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S1. Mean Field approximation for lateral interactions in a multicomponent mixture. 

Let us consider a gas mixture with m number of components and let c, cʹ denote the indices of 

the gas components. At equilibrium, the Gibbs free energy of adsorption for c-th component 

of the gas mixture for a given coverage (θc) can be calculated from the partial pressure, Pc of 

that component: 

   (S1) 

For a m-component gas mixture, the coverage dependent Gibbs free energy of adsorption for 

the component c, under the mean-field approximation can be generalized as1, 

  

 (S2) 

with Nccʹ denoting the maximum number of interacting c···cʹ neighbors. The multiplier ½ avoids 

the double counting of the interactions.  denotes the average lateral interaction energy per 

pair of adsorbed molecules of c-th and cʹ-th component of the gas mixture. 

   (S3) 

Here,  is the ab initio interaction energy for a particular pair of adsorbed molecules 

of components c and cʹ, respectively. 

 The first term on the right-hand side of the Eq. (S2), ΔGc is the coverage independent 

Gibbs adsorption free energy and is related to the zero coverage adsorption equilibrium 

constant, . ΔGc is the binding strength of gas component c to the isolated 

adsorption sites. The second and third terms of the right-hand side of Eq. (S2) are the lateral 

interaction energies between the gas molecules of same (cc, pure gas term) and different 

components (ccʹ, cʹ ≠ c, mixing term), respectively. The last term is the configurational entropy 

(Langmuir entropy term). Here, it is assumed that molecules of different components are 

distributed randomly on the surface, which was also previously assumed by Fowler and 

Guggenheim2. This assumption makes the configurational entropy term, i.e., the last term in 
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Eq. (S2), dependent only on the total coverage, which is the sum of coverages of all 

components, i.e., . 

Comparing the right-hand sides of the Eq. (S1) and (S2), we get, 

   (S4) 

The mean-field equilibrium constant for the c-th mixture component is, 

   

   (S5) 

Replacing the first three terms of the right-hand side of Eq. (S4) using the expression from 

Eq. (S5) we obtain, 

   

    

   

   (S6) 

The Eq. (S6) is a system of m equations. Summing over all components on both side of the 

equation we obtain, 
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Inserting this expression of (1-q) in Eq. (S6), we obtain the simplified version of the 

competitive mean-field (CMF) model, 

   (S8) 

When lateral interactions are non-negligible,  becomes a function of coverages and 

consequently, Eq (S8) turns into a self-consistent equation where the coverage of each gas 

component, , is also a function of itself. We solved this “competitive MF 

model”, using an iterative process with an initial guess of coverages from competitive 

Langmuir model, i.e., . Usually, a few iterations are sufficient to yield converged 

surface coverages, which is comparable to the GCMC coverages; see left panel of Figure S1 

for the results for a 10:90 CO2/N2 mixture. Figure S1, right panel, shows that selectivities of 

CO2/N2 are almost converged after the first iteration. 

 

     
Figure S1. Left: Comparison of CMF converged coverages and GCMC coverages for a 10:90 
CO2/N2 mixture. Right: Convergence of CMF CO2 selectivities for a 10:90 CO2/N2 mixture 
with respect to the number of iterations. The convergence threshold for MF calculations were 
10-6.  

 The ab initio CMF calculations are done in two ways: (i) without correcting for the gas 

phase non-ideality and (ii) correcting for the gas phase non-ideality. In the former just partial 
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pressures are replaced with the respective fugacities. The fugacities for each mixture 

component are calculated using the Redlich-Kwong equation of state,3 which is also used in 

GCMC simulations to account for the gas phase non-ideality.4  

  

 

Figure S2. Comparison of CO2 selectivities obtained from ab initio lattice GCMC (triangles) 

and ab initio MF (lines) calculations, respectively, for a 10:90 CO2/N2 mixture at 298 K. 

