Supporting Information

Selective access to either a doubly boron-doped tetrabenzopentacene or an oxadiborepin from the same precursor

Julian Radtke, Kai Schickedanz, Marcel Bamberg, Luigi Menduti, Dieter Schollmeyer, Michael Bolte, Hans-Wolfram Lerner and Matthias Wagner

1. General experimental remarks	3
2. Synthetic details	5
3. Plots of ¹ H, ¹¹ B{ ¹ H}, ¹³ C{ ¹ H}, ¹⁹ F and ¹⁹ F{ ¹ H} NMR spectra of all new compo	unds 29
4. Photophysical and electrochemical properties of B ₂ -TBPA and ODBE	61
5. X-Ray crystal structure analyses	68
6. TD-DFT calculation data of B ₂ -TBPA and ODBE	76
7. References	

1. General experimental remarks

If not stated otherwise, all reactions and manipulations were carried out under an inert atmosphere using Schlenk techniques or a glovebox and carefully degassed and dried solvents.

n-Hexane was distilled from Na; C_6H_6 , PhMe, Et₂O, and THF were distilled from Na/benzophenone prior to use. CDCl₃ and CH₂Cl₂ were distilled from CaH₂ and stored over 3 Å molecular sieves.

B(OMe)₃ was distilled from Na and stored over 3 Å molecular sieves. 1,8-Diaminonaphthalene, bis(1,5-cyclooctadiene)nickel (Ni(COD)₂; stored in an argon-filled glovebox at -30 °C), and BBr₃ (stored over Hg) were purchased from *Sigma-Aldrich*. Dry pyridine (already stored over molecular sieves) was purchased from *Acros Organics*. *n*-BuLi (ca. 1.56 M in hexanes) and *t*-BuLi (ca. 2.0 M in pentane) were donated by *Albemarle Lithium*.

9,10-Dibromo-9,10-dihydro-9,10-diboraanthracence,^[S1] 1,5-dibromo-9,10-dihydroxy-9,10-dihydroxy-9,10-dibora-

anthracene, and 1,5-difluoro-9,10-dihydroxy-9,10-dihydro-9,10-diboraanthracene were prepared according to literature procedures.^[S2]

NMR spectra were recorded at 298 K using the following spectrometers: *Bruker* Avance-300, Avance-400, Avance-500, or drx-600. Chemical shift values are referenced to (residual) solvent signals (${}^{1}H/{}^{13}C{}^{1}H{}$; CHCl₃: $\delta = 7.26/77.2$ ppm, C₆HD₅: $\delta = 7.16/128.1$ ppm) or external BF₃·Et₂O (${}^{11}B{}^{1}H{}$: 0.00 ppm). Abbreviations: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, vt = virtual triplet, q = quartet, m = multiplet, br = broad, n.r. = not resolved. Resonances of carbon atoms attached to boron atoms were typically broadened and sometimes not observed due to the quadrupolar relaxation of boron. Resonance assignments were aided by ^{H,H}COSY, ^{H,C}HSQC, and, if necessary, also ^{H,C}HMBC spectra.

Column chromatography was performed using silica gel 60 (*Macherey–Nagel*). Flash chromatography was performed on a *Biotage* ISOLERA ONE with *Biotage* "SNAP-Ultra" or *Interchim* puriFlash cartridges.

UV-vis absorption spectra were recorded at room temperature using a *Varian* Cary 60 Scan UV-vis spectrophotometer. Photoluminescence (PL) spectra were recorded at room temperature using a *Jasco* FP-8300 spectrofluorometer equipped with a calibrated *Jasco* ILF-835 100 mm diameter integrating sphere and analyzed using the *Jasco* FWQE-880 software. For PL quantum yield (ϕ_{PL}) measurements, each sample was carefully degassed with argon

for at least 3 min using an injection needle and a septum-capped cuvette. Under these conditions, ϕ_{PL} of the fluorescence standard 9,10-diphenylanthracene was determined as 97% (lit.: 97%^[S3]). For all measurements of ϕ_{PL} , at least three samples of different concentrations were used (range between 10⁻⁵ and 10⁻⁷ mol L⁻¹). Due to self-absorption, slightly lower ϕ_{PL} values were observed at higher concentrations. This effect was corrected by applying a method reported by Bardeen *et al.*,^[S4] which slightly improved the ϕ_{PL} values.

Cyclic voltammetry (CV) measurements were performed in an inert-atmosphere glovebox at room temperature using a one-chamber, three-electrode cell and an *EG&G* Princeton Applied Research 263A potentiostat. A platinum disk electrode (2.00 mm diameter) was used as the working electrode with a platinum wire counter electrode and a silver wire reference electrode, which was coated with AgCl by immersion into HCl/HNO₃ (3:1). Prior to measurements, the solvents THF (dried over Na/K alloy) and CH₂Cl₂ (dried over CaH₂) were condensed into a J-Young flask, and subsequently degassed with argon. [*n*-Bu₄N][PF₆] was employed as the supporting electrolyte (0.1 mol L⁻¹). All potential values were referenced against the FcH/FcH⁺ redox couple (FcH = ferrocene; $E_{\frac{1}{2}} = 0$ V). Scan rates were varied between 50 and 400 mV s⁻¹.

High resolution mass spectra were measured in positive mode using a *Thermo Fischer Scientific* MALDI LTQ Orbitrap XL and 2,5-dihydroxybenzoic acid or α -cyano-4-hydroxycinnamic acid as the matrix. Exact masses were calculated based on the predominant combination of natural isotopes.

DFT and TD-DFT calculations were performed using the Gaussian 09 suite of programs.^[S5] Starting geometries were built using the program Avogadro^[S6] and optimized at the B3LYP/6-31G(d)^[S7–S9] level of theory, with the resulting structures confirmed as stationary points through vibrational frequency analysis. The graphics were produced with Avogadro^[S6] and POV-Ray.^[S10] TD-DFT vertical excitations were calculated using the same parameters. The data used in creating the predicted UV-vis spectra was generated by the program GaussSum V2.2.^[S11] Relative energies discussed in the text refer to Gibbs free energies at 298.15 K, which were obtained at the B3LYP/6-31G(d)^[S7–S9] level of theory.

2. Synthetic details

1,8-Diiodonaphthalene:

1,8-Diaminonaphthalene (99%, black platelets) and Zn-dust (20wt%) were stirred at 80 °C for 3 h (caution: depending on the impurities, vigorous frothing might occur). After cooling to ambient temperature, pure 1,8-diaminonaphthalene was isolated via distillation (10^{-3} mbar, 150 °C) as an off-white solid (typical yield: 80% on a 100 mmol scale), which can be used without further purification. *Note*: The Zn-dust distillation is crucial for the success of the subsequent Sandmeyer reaction.

