Supporting Information

Gold(I)-Catalyzed Stereoselective Cyclization of 1,3-Enyne Aldehydes by 1,3-Acyloxy Migration/Nazarov/Aldol Cascade

Marco Brandstätter, Nikolas Huwyler and Erick M. Carreira *

* Laboratorium für Organische Chemie, HCI H335, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland. Email: carreira@org.chem.ethz.ch

Table of Contents

1, Materials and Methods	S2
2. Optimization Studies	S4
3. Synthesis and Characterization of Substrates	S7
2.1 Synthesis of Aryl Substrates 1a-1j	S7
2.2 Synthesis of Alkyl Substrates 1k-1m	S35
4. Synthesis and Characterization of Products 2a-2m	S42
5. Synthesis of the Triquinane 13	S50
6. Synthesis of the Spiro[4.4]nonane 15	S55
7. NMR Spectral Data	S59
8. SFC Traces	S154
9. X-Ray Crystallographic Data	S168

1. Materials and Methods

1.1. General Methods. All non-aqueous reactions were performed under an inert atmosphere of dry nitrogen or argon in flame dried glassware sealed with a rubber septum unless otherwise noted. The protecting gas was passed over a column of CaCl₂ and supplied through a glass manifold. Reactions were stirred magnetically and monitored by thin layer chromatography (TLC). Analytical thin layer chromatography was performed using MERCK SILICA GEL F254 TLC glass plates and visualized by ultraviolet light (UV). Additionally, TLC plates were stained with aqueous potassium permanganate (KMnO₄) [1.5 g KMnO₄, 200 mL H₂O, 10 g K₂CO₃, 2.5 mL 1 M NaOH aq.] or ethanolic p-anisaldehyde [3.7 mL p-anisaldehyde, 135 mL EtOH, 5 mL conc. H₂SO₄, 1.5 mL AcOH]. Concentration under reduced pressure (= *in vacuo*) was performed as flash chromatography¹ on FLUKA silica gel 60 Å (230-400 mesh) at 0.3 – 0.5 bar over-pressure. Yields refer to the purified compound.

1.2. Chemicals. All chemicals and solvents were purchased from ABCR, ACROS, ALDRICH, COMBI-BLOCKS, FLUOROCHEM, J. T. BAKER, FLUKA, MERCK, FISHER-SCIENTIFIC, TCI, STREM OR LANCASTER and were used as received from the commercial supplier without further purification unless mentioned otherwise. THF, Et₂O, CH₂Cl₂, MeCN and toluene were dried on a LC TECHNOLOGY SOLUTIONS *SP-1* solvent purification system under N₂. (H₂O content < 30 ppm, Karl–Fischer titration).² Deuterated solvents were obtained from ARMAR CHEMICALS, Döttingen, Switzerland. Diisopropylamine and pyridine were distilled from KOH, DMPU and NEt₃ were distilled from calcium hydride under an atmosphere of dry nitrogen or high vacuum. BF₃·OEt₂ was purified by a quick, heat gun promoted "bulb-to-bulb" distillation under an atmosphere of nitrogen prior to use. Aqueous buffer solutions were prepared according to the Sørensen's phosphate buffer table from 0.067 M aqueous solutions of Na₂HPO₄ and KH₂PO₄.

1.3. Analytics. Nuclear Magnetic Resonance (NMR) spectra were recorded on VARIAN MERCURY(300 MHz), BRUKER AV and DRX (400 MHz), BRUKER DRX and DRXII (500 MHz) or BRUKER AVIII (600 MHz with cryoprobe) spectrometers. Measurements were carried out at ambient temperature (ca. 22 °C). Chemical shifts (δ) are reported in ppm with the residual solvent signal as internal standard (CHCl₃ at 7.26 and 77.16 ppm for ¹H- and ¹³C NMR spectroscopy, respectively; DMSO at 2.50 and 39.52 ppm), unless otherwise noted. The data is reported as (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved,

¹ W. C. Still, M. Kahn, A. J. Mitra, J. Org. Chem. 1978, 43, 2923-2925.

² A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics **1996**, *15*, 1518-1520.

b = broad signal, app = apparent, coupling constant(s) in Hz, integration). ¹³C NMR spectra were recorded with broadband ¹H-decoupling. Service measurements were performed by the NMR service team of the *Laboratorium für Organische Chemie at ETH Zürich* by Mr. *René Arnold*, Mr. *Rainer Frankenstein* and Mr. *Philipp Zumbrunnen* under direction of Dr. *Marc-Olivier Ebert*. Infrared (IR) spectra were recorded on a PERKIN ELMER TWO-FT-IR (UATR) as thin films. Absorptions are given in wavenumbers (cm⁻¹). Supercritical fluid chromatography (SFC) was performed on a JASCO 2080 PLUS system under the conditions given for each measurement. Optical rotations were measured with JASCO P-2000 POLARIMETER, 10 cm, 1.5 mL cell (c = 1.00 corresponds to 10.0 mg·mL⁻¹). Mass spectrometry (MS) analyses were performed as high resolution EI measurements on a WATERS MICROMASS AUTOSPEC ULTIMA at 70 eV, as high resolution ESI measurements on a BRUKER DALTONICS MAXIS (UHR-TOF) instrument or as MALDI on a BRUKER SOLARIX – MALDI-FTICR-MS instrument by the mass spectrometry service of the *Laboratorium für Organische Chemie at ETH Zürich* by Mr. *Louis Bertschi*, Mr. *Oswald Greter* and Mr. *Rolf Häfliger* under direction of Dr. *Xiangyang Zhang*.

2. Optimization Studies

Selected Preliminary Results:

General Procedure for Optimization Studies

Aldehyde **1a** was dissolved in a solvent in an oven-dried 10 mL one-neck flask and water was added. The resulting solution was cooled to -10 °C and Au-catalyst was added in one portion. The resulting slightly yellow solution was stirred at -10 °C for 24 h. The reaction mixture was filtered through a short pad of silica gel with EtOAc, concentrated in vacuo, and purified by flash column chromatography. Diastereomeric ration was determined by ¹H NMR and enantiomeric excess was determined by SFC on a chiral stationary phase.

Effect of water amount

Standard Conditions: 5 mol% [JohnPhosAu(MeCN)]SbF₆, x vol% H₂O, THF (0.05M), RT

Table S1

Solvent screening

Standard Conditions: 5 mol% [JohnPhosAu(MeCN)]SbF₆, 0.2 vol% H₂O, solvent (0.05 M), RT

Table S2

^a dry CH₂Cl₂ was used as solvent

Catalyst screening

Standard Conditions: 5 mol% catalyst, 0.2 vol% H₂O, THF (0.05 M), RT

Table S3

Effect of Temperature

Standard Conditions: 5 mol% [JohnPhosAu(MeCN)]SbF₆, 0.2 vol% H₂O, THF (0.05 M), Temperature

Table S4

3. Synthesis and Characterization of Substrates

2.1 Synthesis of Aryl Substrates

General Procedures for Aryl-Substrate Synthesis

Reagents and conditions: a) Aryl iodide (1.3 equiv), $PdCl_2(PPh_3)_2$ (5 mol%), Cul (10 mol%), Et_3N/THF (2:1), RT; b) $Pd(PPh_3)_4$ (5 mol%), nBu_3SnH (1.5 equiv), THF; c) I_2 (1.1 equiv), CH_2Cl_2 , 0°C to RT; d) (R)-3-butyn-2-ol (1.3 equiv), $PdCl_2(PPh_3)_2$ (5 mol%), Cul (10 mol%), Et_3N/THF (2:1); e) Ac_2O (1.1 equiv), DMAP (0.1 equiv), pyridine (1.5 equiv), CH_2Cl_2 ; f) TBAF (8 equiv), THF; g) (COCl)₂ (1.2 equiv), DMSO (2.4 equiv), NEt₃ (5 equiv), -78 °C to -30 °C CH_2Cl_2 .

Alkyne S1. To a degassed solution of 1-(*tert*-butyldimethylsilyloxy)-4-pentyne (1.0 equiv) and aryl iodide (1.0 equiv) in NEt₃/THF (2:1, 0.15 M) was added $PdCl_2(PPh_3)_2$ (0.05 equiv) and CuI (0.1 equiv) and the resulting mixture was stirred at RT for 18 h before it was filtered through a short plug of silica gel eluting with EtOAc and concentrated *in vacuo*. Purification by column chromatography afforded alkyne **S1**.

Vinyl iodide S2. To a degassed solution of alkyne **S1** (1.0 equiv) in THF (0.1 M) was added dropwise nBu_3SnH (1.5 equiv) and Pd(PPh_3)₄ (0.1 equiv) at ambient temperature. After 60 min, the solution was partially concentrated under reduced pressure until a solid phase started to crush out and was then directly loaded onto a silica gel column. Purification by flash column chromatography afforded the corresponding vinyl stannane (hexane/EtOAc 40:1). To a solution of the vinyl stannane (1.0 equiv) in CH₂Cl₂ (0.1 M) was added I₂ (1.2 equiv) at 0 °C. After 30 min, the reaction was quenched with sat. aq. Na₂S₂O₃ solution and stirred vigorously for 5 min. The phases were separated and the aqueous phase was extracted with Et₂O (3x). The combined organic phases were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography afforded vinyl iodide **S2**.

Propargyl alcohol S3. To a degassed solution of **S2** (1.0 equiv) and (*R*)-but-3-yn-2-ol (1.2 equiv) in NEt₃/THF (2:1, 0.15 M) was added PdCl₂(PPh₃)₂ (0.05 equiv) and CuI (0.1 equiv) and the resulting mixture was stirred at RT for 2h before it was filtered through a short plug of silica gel eluting with EtOAc and concentrated *in vacuo*. Purification by column chromatography afforded enyne **S3**.

Propargyl acetate S4. To a stirred solution of enyne **S3** (1.0 equiv) dissolved in CH_2Cl_2 (0.1 M) at ambient temperature was added pyridine (5.0 equiv), DMAP (0.2 equiv), and Ac_2O (1.5 equiv). The resulting solution was stirred for 1h before it was quenched with H_2O . The aqueous phase was extracted with Et_2O (3x). The combined organic phases were washed with sat. aq. $CuSO_4$ solution, H_2O (1x), and brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography provided propargyl acetate **S4**.

Primary alcohol S5. To a stirred solution of propargyl acetate **S4** (1.0 equiv) in dry THF (0.1 M) in at 0 °C was added TBAF (1.0 M in THF, 2 equiv). After the addition, the solution was allowed to warm to ambient temperature and stirred for another 90 min. The mixture was quenched by the addition of sat. aq. NaHCO₃ solution. EtOAc was added to the mixture and the phases separated. The aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography provided primary alcohol **S5**.

Aldehyde 1. To a solution of oxalyl chloride (1.2 equiv) in CH_2Cl_2 (0.15 M) at -78 °C was added DMSO (2.4 equiv) dropwise and stirred for 15 min. Then a solution of alcohol S5 in CH_2Cl_2 (0.05-0.1M) was added dropwise and stirred for 30min. After that time, NEt₃ (5 equiv) was added and stirred for another 30min at -78 °C and then slowly warmed to -30 °C over 30 min and then quenched by the addition of sat. aq. NaHCO₃ solution. The phases were separated and the aqueous phase was extracted with CH_2Cl_2 (3x), dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography provided aldehyde 1.³

³ Aldehyde **1** was found to decompose when stored in commercial CD₃Cl. Thus, filtration through basic Al₂O₃ or the use of CD₂Cl₂ is advised.

tert-Butyldimethyl((5-phenylpent-4-yn-1-yl)oxy)silane (S1a). General procedure for S1 was followed on a 3.64 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, yellow oil (1.86 g, 3.29 mmol, 90%). The characterization was consistant with reported values in the literature.⁴

tert-Butyldimethyl((5-(4-(trifluoromethyl)phenyl)pent-4-yn-1-yl)oxy)silane (S1b). General procedure for S1 was followed on a 1.83 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, yellow oil (585 mg, 1.71 mmol, 93%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 3.76 (t, *J* = 6.0 Hz, 4H), 2.52 (t, *J* = 7.0 Hz, 4H), 2.01 – 1.74 (m, 3H), 0.91 (s, 9H), 0.08 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 131.9, 125.2 (q, *J* = 3.7 Hz), 93.0, 79.8, 61.7, 31.7, 26.1, 18.5, 16.0, -5.2. **IR** (neat) 2954, 2931, 2897, 2858, 2233, 2105, 1921, 1616, 1571, 1516, 1472, 1464, 1431, 1406, 1389, 1361, 1322, 1255, 1166, 1128, 1104, 1067, 1018, 1007, 982, 953, 940, 835, 814, 775, 737, 699, 681, 663, 597, 563, 520, 497, 466 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₈H₂₅NaF₃OSi [M+Na]⁺ 365.1519, found 365.1516.

Methyl 4-(5-((tert-butyldimethylsilyl)oxy)pent-1-yn-1-yl)benzoate (S1c). General procedure for S1 was followed on a 3.02 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, yellow oil (988 mg, 2.97 mmol, 98%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.00 – 7.90 (m, 2H), 7.43 (d, J = 8.4 Hz, 2H), 3.91 (s, 3H), 3.75 (t, J = 6.0 Hz, 2H), 2.52 (t, J = 7.0 Hz, 2H), 1.89 – 1.73 (m, 2H), 0.91 (s, 9H), 0.07 (s, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 166.82, 137.87, 131.59, 129.55, 129.00, 93.61, 80.36, 61.69, 52.30, 31.73, 26.10, 18.52, 16.09, -5.16. **IR** (neat) 2952, 2929, 2897, 1857, 2229, 2080, 1930, 1724, 1607, 1588, 1560, 1508, 1472, 1463, 1435, 1406, 1390, 1361, 1307, 1272, 1257, 1192, 1175, 1104, 1070, 1019, 1009, 982, 956, 857, 834, 769, 756, 709, 697, 663, 566, 528, 456 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₉H₂₈NaO₃Si [M+Na]⁺ 355.1700, found 355.1700.

⁴ F. Pape, N. O. Thiel, J. F. Teichert, Chem. Eur. J. 2015, 21, 15934-15938.

tert-Butyl((5-(4-chlorophenyl)pent-4-yn-1-yl)oxy)dimethylsilane (S1d). General procedure for S1 was followed on a 2.10 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, yellow oil (630 mg, 2.04 mmol, 97%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 2H), 7.27 – 7.23 (m, 3H), 3.75 (t, *J* = 6.0 Hz, 2H), 2.48 (t, *J* = 7.0 Hz, 2H), 1.88 – 1.76 (m, 2H), 0.91 (s, 9H), 0.07 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 133.57, 132.89, 128.64, 122.67, 91.16, 79.79, 61.72, 31.79, 26.10, 18.52, 15.97, -5.16. **IR** (neat) 2953, 2929, 2896, 2857, 2230, 2048, 1899, 1646, 1594, 1490, 1472, 1464, 1430, 1389, 1361, 1350, 1326, 1287, 1255, 1189, 1104, 1093, 1071, 1015, 1007, 983, 951, 828, 775, 751, 719, 663, 582, 524, 498 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₇H₂₅OSi [M-Cl]⁺ 273.1669, found 273.1672.

tert-Butyl((5-(4-fluorophenyl)pent-4-yn-1-yl)oxy)dimethylsilane (S1e). General procedure for S1 was followed on a 3.60 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, yellow oil (982 mg, 3.36 mmol, 93%).

¹**H NMR** (400 MHz, $CDCl_3$) δ 7.41 – 7.32 (m, 1H), 7.08 – 6.84 (m, 1H), 3.75 (t, *J* = 6.0 Hz, 1H), 2.48 (t, *J* = 7.0 Hz, 1H), 2.01 – 1.74 (m, 1H), 0.91 (s, 9H), 0.08 (s, 6H). ¹³**C NMR** (101 MHz, $CDCl_3$) δ 162.2 (d, *J* = 248.1 Hz), 133.4 (d, *J* = 8.2 Hz), 120.2 (d, *J* = 3.5 Hz), 115.5 (d, *J* = 21.9 Hz), 89.7 (d, *J* = 1.5 Hz), 79.8, 61.8, 31.9, 26.1, 18.5, 15.9, -5.2. **IR** (neat) 3050, 2953, 2930, 2897, 2858, 2232, 2037, 1888, 1645, 1603, 1507, 1472, 1464, 1444, 1431, 1388, 1361, 1350, 1328, 1294, 1256, 1231, 1189, 1155, 1104, 1070, 1007, 983, 952, 940, 833, 775, 721, 664, 634, 575, 527 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₇H₂₅FNaOSi [M+Na]⁺ 315.1551, found 315.1551.

tert-Butyl((5-(3-fluorophenyl)pent-4-yn-1-yl)oxy)dimethylsilane (S1f). General procedure for S1 was followed on a 4.03 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, yellow oil (1.06 g, 3.61 mmol, 89%). Purification by standard column chromatography proofed difficult and lead to the isolation of the product containing minor impurities (purity >85%). The product was used in the next step without further purification.

¹**H** NMR (400 MHz, CDCl₃) δ 7.27 – 7.18 (m, 1H), 7.16 (dt, *J* = 7.7, 1.3 Hz, 1H), 7.07 (ddd, *J* = 9.6, 2.6, 1.4 Hz, 1H), 7.02 – 6.92 (m, 1H), 3.75 (t, *J* = 6.0 Hz, 2H), 2.49 (t, *J* = 7.0 Hz, 2H), 1.95 – 1.72 (m, 2H), 0.91 (s, 9H), 0.08 (s, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 162.5 (d, *J* = 245.9 Hz), 129.8 (d, *J* = 8.8 Hz), 127.5 (d, *J* = 3.0 Hz), 126.1 (d, *J* = 9.6 Hz), 118.5 (d, *J* = 22.5 Hz), 115.0 (d, *J* = 21.2 Hz), 91.2, 79.8 (d, *J* = 3.3 Hz), 61.7, 31.8, 26.1, 18.5, 15.9, -5.2. **IR** (neat) 2953, 2929, 2896, 2857, 2231, 1571, 1482, 1472, 1462, 1361, 1326, 1258, 1217, 1189, 1103, 1070, 1032, 1002, 986, 955, 832, 816, 775, 753, 677, 661, 572 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₇H₂₅FNaOSi [M+Na]⁺ 315.1551, found 315.1551.

tert-Butyl((5-(2-fluorophenyl)pent-4-yn-1-yl)oxy)dimethylsilane (S1g). General procedure for S1 was followed on a 4.59 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, yellow oil (976 mg, 3.34 mmol, 73%). Purification by standard column chromatography proofed difficult and lead to the isolation of the product containing minor impurities (purity >85%). The product was used in the next step without further purification.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (td, *J* = 7.6, 1.8 Hz, 1H), 7.27 – 7.21 (m, 1H), 7.12 – 6.98 (m, 2H), 3.77 (t, *J* = 6.1 Hz, 2H), 2.54 (t, *J* = 7.0 Hz, 2H), 1.89 – 1.77 (m, 2H), 0.91 (s, 9H), 0.08 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 164.2, 161.7, 133.6 (d, *J* = 1.6 Hz), 129.2 (d, *J* = 7.9 Hz), 123.9 (d, *J* = 3.7 Hz), 115.5 (d, *J* = 21.2 Hz), 95.5 (d, *J* = 3.3 Hz), 74.2 (d, *J* = 1.1 Hz), 61.7, 31.77, 26.1, 18.5, -5.2. **IR** (neat) 2953, 2929, 2896, 2857, 2235, 1574, 1493, 1472, 1463, 1454, 1389, 1361, 1326, 1255, 1217, 1189, 1103, 1070, 1032, 1006, 983, 954, 939, 833, 818, 775, 753, 677, 661, 577, 509 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₇H₂₅FNaOSi [M+Na]⁺ 315.1551, found 315.1551.

tert-Butyldimethyl((5-(naphthalen-2-yl)pent-4-yn-1-yl)oxy)silane (S1h). General procedure for S1 was followed including heating at 70 °C for 7h on a 3.62 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, yellow oil (600 mg, 1.85 mmol, 51%). Purification by standard column chromatography proofed difficult and lead to the isolation of the product containing minor impurities (purity >85%). The product was used in the next step without further purification.

¹**H** NMR (400 MHz, CDCl₃) δ 7.93 – 7.86 (m, 1H), 7.84 – 7.71 (m, 3H), 7.53 – 7.38 (m, 3H), 3.80 (t, J = 6.0 Hz, 2H), 2.55 (t, J = 7.0 Hz, 2H), 1.93 – 1.80 (m, 2H), 0.93 (d, J = 0.5 Hz, 9H), 0.10 (s, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 133.3, 132.7, 131.3, 129.0, 128.0, 127.9, 127.8, 126.6, 126.5, 121.6, 90.6, 81.3, 61.9., 32.1, 26.2, 16.2, -5.0. **IR** (neat) 3059, 2953, 2928, 2896, 2856, 1628, 1598, 1502, 1471, 1463, 1431, 1388, 1361, 1324,

1254, 1188, 1102, 1071, 1006, 990, 960, 939, 891, 833, 815, 775, 745, 721, 663, 610, 542, 474 cm⁻¹. **HRMS** (MALDI): m/z calcd for C₂₁H₂₈NaOSi [M+Na]⁺ 347.1802, found 347.1802.

4-(5-((*tert*-Butyldimethylsilyl)oxy)pent-1-yn-1-yl)phenyl acetate (S1i). General procedure for S1 was followed on a 4.03 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, yellow oil (1.32 g, 3.97 mmol, 98%). Purification by standard column chromatography proofed difficult and lead to the isolation of the product containing minor impurities (purity >85%). The product was used in the next step without further purification.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.7 Hz, 1H), 7.01 (d, J = 8.7 Hz, 1H), 3.75 (t, J = 6.0 Hz, 1H), 2.48 (t, J = 7.0 Hz, 1H), 2.29 (s, 2H), 1.95 – 1.75 (m, 1H), 0.91 (s, 9H), 0.08 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.34, 150.03, 132.76, 121.90, 121.62, 90.14, 80.03, 61.74, 31.86, 26.11, 21.27, 18.52, 15.94, -5.15. IR (neat) 2953, 2929, 2896, 2857, 1768, 1602, 1505, 1472, 1431, 1369, 1255, 1191, 1164, 1102, 1070, 1009, 983, 951, 909, 834, 775, 719, 688, 663, 593, 532, 501 cm⁻¹. HRMS (MALDI): m/z calcd for C₁₉H₂₈NaO₃Si [M+Na]⁺ 355.1700, found 355.1700.

tert-Butylacetyl(4-(5-((tert-butyldimethylsilyl)oxy)pent-1-yn-1-yl)phenyl)carbamate (S1j). General procedure for S1 was followed on a 2.77 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 10:1). The title compound was isolated as clear, yellow oil (1.04 g, 2.41 mmol, 87%). Purification by standard column chromatography proofed difficult and lead to the isolation of the product containing minor impurities (purity >85%). The product was used in the next step without further purification.

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.37 (m, 2H), 7.10 – 6.93 (m, 2H), 3.75 (t, *J* = 6.0 Hz, 2H), 2.56 (s, 3H), 2.49 (t, *J* = 7.0 Hz, 2H), 1.85 – 1.70 (m, 2H), 1.37 (s, 9H), 0.91 (s, 9H), 0.08 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 172.99, 152.68, 138.16, 132.27, 128.21, 123.84, 90.81, 83.49, 80.28, 61.74, 31.84, 27.97, 26.59, 26.11, 18.51, 15.97, -5.16. **IR** (neat) 2954, 2931, 2858, 1740, 1712, 1510, 1473, 1462, 1429, 1394, 1370, 1304, 1282, 1255, 1156, 1098, 1028, 1016, 983, 947, 922, 836, 775, 727, 663, 612, 545, 486, cm⁻¹. **HRMS (ESI)**: m/z calcd for C₂₄H₃₈NFO₄Si [M+H]⁺ 432.2565, found 432.2566.