 

 In Figure S2, the CO2 selectivities obtained from converged ab initio CMF calculations 

(lines) are compared with converged ab initio GCMC simulations (red triangles). CMF results, 

regardless of fugacity corrected or not corrected, are in excellent agreement with the reference 

GCMC results.  A small deviation between the selectivities obtained from MF model without 

fugacity correction and GCMC simulation is noticeable when total pressure is higher than 2 

atm. The reason is that, Redlich-Kwong equation of state3 predicts a smaller fugacity 

coefficient for CO2 than for N2. Moreover, at pressures higher than 2 atm, the ratio of Redlich-

Kwong fugacity coefficients for CO2 and N2 decreases with increasing pressure, making CO2 

selectivities almost constant with increasing pressure. 
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S2. Derivation of the geometric mean mixing rule 

The Lennard-Jones potential between two molecules: A and B can be expressed as 

   (S9) 

with RAB and σAB denoting the center of mass distance and collision diameter (i.e. distance 

when the inter-atomic potential is zero) between the molecule A and B , respectively. The depth 

of the potential well, εAB, is the interaction energy of the pair of the molecules at the potential-

minimum, which appears at inter-molecular distance, 21/6 σAB. In molecular simulations, the σ 

and ε parameters for AB pairs are routinely estimated from the average of those parameters for 

the AA and BB pairs. The collision diameter for the AB pair is chosen as the arithmetic mean 

of the collision diameters of the AA and BB pairs.5 

   (S10) 

This rule, which is known as Lorentz combination rule, is mathematically correct for hard 

sphere molecules.  

 The fundamental origin of the attractive part of the Lennard-Jones potential is the 

London dispersion interaction.5 

   (S11) 

Comparing the coefficients of  in Eqs. (S9) and (S11) and utilizing the well-known 

expression of C6AB from London approximation we get,  

   (S12) 

where α and I represent the polarizabilities and the ionization potentials of the molecules, 

respectively. By eliminating α from the above equation, Hudson and McCoubrey obtained the 

following relation,6  

6 12
AB AB

LJ AB AB
AB AB

( ) 4 s se
é ùæ ö æ ö

= - -ê úç ÷ ç ÷
è ø è øê úë û

U R
R R

( )AB AA BB
1
2

s s s= +

( ) 6AB
London AB 6

AB
= -
CU R
R

6
AB1/ R

A B A B6
AB AB 6AB

A B

34
2

a ae s = = ´
+
I IC

I I



S7 
 

   (S13) 

where Lorentz combination rule, Eq.(S10), is used to approximate the collision diameter, σAB, 

for unlike gas molecules. 

The b-parameter of the van der Waal’s equation of state,  

   (S14) 

with V̅ denoting the molar volume of the gas, can be obtained from critical temperature and 

pressure measurements of the considered gases and they are available in the literature7. If  

molecules are approximated as hard spheres then it can be shown that the b-parameters are 

proportional to the volume of a single molecule (VA),8 

   (S15) 

with NAvo denoting the Avogadro’s number. Inserting this result into Eq. (S13) we obtain, 

   (S16) 

where the b̃AB and ĨAB are the correction factors due to different size and different ionization 

energies of the considered molecules. They have the following expressions, 

   (S17) 

which can be calculated by using the available experimental data for the van der Waal’s b-

parameters7 and the ionization potentials (I)9 of the considered gas molecules.  

 Table S1 shows the measured values of van der Waal’s a and b parameters together 

with the ionization energies (I) of the gas molecules considered here. We used this data to 

calculate the correction factors b̃ and Ĩ for the gas mixtures, which are shown in table S2. 
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Comparison of the van der Waal’s b parameters for the different gases confirms the size of the 

molecules are very similar and consequently the correction factors b ̃are close to unity. All the 

molecules considered here have also very similar ionization energies as all of their highest 

occupied molecular orbitals (HOMO) are originating from 2p-levels. Consequently, the factors 

Ĩ are also close to unity. 

 

Table S1. The measured van der Waal’s a and b-parameter, volume of a gas molecules (Vm) 

and the ionization energies (I) for the gas molecules studied in this work. The numbers in 

parentheses show the percentage values relative to CO2.  