1,8-Diaminonaphthalene (10.0 g, 63.2 mmol) was suspended in a mixture of H_2O/H_2SO_4 (2:1, 120 mL) and cooled to -20 °C. A solution of NaNO₂ (10.9 g, 158 mmol) in H_2O (50 mL) was added dropwise with vigorous stirring. After complete addition, the slurry was stirred for further 30 min and then cautiously (evolution of N₂ causes rigorous frothing) poured portionwise into a vigorously stirred solution of KI (63.0 g, 379 mmol) in H_2O (50 mL). *Note:* To prevent decomposition of the diazonium salt-containing slurry, it was immediately placed back in the -20 °C bath, each time after a portion of it had been poured into the KI solution.

After complete addition, the mixture was heated to 80 °C for 1 h, cooled to ambient temperature, neutralized with NaOH (5 M in H₂O) and NaHSO₃ (sat. aqueous solution), and vacuum-filtered. After drying with suction, the dark residue was extracted using a Soxhlet extractor (300 mL Et₂O, 14 h). The solvent was evaporated from the extract, and the residue was subjected to column chromatography (*c*-hexane) to afford 1,8-diiodonaphthalene as a yellow solid. Yield: 14.4 g (37.9 mmol, 60%).

¹H and ¹³C{¹H} NMR data were in accord with published values.^[S12]

1,8-Dibromonaphthalene:

A 500 mL flame-dried Schlenk flask was charged with 1,8-diiodonaphthalene (6.00 g, 15.8 mmol) and Et₂O (200 mL). The solution was cooled to 0 °C over 30 min. *n*-BuLi (25.3 mL, 1.56 M, 39.5 mmol) was added dropwise, and the yellow solution was stirred at 0 °C for 1 h. The reaction mixture was cooled to -78 °C over 30 min and a suspension of BrCl₂C–CCl₂Br (12.9 g, 39.5 mmol) in Et₂O (60 mL) was added dropwise. The resulting mixture was slowly warmed to room temperature and stirred overnight. After the addition of Na₂SO₃ (100 mL, sat. aqueous solution), the organic layer was separated, and the aqueous layer extracted with Et₂O (2 × 15 mL). The combined organic layers were washed with water (2 × 15 mL) and brine (2 × 15 mL), dried over anhydrous MgSO₄, and filtered. All volatiles were removed from the filtrate under reduced pressure and the crude product was purified by column chromatography (*c*-hexane) to furnish 1,8-dibromonaphthalene as a yellow solid. Yield: 4.25 g (14.9 mmol, 94%).

¹H and ¹³C{¹H} NMR data were in accord with published values.^[S13]

1,5-Difluoro-9,10-dibromo-9,10-dihydro-9,10-diboraanthracene (1^F):

1,5-Difluoro-9,10-dihydroxy-9,10-dihydro-9,10-diboraanthracene (0.77 g, 3.16 mmol) was dried under vacuum for 1 h in a J-Young flask and afterwards suspended in PhMe (20 mL). Upon dropwise addition of BBr₃ (4.75 g, 18.95 mmol) at room temperature, the suspension turned into a clear solution, which was stirred for 16 h at 100 °C, whereupon the solution gradually became turbid. After removal of insolubles by syringe filtration in a glovebox, all volatiles were removed from the filtrate under reduced pressure. The obtained solid was washed with ice-cold *n*-pentane (2 × 5 mL) to give 1^{F} as an off-white solid. Yield: 1.12 g (3.03 mmol, 96%).

¹H NMR (500.18 MHz, CDCl₃): δ = 8.32 (d, ³*J*_{H-H} = 7.5 Hz, 2H; H-d), 7.78-7.72 (m, 2H; H-c), 7.37-7.33 (m, 2H; H-b)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 167.7 (d, ¹*J*_{C-F} = 257.6 Hz; C-a), 144.7* (br; C-e), 136.5 (d, ³*J*_{C-F} = 10.0 Hz; C-c), 134.7 (d, ⁴*J*_{C-F} = 2.5 Hz; C-d), 128.4* (br, C-f), 122.3 (d, ²*J*_{C-F} = 25.8 Hz; C-b)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): $\delta = 61.2 (h_{1/2} \approx 550 \text{ Hz})$

¹⁹F NMR (470.64 MHz, CDCl₃): $\delta = -95.2$ (dd, ³*J*_{H-F} = 10.3 Hz, ⁴*J*_{H-F} = 5.1 Hz)

¹⁹F{¹H} NMR (282.29 MHz, CDCl₃): $\delta = -95.1$ (s)

*These signals were only detectable in the ^{H,C}HMBC-spectrum.

1,5-Dibromo-9,10-dihydroxy-9,10-dihydro-9,10-diboraanthracene (1.02 g, 2.79 mmol) was dried in vacuo for 1 h in a J-Young flask and afterwards suspended in C₆H₆ (20 mL). Upon dropwise addition of BBr₃ (4.19 g, 16.7 mmol) at room temperature, the suspension turned into a clear solution, which was stirred for 2 h at room temperature, whereupon the solution gradually became turbid. After removal of insolubles by syringe filtration in a glovebox, all volatiles were removed from the filtrate under reduced pressure. The obtained solid was washed with ice-cold *n*-pentane (2 × 5 mL) to give 1^{Br} as a pale yellow solid. Yield: 1.33 g (2.71 mmol, 97%).

¹H NMR (400.13 MHz, CDCl₃): $\delta = 8.23$ (d, ³*J*_{H-H} = 7.8 Hz, 2H; H-d), 7.84 (d, ³*J*_{H-H} = 7.9 Hz, 2H; H-b), 7.46 (vt, 2H; H-c) ¹³C{¹H} NMR (100.61 MHz, CDCl₃): $\delta = 145.4*$ (br; C-e), 141.5* (br,; C-f), 139.1 (C-b), 135.6 (C-d), 133.7 (C-c), 130.7 (C-a)

¹¹B{¹H} NMR (128.38 MHz, CDCl₃): $\delta = 63.8 (h_{1/2} \approx 450 \text{ Hz})$

*These signals were only detectable in the ^{H,C}HMBC-spectrum.

General protocol for the preparation of 9,10-dinaphth-1-yl-functionalized 9,10-dihydro-9,10-diboraanthracenes $(2^{X,Y})$:

A 100 mL flame-dried Schlenk flask was charged with the corresponding 1,8-dihalogenated naphthalene (2.1 mmol) and Et₂O (60 mL). The solution was cooled to 0 °C over 15 min. *n*-BuLi (1.56 M, 2.1 mmol) was added dropwise with stirring. The ice bath was removed after 15 min, and the bright-yellow solution stirred at room temperature for 30 min. The respective 9,10-dihydro-9,10-diboraanthracene (1.0 mmol) was added as a neat solid in one portion and the mixture stirred overnight. After neutralization with MeOH (10 mL), all volatiles were removed under vacuum and the crude product was purified by flash chromatography.