(*E*)-*tert*-Butyl((5-iodo-5-phenylpent-4-en-1-yl)oxy)dimethylsilane (S2a). General procedure for S2 was followed on a 13.81 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, colorless oil (4.6 g, 11.43 mmol, 97%). The characterization was consistant with reported values in the literature.⁵

(*E*)-*tert*-Butyl((5-iodo-5-(4-(trifluoromethyl)phenyl)pent-4-en-1-yl)oxy)dimethylsilane (S2b). General procedure for S2 was followed on a 2.86 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, colorless oil (962 mg, 2.05 mmol, 72%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.1 Hz, 2H), 7.39 (d, *J* = 8.0, 2H), 6.57 (t, *J* = 7.8 Hz, 1H), 3.55 (t, *J* = 6.1 Hz, 2H), 2.15 – 1.98 (m, 2H), 1.66 – 1.51 (m, 2H), 0.82 (s, 9H), -0.01 (s, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 144.7, 129.4, 125.5, 125.5 (q, *J* = 3.7 Hz), 125.4, 125.4, 92.4, 62.2, 32.3, 29.1, 26.1, 18.4, -5.1. **IR** (neat) 2954, 2930, 2896, 2858, 2087, 1923, 1613, 1576, 1472, 1464, 1405, 1388, 1361, 1322, 1256, 1167, 1129, 1107, 1066, 1019, 1007, 955, 939, 865, 834, 775, 742, 715, 681, 662, 604, 506, 486 cm⁻¹. **HRMS (MALDI):** m/z calcd for $C_{18}H_{26}F_{3}INaOSi [M+Na]^+ 493.0642$, found 493.0638.

(*E*)-Methyl 4-(5-((tert-butyldimethylsilyl)oxy)-1-iodopent-1-en-1-yl)benzoate (S2c). General procedure for S2 was followed on a 2.97 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, colorless oil (1.10 g, 2.39 mmol, 80%). Purification by standard column chromatography proofed difficult and lead to the isolation of the product containing minor impurities (purity >85%). The product was used in the next step without further purification.

¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.89 (m, 2H), 7.42 – 7.31 (m, 2H), 6.55 (t, J = 7.7 Hz, 1H), 3.92 (s, 3H), 3.54 (t, J = 6.2 Hz, 2H), 2.05 (q, J = 7.6 Hz, 2H), 1.66 – 1.50 (m, 2H), 0.83 (s, 9H), -0.01 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 146.3, 144.3, 129.6, 129.0, 93.1, 62.2, 52.3, 32.3, 29.0, 26.0, 18.4, -5.2. **IR** (neat)

⁵ K. Murai, A. Nakamura, T. Matsushita, M. Shimura, H. Fujioka, Chem. Eur. J. 2012, 18, 8448-8453.

2952, 2928, 2856, 1725, 1605, 1465, 1471, 1463, 1435, 1402, 1361, 1309, 1273, 1255, 1179, 1102, 1020, 1006, 966, 939, 834, 809, 771, 712, 682, 662, 560, 478 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₉H₂₉INaO₃Si [M+Na]⁺ 483.0823, found 483.0822.

(*E*)-*tert*-Butyl((5-(4-chlorophenyl)-5-iodopent-4-en-1-yl)oxy)dimethylsilane (S2d). General procedure for S2 was followed on a 1.94 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, colorlesjs oil (650 mg, 1.49 mmol, 77%). Purification by standard column chromatography proofed difficult and lead to the isolation of the product containing minor impurities (purity >85%). The product was used in the next step without further purification.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 2H), 7.28 – 7.24 (m, 2H), 6.54 (t, J = 7.7 Hz, 1H), 3.57 (t, J = 6.2 Hz, 2H), 2.08 (q, J = 7.6 Hz, 2H), 0.95 (t, J = 7.2 Hz, 2H), 0.87 (s, 9H), 0.03 (s, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 144.0, 140.3, 133.9, 130.2, 128.5, 93.2, 62.2, 32.3, 28.9, 26.0, 18.4, -5.2. **IR** (neat) 2954, 2928, 2856, 1590, 1486, 1471, 1463, 1394, 1361, 1255, 1193, 1092, 1015, 940, 834, 814, 774, 729, 662, 581, 557, 483 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₇H₂₇ClIOSi [M+H]⁺ 437.0559, found 437.0558.

(*E*)-*tert*-Butyl((5-(4-fluorophenyl)-5-iodopent-4-en-1-yl)oxy)dimethylsilane (S2e). General procedure for S2 was followed on a 3.21 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, light brown oil (750 mg, 1.78 mmol, 55%). Purification by standard column chromatography proofed difficult and lead to the isolation of the product containing minor impurities (purity >85%). The product was used in the next step without further purification.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.22 (m, 2H), 7.03 – 6.94 (m, 2H), 6.50 (t, J = 7.7 Hz, 1H), 3.55 (t, J = 6.2 Hz, 2H), 2.05 (q, J = 7.6 Hz, 2H), 0.92 (t, J = 7.3 Hz, 2H), 0.84 (s, 9H), 0.00 (s, 6H).¹³**C NMR** (101 MHz, CDCl₃) δ 163.4, 160.9, 130.7 (d, J = 8.3 Hz), 115.3 (d, J = 21.7 Hz), 93.6 , 62.2 , 32.3 , 28.9 , 26.0 , 18.4 , -5.2 .IR (neat) 2954, 2928, 2856, 1770, 1598, 1505, 1471, 1463, 11387, 1361, 1253, 1232, 1174, 1157, 1099, 1006, 939, 834, 774, 719, 661, 623, 558, 511 cm⁻¹.**HRMS (MALDI):** m/z calcd for C₁₇H₂₆FINaOSi [M+Na]⁺ 443.0674, found 443.0673.

(*E*)-*tert*-Butyl((5-(3-fluorophenyl)-5-iodopent-4-en-1-yl)oxy)dimethylsilane (S2f). General procedure for S2 was followed on a 3.56 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, colorless oil (1.04 g, 2.47 mmol, 63%). Purification by standard column chromatography proofed difficult and lead to the isolation of the product containing minor impurities (purity >85%). The product was used in the next step without further purification.

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.22 (m, 1H), 7.06 (ddd, *J* = 7.7, 1.6, 1.0 Hz, 1H), 7.03 – 6.89 (m, 2H), 6.51 (t, *J* = 7.7 Hz, 1H), 3.55 (t, *J* = 6.2 Hz, 2H), 2.07 (q, *J* = 7.6 Hz, 2H), 1.63 – 1.51 (m, 2H), 0.84 (s, 9H), - 0.00 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 163.5, 161.1, 144.1, 129.8 (d, *J* = 8.4 Hz), 124.6 (d, *J* = 2.9 Hz), 116.0 (d, *J* = 22.1 Hz), 115.1 (d, *J* = 21.1 Hz), 92.7 (d, *J* = 2.3 Hz), 62.2, 32.3, 29.0, 26.0, 18.4, -5.2. **IR** (neat) 2953, 2928, 2895, 2856, 1608, 1582, 1472, 1463, 1431, 1388, 1361, 1286, 1254, 1232, 1191, 1134, 1101, 1028, 1006, 966, 939, 875, 834, 814, 774, 698, 681, 662, 572, 521 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₇H₂₆NaFIOSi [M+H]⁺ 420.0776, found 420.0766.

(*E*)-*tert*-Butyl((5-(2-fluorophenyl)-5-iodopent-4-en-1-yl)oxy)dimethylsilane (S2g). General procedure for S2 was followed on a 3.16 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, colorless oil (1.20 g, 2.85 mmol, 90%). Purification by standard column chromatography proofed difficult and lead to the isolation of the product containing minor impurities (purity >85%). The product was used in the next step without further purification.

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 2H), 7.15 – 7.07 (m, 1H), 7.05 – 6.97 (m, 1H), 6.61 (t, *J* = 7.7 Hz, 1H), 3.53 (t, *J* = 6.3 Hz, 2H), 1.95 (dd, *J* = 15.1, 7.7 Hz, 1H), 1.62 – 1.55 (m, 2H), 0.83 (s, 9H), -0.01 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 159.7, 157.3, 146.1, 131.0 (d, *J* = 2.5 Hz), 130.1 (d, *J* = 8.2 Hz), 124.2 (d, *J* = 3.7 Hz), 116.0 (d, *J* = 21.8 Hz), 84.9, 62.3, 31.9, 29.3, 26.0, 18.4, -5.2. **IR** (neat) 2953, 2928, 2856, 166, 1577, 1486, 1472, 1463, 1450, 1388, 1361, 1255, 1226, 1193, 1100, 1031, 1006, 939, 83, 775, 754, 659, 590 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₇H₂₆NaFIOSi [M+H]⁺ 420.0776, found 420.0765.

(*E*)-*tert*-Butyl((5-iodo-5-(naphthalen-2-yl)pent-4-en-1-yl)oxy)dimethylsilane (S2h). General procedure for S2 was followed on a 1.85 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, colorless oil (670 mg, 1.48 mmol, 80%). Purification by standard column chromatography proofed difficult and lead to the isolation of the product containing minor impurities (purity >85%). The product was used in the next step without further purification.

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 – 7.76 (m, 3H), 7.73 (d, J = 1.8 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.41 (dd, J = 8.5, 1.8 Hz, 1H), 6.59 (t, J = 7.7 Hz, 1H), 3.54 (t, J = 6.3 Hz, 2H), 2.11 (q, J = 7.6 Hz, 2H), 1.64 – 1.57 (m, 2H), 0.80 (s, 9H), -0.02 (s, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 143.5, 139.2, 133.0, 132.9, 128.3, 128.1, 127.8, 127.5, 127.0, 126.6, 126.5, 95.2, 62.4, 32.4, 29.0, 26.0, 18.4, -5.2. IR (neat) 3056, 2954, 2928, 2856, 1770, 1596, 1503, 1471, 1463, 1387, 1361, 1251, 1189, 1100, 1006, 961, 834, 816, 774, 754, 714, 663, 597, 563, 476 cm₋₁. HRMS (MALDI): m/z calcd for C₂₁H₂₉INaOSi [M+Na]⁺ 475.0925, found 475.0924.

(*E*)-4-(5-((*tert*-Butyldimethylsilyl)oxy)-1-iodopent-1-en-1-yl)phenyl acetate (S2i). General procedure for S2 was followed on a 3.61 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, colorless oil (826 mg, 1.79 mmol, 50%). Purification by standard column chromatography proofed difficult and lead to the isolation of the product containing minor impurities (purity >85%). The product was used in the next step without further purification.

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.06 – 7.01 (m, 2H), 6.51 (t, *J* = 7.7 Hz, 1H), 3.55 (t, *J* = 6.3 Hz, 2H), 2.30 (s, 3H), 2.07 (q, *J* = 7.6 Hz, 2H), 1.66 – 1.51 (m, 2H), 0.85 (s, 9H), 0.01 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.3, 150.2, 143.8, 139.3, 130.1, 121.4, 93.8, 62.3, 32.4, 28.9, 26.1, 21.3, 18.4, -5.2. **IR** (neat) 2953, 2928, 2894, 2856, 2101, 1765, 1598, 1499, 1471, 1463, 1432, 1405, 1368, 1254, 1193, 1165, 1100, 1017, 1008, 940, 911, 834, 814, 774, 736, 714, 683, 663, 640, 605, 593, 521 cm⁻¹.

(*E*)-*tert*-Butyl-acetyl(4-(5-((tert-butyldimethylsilyl)oxy)-1-iodopent-1-en-1-yl)phenyl)-carbamate (S2j). General procedure for S2 was followed on a 0.95 mmol scale. The crude product was purified by flash

column chromatography on silica gel (hexane/EtOAc 20:1). The title compound was isolated as clear, colorless oil (450 mg, 0.80 mmol, 84%). Purification by standard column chromatography proofed difficult and lead to the isolation of the product containing minor impurities (purity >85%). The product was used in the next step without further purification.

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H), 7.08 – 6.95 (m, 2H), 6.52 (t, *J* = 7.6 Hz, 1H), 3.55 (t, *J* = 6.4 Hz, 2H), 2.57 (s, 3H), 2.18 – 1.98 (m, 2H), 1.66 – 1.53 (m, 2H), 1.38 (s, 9H), 0.87 (s, 9H), 0.01 (s, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 172.9, 152.7, 143.8, 141.1, 138.7, 129.5, 128.0, 93.8, 83.5, 62.4, 32.3, 28.9, 27.9, 26.6, 26.1, 18.4, -5.2. **IR** (neat) 2929, 2857, 1739, 1711, 1601, 1504, 1472, 1393, 1370, 1338, 1300, 1272, 1254, 1156, 1097, 1028, 1016, 923, 836, 774, 748, 690, 662, 619 cm⁻¹. **HRMS (MALDI):** m/z calcd for $C_{24}H_{39}NNaO_4$ Si [M+Na]⁺ 582.1507, found 582.1498.

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-phenylnon-5-en-3-yn-2-ol (S3a). General procedure for S3 was followed on a 11.43 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 6:1). The title compound was isolated as clear, yellow oil (3.1 g, 9.00 mmol, 79%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 6.19 (t, *J* = 7.7 Hz, 1H), 4.66 (q, *J* = 6.6 Hz, 1H), 3.58 (t, *J* = 6.2 Hz, 2H), 2.28 (q, *J* = 7.6 Hz, 2H), 1.86 (s, 1H), 1.68 – 1.56 (m, 2H), 1.48 (d, *J* = 6.6 Hz, 3H), 0.85 (s, 9H), 0.01 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.4, 137.5, 128.8, 128.3, 127.6, 123.1, 88.9, 86.1, 62.5, 59.0, 32.7, 26.2, 26.0, 24.6, 18.4, -5.2. **IR** (neat) 3508, 3059, 3023, 2854, 2929, 2885, 2857, 2215, 1673, 1600, 1494, 1472, 1463, 1444, 1388, 1362, 1329, 1255, 1186, 1144, 1095, 1031, 1007, 964, 939, 920, 907, 891, 835, 813, 775, 662, 589, 527 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₁H₃₂NaO₂Si [M+Na]⁺ 367.2064, found 367.2064. $\left[\alpha\right]_{D}^{26}$ = +11.3 (c = 1.0, CHCl₃).

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-(4-(trifluoromethyl)phenyl)non-5-en-3-yn-2-ol (S3b). General procedure for S3 was followed on a 0.79 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 6:1). The title compound was isolated as clear, yellow oil (244 mg, 0.59 mmol, 75%).

¹**H** NMR (400 MHz, $CDCl_3$) δ 7.60 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 6.26 (t, J = 7.8 Hz, 1H), 4.65 (t, J = 6.6 Hz, 1H), 3.58 (t, J = 6.1 Hz, 2H), 2.27 (q, J = 7.6 Hz, 2H), 1.80 (s, 1H), 1.71 – 1.56 (m, 2H), 1.48 (d, J = 6.6 Hz, 3H), 0.83 (s, 9H), -0.01 (s, 6H). ¹³C NMR (101 MHz, $CDCl_3$) δ 141.8, 129.2, 125.3 (q, J = 3.8 Hz), 122.1, 89.6, 85.3, 62.3, 59.0, 32.6, 26.3, 26.0, 24.6, 18.4, -5.2. **IR** (neat) 3339, 2955, 2931, 2887, 2859, 1618, 1472,

1464, 1408, 1389, 1362, 1325, 1256, 1167, 1128, 1110, 1066, 1020, 940, 911, 36, 814, 776, 710, 662, 622, 493, 469 cm⁻¹. **HRMS (ESI):** m/z calcd for C₂₂H₃₁F₃NaO₂Si [M+Na]⁺ 435.1938, found 435.1934. $[\alpha]_D^{26} = +10.2$ (c = 1.0, CHCl₃).

(*R*,*E*)-Methyl4-(9-((*tert*-butyldimethylsilyl)oxy)-2-hydroxynon-5-en-3-yn-5-yl)-benzoate (S3c). General procedure for S3 was followed on a 1.13 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 4:1). The title compound was isolated as clear, yellow oil (330 mg, 0.82 mmol, 73%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 – 7.86 (m, 2H), 7.68 – 7.37 (m, 2H), 6.25 (t, *J* = 7.8 Hz, 1H), 4.66 (q, *J* = 6.6 Hz, 1H), 3.92 (s, 3H), 3.57 (t, *J* = 6.2 Hz, 2H), 2.27 (q, *J* = 7.6 Hz, 2H), 1.88 (s, 1H), 1.71 – 1.56 (m, 2H), 1.48 (d, *J* = 6.6 Hz, 3H), 0.84 (s, 9H), -0.00 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.0, 142.2, 141.7, 129.6, 129.2, 128.8, 122.4, 89.5, 85.3, 62.4, 59.0, 52.3, 32.6, 26.3, 26.0, 24.5, 18.4, -5.2. **IR** (neat) 3426, 2953, 2930, 2886, 2857, 1724, 1609, 1565, 1472, 1463, 1436, 1405, 1389, 1362, 1311, 1278, 1256, 1191, 1144, 1104, 1021, 966, 911, 892, 835, 775, 707, 663, 591, 498 cm⁻¹. $\left[\alpha\right]_{D}^{26}$ = +11.1 (c = 1.0, CHCl₃).

(R,E)-9-((*tert*-Butyldimethylsilyl)oxy)-5-(4-chlorophenyl)non-5-en-3-yn-2-ol (S3d). General procedure for S3 was followed on a 1.26 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 6:1). The title compound was isolated as clear, yellow oil (350 mg, 0.92 mmol, 73%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 4H), 6.19 (t, *J* = 7.7 Hz, 1H), 4.66 (q, *J* = 6.6 Hz, 1H), 3.58 (t, *J* = 6.2 Hz, 2H), 2.25 (q, *J* = 7.6 Hz, 2H), 1.81 (s, 1H), 1.69 – 1.55 (m, 2H), 1.48 (d, *J* = 6.6 Hz, 3H), 0.85 (s, 9H), 0.00 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.9, 135.9, 133.4, 130.2, 128.5, 122.1, 89.3, 85.6, 62.4, 59.0, 32.6, 26.3, 26.0, 24.6, 18.4, -5.2. **IR** (neat) 3347, 2954, 2930, 2886, 2858, 1594, 1491, 1472, 1396, 1362, 1329, 1256, 1144, 1094, 1016, 940, 910, 835, 776, 720, 663, 590, 511 cm⁻¹. $[\alpha]_D^{26}$ = +10.8 (c = 1.0, CHCl₃).

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-(4-fluorophenyl)non-5-en-3-yn-2-ol (S3e). General procedure for S3 was followed on a 1.31 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 6:1). The title compound was isolated as clear, yellow oil (330 mg, 0.91 mmol, 70%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 2H), 7.09 – 6.93 (m, 2H), 6.18 (t, *J* = 7.7 Hz, 1H), 4.77 – 4.58 (m, 1H), 3.58 (t, *J* = 6.2 Hz, 2H), 2.26 (q, *J* = 7.6 Hz, 2H), 1.78 (s, 1H), 1.68 – 1.57 (m, 2H), 1.48 (d, *J* = 6.6 Hz, 3H), 0.85 (s, 9H), 0.00 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.2 (d, *J* = 246.8 Hz), 140.5, 133.4 (d, *J* = 3.5 Hz), 130.5 (d, *J* = 8.1 Hz), 122.1, 115.2 (d, *J* = 21.5 Hz), 89.1, 85.9, 62.4, 59.0, 32.7, 26.2, 26.0, 24.6, 18.4, -5.2. **IR** (neat) 3333, 2955, 2930, 2858, 1603, 1509, 1472, 1362, 1256, 1226, 1159, 1143, 1100, 1007, 940, 837, 776, 725, 662, 573, 526, 484, 464, 695, 613, 504, 487, 460 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₁H₃₁NaFO₂Si [M+Na]⁺ 385.1970, found 385.1969. $[\alpha]_D^{26} = +11.8$ (c = 1.0, CHCl₃).

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-(3-fluorophenyl)non-5-en-3-yn-2-ol (S3f). General procedure for S3 was followed on a 0.95 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 6:1). The title compound was isolated as clear, yellow oil (265 mg, 0.73 mmol, 77%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 1H), 7.16 – 7.09 (m, 1H), 7.06 (ddd, *J* = 9.9, 2.6, 1.6 Hz, 1H), 6.97 (tdd, *J* = 8.4, 2.6, 1.0 Hz, 1H), 6.21 (t, *J* = 7.7 Hz, 1H), 4.78 – 4.58 (m, 1H), 3.58 (t, *J* = 6.2 Hz, 2H), 2.28 (q, *J* = 7.6 Hz, 2H), 1.81 (s, 1H), 1.70 – 1.58 (m, 2H), 1.48 (d, *J* = 6.6 Hz, 3H), 0.85 (s, 9H), 0.00 (s, 6H). ³**C NMR** (101 MHz, CDCl₃) δ 162.7 (d, *J* = 245.8 Hz), 141.2, 139.6 (d, *J* = 7.7 Hz), 129.7 (d, *J* = 8.3 Hz), 124.6 (d, *J* = 2.9 Hz), 122.1 (d, *J* = 2.3 Hz), 115.8 (d, *J* = 22.0 Hz), 114.5 (d, *J* = 21.1 Hz), 89.3, 85.5, 62.4, 59.0, 32.6, 26.3, 26.0, 24.6, 18.4, -5.2. **IR** (neat) 3343, 2954, 2930, 2886, 2858, 1611, 1581, 1486, 1472, 1463, 1438, 1388, 1362, 1329, 1256, 1209, 1158, 1095, 1007, 964, 924, 884, 835, 814, 776, 704, 662, 594, 520, 460 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₁H₃₁FNaO₂Si [M+Na]⁺ 385.1970, found 385.1968. $\left[\alpha\right]_{D}^{26}$ = +11.8 (c = 1.0, CHCl₃).

(*R,Z*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-(2-fluorophenyl)non-5-en-3-yn-2-ol (S3g) General procedure for S3 was followed on a 1.19 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 6:1). The title compound was isolated as clear, yellow oil (308 mg, 0.85 mmol, 71%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.23 (m, 2H), 7.15 – 7.10 (m, 1H), 7.09 – 7.02 (m, 1H), 6.29 (t, *J* = 7.7 Hz, 1H), 4.63 (q, *J* = 6.6 Hz, 1H), 3.55 (t, *J* = 6.3 Hz, 2H), 2.14 – 1.99 (m, 2H), 1.63 – 1.53 (m, 2H), 1.46 (d, *J* = 6.6 Hz, 3H), 0.83 (s, 9H), -0.01 (s, 6H). ³**C NMR** (101 MHz, CDCl₃) δ 159.4 (d, *J* = 247.7 Hz), 143.1, 131.1 (d, *J* = 3.5 Hz), 129.6 (d, *J* = 8.1 Hz), 125.1 (d, *J* = 16.0 Hz), 124.1 (d, *J* = 3.6 Hz), 116.8, 115.9 (d, *J* = 22.3 Hz), 88.9, 85.0, 62.6, 59.0, 32.1, 26.6 (d, *J* = 2.2 Hz), 26.0, 24.5, 18.4, -5.2. **IR** (neat) 3354, 2954, 2930, 2886, 2857, 1611, 1579, 1491, 1472, 1463, 1450, 1388, 1361, 1329, 1255, 1220, 1143, 1100, 1032, 1007, 940, 911, 836, 776, 757, 662, 593, 521 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₁H₃₁FNaO₂Si [M+Na]⁺ 385.1970, found 385.1970. $\left[\alpha\right]_{D}^{26}$ = +12.5 (c = 1.0, CHCl₃).