Gas (A/B) a (L2bar/mol2) a b (L/mol) a Vc×1026 (L) b I (eV) c 
CO 1.472  (40.2)  0.03948  (92.1) 1.6387 (92.1) 14.014 (101.7) 
N2 1.370  (37.5)    0.0387 (90.3) 1.6063 (90.3) 15.581 (113.1) 

CH4 2.300  (62.9) 0.04301 (100.3) 1.7852 (100.3)    12.61 (91.5) 
CO2   3.658  (100.0) 0.04286 (100.0) 1.7790 (100) 13.777 (100.0) 

a From ref.7  b calculated from b using Eq. (S15)  c From ref9 

 

Table S2. Comparison of the correction factors b̃ and Ĩ calculated using Eq. (S17) for the gas-

mixtures studied in this work. Both correction factors are unity for a pair of same molecules.  

Pair (A···B) b̃ Ĩ 
CH4···N2 0.9991 0.9944 
CO···N2 0.9999 0.9985 
CO2···N2 0.9991 0.9981 

CO2···CH4 0.9999 0.9990 

 If both of these correction factors are unity, Berthelot’s combination rule  

                                                 (S18) 

is recovered.  
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S3. Additional figures for ideal mixtures - CO/N2 and CH4/N2 
 

 
Figure S3. Comparison of selectivities for ideal mixtures obtained from: (i) GCMC 

simulations which is the target data and (ii) CMF calculations based on ab initio energies. 

Closed and open symbols (diamonds: CO/N2, circles: CH4/N2) are the selectivities obtained 

from GCMC and GCMC-AM simulations, respectively. The green lines represent the CMF-

GM results. CMF-AM result is identical with GCMC-AM as well as CMF-GM, but not shown 

for the sake of clarity of the figure. For the nomenclature see scheme-1 in the main text. 

Fugacity corrections due to gas phase non-ideality are taken into account in all calculations. 

Left: selectivities of CO(10%) and CH4(90%) over N2 as a function of total pressure. Right: 

CO and CH4 selectivities as a function of gas phase composition. 
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Figure S4. Comparison of selectivities for ideal mixtures obtained from: (i) GCMC 

simulations which is the target data, (ii) IAST calculations, and (iii) CMFfit-GM calculations 

based on parameters obtained from linear MF fitting of pure gas isotherms. Symbols represents 

GCMC selectivities (diamonds: CO/N2, circles: CH4/N2) or IAST calculations (cross: CO/N2, 

star: CH4/N2).  The green lines represent the results obtained from the CMFfit-GM calculations. 

If CMFfit-AM results are identical with CMFfit-GM as well as IAST, but not shown for the 

sake of clarity of the figure. See scheme-1 in the main text for the nomenclature. Left: 

selectivities of CO(10%) and CH4(90%) over N2 as a function of total pressure. Right: CO and 

CH4 selectivities as a function of gas phase composition. 
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S4. Lateral interactions and anisotropy factor 

Table S3 shows lateral interaction energies calculated for two different models: for the full 

periodic structures (“In MOF”) and the isolated pairs of adsorbed molecules cut from these 

periodic structures (“Isolated”). For comparison of these two models we have approximated 

the periodic structures CCSD(T) results with the hybrid MP2:DFT+D + DCCSD(T) method as 

applied before for calculation of adsorption energies.1, 10, 11 For that finite size model systems 

(see Figure S5) are cut from the periodic structures and the BSSE corrected lateral interaction 

energies are calculated by MP2 and PBE+D2 employing the def2-QZVP basis set. The final 

estimate for the lateral interaction energies in the MOF include higher order correlation effects, 

DCCSD(T), that are estimated as ΔCCSD(T)/CBS = CCSD(T)/CBS − MP2/QZVP for isolated 

pair of adsorbed molecules and added to the MP2:PBE+D adsorbate-adsorbate energies. 

Details of the calculations are the same as used in our previous works. 1, 10, 11  

Figure S5. Example of the Model system adopted for the hybrid calculations in case of 

adsorption pure N2. 
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The last column in Table S3, |Hybrid –Isolated CCSD(T)|, shows the lateral interaction 

energy differences between isolated pair of molecules (in the gas phase) and the same pair in 

the MOF. The average of these energies is 0.12 kJ/mol. Also, the average lateral interaction 

energies of the short and long mixed pairs match very well (the average absolute difference is 

0.11 kJ/mol) with the geometric mean of the interaction energies of the corresponding pure gas 

molecules (the “GM – S, L av.” rows in Table S3). 
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Table S3. Lateral interaction energies between pairs of adsorbed molecules calculated with 
and without the presence of the MOF framework, denoted as In MOF and Isolated, 
respectively, and lateral interaction energies calculated for mixed pairs from geometric (GM), 
arithmetic means (AM) of the pure gas data. All in kJ/mol. 
 