Note: Analytically pure and even single-crystalline samples of all 9,10-dinaphth-1-yl-functionalized 9,10-dihydro-9,10-diboraanthracenes gave rise to two sets of resonances with similar chemical shift values in their ¹H and ¹³C{¹H} NMR spectra. This finding is explained by the formation of two conformers with *syn*- and *anti*-positioned halogen atoms.

9,10-Bis(8-bromonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{H,Br}):

Following the general procedure, 1,8-dibromonaphthalene (600 mg, 2.10 mmol), *n*-BuLi (1.34 mL, 1.56 M, 2.10 mmol), and 9,10-dibromo-9,10-dihydro-9,10-diboraanthracene (333 mg, 1.00 mmol) were used to obtain $2^{H,Br}$ after purification by flash chromatography (*c*-hexane:CH₂Cl₂ = 5:1) as a yellow solid. Yield: 503 mg (0.86 mmol, 86%). Single crystals of $2^{H,Br}$ were grown by slow gas-phase diffusion of *n*-hexane into a saturated solution of $2^{H,Br}$ in C₆H₆ at room temperature. Conformer ratio A:B \approx 1.3:1 (determined by ¹H NMR spectroscopy).

A:

¹H NMR (500.18 MHz, CDCl₃): δ = 7.99 (d, ³*J*_{H-H} = 8.2 Hz, 2H; H-5), 7.93 (dd, ³*J*_{H-H} = 8.1 Hz, ⁴*J*_{H-H} = 0.9 Hz, 2H; H-4), 7.69 (dd, ³*J*_{H-H} = 7.4, ⁴*J*_{H-H} = 1.0 Hz, 2H; H-7), 7.64 (dd, ³*J*_{H-H} = 8.1 Hz, ³*J*_{H-H} = 7.0 Hz, 2H; H-3), 7.53 (dd, ³*J*_{H-H} = 7.0 Hz, ⁴*J*_{H-H} = 0.9 Hz, 2H; H-2), 7.43–7.40 (m, 2H; H-6), 7.35 (m, 4H; H-a,d), 7.31–7.28 (m, 4H; H-b,c)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 148.1 (br; C-e,f), 145.8 (br; C-1), 137.9 (C-a,d), 137.0 (C-8a), 135.4 (C-4a), 131.5 (C-b,c), 129.1 (C-2), 128.7 (C-7), 128.6 (C-5), 127.3 (C-4), 126.5 (C-6), 126.2 (C-3), 125.4 (C-8)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 58.5

B:

¹H NMR (500.18 MHz, CDCl₃): δ = 7.99 (d, ³*J*_{H-H} = 8.2 Hz, 2H; H-5), 7.92 (dd, ³*J*_{H-H} = 8.1 Hz, ⁴*J*_{H-H} = 0.8 Hz, 2H; H-4), 7.74 (dd, ³*J*_{H-H} = 7.4 Hz, ⁴*J*_{H-H} = 0.9 Hz, 2H; H-7), 7.60 (dd, ³*J*_{H-H} = 8.1 Hz, ³*J*_{H-H} = 7.0 Hz, 2H; H-3), 7.43 (m, 2H; H-2), 7.43–7.40 (m, 2H; H-6), 7.41–7.38 (m, 4H; H-a,d), 7.31–7.28 (m, 4H; H-b,c)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 147.8 (br; C-e,f), 146.4 (br; C-1), 138.1 (C-a,d), 136.8 (C-8a), 135.3 (C-4a), 131.5 (C-b,c), 128.8 (C-7), 128.6 (C-2), 128.6 (C-5), 127.4 (C-4), 126.5 (C-6), 126.3 (C-3), 125.4 (C-8)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 58.5

HRMS: Calculated m/z for C₃₂H₂₀B₂Br₂ [M⁺]: 584.01124, found: 584.01199

9,10-Bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{H,I}):

Following the general procedure, 1,8-diiodonaphthalene (800 mg, 2.11 mmol), *n*-BuLi (1.35 mL, 1.56 M, 2.11 mmol), and 9,10-dibromo-9,10-dihydro-9,10-diboraanthracene (335 mg, 1.00 mmol) were used to obtain $2^{H,I}$ after purification by flash chromatography (*c*-hexane:CH₂Cl₂ = 5:1) as a yellow solid. Yield: 572 mg (0.84 mmol, 84%). Conformer ratio A:B \approx 1.4:1 (determined by ¹H NMR spectroscopy).

A:

¹H NMR (500.18 MHz, CDCl₃): δ = 8.06–8.02 (m, 4H; H-5,7), 7.83 (dd, ³*J*_{H-H} = 8.1 Hz, ⁴*J*_{H-H} = 1.0 Hz, 2H; H-4), 7.53 (dd, ³*J*_{H-H} = 8.1 Hz, ³*J*_{H-H} = 7.0 Hz, 2H; H-3), 7.45–7.42 (m, 4H; H-a,d), 7.35–7.33 (m, 2H; H-2), 7.33–7.29 (m, 2H; H-6), 7.27–7.24 (m, 4H; H-b,c)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 150.6 (C-1), 149.3 (C-e,f), 140.6 (C-8a), 138.3 (C-a,d), 136.3 (C-7), 135.6 (C-4a), 131.1 (C-b,c), 129.6 (C-2), 129.4 (C-5), 127.9 (C-4), 127.1 (C-6), 126.2 (C-3), 103.8 (C-8)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 56.4

B:

¹H NMR (500.18 MHz, CDCl₃): δ = 8.06–8.03 (m, 2H; H-5), 7.99 (dd, ³*J*_{H-H} = 7.2 Hz, ⁴*J*_{H-H} = 1.1 Hz, 2H; H-7), 7.86 (dd, ³*J*_{H-H} = 8.0 Hz, ⁴*J*_{H-H} = 1.1 Hz, 2H; H-4), 7.58 (dd, ³*J*_{H-H} = 8.0 Hz, ³*J*_{H-H} = 7.0 Hz, 2H; H-3), 7.48 (dd, ³*J*_{H-H} = 7.0 Hz, ⁴*J*_{H-H} = 1.1 Hz, 2H; H-2), 7.37–7.35 (m, 2H; H-a,d), 7.33–7.29 (m, 2H; H-6), 7.27–7.24 (m, 2H; H-b,c)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 150.6 (C-1), 148.8 (C-e,f), 141.0 (C-8a), 137.8 (C-a,d), 136.0 (C-7), 135.7 (C-4a), 131.1 (C-b,c), 130.3 (C-2), 129.6 (C-5), 127.8 (C-4), 127.1 (C-6), 126.2 (C-3), 103.9 (C-8)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 56.4

HRMS: Calculated m/z for $C_{32}H_{21}B_2I_2$ [MH⁺]: 680.99132, found: 680.99208

1,5-Difluoro-9,10-bis(8-bromonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{F,Br}):

Following the general procedure, 1,8-dibromonaphthalene (600 mg, 2.11 mmol), *n*-BuLi (1.34 mL, 1.56 M, 2.11 mmol), and 1,5-difluoro-9,10-dibromo-9,10-dihydro-9,10-diboraanthracene (370 mg, 1.00 mmol) were used to obtain $2^{F,Br}$ after purification by flash chromatography (*c*-hexane:CH₂Cl₂ = 5:1) as a yellow solid. Yield: 372 mg (0.60 mmol, 60%). Conformer ratio A:B \approx 1.3:1 (determined by ¹H NMR spectroscopy).