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-(naphthalen-2-yl)non-5-en-3-yn-2-ol (S3h). General procedure for S3 was followed on a 0.55 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 6:1). The title compound was isolated as clear, yellow oil (131 mg, 0.33 mmol, 60%).

¹**H NMR** (400 MHz, CDCl₃) δ δ 7.87 – 7.79 (m, 3H), 7.79 – 7.76 (m, 1H), 7.54 – 7.43 (m, 3H), 6.28 (t, *J* = 7.7 Hz, 1H), 4.69 (q, *J* = 6.6 Hz, 1H), 3.58 (t, *J* = 6.3 Hz, 2H), 2.34 (q, *J* = 7.6 Hz, 2H), 1.84 (s, 1H), 1.72 – 1.60 (m, 2H), 1.50 (d, *J* = 6.6 Hz, 3H), 0.82 (s, 9H), -0.01 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.8, 135.0, 133.2, 132.8, 128.2, 127.9, 127.8, 126.9, 126.3, 126.2, 123.1, 89.2, 86.0, 62.6, 59.1, 32.8, 26.4, 26.0, 24.6, 18.4, - 5.2. **IR** (neat) 3346, 3057, 2953, 2929, 2885, 2857, 1599, 1504, 1471, 1463, 1435, 1388, 1361, 1329, 1255, 1185, 1141, 1096, 1007, 940, 899, 835, 776, 747, 662, 568, 524, 478 cm⁻¹. **HRMS (ESI):** m/z calcd for $C_{25}H_{34}NaO_2Si [M+Na]^+ 417.2220$, found 417.2221. $[\alpha]_D^{26} = +10.9$ (c = 1.0, CHCl₃).

(*R*,*E*)-4-(9-((*tert*-Butyldimethylsilyl)oxy)-2-hydroxynon-5-en-3-yn-5-yl)phenyl acetate (S3i). General procedure for S3 was followed on a 0.95 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 4:1). The title compound was isolated as clear, yellow oil (252 mg, 0.63 mmol, 66%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.6 Hz, 2H), 7.06 (d, *J* = 8.6 Hz, 2H), 6.19 (t, *J* = 7.7 Hz, 1H), 4.91 – 4.53 (m, 1H), 3.59 (t, *J* = 6.2 Hz, 2H), 2.32 – 2.22 (m, 5H), 1.80 (s, 1H), 1.66 – 1.60 (m, 2H), 1.48 (d, *J* = 6.6 Hz, 3H), 0.86 (s, 9H), 0.01 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.6, 150.0, 140.6, 135.0, 129.9, 122.2, 121.4, 89.1, 85.9, 62.5, 59.0, 32.7, 26.3, 26.1, 24.6, 21.3, 18.4, -5.2. **IR** (neat) 3415, 2954, 2930, 2886, 2857, 1761, 1603, 1506, 1472, 1463, 1369, 1329. 1255, 1198, 1167, 1144, 1096, 1010, 940, 913, 836, 776, 712, 662, 629, 593, 530 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₃H₃₄NaO₄Si [M+Na]⁺ 425.2119, found 425.2119. $[\alpha]_{D}^{26} = +8.6$ (c = 1.0, CHCl₃).

(R,E)-tert-Butylacetyl(4-(9-((tert-butyldimethylsilyl)oxy)-2-hydroxynon-5-en-3-yn-5-

yl)phenyl)carbamate (S3j). General procedure for **S3** was followed on a 0.63 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, yellow oil (192 mg, 0.38 mmol, 61%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.29 (m, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 6.21 (t, *J* = 7.7 Hz, 1H), 4.84 – 4.45 (m, 1H), 3.59 (t, *J* = 6.3 Hz, 2H), 2.57 (s, 6H), 2.28 (q, *J* = 7.6 Hz, 2H), 1.80 (d, *J* = 5.3 Hz, 1H), 1.68 – 1.58 (m, 2H), 1.48 (d, *J* = 6.6 Hz, 3H), 1.39 (s, 9H), 0.87 (s, 9H), 0.02 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.0, 152.8, 140.9, 138.1, 136.9, 129.5, 128.0, 122.4, 89.1, 85.8, 83.5, 62.6, 59.0, 32.7, 28.0, 26.7, 26.3, 26.1, 24.6, 18.5, -5.2. **IR** (neat) 3419, 2954, 2931, 2887, 2858, 1740, 1712, 1606, 1510, 1473, 1462, 1394, 1370, 1303, 1272, 1255, 1156, 1097, 1029, 1016, 947, 923, 837, 775, 739, 662, 629, 529, 489 cm⁻¹. **HRMS** (**MALDI**): m/z calcd for C₂₈H₄₃NNaO₅Si [M+Na]⁺ 524.2803, found 524.2803. [α]²⁶_D = +8.0 (c = 1.0, CHCl₃).

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-phenylnon-5-en-3-yn-2-yl acetate (S4a). General procedure for S4 was followed on a 5.78 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 10:1). The title compound was isolated as clear, colorless oil (2.23 g, 5.77 mmol, 99%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.27 (m, 5H), 6.22 (t, *J* = 7.7 Hz, 1H), 5.60 (q, *J* = 6.7 Hz, 1H), 3.58 (t, *J* = 6.2 Hz, 2H), 2.29 (q, *J* = 7.6 Hz, 2H), 2.07 (s, 3H), 1.66 – 1.57 (m, 2H), 1.51 (d, *J* = 6.7 Hz, 3H), 0.85 (s, 9H), 0.00 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 141.1, 137.2, 128.8, 128.3, 127.6, 122.9, 86.6, 85.3, 62.6, 61.1, 32.7, 26.3, 26.1, 21.7, 21.3, 18.4, -5.2. **IR** (neat) 2954, 2930, 2886, 2857, 2226, 1743, 1600, 1495, 1472, 1463, 1445, 1371, 1340, 1307, 1232, 1154, 1098, 1068, 1030, 948, 835, 814, 775, 699, 662, 610, 567, 526 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₃H₃₄NaO₃Si [M+Na]⁺ 409.2169, found 409.2171. $\left[\alpha\right]_D^{26}$ = +73.0 (c = 1.0, CHCl₃).

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-(4-(trifluoromethyl)phenyl)non-5-en-3-yn-2-yl acetate (S4b). General procedure for S4 was followed on a 0.58 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 10:1). The title compound was isolated as clear, colorless oil (259 mg, 0.57 mmol, 98%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.51 (m, 2H), 7.46 (dt, *J* = 7.7, 0.9 Hz, 2H), 6.30 (t, *J* = 7.8 Hz, 1H), 5.58 (q, *J* = 6.7 Hz, 1H), 3.58 (t, *J* = 6.1 Hz, 2H), 2.28 (q, *J* = 7.7 Hz, 2H), 2.07 (s, 3H), 1.62 (m, 2H), 1.51 (d, *J* = 6.7 Hz, 3H), 0.83 (s, 9H), -0.01 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 142.5, 140.9, 129.2, 125.3 (q, *J* = 3.8 Hz), 121.9, 86.1, 85.8, 62.3, 61.0, 32.5, 26.3, 26.0, 21.6, 21.3, 18.4, -5.2. **IR** (neat) 2954, 2932, 2887, 2858, 1745, 1618, 1473, 1408, 1371, 1325, 1234, 1167, 1127, 1109, 1066, 1019, 948, 836, 776, 711, 662, 622, 528, 495, 471 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₄H₃₃F₃NaO₃Si [M+Na]⁺ 477.2043, found 477.2043. $[\alpha]_D^{26}$ = +70.7 (c = 1.0, CHCl₃).

(*R*,*E*)-Methyl 4-(2-acetoxy-9-((*tert*-butyldimethylsilyl)oxy)non-5-en-3-yn-5-yl)benzoate (S4c). General procedure for S4 was followed on a 0.82 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 10:1). The title compound was isolated as clear, colorless oil (337 mg, 0.76 mmol, 92%).

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 – 7.97 (m, 2H), 7.47 – 7.34 (m, 2H), 6.29 (t, *J* = 7.8 Hz, 1H), 5.59 (q, *J* = 6.6 Hz, 1H), 3.92 (s, 3H), 3.57 (t, *J* = 6.2 Hz, 2H), 2.28 (q, *J* = 7.6 Hz, 2H), 2.07 (s, 3H), 1.70 – 1.55 (m, 2H), 1.50 (d, *J* = 6.7 Hz, 3H), 0.84 (s, 9H), 0.00 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 167.0, 142.4, 141.9, 129.6, 128.9, 122.2, 85.93, 85.89, 62.4, 61.0, 52.3, 32.6, 26.4, 26.0, 21.6, 21.3, 18.4, -5.2. **IR** (neat) 2953, 2931, 2857, 1744, 1725, 1609, 1472, 1436, 1405, 1371, 1340, 1278, 1233, 1191, 1154, 1103, 1071, 1021, 948, 836, 776, 708, 662, 610, 502 cm⁻¹. $[\alpha]_D^{26}$ = +73.4 (c = 1.0, CHCl₃).

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-(4-chlorophenyl)non-5-en-3-yn-2-yl acetate (S4d). General procedure for S4 was followed on a 0.92 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 10:1). The title compound was isolated as clear, colorless oil (368 mg, 0.87 mmol, 95%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 4H), 6.22 (t, *J* = 7.7 Hz, 1H), 5.58 (q, *J* = 6.7 Hz, 1H), 3.58 (t, *J* = 6.1 Hz, 2H), 2.26 (q, *J* = 7.6 Hz, 2H), 2.07 (s, 3H), 1.65 – 1.55 (m, 2H), 1.50 (d, *J* = 6.7 Hz, 3H), 0.85 (s, 9H), 0.00 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 141.5, 135.7, 133.4, 130.2, 128.5, 121.8, 86.1, 85.7, 62.4, 61.0, 32.6, 26.3, 26.0, 21.7, 21.3, 18.4, -5.2. **IR** (neat) 2954, 2930, 2886, 2857, 2226, 1744, 1594, 1491, 1472, 1463, 1370, 1340, 1307, 1233, 1153, 1095, 1071, 1016, 948, 835, 776, 721, 662, 607, 569, 506 cm⁻¹. $[\alpha]_D^{26} = +74.5$ (c = 1.0, CHCl₃).

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-(4-fluorophenyl)non-5-en-3-yn-2-yl acetate (S4e). General procedure for S4 was followed on a 0.88 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 10:1). The title compound was isolated as clear, colorless oil

(342 mg, 0.85 mmol, 96%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H), 7.06 – 6.98 (m, 2H), 6.20 (t, *J* = 7.7 Hz, 1H), 5.59 (q, *J* = 6.6 Hz, 1H), 3.58 (t, *J* = 6.1 Hz, 2H), 2.26 (q, *J* = 7.6 Hz, 2H), 2.07 (d, *J* = 0.6 Hz, 3H), 1.66 – 1.57 (m, 2H), 1.50 (d, *J* = 6.7 Hz, 3H), 0.85 (s, 9H), 0.00 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 162.2 (d, *J* = 246.7 Hz), 141.1, 133.2 (d, *J* = 3.3 Hz), 130.5 (d, *J* = 8.1 Hz), 121.9, 115.2 (d, *J* = 21.5 Hz), 86.4, 85.5, 62.4, 61.0, 32.6, 26.3, 26.0, 21.7, 21.3, 18.4, -5.2. **IR** (neat) 2954, 2931, 2887, 2224, 1743, 1604, 1509, 1472, 1464, 1405, 1371, 1340, 1307, 1232, 1152, 1099, 1071, 1023, 948, 836, 776, 726, 661, 609, 582, 525 cm⁻¹. $[\alpha]_D^{26}$ = +78.5 (c = 1.0, CHCl₃).

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-(3-fluorophenyl)non-5-en-3-yn-2-yl acetate (S4f). General procedure for S4 was followed on a 0.72 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 10:1). The title compound was isolated as clear, colorless oil (280 mg, 0.69 mmol, 97%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 (td, *J* = 8.0, 5.9 Hz, 1H), 7.12 (dt, *J* = 7.7, 1.2 Hz, 1H), 7.09 – 7.03 (m, 1H), 6.97 (tdd, *J* = 8.4, 2.6, 1.0 Hz, 1H), 6.24 (t, *J* = 7.7 Hz, 1H), 5.59 (q, *J* = 6.7 Hz, 1H), 3.58 (t, *J* = 6.1 Hz, 2H), 2.29 (q, *J* = 7.6 Hz, 2H), 2.07 (s, 3H), 1.67 – 1.57 (m, 2H), 1.51 (d, *J* = 6.7 Hz, 3H), 0.84 (s, 9H), 0.00 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.9, 162.5 (d, *J* = 245.7 Hz), 141.8, 139.2 (d, *J* = 7.7 Hz), 129.6 (d, *J* = 8.4 Hz), 124.4 (d, *J* = 2.9 Hz), 121.7 (d, *J* = 2.2 Hz), 115.7 (d, *J* = 22.0 Hz), 114.4 (d, *J* = 21.1 Hz), 85.9, 85.6, 62.3, 60.9, 32.4, 26.2, 25.9, 21.5, 21.1, 18.3, -5.4. **IR** (neat) 2954, 2931, 2887, 2858, 1743, 1612, 1582, 1487, 1472, 1441, 1371, 1340, 1256, 1234, 1137, 1103, 1024, 949, 909, 879, 836, 813, 777, 704, 662, 609, 522, 488, 461 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₃H₃₃FNaO₃Si [M+Na]⁺ 427.2075, 427.2076. $\left[\alpha\right]_D^{26}$ = +79.6 (c = 1.0, CHCl₃).

(*R*,*Z*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-(2-fluorophenyl)non-5-en-3-yn-2-yl acetate (S4g). General procedure for S4 was followed on a 0.84 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 10:1). The title compound was isolated as clear, colorless oil (324 mg, 0.80 mmol, 95%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.24 (m, 2H), 7.15 – 7.10 (m, 1H), 7.09 – 7.02 (m, 1H), 6.32 (t, *J* = 7.7 Hz, 1H), 5.58 (q, *J* = 6.6 Hz, 1H), 3.55 (t, *J* = 6.3 Hz, 2H), 2.13 – 2.03 (m, 5H), 1.62 – 1.55 (m, 2H), 1.48 (d, *J* = 6.6 Hz, 3H), 0.83 (s, 9H), -0.01 (s, 6H).¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 159.4 (d, *J* = 247.8 Hz), 143.9, 131.1 (d, *J* = 3.4 Hz), 129.6 (d, *J* = 8.1 Hz), 124.9 (d, *J* = 16.0 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6, 115.9 (d, *J* = 4.1 Hz), 124.1 (d, *J* = 3.6 Hz), 116.6 Hz), 124.1 Hz), 124.1 (d, *J* = 3.6 Hz), 124.1 H

22.3 Hz), 85.6, 85.2, 62.6, 61.0, 32.1, 26.6 (d, J = 2.4 Hz), 26.0, 21.7, 21.3, 18.4, -5.2. **IR** (neat) 2931, 2857, 1743, 1492, 1450, 1371, 1233, 1100, 1030, 948, 836, 776, 759 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₃H₃₃FNaO₃Si [M+Na]⁺ 427.2075, 427.2075. $\left[\alpha\right]_{D}^{26}$ = +80.3 (c = 1.0, CHCl₃).

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-(naphthalen-2-yl)non-5-en-3-yn-2-yl acetate (S4h). General procedure for S4 was followed on a 0.33 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 10:1). The title compound was isolated as clear, colorless oil (133 mg, 0.31 mmol, 92%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.79 (m, 3H), 7.79 – 7.75 (m, 1H), 7.51 – 7.45 (m, 3H), 6.31 (t, *J* = 7.7 Hz, 1H), 5.63 (q, *J* = 6.6 Hz, 1H), 3.58 (t, *J* = 6.3 Hz, 2H), 2.35 (q, *J* = 7.6 Hz, 2H), 2.08 (s, 3H), 1.64 (m, 2H), 1.52 (d, *J* = 6.7 Hz, 3H), 0.82 (s, 9H), -0.01 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 141.4, 134.7, 133.2, 132.8, 128.2, 127.86, 127.84, 127.7, 126.9, 126.26, 126.23, 86.6, 85.6, 62.6, 61.1, 32.7, 26.4, 26.0, 21.7, 21.3, 18.4, -5.2. **IR** (neat) 2954, 2931, 2858, 1743, 1603, 1506, 1472, 1370, 1234, 1198, 1167, 1153, 1101, 1071, 1018, 947, 912, 836, 76, 663, 609, 525 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₅H₃₆FNaO₅Si [M+Na]⁺ 467.2224, 467.2224. $\left[\alpha\right]_{D}^{26}$ = +66.3 (c = 1.0, CHCl₃).

(*R*,*E*)-4-(2-Acetoxy-9-((*tert*-butyldimethylsilyl)oxy)non-5-en-3-yn-5-yl)phenyl acetate (S4i). General procedure for S4 was followed on a 0.62 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 10:1). The title compound was isolated as clear, colorless oil (262 mg, 0.59 mmol, 95%).

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.31 (m, 2H), 7.16 – 7.02 (m, 2H), 6.21 (t, *J* = 7.7 Hz, 1H), 5.59 (q, *J* = 6.6 Hz, 1H), 3.58 (t, *J* = 6.2 Hz, 2H), 2.33 – 2.25 (m, 5H), 2.07 (s, 3H), 1.70 – 1.56 (m, 2H), 1.50 (d, *J* = 6.6 Hz, 3H), 0.85 (s, 9H), 0.01 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 169.4, 149.8, 141.2, 134.7, 129.8, 121.9, 121.2, 86.3, 85.3, 62.4, 60.9, 32.5, 26.2, 25.9, 21.5, 21.2, 21.1, 18.3, -5.3. IR (neat) 2954, 2931, 2858, 1743, 1603, 1506, 1472, 1370, 1234, 1198, 1167, 1154, 1101, 1071, 1018, 947, 912, 836, 776, 663, 609, 525 cm⁻¹. HRMS (MALDI): m/z calcd for C₂₅H₃₆NaO₅Si [M+Na]⁺ 467.2224, found 467.2224. $[\alpha]_D^{26} = +66.3$ (c = 1.0,

CHCl₃).

(*R*,*E*)-5-(4-(*N*-(*tert*-Butoxycarbonyl)acetamido)phenyl)-9-((tert-butyldimethylsilyl)oxy)non-5-en-3-yn-2yl acetate (S4j). General procedure for S4 was followed on a 0.49 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 10:1). The title compound was isolated as clear, colorless oil (253 mg, 0.47 mmol, 95%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.32 (m, 2H), 7.08 – 7.00 (m, 2H), 6.23 (t, *J* = 7.7 Hz, 1H), 5.59 (q, *J* = 6.7 Hz, 1H), 3.59 (t, *J* = 6.3 Hz, 2H), 2.57 (s, 3H), 2.29 (q, *J* = 7.6 Hz, 2H), 2.07 (s, 3H), 1.67 – 1.59 (m, 2H), 1.50 (d, *J* = 6.7 Hz, 3H), 1.39 (s, 9H), 0.87 (s, 9H), 0.02 (s, 6H). ³**C NMR** (101 MHz, CDCl₃) δ 173.0, 170.1, 152.8, 141.5, 138.1, 136.7, 129.5, 128.0, 122.2, 86.3, 85.5, 83.5, 62.6, 61.0, 32.7, 28.0, 26.7, 26.4, 26.1, 21.7, 21.3, 18.5, -5.2. **IR** (neat) 2932, 2857, 1739, 1712, 1607, 1510, 1473, 1462, 1370, 1337, 1302, 1271, 1254, 1234, 1155, 1096, 1072, 1017, 948, 923, 836, 775, 738, 662, 614, 529 cm⁻¹. **HRMS (MALDI):** m/z calcd for $C_{30}H_{45}NNaO_6Si [M+Na]^+ 566.2908$, found 566.2906. $[\alpha]_D^{26} = +57.1$ (c = 1.0, CHCl₃).

(*R*,*E*)-9-Hydroxy-5-phenylnon-5-en-3-yn-2-yl acetate (S5a). General procedure for S5 was followed on a 1.95 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, colorless oil (457 mg, 1.68 mmol, 86%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 6.21 (t, *J* = 7.7 Hz, 1H), 5.60 (q, *J* = 6.6 Hz, 1H), 3.61 (t, *J* = 6.4 Hz, 2H), 2.31 (q, *J* = 7.6 Hz, 2H), 2.07 (s, 3H), 1.75 – 1.58 (m, 2H), 1.50 (d, *J* = 6.7 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 170.1, 140.4, 137.1, 128.8, 128.4, 127.7, 123.4, 86.4, 85.6, 62.3, 61.1, 32.5, 26.0, 21.7, 21.3. **IR** (neat) 2419, 2988, 2937, 2872, 2221, 1740, 1599, 1494, 1444, 1371, 1234, 1153, 1067, 1028, 947, 857, 768, 700, 611, 567, 526, 477 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₇H₂₀NaO₃ [M+Na]⁺ 295.1305, 295.1305. $[\alpha]_D^{26}$ = +112.6 (c = 1.0, CHCl₃).

(*R*,*E*)-9-Hydroxy-5-(4-(trifluoromethyl)phenyl)non-5-en-3-yn-2-yl acetate (S5b). General procedure for S5 was followed on a 0.55 mmol scale. The crude product was purified by flash column chromatography

on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, colorless oil (96 mg, 0.28 mmol, 51%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 – 7.56 (m, 2H), 7.52 – 7.37 (m, 2H), 6.28 (t, *J* = 7.7 Hz, 1H), 5.58 (q, *J* = 6.7 Hz, 1H), 3.62 (t, *J* = 6.4 Hz, 2H), 2.29 (q, *J* = 7.6 Hz, 2H), 2.07 (s, 3H), 1.78 – 1.62 (m, 2H), 1.50 (d, *J* = 6.7 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 141.8, 140.8 (d, *J* = 1.4 Hz), 129.8 (d, *J* = 32.5 Hz), 129.2, 127.5, 125.4 (q, *J* = 3.8 Hz), 122.3, 86.3, 85.6, 62.2, 60.9, 32.3, 26.1, 21.6, 21.3. **IR** (neat) 3422, 2939, 1741, 1618, 1448, 1408, 1372, 1323, 1233, 116, 1018, 947, 848, 708, 621, 527, 496, 471 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₈H₁₇F₃NaO₃ [M+Na]⁺ 361.1022, found 361.1022. $[\alpha]_D^{26} = +86.7$ (c = 1.0, CHCl₃).

(*R*,*E*)-methyl 4-(2-acetoxy-9-hydroxynon-5-en-3-yn-5-yl)benzoate (S5c). General procedure for S5 was followed on a 0.74 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, colorless oil (175 mg, 0.53 mmol, 72%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.21 – 7.86 (m, 2H), 7.44 – 7.38 (m, 2H), 6.27 (t, *J* = 7.7 Hz, 1H), 5.58 (q, *J* = 6.6 Hz, 1H), 3.91 (s, 3H), 3.60 (t, *J* = 6.4 Hz, 2H), 2.30 (q, *J* = 7.6 Hz, 2H), 2.06 (s, 3H), 1.74 – 1.58 (m, 2H), 1.50 (d, *J* = 6.7 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 170.1, 166.9, 141.8, 141.7, 129.7, 129.3, 128.8, 122.6, 86.2, 85.7, 62.2, 60.9, 52.3, 32.3, 26.1, 21.6, 21.2. **IR** (neat) 3443, 2990, 2939, 1721, 1609, 1565, 1436, 1405, 1372, 1338, 1279, 1233, 1192, 1153, 1105, 1070, 1020, 947, 869, 777, 708, 610, 498 cm⁻¹. $[\alpha]_D^{26}$ = +93.8 (c = 1.0, CHCl₃).