In MOF Isolated Hybrid+ Isolated |Hybrid -  
PBE+D 

pw 
PBE+D 
QZVP 

CCSD(T) 
CBSa 

CCSD(T) 
CBS 

Isolated 
CCSD(T)| 

CO···CO -0.56 -0.40 -0.51 -0.34 0.17 
N2···N2 -0.29 -0.40 -0.30 -0.35 0.05 
CH4···CH4 -0.44 -0.68 -0.49 -0.55 0.06 
CO2···CO2 -2.36 -2.82 -2.65 -2.81 0.16 
CH4/N2      
Short -0.47 -0.67 -0.50 -0.54 0.04 
Long -0.29 -0.45 -0.33 -0.40 0.07 
S, L av. -0.38 -0.56 -0.42 -0.47 0.05 
GM -0.36 -0.52 -0.39 -0.44 0.05 
AM -0.37 -0.54 -0.40 -0.45 0.05 
GM – S, L av. 0.02 0.04 0.03 0.03  
CO/N2      
Short -0.92 -0.98 -0.81 -0.81 0.00 
Long -0.16 -0.13 -0.12 -0.14 0.02 
S, L av. -0.54 -0.56 -0.46 -0.48 0.02 
GM -0.40 -0.40 -0.39 -0.34 0.05 
AM -0.43 -0.40 -0.40 -0.35 0.05 
GM – S, L av. 0.14 0.15 0.07 0.13  
CO2/N2      
Short -1.64 -1.80 -1.92 -1.68 0.24 
Long -0.39 -0.48 -0.42 -0.48 0.06 
S, L av. -1.02 -1.14 -1.17 -1.08 0.09 
GM -0.83 -1.06 -0.89 -0.99 0.10 
AM -1.33 -1.61 -1.47 -1.58 0.11 
GM – S, L av. 0.19 0.07 0.28 0.09  
CO2/CH4      
Short -1.14 -1.45 -1.48 -1.07 0.41 
Long -0.11 -0.28 -0.09 -0.22 0.13 
S, L av. -0.62 -0.87 -0.78 -0.65 0.14 
GM -1.02 -1.39 -1.14 -1.24 0.10 
GM/2 -0.51 -0.69 -0.57 -0.62 0.05 
AM -1.40 -1.75 -1.57 -1.68 0.11 
GM – S, L av. -0.40 -0.52 -0.36 -0.60  
GM/2 – S, L av. 0.11 0.17 0.21 0.02  

a Hybrid MP2:DFT+D + DCCSD(T) calculations 
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In this study, we use the isolated pair lateral interaction energies which is consistent 

with the idea of GCMC simulations on a lattice of sites and with the mean field approximation. 

Let us assume that three calculations for the periodic systems are performed with all sites 

occupied with A-type molecules, with B-type molecules, or alternating with A and B type 

molecules yielding the energies E(A-A), E(B-B) and E(A-B). A two-body expansion yields 

 

   (S19) 

   (S20) 

Where, e.g., E(S-A)/A-A is the two-body contribution for the binding of A onto the surface 

site S to the energy E(A-A), and E(A-B)/A-B is the energy contribution of the A···B pair 

interaction to E(A-B). 

The arithmetic mean of the total energies E(A-A)/A-A and E(B-B)/B-B is 

   (S21) 

and the mixing energy becomes 

   (S22) 

   (S23) 

There is an extra term D originating from the change of the molecule-surface interactions in 

the A···A (or B···B) and A···B systems. 
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Anisotropy factor. Table S4 shows the anisotropy factors calculated according to Eq. (29) in 

the main text 

   (S24) 

for isolated interaction pairs with two different “comput.” methods, CCSD(T)/CBS and 

PBE+D2/QZVP, and the resulting mixed pair interaction terms and mixing 

energies  . 