A:

¹H NMR (500.18 MHz, CDCl₃): δ = 7.98 (dd, ³*J*_{H-H} = 8.2 Hz, ⁴*J*_{H-H} = 1.0 Hz, 2H; H-5), 7.87 (dd, ³*J*_{H-H} = 8.1 Hz, ⁴*J*_{H-H} = 0.8 Hz, 2H; H-4), 7.74 (dd, ³*J*_{H-H} = 7.3 Hz, ⁴*J*_{H-H} = 1.0 Hz, 2H; H-7), 7.58 (dd, ³*J*_{H-H} = 8.1 Hz, ³*J*_{H-H} = 7.0 Hz, 2H; H-3), 7.44–7.40 (m, 2H; H-6), 7.40 (dd, ³*J*_{H-H} = 7.0 Hz, ⁴*J*_{H-H} = 0.8 Hz, 2H; H-2), 7.33–7.29 (m, 2H; H-c), 7.13 (d, ³*J*_{H-H} = 7.3 Hz, 2H; H-d), 6.94–6.90 (m, 2H; H-b)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 168.2 (d, ¹*J*_{C-F} = 256.1 Hz; C-a), 150.0 (br; C-e), 148.2 (br; C-1), 136.4 (C-8a), 135.4 (C-4a), 134.6 (d, ⁴*J*_{C-F} = 2.5 Hz; C-d), 134.0 (d, ³*J*_{C-F} = 9.2 Hz; C-c), 132.6* (very br; C-f), 128.6 (C-5), 127.9 (C-7), 126.8 (C-4), 126.6 (C-2), 126.5 (C-3), 126.3 (C-6), 125.7 (C-8), 119.1 (d, ²*J*_{C-F} = 25.6 Hz; C-b)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 54.4

¹⁹F NMR (470.64 MHz, CDCl₃): δ = -95.9 (dd, ³*J*_{H-F} = 9.7 Hz, ⁴*J*_{H-F} = 5.4 Hz)

¹⁹F{¹H} NMR (282.29 MHz, CDCl₃): $\delta = -95.9$ (s)

B:

¹H NMR (500.18 MHz, CDCl₃): δ = 7.98 (dd, ³*J*_{H-H} = 8.2 Hz, ⁴*J*_{H-H} = 1.0 Hz, 2H; H-5), 7.86 (dd, ³*J*_{H-H} = 8.0 Hz, ⁴*J*_{H-H} = 0.8 Hz, 2H; H-4), 7.76 (dd, ³*J*_{H-H} = 7.3 Hz, ⁴*J*_{H-H} = 1.0 Hz, 2H; H-7), 7.55 (dd, ³*J*_{H-H} = 8.0 Hz, ³*J*_{H-H} = 7.0 Hz, 2H; H-3), 7.46–7.41 (m, 2H; H-6), 7.31–7.28 (m, 2H; H-c), 7.30–7.28 (m, 2H; H-2), 7.16 (d, ³*J*_{H-H} = 7.3 Hz, 2H; H-d), 6.93–6.89 (m, 2H; H-b)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 168.1 (d, ¹*J*_{C-F} = 256.1 Hz; C-a), 149.6 (br; C-e), 148.1 (br; C-1), 136.3 (C-8a), 135.3 (C-4a), 134.8 (d, ⁴*J*_{C-F} = 2.6 Hz; C-d), 134.0 (d, ³*J*_{C-F} = 9.1 Hz; C-c), 132.4* (br; C-f), 128.6 (C-5), 127.9 (C-7), 126.8 (C-4), 126.6 (C-2), 126.5 (C-3), 126.3 (C-6), 125.9 (C-8), 118.9 (d, ²*J*_{C-F} = 25.6 Hz; C-b)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 54.4

¹⁹F NMR (470.64 MHz, CDCl₃): δ = -96.0 (dd, ³*J*_{H-F} = 9.8 Hz, ⁴*J*_{H-F} = 5.4 Hz)

¹⁹F{¹H} NMR (282.29 MHz, CDCl₃): $\delta = -96.0$ (s)

*These signals were only detectable in the ^{H,C}HMBC-spectrum.

HRMS: Calculated m/z for C₃₂H₁₈B₂Br₂F₂ [M⁺]: 619.99239, found: 619.99293

1,5-Difluoro-9,10-bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{F,I}):

Following the general procedure, 1,8-diiodonaphthalene (800 mg, 2.11 mmol), *n*-BuLi (1.34 mL, 1.56 M, 2.11 mmol), and 1,5-difluoro-9,10-dibromo-9,10-dihydro-9,10-diboraanthracene (371 mg, 1.00 mmol) were used to obtain $2^{F,I}$ after purification by flash chromatography (*c*-hexane:CH₂Cl₂ = 5:1) as a yellow solid. Yield: 474 mg (0.66 mmol, 66%). Conformer ratio A:B \approx 1.1:1 (determined by ¹H NMR spectroscopy).

A:

¹H NMR (500.18 MHz, CDCl₃): δ = 8.06–7.98 (m, 4H, H-5,7), 7.77 (d, ³*J*_{H-H} = 8.0 Hz, 2H; H-4), 7.48 (vt, ³*J*_{H-H} = 7.9 Hz, ³*J*_{H-H} = 7.2 Hz, 2H; H-3), 7.37–7.31 (m, 2H; H-6), 7.31–7.23 (m, 2H; H-c), 7.19 (d, ³*J*_{H-H} = 7.3 Hz, 2H; H-d), 7.17 (d, ³*J*_{H-H} = 7.0 Hz, 2H; H-2), 6.92–6.86 (m, 2H; H-b)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 167.9 (d, ¹*J*_{C-F} = 256.8 Hz; C-a), 152.3* (br; C-1), 150.9* (br; C-e), 140.3 (C-8a), 135.7 (C-4a), 135.1 (C-7), 134.5 (C-d), 133.9* (br; C-f), 133.4 (C-c), 129.6 (C-5), 127.3 (C-2), 127.2 (C-4), 126.9 (C-6), 126.4 (C-3), 118.5 (C-b), 104.9 (C-8)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 52.1

¹⁹F NMR (470.64 MHz, CDCl₃): δ = -95.6 (m)

¹⁹F{¹H} NMR (282.29 MHz, CDCl₃): δ = -95.5 (s)

B:

¹H NMR (500.18 MHz, CDCl₃): δ = 8.06–7.98 (m, 4H; H-5,7), 7.79 (d, ³*J*_{H-H} = 7.9 Hz, 2H; H-4), 7.53 (vt, ³*J*_{H-H} = 7.8 Hz, ³*J*_{H-H} = 7.5 Hz, 2H; H-3), 7.36 (d, ³*J*_{H-H} = 7.0 Hz, 2H; H-2), 7.37–7.31 (m, 2H; H-6), 7.31–7.23 (m, 2H; H-c), 7.11 (d, ³*J*_{H-H} = 7.4 Hz, 2H; H-d), 6.92–6.86 (m, 2H; H-b)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 167.6 (d, ¹*J*_{C-F} = 256.8 Hz; C-a), 152.8* (br; C-1), 150.9* (br; C-e), 140.4 (C-8a), 135.7 (C-4a), 135.1 (C-7), 134.5 (C-d), 133.9* (br; C-f), 133.3

(C-c), 129.6 (C-5), 127.8 (C-2), 127.2 (C-4), 126.9 (C-6), 126.5 (C-3), 118.2 (C-b), 104.6 (C-8)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 52.1

¹⁹F NMR (470.64 MHz, CDCl₃): δ = -95.6 (m)

¹⁹F{¹H} NMR (282.29 MHz, CDCl₃): $\delta = -95.5$ (s)

HRMS: Calculated m/z for $C_{32}H_{18}B_2F_2I_2$ [M⁺]: 715.96466, found: 715.96560

1,5-Dibromo-9,10-bis(8-bromonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{Br,Br}):

Following the general procedure, 1,8-dibromonaphthalene (600 mg, 2.11 mmol), *n*-BuLi (1.34 mL, 1.56 M, 2.11 mmol), and 1,5,9,10-tetrabromo-9,10-dihydro-9,10-diboraanthracene (491 mg, 1.00 mmol) were used to obtain $2^{Br,Br}$ after purification by flash chromatography (*c*-hexane:CH₂Cl₂ = 5:1) as a yellow solid. Yield: 549 mg (0.74 mmol, 74%). Conformer ratio A:B \approx 2.2:1 (determined by ¹H NMR spectroscopy).

A:

¹H NMR (500.18 MHz, CDCl₃): $\delta = 7.97$ (d, ³*J*_{H-H} = 8.1 Hz, 2H; H-5), 7.85 (d, ³*J*_{H-H} = 7.2 Hz, 2H; H-4), 7.81 (dd, ³*J*_{H-H} = 7.7 Hz, ⁴*J*_{H-H} = 0.8 Hz, 2H; H-7), 7.55 (dd, ³*J*_{H-H} = 7.7 Hz, ⁴*J*_{H-H} = 1.1 Hz, 2H; H-b), 7.53–7.49 (m, 2H; H-3), 7.45 (vt, ³*J*_{H-H} = 8.1 Hz, ³*J*_{H-H} = 7.7 Hz, 2H; H-6), 7.22 (dd, ³*J*_{H-H} = 7.6 Hz, ⁴*J*_{H-H} = 1.1 Hz, 2H; H-d), 7.20 (m, 2H; H-2), 7.04 (vt, 2H; H-c) ¹³C{¹H} NMR (125.77 MHz, CDCl₃): $\delta = 153.8^*$ (br; C-e), 148.9* (br; C-1), 143.9* (br; C-f), 138.4 (C-d), 137.4 (C-8a), 137.3 (C-b), 135.4 (C-4a), 135.2 (C-a), 132.5 (C-c), 128.6 (C-5), 128.0 (C-7), 127.0 (C-3), 126.8 (C-8), 126.7 (C-4), 126.3 (C-6), 126.3 (C-2) ¹¹B{¹H} NMR (160.48 MHz, CDCl₃): $\delta = 53.5$

B:

¹H NMR (500.18 MHz, CDCl₃): δ = 7.97 (d, ³*J*_{H-H} = 8.1 Hz, 2H; H-5), 7.88–7.85 (m, 2H; H-4), 7.80–7.78 (m, 2H; H-7), 7.58–7.55 (m, 2H; H-b), 7.53–7.49 (m, 2H; H-3), 7.44 (vt, 2H; H-6), 7.26–7.25 (m, 2H; H-2), 7.19–7.17 (m, 2H; H-d), 7.05 (vt, 2H; H-c)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 152.7* (br; C-e), 148.8* (br; C-1), 143.5* (br; C-f), 138.0 (C-d), 137.7 (C-8a), 137.3 (C-b), 135.4 (C-4a), 135.2 (C-a), 132.6 (C-c), 128.6 (C-5), 128.0 (C-7), 126.9 (C-3), 126.8 (C-8), 126.7 (C-4), 126.3 (C-6), 126.1 (C-2)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 53.5

HRMS: Calculated m/z for $C_{32}H_{18}B_2Br_4$ [M⁺]: 739.83226, found: 739.83431

1,5-Dibromo-9,10-bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{Br,I}):

Following the general procedure, 1,8-diiodonaphthalene (800 mg, 2.11 mmol), *n*-BuLi (1.34 mL, 1.56 M, 2.11 mmol), and 1,5,9,10-tetrabromo-9,10-dihydro-9,10-diboraanthracene (493 mg, 1.00 mmol) were used to obtain $2^{Br,I}$ after purification by flash chromatography (*c*-hexane:CH₂Cl₂ = 5:1) as a yellow solid. Yield: 668 mg (0.89 mmol, 89%). Single crystals of $2^{Br,I}$ were grown by slow evaporation of a saturated solution of $2^{Br,I}$ in CH₂Cl₂ at room temperature. Conformer ratio A:B \approx 10:1 (determined by ¹H NMR spectroscopy).

A:

¹H NMR (500.18 MHz, CDCl₃): δ = 8.04–8.00 (m, 4H; H-5,7), 7.79 (dd, ³*J*_{H-H} = 8.1 Hz, ⁴*J*_{H-H} = 0.9 Hz, 2H; H-4), 7.55 (dd, ³*J*_{H-H} = 7.8 Hz, ⁴*J*_{H-H} = 1.2 Hz, 2H; H-b), 7.49 (dd, ³*J*_{H-H} = 8.1 Hz, ³*J*_{H-H} = 7.1 Hz, 2H; H-3), 7.33 (dd, ³*J*_{H-H} = 8.1 Hz, ³*J*_{H-H} = 7.3 Hz, 2H; H-6), 7.22 (dd, ³*J*_{H-H} = 7.1 Hz, ⁴*J*_{H-H} = 0.9 Hz, 2H; H-2), 7.11 (dd, ³*J*_{H-H} = 7.6 Hz, ⁴*J*_{H-H} = 1.2 Hz, 2H; H-d), 7.01 (vt, 2H; H-c)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): $\delta = 154.3$ (br; C-e), 153.0 (br; C-1), 144.8 (br; C-f), 141.4 (C-8a), 138.1 (C-d), 136.9 (C-b), 136.0 (C-4a), 135.3 (C-a), 135.0 (C-7), 132.1 (C-c), 129.6 (C-5), 127.3 (C-2), 127.1 (C-4), 127.0 (C-3), 126.8 (C-6), 106.3 (C-8)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 49.7

B:

¹H NMR (500.18 MHz, CDCl₃): δ = 8.07 (dd, ³*J*_{H-H} = 7.3 Hz, ⁴*J*_{H-H} = 1.0 Hz, 2H; H-7), 8.02– 8.00 (m, 2H; H-5), 7.76 (dd, ³*J*_{H-H} = 8.1 Hz, ⁴*J*_{H-H} = 0.9 Hz, 2H; H-4), 7.55–7.52 (m, 2H; Hb), 7.47–7.43 (m, 2H; H-3), 7.37–7.32 (m, 2H; H-6), 7.25–7.22 (m, 2H; H-2), 7.11–7.08 (m, 2H; H-d), 7.03–7.00 (m, 2H; H-c)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): n.o.