(*R*,*E*)-5-(4-Chlorophenyl)-9-hydroxynon-5-en-3-yn-2-yl acetate (S5d). General procedure for S5 was followed on a 0.86 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, colorless oil (238 mg, 0.78 mmol, 91%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.29 (m, 2H), 7.29 – 7.25 (m, 2H), 6.20 (t, *J* = 7.7 Hz, 1H), 5.57 (q, *J* = 6.7 Hz, 1H), 3.60 (t, *J* = 6.4 Hz, 2H), 2.28 (q, *J* = 7.6 Hz, 2H), 2.06 (s, 3H), 1.65 (m, 2H), 1.49 (d, *J* = 6.7 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 140.9, 135.6, 133.6, 130.2, 128.6, 122.3, 85.9, 62.2, 61.0, 32.4, 26.1, 21.6, 21.3. **IR** (neat) 3421, 2937, 22224, 1740, 1594, 1491, 1447, 1397, 1371, 1339, 1233, 1152, 1093, 1069, 1015, 948, 839, 721, 608, 507 cm⁻¹. $[\alpha]_D^{26}$ = +98.1 (c = 1.0, CHCl₃).

(*R*,*E*)-5-(4-Fluorophenyl)-9-hydroxynon-5-en-3-yn-2-yl acetate (S5e). General procedure for S5 was followed on a 0.76 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, colorless oil (182 mg, 0.63 mmol, 82%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 2H), 7.07 – 7.00 (m, 2H), 6.19 (t, *J* = 7.6 Hz, 1H), 5.58 (q, *J* = 6.7 Hz, 1H), 3.61 (t, *J* = 6.4 Hz, 2H), 2.28 (q, *J* = 7.5 Hz, 2H), 2.07 (s, 3H), 1.67 (dt, *J* = 8.4, 6.7 Hz, 2H), 1.50 (d, *J* = 6.7 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.01, 162.2 (d, *J* = 247.0 Hz), 140.4, 133.1 (d, *J* = 3.3 Hz), 130.5 (d, *J* = 8.1 Hz), 122.3, 115.3 (d, *J* = 21.6 Hz), 86.2, 85.8, 62.3, 61.0, 32.4, 26.0, 21.6, 21.3. **IR** (neat) 3408, 2989, 2938, 2874, 2222, 1739, 1603, 1508, 1447, 1405, 1372, 1340, 1308, 1232, 1152, 1097, 1070, 1025, 948, 843, 726, 610, 580, 525 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₇H₁₉FNaO₃ [M+Na]⁺ 313.1210, found 313.1211. $[\alpha]_D^{26}$ = +110.0 (c = 1.0, CHCl₃).

(*R*,*E*)-5-(3-Fluorophenyl)-9-hydroxynon-5-en-3-yn-2-yl acetate (S5f). General procedure for S5 was followed on a 0.69 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, colorless oil (188 mg, 0.65 mmol, 94%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 (td, *J* = 8.0, 5.9 Hz, 1H), 7.11 (dt, *J* = 7.7, 1.2 Hz, 1H), 7.05 (ddd, *J* = 9.9, 2.6, 1.6 Hz, 1H), 6.98 (tdd, *J* = 8.5, 2.7, 1.0 Hz, 1H), 6.22 (t, *J* = 7.7 Hz, 1H), 5.58 (q, *J* = 6.6 Hz, 1H), 3.61 (t, *J* = 6.4 Hz, 2H), 2.30 (q, *J* = 7.6 Hz, 2H), 2.07 (s, 3H), 1.71 - 1.62 (m, 2H), 1.50 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 162.7 (d, *J* = 246.0 Hz), 141.2, 139.3 (d, *J* = 7.7 Hz), 129.8 (d, *J* = 8.4 Hz), 124.5 (d, *J* = 2.9 Hz), 122.3 (d, *J* = 2.2 Hz), 115.8 (d, *J* = 22.0 Hz), 114.6 (d, *J* = 21.1 Hz), 86.0, 85.8, 62.2, 61.0, 32.3, 26.1, 21.6, 21.2. IR (neat) 3416, 1989, 2937, 2874, 2223, 1739, 1611, 1581, 1486, 1440, 1371, 1339, 1308, 1233, 1207, 1160, 1135, 1064, 1024, 948, 908, 879, 848, 787, 703, 645, 610, 574, 521, 497, 465 cm⁻¹. HRMS (MALDI): m/z calcd for C₁₈H₂₄FO₄ [M+H]⁺ 323.1653, found 323.1644. $[\alpha]_D^{26} = +107.3$ (c = 1.0, CHCl₃).

(*R*,*E*)-5-(2-Fluorophenyl)-9-hydroxynon-5-en-3-yn-2-yl acetate (S5g). General procedure for S5 was followed on a 0.76 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, colorless oil (195 mg, 0.67 mmol, 89%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.24 (m, 2H), 7.14 (ddd, *J* = 7.8, 7.2, 1.2 Hz, 1H), 7.11 – 7.04 (m, 1H), 6.31 (t, *J* = 7.6 Hz, 1H), 5.57 (q, *J* = 6.6 Hz, 1H), 2.16 – 2.07 (m, 3H), 3.59 (t, *J* = 6.4 Hz, 2H), 2.14 – 2.08 (m, 2H), 2.06 (s, 3H), 1.70 – 1.60 (m, 2H), 1.48 (d, *J* = 6.7 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 159.3 (d, *J* = 247.6 Hz), 143.2, 131.0 (d, *J* = 3.4 Hz), 129.7 (d, *J* = 8.1 Hz), 124.8 (d, *J* = 16.0 Hz), 124.2 (d, *J* = 3.6 Hz), 117.0, 116.0 (d, *J* = 22.2 Hz), 85.5, 85.4, 62.4, 61.0, 31.8, 26.4 (d, *J* = 2.4 Hz), 21.6, 21.3. **IR** (neat) 3419, 2989, 2938, 2873, 1739, 1579, 1491, 1450, 1372, 1340, 1233, 1159, 1148, 1095, 1069, 1026, 948, 893, 838, 809, 760, 612, 527, 480 cm⁻¹. $\left[\alpha\right]_{D}^{26}$ = +108.4 (c = 1.0, CHCl₃).

(*R*,*E*)-9-Hydroxy-5-(naphthalen-2-yl)non-5-en-3-yn-2-yl acetate (S5h). General procedure for S5 was followed on a 0.30 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, colorless oil (66 mg, 0.20 mmol, 68%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 – 7.79 (m, 3H), 7.78 (d, *J* = 1.8 Hz, 1H), 7.52 – 7.45 (m, 3H), 6.29 (t, *J* = 7.7 Hz, 1H), 5.62 (q, *J* = 6.7 Hz, 1H), 3.61 (t, *J* = 6.4 Hz, 2H), 2.37 (q, *J* = 7.6 Hz, 2H), 2.07 (s, 3H), 1.78 – 1.64 (m, 2H), 1.52 (d, *J* = 6.7 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 140.7, 134.6, 133.2, 132.8, 128.2, 128.0, 127.82, 127.76, 126.8, 126.4, 126.3, 123.4, 86.4, 85.9, 62.3, 61.1, 32.5, 26.1, 21.7, 21.3. **IR** (neat) 3410, 2936, 1738, 1504, 1445, 1371, 139, 1233, 1147, 1070, 1024, 952, 900, 862, 823, 750, 526, 478 cm⁻¹. **HRMS** (**MALDI**): m/z calcd for C₂₁H₂₂NaO₃ [M+Na]⁺ 345.1461, found 345.1461. $\left[\alpha\right]_{D}^{26}$ = +95.0 (c = 1.0, CHCl₃).

(*R*,*E*)-4-(2-Acetoxy-9-hydroxynon-5-en-3-yn-5-yl)phenyl acetate (S5i). General procedure for S5 was followed on a 0.59 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, colorless oil (260 mg, 0.44 mmol, 76%).

¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.29 (m, 2H), 7.13 – 7.02 (m, 2H), 6.20 (t, *J* = 7.6 Hz, 1H), 5.58 (q, *J* = 6.6 Hz, 1H), 3.67 – 3.49 (m, 2H), 2.37 – 2.26 (m, 5H), 2.07 (s, 3H), 1.72 – 1.62 (m, 2H), 1.50 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 169.6, 150.1, 140.6, 134.7, 129.9, 122.5, 121.5, 86.2, 85.8, 62.3, 61.0, 32.4, 26.1, 21.6, 21.3. **IR** (neat) 3456, 2989, 2938, 2874, 2223, 1740, 1603, 1506, 1432, 1407, 1370, 1339, 1307, 1232, 1197, 1167, 1153, 1103, 1070, 1018, 947, 913, 852, 703, 609, 574, 526, 494 cm⁻¹. **HRMS** (MALDI): m/z calcd for C₁₉H₂₂NaO₅ [M+Na]⁺ 353.1359, found 353.1360. $[\alpha]_D^{26}$ = +83.6 (c = 1.0, CHCl₃).

(*R*,*E*)-5-(4-(*N*-(*tert*-Butoxycarbonyl)acetamido)phenyl)-9-hydroxynon-5-en-3-yn-2-yl acetate (S5j). General procedure for S5 was followed on a 0.46 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, colorless oil (80 mg, 0.19 mmol, 41%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.35 (m, 2H), 7.08 – 7.04 (m, 2H), 6.22 (t, *J* = 7.7 Hz, 1H), 5.59 (q, *J* = 6.7 Hz, 1H), 3.60 (t, *J* = 6.4 Hz, 2H), 2.58 (s, 3H), 2.31 (q, *J* = 7.6 Hz, 2H), 2.07 (s, 3H), 1.70 – 1.62 (m, 2H), 1.50 (d, *J* = 6.7 Hz, 3H), 1.39 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.1, 170.1, 152.8, 140.9, 138.2, 136.6, 129.5, 128.1, 122.7, 86.1, 85.8, 83.6, 62.3, 61.0, 32.4, 28.0, 26.7, 26.0, 21.6, 21.3. **IR** (neat) 3456, 2982, 2937, 1737, 1708, 1509, 1370, 1339, 1304, 1272, 1234, 1154, 1097, 1070, 1016, 948, 924, 848, 774, 737, 615, 530, 490, 474 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₄H₃₁NNaO₆ [M+Na]⁺ 452.2044, 452.2043. $[\alpha]_D^{26}$ = +64.7 (c = 1.0, CHCl₃).

(*R*,*E*)-9-Oxo-5-phenylnon-5-en-3-yn-2-yl acetate (1a). General procedure for 1 was followed on a 0.55 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 4:1). The title compound was isolated as clear, colorless oil (131 mg, 0.49 mmol, 88%).

¹**H NMR** (400 MHz, CD_2Cl_2) δ 9.90 – 9.53 (m, 1H), 7.45 – 7.22 (m, 5H), 6.26 – 6.04 (m, 1H), 5.55 (q, *J* = 6.7 Hz, 1H), 2.57 – 2.48 (m, 4H), 2.04 (s, 3H), 1.49 (d, *J* = 6.7 Hz, 3H). ¹³**C NMR** (101 MHz, CD_2Cl_2) δ 201.3, 170.1, 138.8, 137.2, 129.0, 128.7, 128.2, 124.3, 86.5, 86.1, 61.1, 43.6, 22.6, 21.7, 21.3. **IR** (neat) 3058, 3024, 2989, 2938, 2896, 2728, 2223, 2095, 2018, 1958, 1738, 1616, 1599, 1575, 1494, 1444, 1409, 1371, 1340, 1307, 1232, 1153, 1067, 1048, 1022, 946, 923, 856, 701, 657, 610, 589, 563, 525 cm⁻¹. **HRMS (MALDI):** m/z calculated for C₁₇H₁₉O₃ [M+H] + 271.1329, found 271.1327. $[\alpha]_D^{26} = +105.8$ (c = 1.0, CH₂Cl₂).

(*R*,*E*)-9-Oxo-5-(4-(trifluoromethyl)phenyl)non-5-en-3-yn-2-yl acetate (1b). General procedure for 1 was followed on a 0.15 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 4:1). The title compound was isolated as clear, slightly yellow oil (40 mg, 0.12 mmol, 80%).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 9.71 (t, *J* = 1.1 Hz, 1H), 7.69 – 7.61 (m, 1H), 7.58 – 7.35 (m, 1H), 6.22 (t, *J* = 7.4 Hz, 1H), 5.53 (q, *J* = 6.7 Hz, 1H), 2.59 – 2.53 (m, 2H), 2.52 – 2.46 (m, 3H), 2.04 (s, 4H), 1.48 (d, *J* = 6.7 Hz, 4H). ¹³**C NMR** (101 MHz, CD₂Cl₂) δ 201.0, 170.1, 141.1 (d, *J* = 1.5 Hz), 140.3, 129.5, 125.7 (q, *J* = 3.8 Hz), 123.2, 87.2, 85.3, 60.9, 43.4, 22.6, 21.6, 21.2. **IR** (neat) 2991, 2939, 2829, 2729, 2225, 1739, 1617, 1448, 1408, 1372, 1323, 1231, 1165, 1154, 1122, 1109, 1064, 1017, 946, 848, 777, 712, 645, 620, 527 cm cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₈H₁₇F₃NaO₃ [M+Na]⁺ 361.1022, found 361.1022. $[\alpha]_D^{26}$ = +94.0 (c = 1.0, CH₂Cl₂).

(*R*,*E*)-Methyl 4-(2-acetoxy-9-oxonon-5-en-3-yn-5-yl)benzoate (1c). General procedure for 1 was followed on a 0.26 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, colorless oil (72 mg, 0.22 mmol, 84%).

¹**H** NMR (400 MHz, CD_2Cl_2) δ 9.70 (s, 1H), 8.02 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 6.21 (t, *J* = 7.3 Hz, 1H), 5.54 (q, *J* = 6.7 Hz, 1H), 3.90 (s, 3H), 2.61 – 2.44 (m, 4H), 2.04 (s, 3H), 1.49 (d, *J* = 6.7 Hz, 3H). ¹³**C** NMR (101 MHz, CD_2Cl_2) δ 201.0, 170.1, 166.9, 141.8, 140.1, 129.9, 129.1, 123.5, 87.1, 85.4, 61.0, 52.4, 43.4, 22.6, 21.6, 21.2. **IR** (neat) 2991, 2953, 2842, 2728, 1721, 1609, 1565, 1507, 1436, 1406, 1372, 1339, 1309, 1279, 1233, 1192, 1181, 1153, 1113, 1070, 1019, 947, 869, 818, 776, 708, 658, 611, 529 cm⁻¹. **HRMS** (MALDI): m/z calcd for C₁₉H₂₀NaO₅ [M+Na]⁺ 351.1203, found 351.1200. $[\alpha]_D^{26}$ = +91.3 (c = 1.0, CH₂Cl₂)

(*R*,*E*)-5-(4-Chlorophenyl)-9-oxonon-5-en-3-yn-2-yl acetate (1d). General procedure for 1 was followed on a 0.35 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 4:1). The title compound was isolated as clear, slightly yellow oil (82 mg, 0.27 mmol, 76%).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 9.70 (t, *J* = 1.1 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.32 – 7.28 (m, 2H), 6.14 (t, *J* = 7.4 Hz, 1H), 5.53 (q, *J* = 6.7 Hz, 1H), 2.67 – 2.42 (m, 4H), 2.04 (s, 3H), 1.48 (d, *J* = 6.7 Hz, 3H). ¹³**C NMR** (101 MHz, CD₂Cl₂) δ 200.7, 169.7, 138.9, 135.3, 133.5, 130.0, 128.4, 122.7, 86.4, 85.2, 60.6, 43.1, 22.1, 21.2, 20.8. **IR** (neat) 3453, 2989, 2938, 2895, 2827, 2727, 2225, 1738, 1593, 1491, 1446, 1397, 1371, 1339, 1307, 1231, 1152, 1092, 1070, 1015, 947, 839, 747, 722, 654, 608, 570, 507 cm⁻¹. **HRMS (MALDI):** m/z calcd for $C_{17}H_{17}NaO_3$ [M+Na]⁺ 327.0758, found 327.0758. $[\alpha]_D^{26}$ = +99.8 (c = 1.0, CH₂Cl₂).

(*R*,*E*)-5-(4-Fluorophenyl)-9-oxonon-5-en-3-yn-2-yl acetate (1e). General procedure for 1 was followed on a 0.23 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 4:1). The title compound was isolated as clear, colorless oil (60 mg, 0.21 mmol, 90%).

¹**H** NMR (400 MHz, CD₂Cl₂) δ 9.70 (t, *J* = 1.1 Hz, 1H), 7.44 – 7.24 (m, 2H), 7.19 – 6.98 (m, 2H), 6.13 (t, *J* = 7.1 Hz, 1H), 5.54 (q, *J* = 6.7 Hz, 1H), 2.59 – 2.41 (m, 4H), 2.04 (s, 3H), 1.48 (d, *J* = 6.7 Hz, 3H). ¹³**C** NMR (101 MHz, CD₂Cl₂) δ 203.2, 169.0 (d, *J* = 631.3 Hz), 163.4, 141.0, 135.3 (d, *J* = 3.3 Hz), 132.8 (d, *J* = 8.1 Hz), 125.2, 117.6 (d, *J* = 21.6 Hz), 88.7, 87.9, 63.0, 45.5, 24.5, 23.6, 23.2. IR (neat) 2990, 2938, 2829, 2728, 2225, 2086, 1736, 1603, 1508, 1447, 1407, 1371, 1340, 1307, 1230, 1152, 1098, 1070, 1048, 1023, 947, 843, 727, 654, 609, 568, 524 cm⁻¹. HRMS (MALDI): m/z calcd for C₁₇H₁₇FNaO₃ [M+Na]⁺ 311.1054, found 311.1053. $[\alpha]_D^{26}$ = +103.4 (c = 1.0, CH₂Cl₂).

(*R*,*E*)-5-(3-Fluorophenyl)-9-oxonon-5-en-3-yn-2-yl acetate (1f). General procedure for 1 was followed on a 0.22 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 4:1). The title compound was isolated as clear, colorless oil (58 mg, 0.20 mmol, 93%).

¹**H NMR** (400 MHz, CD_2Cl_2) δ 9.71 (d, *J* = 1.1 Hz, 1H), 7.36 (td, *J* = 8.0, 6.0 Hz, 1H), 7.16 – 7.12 (m, 1H), 7.11 – 6.98 (m, 2H), 6.16 (t, *J* = 7.2 Hz, 1H), 5.54 (q, *J* = 6.7 Hz, 1H), 2.63 – 2.43 (m, 4H), 2.04 (s, 3H), 1.48 (d, *J* = 6.7 Hz, 3H). ¹³**C NMR** (101 MHz, CD_2Cl_2) δ 201.1, 170.1, 163.0 (d, *J* = 245.5 Hz), 139.7, 139.4 (d, *J* = 7.7 Hz), 130.3 (d, *J* = 8.4 Hz), 124.8 (d, *J* = 2.9 Hz), 123.2 (d, *J* = 2.2 Hz), 115.9 (d, *J* = 22.1 Hz), 115.0 (d, *J* = 21.1 Hz), 86.9, 85.5, 61.0, 43.5, 22.6, 21.6, 21.2. **IR** (neat) 2990, 2938, 2929, 2729, 2224, 2082, 1736, 1612, 1581, 1487, 1439, 1410, 1371, 1339, 1306, 1231, 1208, 1260, 1136, 1072, 1048, 1023, 948, 907, 880, 849, 788, 699, 645, 610 521 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₇H₁₈FO₃ [M+H]⁺ 289.1234, found 289.1236. $[\alpha]_D^{26}$ = +100.5 (c = 1.0, CH₂Cl₂).

(*R*,*Z*)-5-(2-Fluorophenyl)-9-oxonon-5-en-3-yn-2-yl acetate (1g). General procedure for 1 was followed on a 0.18 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 4:1). The title compound was isolated as clear, colorless oil (46 mg, 0.16 mmol, 89%).

¹**H NMR** (400 MHz, CD₂Cl₂) δ δ 9.69 (t, *J* = 1.2 Hz, 1H), 7.37 – 7.27 (m, 2H), 7.18 (td, *J* = 7.5, 1.2 Hz, 1H), 7.11 (ddd, *J* = 9.6, 8.2, 1.2 Hz, 1H), 6.26 (t, *J* = 7.6 Hz, 1H), 5.52 (q, *J* = 6.6 Hz, 1H), 2.58 – 2.46 (m, 2H), 2.36 – 2.26 (m, 2H), 2.03 (s, 3H), 1.47 (d, *J* = 6.6 Hz, 3H). ¹³**C NMR** (101 MHz, CD₂Cl₂) δ 201.2, 170.1, 159.5 (d, *J* = 246.9 Hz), 141.7, 131.2 (d, *J* = 3.3 Hz), 130.3 (d, *J* = 8.1 Hz), 124.8, 124.7 (d, *J* = 3.6 Hz), 117.9, 116.2 (d, *J* = 22.1 Hz), 86.4, 85.0, 61.0, 22.9 (d, *J* = 2.6 Hz), 21.6, 21.2. **IR** (neat) 3444, 2989, 2939, 2730, 1738, 1610, 1580, 1491, 1451, 1372, 1340, 1307, 1232, 1149, 1095, 1069, 1045, 1024, 947, 907, 858, 838, 810, 761, 610, 529 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₇H₁₇FNaO₃ [M+Na]⁺ 311.1054, found 311.1052. $[\alpha]_D^{26}$ = +106.1 (c = 1.0, CH₂Cl₂).

(*R*,*E*)-5-(Naphthalen-2-yl)-9-oxonon-5-en-3-yn-2-yl acetate (1h). General procedure for 1 was followed on a 0.24 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 4:1). The title compound was isolated as clear, colorless oil (71 mg, 0.22 mmol, 93%).

¹**H NMR** (400 MHz, CD_2Cl_2) δ 9.69 (t, J = 1.1 Hz, 1H), 7.89 – 7.83 (m, 3H), 7.79 (s, 1H), 7.54 – 7.46 (m, 3H), 6.30 – 6.11 (m, 1H), 5.57 (q, J = 6.7 Hz, 1H), 2.69 – 2.47 (m, 4H), 2.04 (s, 3H), 1.50 (d, J = 6.7 Hz, 3H). ¹³**C NMR** (101 MHz, CD_2Cl_2) δ 201.2, 170.1, 139.2, 134.7, 133.5, 133.1, 128.4, 128.3, 128.00, 127.97, 126.9, 126.7, 124.3, 86.8, 86.1, 61.1, 43.6, 22.7, 21.7, 21.3. IR (neat) 3056, 2989, 2937, 2826, 2726, 2225, 1738, 1598, 1504, 1434, 1408, 1371, 1339, 1307, 1233, 1199, 1148, 1127, 1070, 1023, 951, 901, 863, 847, 823, 751, 705, 667, 611, 524 cm⁻¹. **HRMS (MALDI):** m/z calcd for $C_{21}H_{20}NaO_3$ [M+Na]⁺ 343.1305, found 343.1303. $\left[\alpha\right]_{D}^{26} = +93.6$ (c = 1.0, CH₂Cl₂).

(*R*,*E*)-4-(2-Acetoxy-9-oxonon-5-en-3-yn-5-yl)phenyl acetate (1i). General procedure for 1 was followed on a 0.12 mmol scale. The crude product was purified by a quick flash column chromatography on silica gel (hexane/EtOAc 1:1). The title compound was isolated as clear, colorless oil (35 mg, 0.11 mmol, 90%). Aldehyde 1I was found to be extremely instable when concentrated and even short term storage was not possible. Thus, the freshly isolated product was immediately used in the subsequent gold(I)-catalyzed cyclization.

