int} = 0.0280$] 100.0 % Semi-empirical from equi Full-matrix least-squares a 24666 / 381 / 1065 1.023 $R_1 = 0.0222, wR_2 = 0.0498$ $R_1 = 0.0286, wR_2 = 0.0519$ 1.201 and -1.023 e/Å ³

References

- ¹ J. W. Taylor, A. McSkimming, C. F. Guzman, W. H. Harman, J. Am. Chem. Soc. 2017, **139**, 11032.
- ² Z. Yang, L. N. He, C. X. Miao, S. Chanfreau, Adv. Synth. Catal. 2010, 352, 2233.
- ³ T. A. Scott, B. A. Ooro, D. J. Collins, M. Shatruk, A. Yakovenko, K. R. Dunbar, H.-C. Zhou, *Chem. Commun.* 2009, **1**, 65.
- ⁴ J. J. Led, H. Gesmar, *Chem. Rev.* 1991, **91**, 1413.
- ⁵ H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, **62**, 7512.
- ⁶ APEX 2, version 2014.1-1, Bruker (2014), Bruker AXS Inc., Madison, Wisconsin, USA.
- ⁷ SAINT, version V8.34A, Bruker (2012), Bruker AXS Inc., Madison, Wisconsin, USA.
- ⁸ SADABS, version 2012/1, Bruker (2012), Bruker AXS Inc., Madison, Wisconsin, USA.
- ⁹ SHELXTL, version 2013/4, Bruker (2013), Bruker AXS Inc., Madison, Wisconsin, USA.