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 49.7

HRMS: Calculated m/z for C₃₂H₁₈B₂Br₂I₂ [M⁺]: 835.80452, found: 835.80676

Reaction of 1,5-difluoro-9,10-bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene with selected organometallic reagents

An Et₂O solution of 1,5-difluoro-9,10-bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10diboraanthracene was treated at -78 °C with selected organometallic reagents (*n*-BuLi, *t*-BuLi, or *i*PrMgBr•LiCl). In none of these cases, the intended cyclization to give **B**₂-**TBPA** was observed. We rather isolated either unconsumed starting material 1,5-difluoro-9,10-bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (no reaction) or naphthalene (indicating decomposition).

 Table S2-1: Reactivity of 1,5-difluoro-9,10-bis(8-iodonaphthalen-1-yl)-9,10-dihydro-9,10-diboraanthracene toward selected organometallic reagents (R-Met).

R-Met	amount	result
<i>n</i> -BuLi	2 equiv	no reaction
<i>n</i> -BuLi	excess	decomposition
<i>t</i> -BuLi	2 equiv	no reaction
<i>t</i> -BuLi	excess	decomposition
<i>i</i> PrMgBr•LiCl	2 equiv	no reaction
iPrMgBr•LiCl	excess	no reaction
iPrMgBr•LiCl	excess 2 equiv	no reaction

Reaction of 1,5-difluoro-9,10-dibromo-9,10-dihydro-9,10-diboraanthracene with 1,8-dilithionaphthalene

A 100 mL flame-dried Schlenk flask was charged with 1,8-diiodonaphthalene (617 mg, 1.62 mmol) and Et₂O (30 mL). The solution was cooled to 0 °C over 15 min and *n*-BuLi (2.60 mL, 1.56 M, 4.06 mmol) was added dropwise with stirring. The ice bath was removed after 15 min, and the bright orange solution stirred at room temperature for 30 min. The solution was cooled to -78 °C over 30 min and 1,5-difluoro-9,10-dibromo-9,10-dihydro-9,10-diboraanthracene (300 mg, 0.81 mmol) was added in one portion. The reaction mixture was stirred overnight and subsequently quenched with MeOH (10 mL). All volatiles were removed under vacuum and the crude product was purified by flash chromatography (*c*-hexane:CH₂Cl₂ = 5:1) to furnish the [4]helicene **IV** as an orange solid. Yield: 29 mg (0.09 mmol, 11%). ¹H and ¹³C {¹H} NMR data were in accord with published values.^[S14]

Reactions of 1,5-dibromo-9,10-bis(8-bromonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{Br,Br}) with Ni(COD)₂ under Yamamoto conditions:

Reaction in pyridine leading to B₂-TBPA

2,2'-Bipyridyl (37 mg, 0.24 mmol; bpy) was dissolved in pyridine (20 mL; py), neat 1,5cyclooctadiene (24 mg, 0.21 mmol; COD) and Ni(COD)₂ (65 mg, 0.24 mmol) were added, and the mixture was stirred at room temperature for 1 h. The resulting dark-colored mixture was slowly added (over 4 h using a syringe pump) at room temperature to a pale yellow solution of $2^{Br,Br}$ (40 mg, 54 µmol) in pyridine (60 mL). After complete addition, stirring was continued for 24 h at room temperature, the mixture was placed in an ice bath and quenched by bubbling air through it. A beige solution containing an off-white precipitate was obtained. All volatiles were removed under vacuum and the brownish solid residue was subjected to flash-column chromatography (*c*-hexane $\rightarrow c$ -hexane:CH₂Cl₂ = 1:1). The fraction containing the luminescent B₂-TBPA was evaporated to dryness under reduced pressure and the residue washed with ice-cold *n*-pentane (2 × 1 mL). B₂-TBPA was obtained as a yellow solid. Yield: 18 mg (42 µmol, 79%). Single crystals of B₂-TBPA were grown by slow evaporation of a saturated solution in CHCl₃ at room temperature.

Note: The cyclization experiment was also performed with 1,5-dibromo-9,10-bis(8-iodonaphthalen-1-yl)-9,10-dihydro-9,10-diboraanthracene $2^{Br,I}$ (40 mg, 48 µmol) and furnished **B₂-TBPA** in a comparable yield of 70% (14 mg, 33 µmol).

¹H NMR (500.18 MHz, CDCl₃): δ = 8.80 (d, ³*J*_{H-H} = 7.0 Hz, 2H; H-2), 8.77 (d, ³*J*_{H-H} = 7.7 Hz, 2H; H-7), 8.71 (d, ³*J*_{H-H} = 8.1 Hz, 2H; H-b), 8.33 (d, ³*J*_{H-H} = 8.0 Hz, 2H; H-4), 8.26 (d, ³*J*_{H-H} = 7.1 Hz, 2H; H-d), 8.12 (d, ³*J*_{H-H} = 8.0 Hz, 2H; H-5), 7.87 (2 × vt, 4H; H-3,c), 7.80 (vt, ³*J*_{H-H} = 8.0 Hz, ³*J*_{H-H} = 7.7 Hz, 2H; H-6)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 145.1* (br; C-e), 143.4* (br; C-f), 141.0 (C-2), 140.5 (C-a), 137.7 (C-d), 135.3 (C-4), 133.3 (C-4a), 132.7 (C-8), 132.2 (C-8a), 131.5 (C-c), 130.8 (C-5), 126.5 (C-b), 126.1 (C-6), 126.0 (C-3), 125.1 (C-7), n.o. (C-1) ¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 56.0 *These signals were only detectable in the ^{H,C}HMBC-spectrum. HRMS: Calculated m/z for C₃₂H₁₈B₂ [M⁺]: 424.15891, found: 424.15938 UV-vis (*c*-hexane): λ_{max} (ε) = 456 nm (14600 M⁻¹cm⁻¹) Fluorescence (*c*-hexane, λ_{ex} = 340 nm): λ_{max} = 472 nm; ϕ_{PL} = 69% Cyclic voltammetry (CH₂Cl₂, [*n*-Bu₄N][PF₆], 0.1 M, 200 mV s⁻¹, vs. FcH/FcH⁺): *E*_{1/2} = -1.65 V, *E*_{pc} = -2.22, -2.45, -2.65 V Cyclic voltammetry (THF, [*n*-Bu₄N][PF₆], 0.1 M, 200 mV s⁻¹, vs. FcH/FcH⁺): *E*_{1/2} = -1.73 V, *E*_{pc} = -2.30 V Cyclic voltammetry (pyridine, [*n*-Bu₄N][PF₆], 0.1 M, 200 mV s⁻¹, vs. FcH/FcH⁺): *E*_{1/2} = -1.73 V,