(*R*,*E*)-5-(4-(*N*-(*tert*-Butoxycarbonyl)acetamido)phenyl)-9-oxonon-5-en-3-yn-2-yl acetate (1j). General procedure for 1 was followed on a 0.15 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 2:1). The title compound was isolated as clear, colorless oil (54 mg, 0.13 mmol, 85%).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 9.70 (d, *J* = 0.9 Hz, 1H), 7.49 – 7.26 (m, 2H), 7.18 – 7.00 (m, 2H), 6.28 – 6.09 (m, 1H), 5.55 (q, *J* = 6.7 Hz, 1H), 2.56 (s, 3H), 2.55 – 2.50 (m, 4H), 2.04 (s, 3H), 1.49 (d, *J* = 6.7 Hz, 3H), 1.38 (s, 9H). ¹³**C NMR** (101 MHz, CD₂Cl₂) δ 201.1, 173.2, 170.1, 152.9, 139.2, 139.0, 136.5, 129.5, 128.7, 123.6, 86.8, 85.8, 83.7, 61.0, 43.5, 27.9, 26.8, 22.6, 21.6, 21.3. IR (neat) 2982, 2938, 2729, 1736, 1708, 1605, 1511, 1478, 1456, 1414, 1394, 1370, 1340, 1303, 1271, 1253, 1233, 1154, 1097, 1070, 1028, 1016, 947, 924, 848, 774, 743, 610 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₄H₂₉NaO₆ [M+Na]⁺ 450.1887, found 450.1887. $[\alpha]_D^{26}$ = +85.4 (c = 1.0, CH₂Cl₂).

2.2 Synthesis of Alkyl Substrates

OH OAc Me b а O С R Me Ref. 6 OTBS ÓTBS OTBS OTBS **S**7 **S**8 Ref. 7 d for R=Me OAc OAc Me Me Me е R OTBS \cap OH S10 S9

General Procedures for Alkyl-Substrate Synthesis

Reagents and conditions: a) PhLi (1.0 equiv), LiBr (2.0 equiv), alkyltriphenylphosphonium bromide (1 equiv), -78° C; then PhLi, -78° C to RT; then I_2 , -78° C to RT.; b) (R)-3-butyn-2-ol (1.3 equiv), PdCl₂(PPh₃)₂ (5 mol%), CuI (10 mol%), Et₃N/THF (2:1); c) Ac₂O (1.1 equiv), DMAP (0.1 equiv), pyridine (1.5 equiv), CH₂Cl₂; d) TBAF (2 equiv), THF; e) (COCl)₂ (1.2 equiv), DMSO (2.4 equiv), NEt₃ (5 equiv), -78° C to -30° C CH₂Cl₂.

Propargyl alcohol S7.^{6,7} (*step 1*) To a solution of anhydrous LiBr (1.0 equiv) in dry THF (0.4 M) at ambient temperature was added alkyltriphenylphosphonium bromide (1.0 equiv) and stirred for 10 min. The resulting suspension was cooled to -78° C and PhLi (1.9 M in Bu₂O, 1.0 equiv) was added dropwise. The solution was allowed to warm to RT over 15 min and then stirred for another 30 min at that temperature. Then the solution was recooled to -78° C and a solution of 4-(*tert*-butyldimethylsilanyloxy)butanal (1.0 M in THF, 1.0 equiv) was added dropwise. After 10 min, PhLi (1.9M in Bu₂O, 1.1 equiv) was added dropwise and stirred for 30 min at -78° C, then allowed to warm to RT over 15 min. After 30 min at ambient temperature, the mixture was recooled to -78° C and transferred via cannula to a solution of I₂ (1.0 M in THF, 1.2 equiv) at -78° C and stirred for 30min. Then the solution was allowed to warm to RT and stirred for another hour. The resulting mixture was quenched by the addition of sat. aq. Na₂S₂O₃ solution and stirred vigorously for 5 min. The phases were separated and the aqueous phase was extracted with Et₂O (3x). The combined organic phases were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography afforded the corresponding vinyl iodide.

⁶ D. M. Hodgson, T. Aric, J. Am. Chem. Soc. **2008**, 130, 16500-16501.

⁷ a) Z. Huang, E.-I. Negishi, Org. Lett. **2006**, *8*, 3675-3678; b) L. M. Kreis, E. M. Carreira, Angew. Chem. Int. Ed. **2012**, *51*, 3436-3439.

(step 2) To a degassed solution of the vinyl iodide (1.0 equiv) and (*R*)-but-3-yn-2-ol (1.2 equiv) in NEt₃/THF (2:1, 0.15 M) was added $PdCl_2(PPh_3)_2$ (0.05 equiv) and Cul (0.1 equiv) and the resulting mixture was stirred at RT for 2h before it was filtered through a short plug of silica gel eluting with EtOAc and concentrated *in vacuo*. Purification by column chromatography afforded enyne **S7**.

Propargyl Acetate S8. To a stirred solution of enyne **S7** (1.0 equiv) dissolved in CH_2Cl_2 (0.1 M) at ambient temperature was added pyridine (5.0 equiv), DMAP (0.2 equiv), and Ac_2O (1.5 equiv). The resultinh solution was stirred for 1h before it was quenched with H_2O . The aqueous phase was extracted with Et_2O (3x). The combined organic phases were washed with sat. aq. $CuSO_4$ solution, H_2O (1x), and brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography provided propargyl acetate **S8**.

Primary alcohol S9. To a stirred solution of propargyl acetate **S8** (1.0 equiv) in dry THF (0.1 M) at 0 °C was added TBAF (1.0 M in THF, 2 equiv). After the addition, the solution was allowed to warm to ambient temperature and stirred for another 90 min. The mixture was quenched by the addition of sat. aq. NaHCO₃ solution. EtOAc was added to the mixture and the phases separated. The aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography provided primary alcohol **S9**.

Aldehyde 1. To a solution of oxalyl chloride (1.2 equiv) in CH_2Cl_2 (0.15 M) at -78 °C was added DMSO (2.4 equiv) dropwise and stirred for 15 min. Then a solution of alcohol **S9** in CH_2Cl_2 (0.05-0.1 M) was added dropwise and stirred for 30min. After that time, NEt₃ (5 equiv) was added and stirred for another 30 min at -78 °C and then slowly warmed to -30 °C over 30 min and then quenched by the addition of sat. aq. NaHCO₃ solution. The phases were separated and the aqueous phase was extracted with CH_2Cl_2 (3x), dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography provided aldehyde **1**.⁸

(R,E)-9-((tert-butyldimethylsilyl)oxy)-5-methylnon-5-en-3-yn-2-ol

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-methylnon-5-en-3-yn-2-ol (S7k). The general procedure for S7 (part b) was followed on a 1.76 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 6:1). The title compound was isolated as clear, orange oil (312 mg, 1.10 mmol, 75%).

¹H NMR (400 MHz, CDCl₃) δ 5.91 – 5.75 (m, 1H), 4.70 – 4.49 (m, 1H), 3.60 (t, J = 6.2 Hz, 2H), 2.20 – 2.09 (m, 2H), 1.80 (d, J = 4.6 Hz, 1H), 1.77 (dd, J = 1.6, 0.9 Hz, 3H), 1.62 – 1.54 (m, 2H), 1.46 (d, J = 6.6 Hz, 3H), 0.89 (s, 9H), 0.04 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 138.3, 117.5, 87.5, 87.2, 62.5, 59.0, 32.2, 26.1, 25.0,

⁸ Aldehyde **10** were found to decompose when stored in commercial CD₃Cl. Thus, filtration through basic Al₂O₃ or the use of CD₂Cl₂ is advised.
24.7, 18.5, 17.2, -5.2. **IR** (neat) 3342, 2954, 2930, 2886, 2858, 2217, 1633, 1472, 1463, 1446, 1387, 1361, 1329, 1288, 1254, 1180, 1101, 1006, 859, 839, 916, 887, 835, 814, 775, 720, 680, 662, 573, 542, 494 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₆H₃₀KO₂Si [M+K]⁺ 321.1647, found 321.1647. $[\alpha]_D^{26}$ = +14.9 (c = 1.0, CHCl₃).

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-isopropylnon-5-en-3-yn-2-ol (S7I). General procedure for S7 was followed on a 4.94 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 6:1). The title compound was isolated as clear, orange oil (513 mg, 1.65 mmol, 33%).

¹**H NMR** (400 MHz, CDCl₃) δ 5.76 (t, *J* = 7.6 Hz, 1H), 4.82 – 4.55 (m, 1H), 3.60 (t, *J* = 6.3 Hz, 2H), 2.88 – 2.62 (m, 1H), 2.18 (q, *J* = 7.6 Hz, 2H), 1.76 (s, 1H), 1.62 – 1.53 (m, 2H), 1.48 (d, *J* = 6.6 Hz, 3H), 1.03 (dd, *J* = 6.8, 0.9 Hz, 6H), 0.89 (s, 9H), 0.04 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 136.4, 129.6, 89.9, 83.9, 62.5, 59.1, 32.7, 28.0, 26.1, 24.8, 24.4, 21.6, 18.5, -5.1. **IR** (neat) 3342, 2958, 2930, 2887, 2858, 2214, 2087, 1472, 1385, 1362, 1328, 1288, 1255, 1186, 1162, 1104, 1007, 960, 939, 922, 887, 835, 813, 775, 716, 662, 639, 573, 521 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₈H₃₄FO₂Si [M+Na]⁺ 333.2220, found 333.2221. $[\alpha]_D^{26}$ = +11.2 (c = 1.0, CHCl₃).

(*R*,*E*)-5-(2-(Benzyloxy)ethyl)-9-((*tert*-butyldimethylsilyl)oxy)non-5-en-3-yn-2-ol (S7m). General procedure for S7 was followed on a 5.88 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 5:1). The title compound was isolated as clear, orange oil (555 mg, 1.38 mmol, 24%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.32 (m, 5H), 7.32 – 7.27 (m, 1H), 5.95 (t, *J* = 7.6 Hz, 1H), 4.61 (t, *J* = 6.5 Hz, 1H), 4.53 (d, *J* = 1.9 Hz, 2H), 3.60 (q, *J* = 6.7 Hz, 4H), 2.54 – 2.42 (m, 2H), 2.19 (q, *J* = 7.6 Hz, 2H), 1.66 – 1.54 (m, 3H), 1.43 (d, *J* = 6.6 Hz, 3H), 0.89 (s, 9H), 0.04 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.1, 138.6, 128.5, 127.8, 127.7, 119.2, 88.6, 85.7, 73.0, 68.7, 62.6, 59.0, 32.5, 31.3, 26.1, 25.0, 24.6, 18.5, -5.1. **IR** (neat) 2954, 2929, 2885, 2857, 1472, 1463, 1455, 1388, 1362, 1328, 1255, 1099, 1029, 1006, 964, 939, 912, 890, 835, 814, 776, 735, 697, 662, 498 cm⁻¹. **HRMS (MALDI):** m/z m/z calcd for C₂₄H₃₉O₃Si [M+H]⁺ 403.2663, found 403.2657. $\left[\alpha\right]_{D}^{26}$ = +9.8 (c = 1.0, CHCl₃).

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-methylnon-5-en-3-yn-2-yl acetate (S8k). General procedure for S8 was followed on a 1.1 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 10:1). The title compound was isolated as clear, yellow oil (331 mg, 1.02 mmol, 92%).

¹**H NMR** (400 MHz, CDCl₃) δ 5.88 (td, *J* = 7.5, 1.6 Hz, 1H), 5.57 (q, *J* = 6.6 Hz, 1H), 3.59 (t, *J* = 6.2 Hz, 2H), 2.18 – 2.09 (m, 2H), 2.07 (s, 3H), 1.78 – 1.74 (m, 3H), 1.62 – 1.53 (m, 2H), 1.49 (d, *J* = 6.6 Hz, 3H), 0.89 (s, 9H), 0.04 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 139.1, 117.3, 87.8, 83.9, 62.5, 61.1, 32.2, 26.1, 25.0, 21.8, 21.3, 18.4, 17.1, -5.2. **IR** (neat) 2989, 2954, 2930, 2887, 2858, 2219, 1745, 1472, 1463, 1446, 1371, 1341, 1308, 1231, 1099, 1040, 1008, 944, 889, 835, 814, 75, 721, 680, 662, 609, 543 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₈H₃₂KO₃Si [M+K]⁺ 363.1752, found 363.1750. $\left[\alpha\right]_{D}^{26}$ = +96.8 (c = 1.0, CHCl₃).

(*R*,*E*)-9-((*tert*-Butyldimethylsilyl)oxy)-5-isopropylnon-5-en-3-yn-2-yl acetate (S8I). General procedure for S8 was followed on a 1.65 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 10:1). The title compound was isolated as clear, yellow oil (519 mg, 1.47 mmol, 89%).

¹**H** NMR (400 MHz, CDCl₃) δ 5.79 (t, *J* = 7.6 Hz, 1H), 5.58 (q, *J* = 6.7 Hz, 1H), 3.60 (t, *J* = 6.3 Hz, 2H), 2.84 – 2.60 (m, 1H), 2.17 (q, *J* = 7.6 Hz, 2H), 2.07 (s, 3H), 1.57 (dt, *J* = 8.3, 6.5 Hz, 2H), 1.50 (d, *J* = 6.7 Hz, 3H), 1.02 (dd, *J* = 6.8, 2.9 Hz, 6H), 0.89 (s, 9H), 0.04 (s, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 170.0, 136.8, 129.2, 86.1, 84.4, 62.3, 61.0, 32.5, 27.9, 25.9, 24.3, 21.7, 21.4, 21.2, 18.3, -5.3. **IR** (neat) 2958, 2930, 2896, 2858, 2219, 1744, 1472, 1464, 1371, 1339, 1308, 1231, 1164, 1099, 1056, 1018, 947, 889, 834, 814, 775, 718, 679, 662, 638, 609, 523, 469 cm⁻¹. $[\alpha]_D^{26} = +87.3$ (c = 1.0, CHCl₃).

(*R*,*E*)-5-(2-(Benzyloxy)ethyl)-9-((*tert*-butyldimethylsilyl)oxy)non-5-en-3-yn-2-yl acetate (S8m). General procedure for S8 was followed on a 1.19 mmol scale. The crude product was purified by flash column

chromatography on silica gel (hexane/EtOAc 8:1). The title compound was isolated as clear, yellow oil (485 mg, 1.09 mmol, 92%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (d, *J* = 4.4 Hz, 5H), 7.32 – 7.25 (m, 1H), 5.98 (t, *J* = 7.7 Hz, 1H), 5.55 (q, *J* = 6.7 Hz, 1H), 4.53 (s, 2H), 3.60 (q, *J* = 6.7 Hz, 4H), 2.46 (td, *J* = 7.1, 1.1 Hz, 2H), 2.18 (q, *J* = 7.6 Hz, 2H), 2.06 (d, *J* = 1.2 Hz, 3H), 1.63 – 1.53 (m, 2H), 1.47 (d, *J* = 6.7 Hz, 3H), 0.89 (s, 9H), 0.04 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 140.8, 138.7, 128.5, 127.7, 127.6, 118.9, 86.3, 85.0, 73.06, 68.7, 62.6, 61.1, 32.4, 31.2, 26.1, 25.0, 21.8, 21.3, 18.5, -5.1. **IR** (neat) 2953, 2930, 2885, 2857, 1742, 1472, 1463, 1454, 1370, 1339, 1308, 1232, 1180, 1099, 1056, 1029, 946, 891, 836, 814, 776, 735, 698, 662, 608 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₆H₄₀NaO₄Si [M+Na]⁺ 467.2588, found 467.2588. $\left[\alpha\right]_{D}^{26}$ = +70.6 (c = 1.0, CHCl₃).

(*R*,*E*)-9-Hydroxy-5-methylnon-5-en-3-yn-2-yl acetate (S9k). General procedure for S9 was followed on a 1.02 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, colorless oil (184 mg, 0.88 mmol, 86%).

¹**H NMR** (400 MHz, CDCl₃) δ 5.92 – 5.83 (m, 1H), 5.56 (q, *J* = 6.6 Hz, 1H), 3.65 (t, *J* = 6.4 Hz, 2H), 2.21 – 2.13 (m, 2H), 2.07 (d, *J* = 1.4 Hz, 3H), 1.80 – 1.75 (m, 3H), 1.70 – 1.58 (m, 2H), 1.49 (d, *J* = 6.6 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 138.5, 117.7, 87.6, 84.1, 62.4, 61.1, 32.0, 24.9, 21.8, 21.3, 17.2. **IR** (neat) 3419, 2989, 2938, 2872, 2219, 1741, 1446, 1372, 1340, 1309, 1232, 1127, 1087, 1041, 948, 888, 844, 610, 542, 498 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₂H₁₈NaO₃ [M+Na]⁺ 233.1148, found 233.1148. $\left[\alpha\right]_{D}^{26}$ = +131.2 (c = 1.0, CHCl₃).

(*R*,*E*)-9-Hydroxy-5-isopropylnon-5-en-3-yn-2-yl acetate (S9I). General procedure for S9 was followed on a 0.85 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 3:1). The title compound was isolated as clear, colorless oil (169 mg, 0.71 mmol, 83%).

¹**H NMR** (400 MHz, CDCl₃) δ 5.78 (t, *J* = 7.6 Hz, 1H), 5.57 (q, *J* = 6.6 Hz, 1H), 3.64 (t, *J* = 6.4 Hz, 2H), 2.81 – 2.64 (m, 1H), 2.20 (q, *J* = 7.5 Hz, 2H), 2.06 (s, 2H), 1.69 – 1.57 (m, 2H), 1.50 (dd, *J* = 6.6, 0.6 Hz, 3H), 1.03 (dd, *J* = 6.7, 2.8 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 136.4, 129.7, 86.5, 84.4, 62.4, 61.1, 32.4, 28.1, 24.4, 21.9, 21.6, 21.3. **IR** (neat) 3425, 2964, 2936, 2871, 2218, 1740, 1448, 1371, 1339, 1309, 1232, 1161, 1131, 1095, 1055, 1019, 948, 888, 856, 638, 610, 523, 469 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₄H₂₂NaO₃ [M+Na]⁺ 261.1461, found 261.1462. $[\alpha]_D^{26}$ = +123.2 (c = 1.0, CHCl₃).

(*R*,*E*)-5-(2-(Benzyloxy)ethyl)-9-hydroxynon-5-en-3-yn-2-yl acetate (S9m). General procedure for S9 was followed on a 1.06 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 2:1). The title compound was isolated as clear, colorless oil (250 mg, 0.76 mmol, 72%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.31 (m, 5H), 7.30 – 7.26 (m, 1H), 6.02 – 5.92 (m, 1H), 5.53 (q, *J* = 6.6 Hz, 1H), 4.53 (s, 2H), 3.61 (t, *J* = 6.4 Hz, 2H), 3.56 (t, *J* = 6.0 Hz, 2H), 2.45 (t, *J* = 6.4 Hz, 2H), 2.25 (q, *J* = 7.2 Hz, 2H), 2.05 (s, 3H), 1.67 – 1.57 (m, 2H), 1.45 (d, *J* = 6.6 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.2, 140.4, 138.3, 128.6, 128.0, 127.9, 119.8, 86.1, 85.3, 73.3, 68.2, 61.4, 61.1, 31.7, 31.3, 24.6, 21.8, 21.4. **IR** (neat) 3425, 2987, 2936, 2865, 1740, 1496, 1454, 1371, 1339, 1309, 1233, 1175, 1100, 1088, 1055, 1029, 947, 888, 844, 738, 699, 608, 524, 493, 459 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₀H₂₆NaO₄ [M+Na]⁺ 353.1723, found 353.1723. $\left[\alpha \right]_{D}^{26} = +93.6$ (c = 1.0, CHCl₃).

(*R*,*E*)-5-Methyl-9-oxonon-5-en-3-yn-2-yl acetate (1k). General procedure for 1 was followed on a 0.57 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 4:1). The title compound was isolated as clear, colorless oil (99 mg, 0.48 mmol, 83%).

¹**H NMR** (400 MHz, CD_2Cl_2) δ 9.74 (t, *J* = 1.3 Hz, 1H), 5.83 – 5.73 (m, 1H), 5.50 (q, *J* = 6.7 Hz, 1H), 2.57 – 2.48 (m, 3H), 2.43 – 2.33 (m, 3H), 2.03 (s, 4H), 1.83 – 1.75 (m, 4H), 1.45 (d, *J* = 6.7 Hz, 4H). ¹³**C NMR** (101 MHz, CD_2Cl_3) δ 201.5, 170.1, 137.0, 118.7, 87.3, 85.0, 61.0, 43.3, 21.8, 21.5, 21.3, 17.2. **IR** (neat) 3457, 2989, 2938, 2729, 2222, 1737, 1634, 1446, 1411, 1371, 1340, 1308, 1229, 1124, 1088, 1040, 1016, 948, 889, 844, 654, 609, 543, 526, 502 cm⁻¹. **HRMS (MALDI):** m/z calcd for $C_{12}H_{17}O_3$ [M+H]⁺ 209.1172, found 209.1171. $\left[\alpha\right]_{D}^{26}$ = +130.8 (c = 1.0, CH₂Cl₂).

(*R*,*E*)-5-Isopropyl-9-oxonon-5-en-3-yn-2-yl acetate (11). General procedure for 1 was followed on a 0.35 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 4:1). The title compound was isolated as clear, colorless oil (70 mg, 0.30 mmol, 85%).

¹**H** NMR (400 MHz, CDCl₃) δ 9.77 (s, 1H), 5.72 (t, *J* = 7.4 Hz, 1H), 5.56 (q, *J* = 6.5 Hz, 1H), 2.75 (p, *J* = 6.7 Hz, 1H), 2.52 (m, 2H), 2.49 – 2.39 (m, 2H), 2.07 (s, 3H), 1.50 (d, *J* = 6.7 Hz, 3H), 1.04 (dd, *J* = 6.7, 2.7 Hz, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 201.4, 170.1, 134.3, 133.1, 130.7, 87.0, 84.0, 61.1, 43.5, 28.3, 21.8, 21.5, 21.3, 20.7. **IR** (neat) 3474, 2966, 2937, 2872, 2726, 2216, 2082, 2005, 1740, 1449, 1410, 1372, 1339, 1308, 1234, 1163, 1132, 1096, 1056, 1019, 948, 854, 640, 609, 576, 523, 498, 470 cm⁻¹. **HRMS (MALDI):** m/z calcd for $C_{12}H_{17}O_3$ [M+H]⁺ 259.1305, found 259.1304. $[\alpha]_D^{26}$ = +87.7 (c = 1.0, CHCl₃).

(*R*,*E*)-5-(2-(Benzyloxy)ethyl)-9-oxonon-5-en-3-yn-2-yl acetate (1m). General procedure for 1 was followed on a 0.55 mmol scale. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc 4:1). The title compound was isolated as clear, colorless oil (140 mg, 0.43 mmol, 78%).

¹**H NMR** (400 MHz, CDCl₃) δ 9.69 (t, *J* = 1.2 Hz, 1H), 7.35 – 7.31 (m, 5H), 7.30 – 7.25 (m, 1H), 5.91 (t, *J* = 7.3 Hz, 1H), 5.50 (q, *J* = 6.6 Hz, 1H), 4.50 (s, 2H), 3.62 (t, *J* = 6.6 Hz, 2H), 2.54 – 2.38 (m, 6H), 2.02 (s, 3H), 1.45 (d, *J* = 6.7 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 203.0, 171.6, 140.6, 140.1, 130.1, 129.4, 129.3, 122.3, 87.5, 87.4, 74.8, 70.2, 62.5, 45.0, 33.1, 23.2, 22.9, 22.8. **IR** (neat) 3064, 3030, 2988, 2935, 2858, 2726, 2222, 1737, 1496, 1454, 1409, 1370, 1339, 1308, 1230, 1179, 1101, 1055, 1028, 946, 910, 842, 738, 699, 653, 608, 525 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₀H₂₄NaO₄ [M+Na]⁺ 351.1567, found 351.1566. $[\alpha]_D^{26} = +96.5$ (c = 1.0, CH₂Cl₂).