 

Table S4. Anisotropy factors calculated with computed average lateral interaction energies. 

Comparison of anisotropy factor corrected and GM approximated mixed pair lateral interaction 

energy parameter  and ab initio average lateral interaction energy (

). Energies are in kJ/mol while anisotropy factors have no unit. 

A/B CO2/N2 CO2/N2 CO2/CH4 CO2/CH4 

fAB 1.09 a 1.08 b 0.52 a 0.63 b 
c 0.58 0.58 0.47 0.47 
c -1.01 -1.00 -0.58 -0.70 
c 0.50 0.51 1.00 0.88 

 0.50 a 0.47 b 1.04 a 0.88 b 
a -1.08 -1.08 -0.65 -0.65 

a CCSD(T) calculations for isolated pairs. b PBE+D2/def2-QZVP calculations for isolated pairs. 

cCalculated from parameters for each gas obtained from linear MF fitting of pure gas isotherms. 

 

 

  

( )
( )

( ) ( )

av
AB

AB
av av
AA BB

comput
comput

comput comput
=

×

E
f

E E

GM
AB ABf L RT-

fGM
mix- ×DRT L

GM
AB( )- ×RT L av

AB(ab-initio)E

GM
mix- ×DRT L

GM
AB ABf L RT-

fGM
mix- ×DRT L

ΔEmix comput( )
av
AB(ab initio)E



S16 
 

S5. Ideal Adsorption Solution Theory (IAST) 

Ideal adsorption solution theory (IAST)12, 13 is the most widely used model for prediction of 

co-adsorption from pure gas adsorption isotherms. It assumes that the adsorbed phase behaves 

like an ideal solution of the adsorbed components. Consequently, the equilibrium between the 

adsorbed phase and gas phase can be described analogously to Raoult’s law, according to 

which the partial vapor pressure of a gas component c, Pc, in an ideal liquid mixture can be 

calculated from the composition of the liquid mixture, xc, 

   (S25) 

where the vapor pressure of the pure liquid is Pc°. The partial pressure can also be expressed 

as a product of gas phase composition (yc) and total pressure (P). 

 The spreading pressure of a gas component c can be calculated by the following 

equation, 

   (S26) 

where A is the area of the surface. πc and  are the spreading pressure and the pure gas 

adsorbed amount of component c, respectively. The equilibrium between the adsorbed 

components is attained when all the pure components have the same spreading pressure that is 

equal to the spreading pressure of the adsorbed mixture (π) itself. Considering a binary mixture 

(c = 1 or 2) this can be written as, 

   (S27) 

The equilibrium pressures of the individual components, Pc°, which are unknown, can be 

determined from the known composition of the gas (yc) and the total pressure (P) by applying 

Eq. (S25). 

   (S28) 

 To simplify the notation, let x and y represent the adsorbed and gas phase mole fraction 

of the first component (c  = 1), respectively. Substituting the expressions of π and P° from Eqs. 

(S27) and (S28), respectively, in Eq.(S26), we obtain, 
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   (S29) 

For a binary mixture, the IAST problem reduces to finding a solution for x in the above 

equation. The integrations are performed on a set of data points representing the adsorbed 

amount  of the pure gas c at different pressures. Here, we adopted the most widely used 

approach where the isotherm data points of pure gas are fitted with an analytical model and 

then the integrals are evaluated analytically.14 Since integration cannot be performed on a self-

consistent equation, Eq. (S8), we used the non-linear mean-field isotherm equation,1  Eq. (19) 

and (20), for fitting our single component data points obtained from the ab initio lattice GCMC 

simulations. 

After obtaining the adsorbed phase composition the total adsorbed amount in the mixture, q, is 

calculated according to the following equation, 

   (S30) 

where qc° is the amount adsorbed in the pure gas isotherm at the same spreading pressure and 

temperature as that of the adsorbed mixture. The amount adsorbed for each component in the 

mixture is, 

   (S31) 
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S6. Expansion of MF equilibrium constant for pure gas in continued fraction 

representation 

Nonlinear mean-field (MF) 

  (S32) 

Nonlinear mean-field (MF) with continued fraction representation 

  (S33) 
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