Reaction in pyridine leading to 4

2,2'-Bipyridyl (18 mg, 113 µmol; bpy) was dissolved in pyridine (20 mL; py), neat 1,5cyclooctadiene (13 mg, 113 µmol; COD) and Ni(COD)₂ (31 mg, 113 µmol) were added, and the mixture was stirred at room temperature for 1 h. The resulting dark-colored mixture was slowly added (over 4 h using a syringe pump) at room temperature to a pale yellow solution of $2^{Br,Br}$ (40 mg, 54 µmol) in pyridine (60 mL). After complete addition, stirring was continued for 24 h at room temperature, the mixture was placed in an ice bath and quenched by bubbling air through it. A beige solution containing an off-white precipitate was obtained. All volatiles were removed under vacuum and the brownish solid residue was subjected to flash-column chromatography (*c*-hexane \rightarrow *c*-hexane:CH₂Cl₂ = 1:1). The fraction containing 4 was evaporated to dryness under reduced pressure and the residue washed with ice-cold *n*-pentane (2×1 mL). 4 was obtained as an orange solid. Yield: 24 mg, (41 µmol, 77%).

¹H NMR (500.18 MHz, CDCl₃): $\delta = 8.71$ (d, ³*J*_{H-H} = 7.2 Hz, 1H; H-2), 8.67 (d, ³*J*_{H-H} = 7.5 Hz, 1H; H-7), 8.44 (d, ³*J*_{H-H} = 8.1 Hz, 1H; H-b), 8.34 (d, ³*J*_{H-H} = 8.2 Hz, 1H; H-4), 8.19 (d, ³*J*_{H-H} = 7.3 Hz, 1H; H-d'), 8.10 (d, ³*J*_{H-H} = 8.0 Hz, 1H; H-5), 7.97 (d, ³*J*_{H-H} = 8.4 Hz, 1H; H-5'), 7.87 (dd, ³*J*_{H-H} = 8.2 Hz, ³*J*_{H-H} = 7.2 Hz, 1H; H-3), 7.86–7.84 (m, 1H; H-4'), 7.80–7.75 (m, 3H; H-6,7',b'), 7.52 (vt, 1H; H-3'), 7.50 (vt, 1H; H-c), 7.46 (vt, 1H; H-c'), 7.43 (vt, 1H; H-6'), 7.27 (d, ³*J*_{H-H} = 7.4 Hz, 1H; H-2'), 7.20 (d, ³*J*_{H-H} = 7.0 Hz, 1H; H-d) ¹³C{¹H} NMR (125.77 MHz, CDCl₃): $\delta = 151.6$ (br; C-e'), 148.9 (br; C-1'), 148.2 (br; C-e), 146.6 (br; C-f'), 141.5 (br; C-f), 141.3 (C-2), 139.6 (C-a), 137.9 (C-d'), 137.8 (C-d), 137.5 (C-b'), 137.5 (C-8a'), 136.4 (C-a'), 135.6 (C-4), 135.4 (C-4a'), 132.6 (C-8), 132.5 (C-c), 131.9 (C-4a), 131.5 (C-8a), 131.5 (C-c'), 126.2 (C-4'), 126.2 (C-6), 126.2 (C-6'), 125.9 (C-3), 125.3 (C-7), n.o. (C-1)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 55.3

HRMS: Calculated m/z for $C_{32}H_{18}B_2Br_2$ [M⁺]: 581.99559, found: 581.99832

Note: Besides the major set of resonances compiled above, samples of compound 4 also gave rise to a minor set of resonances with similar chemical shift values in the ¹H as well as ${}^{13}C{}^{1}H$ NMR spectra. Given that the samples had been purified by column chromatography and show only one peak in the HRMS mass spectrum, the minor resonances are probably not due to impurities but most likely originate from a second diastereomer. Listed below are those signals of the minor component, which do not overlap with resonances of the major species. ¹H NMR (500.18 MHz, CDCl₃): δ = 8.25 (d), 7.84–7.80 (m), 7.63–7.57 (m), 7.35–7.30 (m) ¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 133.1, 130.1, 128.1, 127.5, 127.3, 126.9, 126.8, 126.3

Reaction in THF leading to the B–O–B species ODBE

2,2'-Bipyridyl (37 mg, 0.24 mmol; bpy) was dissolved in THF (20 mL), neat 1,5cyclooctadiene (24 mg, 0.21 mmol; COD) and Ni(COD)₂ (65 mg, 0.24 mmol) were added, and the mixture was stirred at room temperature for 1 h. The resulting deeply purple-colored mixture was slowly added (over 4 h using a syringe pump) at room temperature to a solution of $2^{Br,Br}$ (40 mg, 54 µmol) in THF (60 mL). The initial pale yellow solution turned dark during the process. After complete addition, stirring was continued for 24 h at room temperature, the mixture was placed in an ice bath and quenched by bubbling air through it. A yellow solution containing an off-white precipitate was obtained. All volatiles were removed under vacuum and the brownish solid residue was subjected to flash-column chromatography (*c*-hexane \rightarrow *c*-hexane:CH₂Cl₂ = 1:1). The fraction containing the luminescent **ODBE** was evaporated to dryness under reduced pressure and the residue washed with ice-cold *n*-pentane (3 × 2 mL). **ODBE** was obtained as a bright yellow solid. Yield: 19 mg (43 µmol, 81%). Single crystals of **ODBE** were grown by slow gas-phase diffusion of *n*-hexane into a saturated solution of **ODBE** in CHCl₃ at room temperature.