4. Synthesis and Characterization of Products⁹

General Procedure for Au-Catalyzed Enantiospecific tandem Nazarov-Aldol Cyclization:

Aldehyde **1** (1.0 equiv) was dissolved in dry THF (0.05 M) and water (0.2 vol%) was added. The resulting clear solution was cooled to -10 °C and **3** (5 mol%) was added in one portion. The resulting faintly yellow solution was stirred at -10 °C for 16 hours and, if necessary, allowed to warm to ambient temperature to achieve full conversion. The reaction mixture was filtered through a short pad of silica gel washing with EtOAc, concentrated *in vacuo*, and subsequently subjected to silica gel flash chromatogroaphy to afford the product.

(3aR,6aR)-6-Hydroxy-3-methyl-6a-phenyl-4,5,6,6a-tetrahydropentalen-1(3aH)-one (2a). General procedure was followed on a 0.107 mmol scale. The solution was stirred at -10 °C for 24h. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc gradient from 6:1 to 3:1). The title compound was isolated as clear, colorless oil (18.5 mg, 0.081 mmol, 76%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.35 – 7.30 (m, 2H), 7.26 – 7.22 (m, 1H), 6.08 (t, *J* = 1.3 Hz, 1H), 4.50 – 4.35 (m, 1H), 4.06 (d, *J* = 7.6 Hz, 1H), 3.27 (d, *J* = 10.5 Hz, 0H), 2.24 (dd, *J* = 1.3, 0.8 Hz, 3H), 2.11 – 2.05 (m, 1H), 1.92 – 1.86 (m, 1H), 1.76 – 1.69 (m, 1H), 1.52 – 1.41 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 211.36, 182.53, 140.47, 131.25, 128.85, 127.20, 126.56, 79.30, 63.37, 57.99, 32.35, 24.16, 18.08. **IR** (neat) 3459, 3060, 3026, 2958, 2873, 1679, 1618, 1581, 1497, 1433, 1378, 1296, 1250, 1188, 1104, 1091, 1050, 1018, 953, 932, 906, 856, 765, 738, 719, 699, 598, 572, 533, 497 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₅H₁₇O₂ [M+H]⁺ 229.1223, found 229.1223. $[\alpha]_D^{26} = -176.8$ (c = 0.5, CHCl₃). **SFC** Daicel Chiralcel OJ-H, 3% MeOH, 2.0 mL/min., 25 °C, 93% *ee* (t_R (1, major enantiomer, major diastereomer) = 9.83 min, t_R (2, minor enantiomer, major diastereomer) = 12.19 min, t_R (3, minor enantiomer, minor diastereomer) = 15.96 min, t_R (4, major enantiomer, major diastereomer) = 17.38 min).

(3a*R*,6a*R*)-6-Hydroxy-3-methyl-6a-(4-(trifluoromethyl)phenyl)-4,5,6,6a-tetrahydropentalen-1(3a*H*)one (2b). General procedure was followed on a 0.092 mmol scale. The solution was stirred at -10 °C for

⁹ For the synthesis and characterizatino of substrate 2n, see: M. Brandstätter, M. Freis, N. Huwyler, E. M. Carreira, *Angew. Chem. Int. Ed.* Accepted Article, DOI: 10.1002/ange.201813090.

24h. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc gradient from 6:1 to 3:1). The title compound was isolated as clear, colorless oil (19 mg, 0.064 mmol, 70%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.45 (m, 4H), 6.09 (p, *J* = 1.3 Hz, 1H), 4.48 – 4.32 (m, 1H), 3.96 (d, *J* = 8.0 Hz, 1H), 3.36 – 3.20 (m, 1H), 2.26 (t, *J* = 1.1 Hz, 3H), 2.09 (dddd, *J* = 11.9, 5.8, 5.0, 1.4 Hz, 1H), 1.90 (ddd, *J* = 13.2, 9.6, 5.9 Hz, 1H), 1.76 (ddt, *J* = 13.4, 6.5, 1.5 Hz, 1H), 1.48 (tdd, *J* = 12.6, 11.1, 6.5 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 210.3, 182.7, 144.4 (d, *J* = 1.5 Hz), 131.2, 128.3, 127.1, 125.7 (q, *J* = 3.7 Hz), 79.4, 63.3, 57.7, 54.0, 32.2, 24.2, 18.1. **IR** (neat) 3465, 2961, 1684, 1618, 1518, 1435, 1411, 1379, 1326, 1300, 1285, 1248, 1165, 1120, 1070, 1018, 953, 926, 859, 835, 776, 752, 738, 715, 688, 622, 610, 521 cm⁻¹. **HRMS** (**MALDI**): m/z calcd for C₁₆H₁₆F₃O₂ [M+H]⁺ 297.1097, found 297.1097. $\left[\alpha\right]_{D}^{26}$ = –134.2 (c = 1.0, CHCl₃). **SFC** (of the corresponding 4-bromophenyl-carbamate) Daicel Chiralcel OJ-H, 3% MeOH, 2.0 mL/min., 25 °C, 96% *ee* (t_R (1, major enantiomer, major diastereomer) = 8.13 min, t_R (2, minor enantiomer, major diastereomer) = 9.13 min)

Methyl 4-((3*R*,3a*R*,6a*R*)-3-hydroxy-6-methyl-4-oxo-1,2,3,3a,4,6a-hexahydropentalen-3a-yl)benzoate (2c). General procedure was followed on a 0.167 mmol scale. The solution was stirred at -10 °C for 24h. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc gradient from 4:1 to 2:1). The title compound was isolated as clear, colorless oil (33 mg, 0.115 mmol, 69%).

¹**H** NMR (400 MHz, CDCl₃) δ 8.02 – 7.95 (m, 2H), 7.52 – 7.47 (m, 2H), 6.08 (s, 1H), 4.50 – 4.37 (m, 1H), 3.98 (d, *J* = 7.9 Hz, 1H), 3.89 (s, 3H), 3.28 (d, *J* = 9.5 Hz, 5H), 2.25 (s, 3H), 2.13 – 2.04 (m, 1H), 1.97 – 1.85 (m, 1H), 1.79 – 1.69 (m, 1H), 1.53 – 1.41 (m, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 210.4, 182.6, 166.9, 145.6, 131.2, 130.1, 129.0, 126.7, 79.3, 63.6, 57.7, 52.2, 32.3, 24.2, 18.1. **IR** (neat) 3472, 2954, 2875, 2071, 1719, 1699, 1683, 1611, 1569, 1510, 1435, 1409, 1378, 1318, 1280, 1190, 1111, 1055, 1020, 964, 926, 861, 825, 774, 741, 727, 703, 617, 607, 574, 536 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₇H₁₉O₄ [M+H]⁺ 287.1278, found 287.1278. $\left[\alpha\right]_{D}^{26}$ – 163.8 (c = 1.0, CHCl₃). **SFC** (of the corresponding 4-bromophenyl-carbamate) Daicel Chiralcel OJ-H, 15% MeOH, 2.0 mL/min., 25 °C, 95% *ee* (t_R (1, minor enantiomer, major diastereomer) = 23.59 min, t_R (2, minor enantiomer, minor diastereomer) = 23.59 min, t_R (3, major enantiomer, major diastereomer) = 23.59 min, t_R (4, major enantiomer, minor diastereomer) = 28.47 min).

(3aR,6R,6aR)-6a-(4-Chlorophenyl)-6-hydroxy-3-methyl-4,5,6,6a-tetrahydropentalen-1(3aH)-one (2d). General procedure was followed on a 0.174 mmol scale. The solution was stirred at -10 °C for 24h. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc gradient from 6:1 to 3:1). The title compound was isolated as clear, colorless oil (32 mg, 0.122 mmol, 70%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.24 (m, 4H), 6.06 (s, 1H), 4.43 – 4.31 (m, 1H), 3.97 (d, *J* = 8.0 Hz, 1H), 3.23 (d, *J* = 9.2 Hz, 7H), 2.24 (dd, *J* = 1.3, 0.8 Hz, 3H), 2.14 – 2.01 (m, 1H), 1.97 – 1.82 (m, 1H), 1.79 – 1.67 (m, 1H), 1.53 – 1.34 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 210.7, 182.4, 138.8, 131.1, 128.8, 128.5, 127.9, 79.3, 62.7, 57.6, 32.1, 24.0, 18.0. **IR** (neat) 3462, 3070, 2959, 2873, 1679, 1618, 1593, 1493, 1451, 1433, 1401, 1378, 1296, 1250, 1185, 1093, 1054, 1014, 953, 858, 823, 742, 719, 705, 618, 608, 573, 536, 524, 507 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₅H₁₆ClO₂ [M+H]⁺ 263.0833, found 263.0834. $[\alpha]_D^{26}$ = -142.1 (c = 1.0, CHCl₃). **SFC** Daicel Chiralcel OJ-H, 3% MeOH, 2.0 mL/min., 25 °C, 95% *ee* (t_R (1, major enantiomer, major diastereomer) = 11.69 min, t_R (2, minor enantiomer, major diastereomer) = 13.09 min).

(3aR,6aR)-6a-(4-Fluorophenyl)-6-hydroxy-3-methyl-4,5,6,6a-tetrahydropentalen-1(3aH)-one (2e). General procedure was followed on a 0.191 mmol scale. The solution was stirred at -10 °C for 16h, and then allowed to warm to RT and stirred for another 8h. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc gradient from 6:1 to 3:1). The title compound was isolated as clear, colorless oil (35 mg, 0.142 mmol, 75%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.55 – 7.35 (m, 2H), 7.17 – 6.95 (m, 2H), 6.09 (s, 1H), 4.47 – 4.33 (m, 1H), 4.02 (d, *J* = 7.9 Hz, 1H), 3.26 (d, *J* = 9.7 Hz, 1H), 2.27 (s, 3H), 2.17 – 2.04 (m, 1H), 2.00 – 1.84 (m, 1H), 1.75 (dd, *J* = 13.4, 6.5 Hz, 1H), 1.57 – 1.41 (m, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 211.1, 182.5, 162.0 (d, *J* = 246.0 Hz), 131.2, 129.5 (d, *J* = 7.9 Hz), 128.2 (d, *J* = 7.9 Hz), 115.6 (d, *J* = 21.3 Hz), 79.5, 62.7, 57.9, 32.3, 24.1, 18.1. **IR** (neat) 3460, 3072, 2959, 2875, 1679, 1618, 1606, 1509, 1451, 1434, 1409, 1378, 1297, 1225, 1189, 1164, 1134, 1100, 1089, 1054, 1015, 996, 953, 922, 859, 832, 812, 775, 743, 706, 647, 613, 576, 563, 526, 456 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₅H₁₆FO₂ [M+H]⁺ 247.1129, found 247.1129. [α]²⁶_D = -180.5 (c = 1.0, CHCl₃). **SFC** Daicel Chiralcel OJ-H, 3% MeOH, 2.0 mL/min., 25 °C, 93% ee (t_R (1, major enantiomer, major diastereomer) = 7.63 min, t_R (3, minor enantiomer, minor diastereomer) = 11.61 min, t_R (4, major enantiomer, minor diastereomer) = 13.61 min).

(3aR,6aR)-6a-(3-Fluorophenyl)-6-hydroxy-3-methyl-4,5,6,6a-tetrahydropentalen-1(3aH)-one (2f). General procedure was followed on a 0.146 mmol scale. The solution was stirred at -10 °C for 16h, and then allowed to warm to RT and stirred for another 8h. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc gradient from 6:1 to 3:1). The title compound was isolated as clear, colorless oil (26 mg, 0.106 mmol, 73%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.24 (m, 1H), 7.23 – 7.13 (m, 2H), 6.97 – 6.91 (m, 1H), 6.07 (p, *J* = 1.3 Hz, 1H), 4.40 (ddd, *J* = 11.1, 7.9, 5.7 Hz, 1H), 3.97 (d, *J* = 8.0 Hz, 1H), 3.31 – 3.16 (m, 1H), 2.24 (t, *J* = 1.1 Hz, 3H), 2.16 – 2.01 (m, 1H), 2.01 – 1.80 (m, 1H), 1.80 – 1.66 (m, 1H), 1.55 – 1.37 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 210.6, 182.6, 163.1 (d, *J* = 245.9 Hz), 143.0 (d, *J* = 7.3 Hz), 131.2, 130.2 (d, *J* = 8.4 Hz), 122.2 (d, *J* = 2.9 Hz), 114.2 (d, *J* = 21.1 Hz), 113.9 (d, *J* = 22.4 Hz), 79.3, 63.1 (d, *J* = 1.9 Hz), 57.8, 32.3, 24.1, 18.1. **IR** (neat) 3461, 3072, 2959, 2874, 1680, 1614, 1586, 1488, 1436, 1379, 1296, 1262, 1189, 1166, 1128, 1105, 1090, 1059, 1018, 998, 953, 929, 892, 860, 826, 785, 741, 724, 693, 672, 625, 583, 558, 524, 511, 454 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₅H₁₆NaFO₂ [M+Na]⁺ 269.0948, found 269.0948. $[\alpha]_D^{26} = -180.2$ (c = 1.0, CHCl₃). **SFC** Daicel Chiralcel OJ-H, 1% MeOH, 2.0 mL/min., 25 °C, 94% *ee* (t_R (1, major enantiomer, major diastereomer) = 10.55 min, t_R (2, minor enantiomer, major diastereomer) = 11.62 min, t_R (3, minor enantiomer, major diastereomer) = 23.47 min).

(3aR,6R,6aR)-6a-(2-Fluorophenyl)-6-hydroxy-3-methyl-4,5,6,6a-tetrahydropentalen-1(3aH)-one (2g). General procedure was followed on a 0.187 mmol scale. The solution was stirred at -10 °C for 16h, and then allowed to warm to RT and stirred for another 8h. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc gradient from 6:1 to 3:1). The title compound was isolated as clear, colorless oil (31 mg, 0.126 mmol, 67%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 (td, *J* = 8.0, 1.8 Hz, 1H), 7.35 – 7.20 (m, 1H), 7.15 (td, *J* = 7.6, 1.4 Hz, 1H), 7.03 (ddd, *J* = 12.2, 8.1, 1.4 Hz, 1H), 4.80 – 4.53 (m, 1H), 3.92 (d, *J* = 7.8 Hz, 1H), 3.40 (d, *J* = 9.3 Hz, 1H), 2.21 (t, *J* = 1.0 Hz, 3H), 2.13 – 2.05 (m, 1H), 2.04 – 1.94 (m, 1H), 1.75 (dd, *J* = 13.1, 6.4 Hz, 1H), 1.52 – 1.38 (m, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 211.0, 182.5 (d, *J* = 1.4 Hz), 161.5 (d, *J* = 246.7 Hz), 131.1 (d, *J* = 1.6 Hz), 129.5 (d, *J* = 4.3 Hz), 129.0 (d, *J* = 8.8 Hz), 127.7 (d, *J* = 11.8 Hz), 124.4 (d, *J* = 3.3 Hz), 116.3 (d, *J* = 22.8 Hz), 78.2 (d, *J* = 1.8 Hz), 60.8 (d, *J* = 2.8 Hz), 56.9 (d, *J* = 4.7 Hz), 31.5, 24.0 (d, *J* = 1.0 Hz), 180. IR (neat) 3463, 2958, 1678, 1621, 1490, 1450, 1377, 1298, 1277, 1227, 1203, 1109, 1059, 1038, 923, 858, 807, 759,

663, 599, 543, 464 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₅H₁₅FNaO₂ [M+Na]⁺ 269.0948, found 269.0948. $\left[\alpha\right]_{D}^{26}$ = -53.7 (c = 1.0, CHCl₃). **SFC** Daicel Chiralcel OJ-H, 3% MeOH, 2.0 mL/min., 25 °C, 86% *ee* (t_R (1, major enantiomer, major diastereomer) = 5.72 min, t_R (2, minor enantiomer, major diastereomer) = 6.35 min).

(3aR,6R,6aR)-6-Hydroxy-3-methyl-6a-(naphthalen-2-yl)-4,5,6,6a-tetrahydropentalen-1(3aH)-one (2h). General procedure was followed on a 0.109 mmol scale. The solution was stirred at -10 °C for 24h. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc gradient from 6:1 to 3:1). The title compound was isolated as clear, colorless oil (26 mg, 0.094 mmol, 86%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 1.8 Hz, 1H), 7.84 – 7.80 (m, 3H), 7.51 – 7.40 (m, 3H), 6.14 (t, *J* = 1.4 Hz, 1H), 4.58 (ddd, *J* = 11.0, 7.4, 5.7 Hz, 1H), 4.12 (d, *J* = 7.6 Hz, 1H), 3.37 (d, *J* = 9.6 Hz, 1H), 2.27 (s, 3H), 2.13 (dtd, *J* = 11.9, 5.7, 1.4 Hz, 1H), 2.01 – 1.88 (m, 1H), 1.77 (ddt, *J* = 13.4, 6.5, 1.5 Hz, 1H), 1.53 (tdd, *J* = 12.7, 11.2, 6.5 Hz, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 211.3, 182.5, 137.7, 133.5, 132.5, 131.5, 128.6, 128.2, 127.6, 126.4, 126.1, 125.5, 124.6, 79.3, 63.6, 58.0, 32.4, 24.2, 18.1. IR (neat) 3459, 3055, 2956, 2927, 2871, 1677, 1599, 1506, 1450, 1432, 1377, 1329, 1293, 1247, 1215, 1187, 1137, 1102, 1087, 1059, 1018, 997, 952, 926, 886, 856, 816, 749, 666, 638, 576, 558, 528, 504, 477 cm⁻¹. HRMS (MALDI): m/z calcd for C₁₉H₁₉O₂ [M+H]⁺ 279.1380, found 279.1380. [*a*]²⁶_D = -206.6 (c = 1.0, CHCl₃). SFC Daicel Chiralcel OJ-H, 10% MeOH, 2.0 mL/min., 25 °C, 91% *ee* (t_R (1, major enantiomer, major diastereomer) = 12.49 min, t_R (2, minor enantiomer, major diastereomer) = 14.41 min).

4-((3R,3aR,6aR)-3-Hydroxy-6-methyl-4-oxo-1,2,3,3a,4,6a-hexahydropentalen-3a-yl)phenyl acetate (2i). General procedure was followed on a 0.107 mmol scale. The solution was stirred at -10 °C for 16h. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc gradient from 4:1 to 2:1). The title compound was isolated as clear, colorless oil (22 mg, 0.077 mmol, 72% over two steps (see **250i**).

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.34 (m, 2H), 7.12 – 6.96 (m, 2H), 6.06 (s, 1H), 4.45 – 4.34 (m, 1H), 4.02 (d, *J* = 7.9 Hz, 1H), 3.25 (d, *J* = 9.2 Hz, 6H), 2.28 (s, 3H), 2.12 – 2.01 (m, 8H), 1.99 – 1.81 (m, 1H), 1.76 – 1.69 (m, 1H), 1.52 – 1.39 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 211.1, 182.5, 169.7, 149.7, 138.0, 131.2, 127.7, 121.9, 79.4, 62.9, 57.9, 32.3, 24.1, 21.3, 18.1. **IR** (neat) 3465, 2958, 2874, 1754, 1679, 1618, 1508, 1434, 1411, 1371, 1297, 1200, 1171, 1135, 1118, 1102, 1089, 1054, 1019, 951, 926, 911, 846, 799, 745, 716,

684, 619, 610, 595, 575, 528 cm⁻¹. **HRMS (MALDI):** m/z calcd for $C_{17}H_{19}O_4$ [M+H]⁺ 287.1278, found 287.1278. $\left[\alpha\right]_D^{26} = -135.7$ (c = 1.0, CHCl₃). **SFC** Daicel Chiralcel OJ-H, 2% MeOH, 2.0 mL/min., 25 °C, 92% *ee* (t_R (1, major enantiomer, major diastereomer) = 17.08 min, t_R (2, minor enantiomer, major diastereomer) = 20.53 min).

tert-Butyl acetyl(4-((3a*R*,6a*R*)-3-hydroxy-6-methyl-4-oxo-1,2,3,3a,4,6a-hexahydropenta-len-3ayl)phenyl) carbamate (2j). General procedure was followed on a 0.105 mmol scale. The solution was stirred at -10 °C for 16h. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc gradient from 4:1 to 2:1). The title compound was isolated as clear, colorless oil (30 mg, 0.078 mmol, 74%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.09 – 7.04 (m, 2H), 6.09 (s, 1H), 4.45 (m, 1H), 4.06 (d, *J* = 7.8 Hz, 1H), 3.30 (d, *J* = 9.5 Hz, 1H), 2.58 (s, 3H), 2.26 (s, 3H), 2.15 – 2.06 (m, 1H), 1.99 – 1.85 (m, 1H), 1.75 (ddt, *J* = 13.3, 6.5, 1.5 Hz, 1H), 1.57 – 1.44 (m, 1H), 1.40 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 210.9, 182.5, 173.1, 152.9, 140.1, 137.8, 131.3, 128.5, 127.3, 83.6, 79.4, 63.1, 57.9, 32.3, 28.0, 26.7, 24.2, 18.1. **IR** (neat) 3472, 2976, 1737, 1704, 1619, 1513, 1414. 1395, 1371, 1340, 1275, 1255, 1157, 1098, 1055, 1016, 923. 849, 774, 743, 612, 544 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₂₂H₂₈NO₅ [M+H]⁺ 386.1962, found 386.1963. [α]²⁶_D = -101.1 (c = 1.0, CHCl₃). **SFC** (of the corresponding 4-bromophenyl-carbamate) Daicel Chiralcel OJ-H, 1% MeOH, 2.0 mL/min., 25 °C, 93% *ee* (t_R (1, major enantiomer, major diastereomer) = 11.68 min, t_R (2, minor enantiomer, major diastereomer) = 12.83 min).

¹**H** NMR (400 MHz, CDCl₃) δ 7.75 – 7.54 (m, 1H), 7.25 – 7.19 (m, 1H), 7.17 (td, J = 7.3, 1.5 Hz, 1H), 7.14 – 7.09 (m, 1H), 4.71 (dt, J = 11.5, 6.0 Hz, 1H), 3.77 (d, J = 6.9 Hz, 1H), 3.37 (d, J = 8.9 Hz, 1H), 2.43 – 2.29 (m, 1H), 2.23 (s, 3H), 2.20 (t, J = 1.0 Hz, 3H), 2.13 – 2.00 (m, 1H), 1.98 – 1.80 (m, 1H), 1.75 (ddt, J = 13.3, 6.3, 1.3 Hz, 1H), 1.45 (dddd, J = 13.1, 12.1, 11.2, 6.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 212.2, 181.2, 138.1, 136.4, 132.6, 132.5, 128.6, 127.2, 126.4, 77.3, 64.2, 56.3, 30.8, 24.0, 21.3, 17.7.

(3a*R*,6*R*,6a*S*)-6-Hydroxy-3,6a-dimethyl-4,5,6,6a-tetrahydropentalen-1(3a*H*)-one (2k). General procedure was followed on a 0.125 mmol scale. The solution was stirred at -10 °C for 24h. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc gradient from 6:1 to 3:1). The title compound was isolated as clear, colorless oil (13 mg, 0.078 mmol, 63%).

¹**H NMR** (400 MHz, CDCl₃) Major Diastereomer: δ 5.91 (s, 1H), 3.90 – 3.73 (m, 1H), 3.33 (s, 1H), 2.71 – 2.66 (m, 1H), 2.12 (t, *J* = 1.1 Hz, 3H), 1.96 – 1.89 (m, 1H), 1.74 – 1.67 (m, 1H), 1.53 – 1.44 (m, 1H), 1.42 – 1.30 (m, 1H), 1.25 (s, 3H). Minor Diastereomer: 5.81 (s, 1H), 4.13 – 3.96 (m, 1H), 2.75 (d, *J* = 10.5 Hz, 1H), 2.22 – 2.13 (m, 1H), 2.10 (t, *J* = 1.1 Hz, 3H), 1.85 – 1.75 (m, 1H), 1.66 – 1.59 (m, 1H), 1.57 – 1.52 (m, 1H), 1.18 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) Major diastereomer: δ 214.1, 181.2, 130.2, 79.6, 56.5, 42.9, 32.8, 32.7, 20.9, 17.9. Minor diastereomer: δ 212.9, 179.6, 128.6, 75.6, 61.4, 56.6, 32.8, 18.0, 17.9, 16.7. **IR** (neat) 3443, 2828, 2856, 1740, 1620, 1448, 1373, 1237, 1066, 967, 859, 604, 534, 496 cm⁻¹. **HRMS (MALDI)**: m/z calcd for C₁₀H₁₄NaO₂ [M+Na]⁺ 189.0886, found 189.0887. $[\alpha]_D^{26}$ = +4.7 (c = 0.33, CHCl₃) **SFC** Daicel Chiralcel OJ-H, 3% MeOH, 2.0 mL/min., 25 °C, 90% *ee* (t_R (1, major enantiomer, minor diastereomer) = 1.38 min, t_R (2, minor enantiomer, minor diastereomer) = 1.53 min, t_R (3, major enantiomer, major diastereomer) = 1.78 min, t_R (4, minor enantiomer, major diastereomer) = 2.25 min).

(3aR,6R,6aS)-6-Hydroxy-6a-isopropyl-3-methyl-4,5,6,6a-tetrahydropentalen-1(3aH)-one (2l). General procedure was followed on a 0.118 mmol scale. The solution was stirred at -10 °C for 16h, then warmed to RT and stirred for 8h. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc gradient from 6:1 to 3:1). The title compound was isolated as clear, colorless oil (13 mg, 0.067 mmol, 57%).

¹**H NMR** (400 MHz, CDCl₃) δ 5.95 (t, *J* = 1.4 Hz, 1H), 4.14 – 3.99 (m, 1H), 3.58 (d, *J* = 6.5 Hz, 1H), 2.87 – 2.69 (m, 1H), 2.15 – 2.07 (m, 4H), 1.96 – 1.87 (m, 1H), 1.73 – 1.60 (m, 2H), 1.38 – 1.26 (m, 1H), 1.21 – 1.09 (m, 1H), 0.93 (d, *J* = 6.8 Hz, 3H), 0.88 (d, *J* = 6.9 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 214.9, 182.2, 132.4, 75.9, 63.8, 51.6, 32.5, 31.4, 24.3, 18.7, 18.2, 17.8. **IR** (neat) 3472, 2962, 2874, 1984, 1744, 1677, 1620, 1464, 1436, 1372, 1299, 1240, 1208, 1085, 921, 893, 852, 744, 520, 464 cm⁻¹. **HRMS (MALDI):** m/z calcd for $C_{12}H_{18}NaO_2$ [M+Na]⁺ 217.1199, found 217.1199. $[\alpha]_D^{26} = -2.6$ (c = 1.0, CHCl₃). **SFC** Daicel Chiralcel OJ-H, 3% MeOH, 2.0 mL/min., 25 °C, 88% *ee* (t_R (1, minor enantiomer, minor diastereomer) = 3.13 min, t_R (3, major enantiomer, major diastereomer) = 3.57 min, t_R (4, minor enantiomer, major diastereomer) = 3.97 min).

(3aR,6R,6aS)-6a-(2-(Benzyloxy)ethyl)-6-hydroxy-3-methyl-4,5,6,6a-tetrahydropentalen-1(3aH)-one (251m). General procedure was followed on a 0.305 mmol scale. The solution was stirred at -10 °C for 24h. The crude product was purified by flash column chromatography on silica gel (hexane/EtOAc gradient from 6:1 to 4:1). The two diastereomers of the title compound could be separated and isolated to give **2m** (51 mg, 0.178 mmol, 59%) and **2m'** (12 mg, 0.042 mmol, 14%).

¹**H NMR** (400 MHz, CD_2Cl_2) δ 7.37 – 7.31 (m, 2H), 7.30 – 7.24 (m, 3H), 5.90 (t, *J* = 1.4 Hz, 1H), 4.39 (d, *J* = 1.9 Hz, 2H), 3.84 (dd, *J* = 10.5, 5.6 Hz, 1H), 3.62 – 3.46 (m, 1H), 3.46 – 3.34 (m, 1H), 3.00 (d, *J* = 9.2 Hz, 0H), 2.19 (ddd, *J* = 14.2, 6.9, 5.8 Hz, 1H), 2.06 (t, *J* = 1.1 Hz, 3H), 1.89 – 1.79 (m, 2H), 1.78 – 1.65 (m, 1H), 1.60 (ddt, *J* = 13.2, 6.6, 2.0 Hz, 1H), 1.37 – 1.14 (m, 1H). ¹³**C NMR** (101 MHz, CD_2Cl_2) δ 213.7, 182.5, 138.9, 131.5, 128.6, 128.0, 127.9, 79.0, 73.4, 67.7, 59.1, 54.5, 35.0, 32.1, 24.3, 17.9. **IR** (neat) 3461, 3063, 3031, 2937, 2909, 2868, 1956, 1677, 1617, 1497, 1454, 1433, 1377, 1366, 1302, 1256, 1199, 1091, 1028, 1003, 948, 916, 882, 858, 796, 738, 699, 666, 607, 581, 532 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₈H₂₂NaO₃ [M+Na]⁺ 309.1461, found 309.1461. $[\alpha]_D^{26} = -36.3$ (c=1.0, CHCl₃). **SFC** Daicel Chiralcel OJ-H, 2% MeOH, 2.0 mL/min., 25 °C, 95% *ee* (t_R (1, major enantiomer, major diastereomer) = 17.77 min, t_R (2, minor enantiomer, major diastereomer) = 25.69 min,).

(3a*R*,6*S*,6a*S*)-6a-(2-(Benzyloxy)ethyl)-6-hydroxy-3-methyl-4,5,6,6a-tetrahydropentalen-1(3a*H*)-one (2m').

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.32 (m, 4H), 7.32 – 7.27 (m, 1H), 5.77 (t, *J* = 1.3 Hz, 1H), 4.65 (d, *J* = 11.6 Hz, 1H), 4.51 (d, *J* = 11.6 Hz, 1H), 4.20 (t, *J* = 2.9 Hz, 1H), 4.06 (ddd, *J* = 10.6, 9.5, 2.1 Hz, 1H), 3.81 (t, *J* = 2.3 Hz, 1H), 3.48 (ddd, *J* = 9.4, 4.6, 3.2 Hz, 1H), 2.73 (d, *J* = 9.8 Hz, 1H), 2.22 (dddd, *J* = 14.4, 9.4, 7.6, 3.4 Hz, 2H), 2.13 – 2.05 (m, 3H), 1.75 (dd, *J* = 13.4, 6.2 Hz, 1H), 1.65 (ddd, *J* = 15.2, 4.7, 2.1 Hz, 1H), 1.54 (dd, *J* = 12.7, 7.0 Hz, 1H), 1.47 – 1.33 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 211.9, 179.4, 137.7, 129.2, 128.6, 128.0, 127.9, 74.6, 73.7, 66.2, 64.8, 56.9, 32.1, 31.6, 25.3, 18.2. IR (neat) 3438, 3064, 3031, 2942, 2866, 1688, 1618, 1497, 1454, 1435, 1376, 1365, 1330, 1305, 1250, 1186, 1165, 1089, 1073, 1029, 989, 959, 943, 921, 860, 826, 738, 698, 637, 609, 566 cm⁻¹. $[\alpha]_D^{26} = -11.7$ (c = 1.0, CHCl₃).

TBSO b) a) HQ MeO OTBS Me S13 S11 S12 C) HO TBSO. 0 H e) d) AcO AcO AcO Me Me Me 12 S15 S14 f) Ĥ Mé 13 60% d.r. > 20:1

Reagents and Conditions: a) (i) n-BuLi (1.05 equiv), 0 °C, THF, 60 min; then tert-butyl(3iodopropoxy)dimethylsilane (1.05 equiv), -78 °C to RT, 20h (ii) O₃, CH₂Cl₂, -78 °C, 10min, then PPh₃ (1.3 equiv), RT, 18h, 70% over two steps; b) (i) LDA (1.1 equiv), -78 °C, 30 min; then TMSCl (1.1 equiv), -78 °C to -40 °C; (ii) MeLi (1.00 equiv), 0 °C, 30min; then Comin's Reagent (1.3 equiv), -78 °C to RT, 2h, 80% over two steps; (iii) (S)-3-butyn-2-ol (1.3 equiv), PdCl₂(PPh₃)₂ (5 mol%), Cul (10 mol%), Et₃N/THF (2:1), 71%; c) Ac_2O (1.1 equiv), DMAP (0.1 equiv), pyridine (1.5 equiv), CH_2Cl_2 , 93%; d) TBAF (2 equiv), THF, 94%; e) DMP (2.0 equiv), t-BuOH (2.0 equiv), CH₂Cl₂, 84%; f) Au(MeCN)(JohnPhos)SbF₆ (5 mol%), THF, 0.2% H₂O, -10 °C, 24h, 60%.

5. Synthesis of Triquinane 12

(S)-2-(3-((*tert*-Butyldimethylsilyl)oxy)propyl)cyclopentanone (S12). To a solution of S11¹⁰ (2.00 g, 10.2 mmol, 1.0 equiv) in THF (51 ml) at 0 °C was added *n*-BuLi (1.6 M in hexanes, 6.69 ml, 10.7 mmol, 1.05 equiv) and stirred for 60 min. The solution was then cooled to -78 °C and a solution of *tert*-butyl(3-iodopropoxyl)dimethylsilane (3.21 g, 10.7 mmol, 1.05 equiv) in THF (10 ml) was added dropwise and then slowly warmed to RT. The reaction mixture was quenched by the addition of sat. aq. NH₄Cl. EtOAc was added to the mixture and the phases separated. The aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography provided the alkylated hydrazone (3.70 g, 10.0 mmol, 98%) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 3.69 – 3.55 (m, 2H), 3.46 (d, *J* = 5.2 Hz, 1H), 3.34 (s, 3H), 3.30 – 3.16 (m, 3H), 2.40 (q, *J* = 9.0 Hz, 3H), 2.23 – 2.08 (m, 1H), 1.95 (ddd, *J* = 11.9, 7.6, 5.2 Hz, 2H), 1.88 – 1.74 (m, 3H), 1.73 – 1.47 (m, 6H), 1.44 – 1.20 (m, 2H), 0.88 (s, 9H), 0.04 (s, 6H).

The alkylated hydrazone (3.70 g, 10.0 mmol, 1 equiv) was dissolved in CH_2Cl_2 (100 ml) and cooled to -78 °C. At that temperature, ozone was bubbled through the reaction mixture until the yellow reaction mixture turned green (TLC control). After bubbling through O_2 for 5 min, PPh₃ (7.90 g, 30.1 mmol, 3 equiv) was added and the mixture was allowed to warm to RT and stirred overnight. The reaction mixture was reduced to about 15ml and then pentane (100 ml) was added. The formed suspension was filtered through celite and concentrated *in vacuo*. Flash column chromatography (pentane to pentane–Et₂O 25:1) furnished cyclopentone **S12** (1.83 g, 7.14 mmol, 71%) as a colorless oil.

¹**H NMR** (400 MHz, CD_2Cl_2) δ 3.61 (td, *J* = 6.4, 1.2 Hz, 2H), 2.31 – 2.15 (m, 2H), 2.13 – 1.92 (m, 3H), 1.84 – 1.67 (m, 2H), 1.60 – 1.44 (m, 3H), 1.35 – 1.20 (m, 1H), 0.89 (s, 9H), 0.04 (s, 6H). ¹³**C NMR** (101 MHz, CD_2Cl_2) δ 221.1, 63.5, 49.2, 38.5, 31.2, 30.1, 26.6, 26.1, 21.1, 18.6, -5.2. **IR** (neat) 2954, 2929, 2884, 2857, 1739, 1472, 1463, 1407, 1388, 1361, 1333, 1305, 1253, 1215, 1200, 1154, 1096, 1038, 1006, 955, 938, 887, 834, 813, 774, 72, 680, 662, 572, 544, 515 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₈H₃₂NaO₃Si [M+Na]⁺ 279.1751, found 279.1748. $\left[\alpha \right]_{D}^{26} = -61.9$ (c = 1.0, CH₂Cl₂).

(S)-4-((S)-5-(3-((*tert*-Butyldimethylsilyl)oxy)propyl)cyclopent-1-en-1-yl)but-3-yn-2-ol (S13). To a freshly prepared solution of LDA (0.2 M, 230 mg, 2.1 5mmol, 1.1 equiv) was added a solution of S12 (500 mg, 2.15 mmol, 1.0 equiv) and stirred for 30 min. After that time, TMSCI (0.272 ml, 2.15 mmol, 1.1 equiv) was added dropwise and slowly warmed to -40 °C over 30 min. The reaction was quenched with Sorensen Buffer (pH = 7.0). Et₂O was added to the mixture and the phases separated. The aqueous phase was

¹⁰ a) B. Bockstiegel, D. Enders, *Synthesis*, **1989**, *7*, 493-496; b) A. B. III Smith, Z. Liu, V. Simov, *Synlett*, **2009**, *19*, 3131-3134.

extracted with Et_2O (3x). The combined organic phases were dried over K_2CO_3 , filtered, and concentrated *in vacuo*.

The crude mixture was dissolved in THF and at 0 °C MeLi (1.6 M in hexanes, 1.27 ml, 2.04 mmol, 1.1 equiv) was added dropwise and stirred for 30 min. The solution as then cooled to -78 °C. At that temperature, Comin's reagent (948 mg, 2.41 mmol, 1.3 equiv) was added in one portion and the cooling bath was removed. After 60min, the reaction was quenched with sat. aq. NaHCO₃. Et₂O was added to the mixture and the phases separated. The aqueous phase was extracted with Et₂O (3x). The combined organic phases were dried over MgSO₄, filtered, and concentrated *in vacuo*. Flash column chromatography (hexane/EtOAc 10:1) furnished the vinyl triflate as colorless oil (600 mg, 1.54 mmol, 80%).

To a degassed solution of the crude vinyl triflate (240 mg,0.62 mmol, 1.0 equiv) and (*R*)-but-3-yn-2-ol (0.06 ml, 0.74 mmol, 1.2 equiv) in NEt₃/THF (1:1, 0.15 M) was added $PdCl_2(PPh_3)_2$ (21.7 mg, 0.03 mmol, 0.05 equiv) and Cul (11.8 mg, 0.06 mmol, 0.1 equiv) and the resulting mixture was stirred at RT for 2 h before it was filtered through a short plug of silica gel eluting with EtOAc and concentrated *in vacuo*. Purification by column chromatography (hexane/EtOAc 5:1) afforded enyne **S13** (135 mg, 0.44 mmol, 71%).

¹**H NMR** (400 MHz, CDCl₃) δ 6.03 (q, J = 2.4 Hz, 1H), 4.66 (q, J = 6.6 Hz, 1H), 3.63 (t, J = 6.6 Hz, 2H), 2.74 – 2.59 (m, 1H), 2.45 – 2.28 (m, 2H), 2.15 – 2.02 (m, 1H), 1.82 – 1.69 (m, 1H), 1.66 – 1.49 (m, 3H), 1.47 (d, J = 6.6 Hz, 3H), 1.31 – 1.17 (m, 1H), 0.90 (s, 9H), 0.06 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 137.9, 128.5, 93.2, 81.1, 63.6, 59.0, 47.8, 32.1, 30.7, 30.5, 29.8, 26.1, 24.6, 18.5, -5.1. IR (neat) 3357, 2953, 2930, 2893, 2857, 1472, 1388, 1361, 1327, 1255, 1102, 1039, 1006, 940, 910, 835, 775, 663 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₈H₃₂NaO₃Si [M+Na]⁺ 331.2064, found 331.2064. $[\alpha]_D^{26} = -7.3$ (c = 1.0, CHCl₃).

(S)-4-((S)-5-(3-((*tert*-Butyldimethylsilyl)oxy)propyl)cyclopent-1-en-1-yl)but-3-yn-2-yl acetate (S14). To a stirred solution of enyne S13 (135 mg, 0.44 mmol, 1.0 equiv) dissolved in CH_2Cl_2 (4.5 ml) at ambient temperature was added pyridine (0.177 ml, 2.19 mmol, 5.0 equiv), DMAP (10.7 mg, 0.09 mmol, 0.2 equiv), and Ac_2O (0.062 ml, 0.66 mmol, 1.5 equiv). The resulting solution was stirred for 1h before it was quenched with H_2O . The aqueous phase was extracted with Et_2O (3x). The combined organic phases were washed with sat. aq. $CuSO_4$ solution, H_2O (1x), and brine, dried over $MgSO_4$, filtered, and concentrated *in vacuo*. Purification by flash column chromatography provided propargyl acetate S14 (142 mg, 0.41 mmol, 93%) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 6.07 (q, *J* = 2.5 Hz, 1H), 5.60 (q, *J* = 6.7 Hz, 1H), 3.62 (t, *J* = 6.6 Hz, 2H), 2.73 – 2.60 (m, 0H), 2.41 – 2.31 (m, 2H), 2.14 – 2.03 (m, 4H), 1.76 (dddd, *J* = 12.9, 10.2, 6.1, 4.1 Hz, 1H), 1.62 – 1.44 (m, 6H), 1.31 – 1.17 (m, 1H), 0.90 (s, 9H), 0.05 (s, 6H). ¹³**C** NMR (101 MHz, CDCl₃) δ 170.1, 138.8, 128.3, 89.5, 81.7, 63.5, 61.1, 47.8, 32.1, 30.7, 30.5, 29.7, 26.1, 21.8, 21.3, 18.5, -5.1. **IR** (neat) 2952, 2930, 2857, 2227, 1746, 1472, 1463, 1371, 1340, 1308, 1230, 1097, 1033, 1009, 953, 939, 835, 813, 775, 713,

662, 610, 510, 470 cm⁻¹. **HRMS (MALDI)**: m/z calcd for C₂₀H₃₄NaO₃Si [M+Na]⁺ 373.2169, found 373.2170. $\left[\alpha\right]_{D}^{26} = -85.5$ (c = 1.0, CHCl₃).

(*S*)-4-((*S*)-5-(3-Hydroxypropyl)cyclopent-1-en-1-yl)but-3-yn-2-yl acetate (S15). To a stirred solution of propargyl acetate S14 (140 mg, 0.40 mmol, 1.0 equiv) in dry THF (3.3 ml) in 0 °C was added TBAF (1.0 M in THF, 0.799 ml, 0.80 mmol, 2.0 equiv). After the addition, the solution was allowed to warm to ambient temperature and stirred for another 90 min. The mixture was quenched by the addition of sat. aq. NaHCO₃ solution. EtOAc was added to the mixture and the phases separated. The aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography provided primary alcohol S15 (89 mg, 0.38 mmol, 94%) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 6.08 (q, *J* = 2.6 Hz, 1H), 5.56 (q, *J* = 6.7 Hz, 1H), 3.66 (t, *J* = 6.5 Hz, 2H), 2.83 – 2.63 (m, 0H), 2.43 – 2.31 (m, 2H), 2.16 – 2.04 (m, 4H), 1.80 – 1.69 (m, 1H), 1.67 – 1.58 (m, 2H), 1.51 (d, *J* = 6.7 Hz, 4H), 1.40 – 1.27 (m, 1H). ¹³**C** NMR (101 MHz, CDCl₃) δ 170.3, 139.0, 128.0, 89.7, 81.7, 63.3, 61.2, 47.6, 32.1, 30.6, 30.3, 29.8, 21.6, 21.3. **IR** (neat) 3420, 3054, 2989, 2937, 2855, 2226, 2095, 1770, 1743, 1619, 1450, 1372, 1339, 1309, 1232, 1076, 1057, 1032, 956, 844, 810, 612, 533, 483 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₄H₂₀NaO₃ [M+Na]⁺ 259.1305, found 259.1305. $[\alpha]_D^{26} = -134.77$ (c = 1.0, CHCl₃).

(*S*)-4-((*S*)-5-(3-Oxopropyl)cyclopent-1-en-1-yl)but-3-yn-2-yl acetate (12). To a solution of S15 (85 mg, 0.36 mmol, 1.0 equiv) in CH_2Cl_2 (3.6 ml) at RT was added *t*-BuOH (68 µl, 0.72 mmol, 2.0 equiv) and DMP (305 mg, 0.72 mmol, 2.0 equiv). The mixture was stirred for 15 min and then quenched by the addition of sat. aq. Na₂S₂O₃. The mixture was poured on sat. aq. NaHCO₃ solution and CH_2Cl_2 was added. The phases were separated and the aqueous phase was extracted with CH_2Cl_2 (3x), dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography provided aldehyde **12** (71 mg, 0.30 mmol, 84%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 9.79 (t, *J* = 1.8 Hz, 1H), 6.10 (q, *J* = 2.5 Hz, 1H), 5.57 (q, *J* = 6.7 Hz, 1H), 2.78 – 2.67 (m, 1H), 2.49 (td, *J* = 7.8, 1.8 Hz, 2H), 2.42 – 2.33 (m, 2H), 2.16 – 2.05 (m, 4H), 2.04 – 1.94 (m, 1H), 1.70 – 1.61 (m, 1H), 1.50 (d, *J* = 6.7 Hz, 3H), 1.48 – 1.43 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 202.7, 170.1, 139.6, 127.6, 90.1, 81.3, 61.0, 47.1, 41.7, 32.1, 29.6, 26.4, 21.7, 21.3. **IR** (neat) 2989, 2937, 2947, 2723, 2226, 2099, 1740, 1724, 1448, 1412, 1371, 1339, 1307, 1229, 1150, 1088, 1076, 1031, 954, 887, 843, 656, 611, 532, 497, 480 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₄H₁₉O₃ [M+H]⁺ 235.1329, found 235.1328. $[\alpha]_D^{26}$ = -117.6 (c = 1.0, CHCl₃).

(3aS,8S,8aS)-8-Hydroxy-3-methyl-4,5,5a,6,7,8-hexahydrocyclopenta[c]pentalen-1(3aH)-one (13). Enyne 12 (53 mg, 0.23 mmol, 1.0 equiv) was dissolved in THF (4.5 ml) and H₂O (9.0 μ l) was added at ambient temperature. 3 (8.73 mg, 0.011 mmol, 0.05 equiv) was added in one portion and stirred for 16h. Then the reaction mixture was filtered through a short pad of silica gel washing with EtOAc, concentrated in vacuo, and subsequently subjected to silica gel flash chromatogroaphy to afford triquinine 13 (26 mg, 0.135 mmol, 60%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 6.04 – 5.75 (m, 0H), 4.70 – 4.38 (m, 1H), 3.33 (d, *J* = 8.9 Hz, 0H), 2.48 – 2.32 (m, 1H), 2.13 – 2.08 (m, 3H), 2.06 – 1.99 (m, 1H), 1.96 – 1.90 (m, 1H), 1.88 – 1.80 (m, 1H), 1.75 (ddt, *J* = 13.1, 6.6, 2.1 Hz, 1H), 1.68 – 1.54 (m, 3H), 1.50 (ddt, *J* = 12.9, 6.8, 2.1 Hz, 1H), 1.39 – 1.31 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 212.8, 180.4, 130.8, 76.9, 71.7, 51.2, 46.6, 35.3, 32.1, 28.2, 27.2, 17.8. **IR** (neat) 3405, 3067, 2946, 2867, 1678, 1615, 1470, 1435, 1377, 1305, 1285, 1237, 1197, 1169, 1099, 1084, 1051, 1038, 1021, 979, 960, 925, 911, 854, 810, 762, 650, 626, 603, 586, 571, 512 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₂H₁₆NaO₂ [M+Na]⁺ 215.1043, found 215.1042. $[\alpha]_D^{26}$ = +32.2 (c = 1.0. CHCl₃).

6. Synthesis of spiro[4.4]nonane 14

Reagents and Conditions: a) PhLi (1.0 equiv), LiBr (2.0 equiv), **S16** (1.0 equiv), -78° C; then PhLi (1.1 equiv), then **S17** (1.0 equiv), 10 min, then PhLi (1.1 equiv), then -78° C to RT; then 1,2-diiodoethane (1.2 equiv), -78° C to RT; 47%, E/Z = 6:1; b) (R)-3-butyn-2-ol (1.3 equiv), PdCl₂(PPh₃)₂ (5 mol%), CuI (10 mol%), Et₃N/THF (2:1), 63%, E/Z = 6:1; c) Ac₂O (1.1 equiv), DMAP (0.1 equiv), pyridine (1.5 equiv), CH₂Cl₂, 82%, E/Z = 6:1; d) 9-BBN (1.8 equiv), THF, 0 °C to RT, then H₂O, NaBO₃·4H₂O (30.0 equiv), RT, 87%, E/Z = 6:1; e) DMP (2.0 equiv), t-BuOH (2.0 equiv), CH₂Cl₂, 89%, E/Z = 6:1.

(R,E)-5-Benzylidenenon-8-en-3-yn-2-ol (S19). To a solution of anhydrous LiBr (3.42 g, 39.4 mmol, 2.0 equiv) in dry THF (90 ml) at ambient temperature was added S16¹¹ (8.10 g, 19.7 mmol, 1.0 equiv) and stirred for 10 min. The resulting suspension was cooled to −78°C and PhLi (1.9 M in Bu₂O, 10.37 ml, 19.7 mmol, 1.0 equiv) was added dropwise. The solution was allowed to warm to RT over 15 min and then stirred for another 30 min at that temperature. Then the solution was recooled to -78°C and benzaldehyde (2.0 ml, 19.7 mmol, 1.0 equiv) in THF (5 ml) was added dropwise. After 10 min, PhLi (1.9 M in Bu₂O, 11.40 ml, 21.7 mmol 1.1 equiv) was added dropwise and stirred for 30 min at -78°C, then allowed to warm to RT over 15 min. After 30 min at ambient temperature, the mixture was cooled to -78°C and transferred via cannula to a solution of 1,2-diiodoethane (1.0 M in THF, 1.2 equiv) at –78°C and stirred for 30 min. Then the solution was allowed to warm to RT and stirred for another hour. The resulting mixture was quenched by the addition of sat. aq. $Na_2S_2O_3$ solution and stirred vigorously for 5 min. The phases were separated and the aqueous phase was extracted with $Et_2O(3x)$. The combined organic phases were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. Purification by flash column chromatography (hexane/EtOAc 40:1) afforded the corresponding vinyl iodide S18 (2.60 g, 9.2 mmol, 47%) as a mixture of diastereomers (E/Z = 6:1) and a yellow oil, which contained impurities unseparable by silica gel chromatography and was used in the following step directly.

To a degassed solution of the vinyl iodide (584 mg, 2.06 mmol) and (*R*)-but-3-yn-2-ol (0.18 ml, 1.1 equiv) in NEt₃/THF (2:1, 0.15 M) was added PdCl₂(PPh₃)₂ (72 mg, 0.10 mmol, 0.05 equiv) and Cul (39 mg, 0.21 mmol, 0.1 equiv) and the resulting mixture was stirred at RT for 2 h before it was filtered through a short plug of silica gel eluting with EtOAc and concentrated *in vacuo*. Purification by column chromatography (hexane/EtOAc 8:1) afforded enyne **S19** (310 mg, 1.37 mmol, 67%, E/Z = 6:1) as an orange oil.

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 2H), 7.28 – 7.22 (m, 3H), 6.87 (s, 1H), 5.93 – 5.73 (m, 1H), 5.09 – 5.02 (m, 1H), 5.01 – 4.94 (m, 1H), 2.51 – 2.44 (m, 2H), 2.41 – 2.36 (m, 2H), 1.53 (d, *J* = 6.6 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 137.8, 136.7, 136.6, 128.9, 128.5, 127.5, 124.1, 115.2, 91.3, 86.2, 59.1, 32.6, 30.8, 24.7. IR (neat) 3342, 3079, 2980, 2929, 1641, 1598, 1493, 1446, 1370, 1328, 1182, 1117, 1076, 1032, 997, 943, 916, 871, 755, 696, 634, 542, 508, 414 cm⁻¹. HRMS (ESI): m/z calcd for C₁₆H₁₈NaO [M+Na]⁺ 249.1250, found 249.1250. $[\alpha]_D^{26}$ = +23.0 (c = 0.5, CHCl₃).

¹¹ Q. Yang, C. Draghici, J. T. Njardarson, F. Li, B. R. Smith, P. Das, Org. Biomol. Chem., 2014, 12, 330-344.

(*R*,*E*)-5-Benzylidenenon-8-en-3-yn-2-yl acetate (S20). To a stirred solution of propargyl alcohol S19 (250 mg, 1.11 mmol) dissolved in CH₂Cl₂ (10 ml) at ambient temperature was added pyridine (0.45 ml, 5.52 mmol, 5.0 equiv), DMAP (27.0 mg, 0.22 mmol, 0.2 equiv), and Ac₂O (0.16 ml, 1.66 mmol, 1.5 equiv). The resulting solution was stirred for 1 h before it was quenched with H₂O. The aqueous phase was extracted with Et₂O (3x). The combined organic phases were washed with sat. aq. CuSO₄ solution, H₂O (1x), and brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (hexane/EtOAc 20:1) provided propargyl acetate S20 (260 mg, 0.97 mmol, 88%, E/Z = 6:1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 2H), 7.26 – 7.21 (m, 3H), 6.88 (s, 1H), 5.60 (q, *J* = 6.6 Hz, 1H), 3.63 (t, *J* = 6.4 Hz, 2H), 2.40 (td, *J* = 7.4, 1.2 Hz, 2H), 2.10 (d, *J* = 1.4 Hz, 3H), 1.74 – 1.63 (m, 2H), 1.63 – 1.56 (m, 2H), 1.55 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 137.2, 136.5, 135.6, 128.9, 128.5, 127.5, 124.4, 87.6, 86.8, 62.8, 61.1, 32.3, 30.9, 24.6, 21.6, 21.3. IR (neat) 2928, 2855, 1742, 1641, 1493, 1446, 1371, 1339, 1262, 1075, 134, 954, 918, 845, 756, 697, 607, 497, 414 cm⁻¹. HRMS (ESI): m/z calcd for C₁₈H₂₀NaO₂ [M+Na]⁺ 291.1356, found 291.1360. $[\alpha]_D^{26}$ = +97.1 (c = 0.5, CHCl₃).

(*R*,*E*)-5-Benzylidene-9-hydroxynon-3-yn-2-yl acetate (S21). To a solution of 9-BBN (0.5 M in THF, 2.68 ml, 1.34 mmol, 1.8 equiv) was added THF (5.4 ml) and cooled to 0 °C. A solution of S20 (200 mg, 0.75 mmol, 1.0 equiv) in THF (0.9 ml) was added dropwise. The resulting mixture was stirred at RT for 2 h. The mixture was then cooled to 0 °C and diluted with H₂O (7 ml), THF (2 ml) and sodium perborate tetrahydrate (3.44 g, 22.4 mmol, 30.0 equiv) was added. The mixture was allowed to warm up to RT and was stirred at the same temperature for 2 h. The phases were separated and the aqueous phase was extracted with EtOAc (3x). The combined organic extracts were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo*. Flash chromatography (hexane/EtOAc 15:1 to 2:1) provided the desired product S21 (186 mg, 0.65 mmol, 87%, E/Z = 6:1) as a faint yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 2H), 7.28 – 7.21 (m, 3H), 6.88 (s, 1H), 5.60 (q, *J* = 6.7 Hz, 1H), 3.63 (t, *J* = 6.3 Hz, 2H), 2.40 (t, *J* = 7.9 Hz, 2H), 2.10 (s, 3H), 1.74 – 1.63 (m, 2H), 1.63 – 1.56 (m, 2H), 1.55 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 137.0, 136.4, 135.4, 128.8, 128.3, 127.4, 124.2, 87.5, 86.7, 62.7, 61.0, 32.2, 30.8, 24.5, 21.5, 21.2. **IR** (neat) 3424, 2988, 2936, 2865, 2217, 1739, 1597, 1492, 1446, 1371, 1338, 1308, 1230, 1197, 1157, 1061, 1030, 954, 922, 874, 845, 757, 697, 611, 510, 415

cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₈H₂₂NaO₃ [M+Na]⁺ 309.1461, found 309.1461. $[\alpha]_D^{26}$ = +138.0 (c = 1.0, CHCl₃).

(*R*,*E*)-5-Benzylidene-9-oxonon-3-yn-2-yl acetate (14). To a solution of S21 (60 mg, 0.21 mmol, 1.0 equiv) in CH_2Cl_2 (2.1 ml) at RT was added *t*-BuOH (30 µl, 0.31 mmol, 2.0 equiv) and DMP (68 mg, 0.31 mmol, 2.0 equiv). The mixture was stirred for 30 min and then quenched by the addition of sat. aq. $Na_2S_2O_3$. The mixture was poured on sat. aq. $NaHCO_3$ solution and CH_2Cl_2 was added. The phases were separated and the aqueous phase was extracted with CH_2Cl_2 (3x), dried over MgSO₄, filtered, and concentrated *in vacuo*. Purification by flash column chromatography (hexane/EtOAc 4:1) provided aldehyde **13** (50 mg, 0.18 mmol, 84%, E/Z = 6:1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 9.74 (t, *J* = 1.5 Hz, 1H), 7.38 – 7.31 (m, 2H), 7.28 – 7.20 (m, 3H), 6.91 (s, 1H), 5.61 (q, *J* = 6.7 Hz, 1H), 2.52 – 2.37 (m, 4H), 2.10 (s, 3H), 1.98 – 1.86 (m, 2H), 1.55 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.2, 170.0, 137.7, 136.1, 128.7, 128.4, 127.5, 123.2, 87.8, 86.2, 60.9, 43.1, 30.3, 21.5, 21.2, 20.7. **IR** (neat) 2989, 2937, 2724, 1739, 1492, 1446, 1371, 1339, 1307, 1232, 1092, 1063, 1033, 955, 923, 845, 758, 698, 608, 510, 417 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₈H₂₀NaO₃ [M+Na]⁺ 307.1305, found 307.1307. $[\alpha]_D^{26}$ = +107.4 (c = 1.0, CHCl₃).

(4S,5R,6R)-6-Hydroxy-3-methyl-4-phenylspiro[4.4]non-2-en-1-one (15). Enyne 14 (37 mg, 0.13 mmol, 1.0 equiv) was dissolved in THF (2.6 ml) and H_2O (5.2 µl) was added at ambient temperature. 3 (5.0 mg, 0.0065 mmol, 0.05 equiv) was added in one portion and stirred for 2 h. Then the reaction mixture was filtered through a short pad of silica gel washing with EtOAc, concentrated in vacuo, and subsequently subjected to silica gel flash chromatogroaphy (hexane/EtOAc 2:1) to afford triquinine 15 as a single diastereomer (24 mg, 0.10 mmol, 76%) as a whit solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.22 (m, 4H), 6.28 – 6.02 (m, 1H), 4.25 – 4.19 (m, 2H), 2.18 – 2.07 (m, 1H), 1.99 (s, 3H), 1.79 – 1.60 (m, 2H), 1.59 – 1.46 (m, 1H), 1.28 – 1.17 (m, 1H), 1.17 – 1.08 (m, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 213.0, 180.4, 139.0, 131.0, 128.8, 127.3, 80.0, 65.2, 55.6, 32.9, 29.3, 19.3, 18.6. **IR** (neat) 3396, 3061, 3027, 2956, 2875, 1681, 1623, 1601, 1493, 1454, 1435, 1375, 1309, 1208, 1079, 1017, 880, 851, 741, 703, 627, 556, 493, 458, 417 cm⁻¹. **HRMS (MALDI):** m/z calcd for C₁₆H₁₈NaO₂ [M+Na]⁺ 265.1199, found 265.1198. $[\alpha]_D^{26} = -124.6$ (c = 1.0, CHCl₃). **SFC** Daicel Chiralcel OJ-H, 10% MeOH, 2.0 mL/min., 25 °C, 78% *ee* (t_R (1, major enantiomer) = 3.35 min, t_R (2, minor enantiomer) = 3.91 min).

7. NMR Spectra

67.1 9.70 <1.49 QAc Me CD₂Cb,400 MHz 5.5 5.0 4.5 f1 (ppm) 3.41 H 0.86-F91.6 2.0 2.07 2.01 4.40J 1.00-1.5 7.0 6.0 4.0 3.5 2.5 7.5 6.5 10.5 10.0 9.5 9.0 8.5 8.0 3.0 1.0 0.5 0.0 -141.0 135.3 135.3 135.3 -135.2 -125.2 -125.2 -125.2 -125.2-203.1 --63.0 245 23.6 23.2 88.7 87.9 -45.5 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 f1 (ppm) 40 30 0 -10 20 10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-10

0

210 200 110 100 f1 (ppm) ò -10 140 130 120

Synthesis of Triquinane 7

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S148

8. SFC Traces

200000 --MB5-002-B97 - CH5 2 OH Intensity [µV] 100000 Ĥ Mé racemic 0 10.0 0.0 5.0 15.0 20.0 Retention Time [min]

	ro	m	110	gra	am

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	5	10.453	3546651	196673	45.063	51.718	N/A	7842	4.520	1.489
2	Unknown	5	12.880	3624120	156017	46.047	41.027	N/A	7267	7.761	1.694
3	Unknown	5	18.393	546574	18979	6.945	4.991	N/A	8047	2.044	1.144
4	Unknown	5	19.813	153167	8613	1.946	2.265	N/A	19130	N/A	0.785

Chromatogram

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	9	9.827	17366878	985771	86.238	90.230	N/A	7120	4.756	1.675
2	Unknown	9	12.187	589464	31195	2.927	2.855	N/A	8480	5.549	1.227
3	Unknown	9	15.960	303546	10781	1.507	0.987	N/A	5855	1.776	1.641
4	Unknown	9	17.380	1878522	64766	9.328	5.928	N/A	8175	N/A	1.602

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	9	7.093	5463505	457463	50.303	53.210	N/A	8001	2.558	1.452
2	Unknown	9	7.953	5397626	402274	49.697	46.790	N/A	7937	N/A	1.281

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	9	8.127	9286833	622648	98.344	98.381	N/A	6616	2.342	1.580
2	Unknown	9	9.127	156418	10246	1.656	1.619	N/A	6391	N/A	1.237

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	9	11.567	9212826	405614	41.566	61.741	N/A	6342	7.964	1.418
2	Unknown	9	17.267	1791783	54302	8.084	8.266	N/A	6537	5.486	1.424
3	Unknown	9	23.493	9322488	171667	42.061	26.130	N/A	4368	2.836	1.317
4	Unknown	9	28.260	1837089	25382	8.289	3.863	N/A	3365	N/A	0.950

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	9	14.087	6261641	271810	49.964	51.903	N/A	8481	2.373	1.422
2	Unknown	9	15.600	6270766	251878	50.036	48.097	N/A	8747	N/A	1.351

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	9	6.647	8179219	719969	43.841	48.898	N/A	7984	2.255	1.670
2	Unknown	9	7.360	8244457	640244	44.191	43.483	N/A	7641	9.835	1.655
3	Unknown	9	11.360	1124904	60446	6.030	4.105	N/A	9005	3.611	1.518
4	Unknown	9	13.260	1108012	51732	5.939	3.513	N/A	8467	N/A	1.457

Chromatogram

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	9	6.893	9972790	834716	86.220	91.479	N/A	7580	2.267	1.531
2	Unknown	9	7.633	257668	20508	2.228	2.248	N/A	8167	7.097	1.799
4	Unknown	9	11.613	38677	2605	0.334	0.286	N/A	3486	2.832	1.180
3	Unknown	9	13.613	1297580	54633	11.218	5.987	N/A	7482	N/A	1.433

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	9	10.673	5364799	306007	44.392	49.145	N/A	8725	2.022	1.642
2	Unknown	9	11.647	5462269	276833	45.199	44.460	N/A	8402	9.196	1.660
3	Unknown	9	17.733	698454	23473	5.780	3.770	N/A	7502	7.017	1.468
4	Unknown	9	23.800	559504	16347	4.630	2.625	N/A	10829	N/A	1.723

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	9	10.547	12409365	679915	86.418	91.380	N/A	7546	2.147	1.654
2	Unknown	9	11.620	364495	20476	2.538	2.752	N/A	8089	6.924	1.086
4	Unknown	9	17.653	36597	2353	0.255	0.316	N/A	3293	5.150	0.940
3	Unknown	9	23.473	1549311	41311	10.789	5.552	N/A	8218	N/A	1.501

Chroma	itogram
	The second

Chro	mato	oram
CIIIO	matu	gram

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA Ch2 214nm@1.2nm	1.365	234647	14.04	112140
2	PDA Ch2 214nm@1.2nm	1.528	228931	13.69	101497
3	PDA Ch2 214nm@1.2nm	1.738	607220	36.32	206533
4	PDA Ch2 214nm@1.2nm	2.222	600924	35.95	163695

Auto-Scaled Chromatogram

Processed Channel: PDA Ch2 214nm@1.2nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA Ch2 214nm@1.2nm	1.378	2563036	21.32	1199676
2	PDA Ch2 214nm@1.2nm	1.534	173323	1.44	76593
3	PDA Ch2 214nm@1.2nm	1.779	8823315	73.38	2368879
4	PDA Ch2 214nm@1.2nm	2.251	464284	3.86	129725

Processed Channel: PDA Ch2 214nm@1.2nm

	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA Ch2 214nm@1.2nm	2.949	1797538	6.99	400967
2	PDA Ch2 214nm@1.2nm	3.255	1795074	6.98	372444
3	PDA Ch2 214nm@1.2nm	3.601	11070054	43.05	1669990
4	PDA Ch2 214nm@1.2nm	4.136	11051684	42.98	1483420

Auto-Scaled Chromatogram 1.00-3.571 0.80 O i-₽r OH 0.60-AU 0.40 Н Mé -3.125 (R,R,S)-**2**I 3.968 0.20--2.866 0.00-3.00 5.00 7.00 1.00 2.00 4.00 8.00 9.00 6.00 0.00 10.00 Minutes

Processed Channel: PDA Ch2 214nm@1.2nm

		\sim	and the second second		
	Processed Channel	Retention Time (min)	Area	% Area	Height
1	PDA Ch2 214nm@1.2nm	2.866	44287	0.76	11456
2	PDA Ch2 214nm@1.2nm	3.125	664729	11.37	151009
3	PDA Ch2 214nm@1.2nm	3.571	4836731	82.72	990670
4	PDA Ch2 214nm@1.2nm	3.968	301670	5.16	62114

#	Peak Name	CH	tR [min]	Area [µV-sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	9	18.327	3512980	104617	48.464	58.847	N/A	7224	7.086	1.758
2	Unknown	9	26.060	3735665	73159	51.536	41.153	N/A	6179	N/A	1.809

#	Peak Name	CH	tR [min]	Area [µV-sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	9	3.373	3719175	467146	51.768	52.850	N/A	4659	2.702	1.668
2	Unknown	9	3.940	3465079	416757	48.232	47.150	N/A	5003	N/A	1.341

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	9	3.347	3727002	477828	88.627	89.409	N/A	4563	2.660	1.551
2	Unknown	9	3.907	478269	56602	11.373	10.591	N/A	4866	N/A	1.298

9. X-Ray Crystallographic Data

9.1 X-Ray Cystallographic Data of 2e

Structure deposited at the Cambridge Crystallographic Data Centre (CCDC 1517155)

CCDC Deposit Number	CCDC 1517155
Empirical formula	$C_{15}H_{15}FO_2$
Formula weight	246.27
Temperature/K	100.0(2)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	7.4982(2)
b/Å	8.0473(2)
c/Å	20.6908(6)
α/°	90
β/°	99.071(2)
γ/°	90
Volume/ų	1232.87(6)
Z	4
ρ _{calc} g/cm ³	1.327
µ/mm⁻¹	0.800
F(000)	520.0
Crystal size/mm ³	$0.2 \times 0.15 \times 0.03$
Radiation	CuKα (λ = 1.54178)

4.324 to 133.278
-7 ≤ h ≤ 8, -9 ≤ k ≤ 9, -24 ≤ l ≤ 24
25303
4301 [R_{int} = 0.0290, R_{sigma} = 0.0172]
4301/17/350
1.078
$R_1 = 0.0301$, $wR_2 = 0.0773$
$R_1 = 0.0302$, $wR_2 = 0.0774$
0.20/-0.25
0.07(5)

9.2 X-Ray Crystallographic Data of 2j

Structure deposited at the Cambridge Crystallographic Data Centre (CCDC 1517154)

CCDC Deposit Number	CCDC 1517154
Empirical formula	$C_{22}H_{27}NO_5$
Formula weight	385.44
Temperature/K	100.0(2)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	12.6297(2)
b/Å	11.1898(2)
c/Å	14.5794(3)
α/°	90
β/°	96.0660(10)
γ/°	90
Volume/ų	2048.88(6)
Z	4
ρ _{calc} g/cm ³	1.250
μ/mm ⁻¹	0.720
F(000)	824.0
Crystal size/mm ³	$0.25 \times 0.17 \times 0.05$
Radiation	CuKα (λ = 1.54178)
20 range for data collection/°	6.096 to 134.282

Index ranges $-15 \leq h \leq 15, \, -13 \leq k \leq 13, \, -17 \leq l \leq 14$ **Reflections collected** 31920 Independent reflections 7145 [$R_{int} = 0.0324$, $R_{sigma} = 0.0281$] Data/restraints/parameters 7145/499/643 Goodness-of-fit on F² 1.036 Final R indexes [I>=2 σ (I)] $R_1 = 0.0970$, $wR_2 = 0.2559$ Final R indexes [all data] $R_1 = 0.1005$, $wR_2 = 0.2603$ Largest diff. peak/hole / e Å⁻³ 0.84/-0.62 **Flack parameter** 0.03(8)

9.3 X-Ray Crystallographic Data of 14

Structure deposited at the Cambridge Crystallographic Data Centre (CCDC 1913669)

Empirical formula	$C_{16}H_{18}O_2$
Formula weight	242.30
Temperature/K	100.0(1)
Crystal system	monoclinic
Space group	C2
a/Å	14.76169(11)
b/Å	6.20905(4)
c/Å	14.27446(9)
α/°	90
β/°	95.4272(6)
γ/°	90
Volume/ų	1302.475(16)
Z	4
ρ _{calc} g/cm³	1.236
μ/mm⁻¹	0.632
F(000)	520.0

Crystal size/mm ³	$0.234 \times 0.214 \times 0.139$
Radiation	CuKα (λ = 1.54184)
20 range for data collection/°	6.22 to 158.98
Index ranges	$-18 \le h \le 18, -7 \le k \le 7, -18 \le l \le 18$
Reflections collected	25439
Independent reflections	2793 [R _{int} = 0.0297, R _{sigma} = 0.0126]
Data/restraints/parameters	2793/4/170
Goodness-of-fit on F ²	1.075
Final R indexes [I>=2σ (I)]	R ₁ = 0.0305, wR ₂ = 0.0773
Final R indexes [all data]	R ₁ = 0.0308, wR ₂ = 0.0775
Largest diff. peak/hole / e Å-3	0.15/-0.17
Flack parameter	0.00(5)