Note: Despite numerous attempts, we did not succeed in avoiding the O_2/H_2O quenching step during workup of the reaction product(s) obtained in THF, because residual nickel species could not be removed quantitatively under inert conditions. These attempts included filtering through Celite, manual chromatography, and flash-column chromatography; both silica- and alumina-based stationary phases have been employed, as well as THF, CHCl₃, and C₆H₆ as mobile phases. We also tried to use S₈ as a quenching reagent, but again without success. The product(s) obtained always had a greyish tint and produced NMR spectra with extremely broadened resonances, indicative of the presence of paramagnetic Ni(II) impurities. Importantly, the majority of the few available protocols on intramolecular Yamamoto-type coupling reactions contain an aqueous workup step, in some cases even with addition of HCl or NH₄Cl.^[S15–S22] ¹H NMR (500.18 MHz, CDCl₃): δ = 8.79 (d, ³*J*_{H-H} = 6.8 Hz, 2H; H-2), 8.57 (d, ³*J*_{H-H} = 7.7 Hz, 2H; H-7), 8.54 (d, ³*J*_{H-H} = 7.9 Hz, 2H; H-b), 8.21 (d, ³*J*_{H-H} = 8.0 Hz, 2H; H-4), 8.03 (d, ³*J*_{H-H} = 8.1 Hz, 2H; H-5), 7.80 (vt, 2H; H-3), 7.79 (vt, 2H; H-c), 7.71 (vt, ³*J*_{H-H} = 8.1 Hz, ³*J*_{H-H} = 7.7 Hz, 2H; H-6), 7.68 (d, ³*J*_{H-H} = 7.7 Hz, 2H; H-d)

¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 149.8 (C-e), 144.5 (C-a), 134.6 (C-2), 133.8 (C-4), 133.5 (C-8a), 132.9 (C-4a), 132.6 (C-8), 132.1 (C-c), 131.4 (C-d), 130.0 (C-5), 126.3 (C-3), 126.1 (C-6), 125.1 (C-7), 123.9 (C-b), n.o. (C-1,f)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): δ = 42.7

¹H NMR (500.18 MHz, C₆D₆): δ = 8.85 (dd, ³*J*_{H-H} = 6.8 Hz, ⁴*J*_{H-H} = 1.1 Hz, 2H; H-2), 8.30 (d, ³*J*_{H-H} = 7.5 Hz, 2H; H-7), 8.25 (d, ³*J*_{H-H} = 7.9 Hz, 2H; H-b), 7.92 (dd, ³*J*_{H-H} = 8.0 Hz, ⁴*J*_{H-H} = 1.1 Hz, 2H; H-4), 7.76 (d, ³*J*_{H-H} = 8.0 Hz, 2H; H-5), 7.54 (dd, ³*J*_{H-H} = 8.0 Hz, ³*J*_{H-H} = 6.8 Hz, 2H; H-3), 7.51 (dd, ³*J*_{H-H} = 7.8 Hz, ⁴*J*_{H-H} = 0.9 Hz, 2H; H-d), 7.46 (vt, 2H; H-c), 7.44 (vt, 2H; H-6)

¹³C{¹H} NMR (125.77 MHz, C₆D₆): δ = 150.2 (C-e), 144.9 (C-a), 135.0 (C-2), 134.0 (C-8a), 133.8 (C-4), 133.3 (C-4a), 133.1 (C-8), 132.1 (C-c), 131.6 (C-d), 130.1 (C-5), 126.4 (C-3), 126.2 (C-6), 125.3 (C-7), 124.1 (C-b), n.o. (C-1,f)

¹¹B{¹H} NMR (160.48 MHz, C₆D₆): δ = 44.4

HRMS: Calculated m/z for C₃₂H₁₈B₂O [M⁺]: 440.15381, found: 440.15383

UV-vis (*c*-hexane): λ_{max} (ϵ) = 392 nm (17200 M⁻¹cm⁻¹)

Fluorescence (*c*-hexane, $\lambda_{ex} = 300 \text{ nm}$): $\lambda_{max} = 411 \text{ nm}$; $\Phi_{PL} = 45\%$

Cyclic voltammetry (CH₂Cl₂, [*n*-Bu₄N][PF₆], 0.1 M, 200 mV s⁻¹, vs. FcH/FcH⁺): $E_{pc} = -2.19$ V

Lewis-base adducts of the B-O-B species ODBE:

ODBE·DMAP

4-Dimethylaminopyridine (6 mg, 45.4 μ mol; DMAP) was added to a solution of **ODBE** (10 mg, 22.7 μ mol) in C₆D₆ (0.5 mL), whereupon a color change of the solution from yellow to colorless was observed.

¹H NMR (500.18 MHz, C₆D₆): δ = 8.56 (d, ³*J*_{H-H} = 7.3 Hz, 2H; H-7), 8.48 (dd, ³*J*_{H-H} = 6.8 Hz, ⁴*J*_{H-H} = 1.2 Hz, 2H; H-2), 8.38 (dd, ³*J*_{H-H} = 7.9 Hz, ⁴*J*_{H-H} = 1.1 Hz, 2H; H-b), 8.31 (br; DMAP-H_{Ar}), 7.93 (d, ³*J*_{H-H} = 8.0 Hz, 2H; H-5), 7.87 (dd, ³*J*_{H-H} = 7.9 Hz, ⁴*J*_{H-H} = 1.2 Hz, 2H; H-4), 7.70 (dd, ³*J*_{H-H} = 7.9 Hz, ³*J*_{H-H} = 6.8 Hz, 2H; H-3), 7.63 (vt, ³*J*_{H-H} = 8.0 Hz, ³*J*_{H-H} = 7.3 Hz, 2H; H6), 7.26 (vt, 2H; H-c), 7.23 (dd, ³*J*_{H-H} = 7.5 Hz, ⁴*J*_{H-H} = 1.1 Hz, 2H; H-d), 5.67 (br; DMAP-H_{Ar}), 1.98 (s; DMAP-CH₃)

¹³C{¹H} NMR (125.77 MHz, C₆D₆): δ = 152.6* (br; C-1), 150.5 (C-e), 148.6* (br; C-f), 139.5 (C-a), 136.3 (C-8), 134.3 (C-4a), 133.4 (C-8a), 131.1 (C-2), 129.3 (C-d), 128.5 (C-5), 127.2 (C-3), 127.2 (C-c), 126.2 (C-4), 125.2 (C-6), 122.3 (C-b), 121.2 (C-7), 38.1 (DMAP-CH₃), n.o. (DMAP-C_{Ar})

¹¹B{¹H} NMR (160.48 MHz, C₆D₆): δ = 3.2

*These signals were only detectable in the ^{H,C}HMBC-spectrum.

NMR spectroscopy indicated an adduct formation of **ODBE** also with other nitrogen-donor bases [pyridine, pyridazine, phthalazine (pthz)]. Single crystals of **ODBE** \cdot **pthz** were obtained by slow gas-phase diffusion of *n*-hexane into a solution of **ODBE** and phthalazine (1:1) in C₆D₆ at room temperature. Treatment of the B–O–B species ODBE with BBr₃ to furnish 3:

BBr₃ (0.1 mL, 0.57 M in CDCl₃, 57 μ mol) was added to a solution of **ODBE** (5 mg, 11 μ mol) in CDCl₃ (0.35 mL) in a sealable NMR tube. The tube was flame-sealed under vacuum and heated to 140 °C for 2 d; the reaction progress was monitored by NMR spectroscopy. After the conversion was complete, the pale yellow solution was transferred to a Schlenk flask, and all volatiles were removed under vacuum at 60 °C to afford **3** as an orange solid. Yield: 6 mg (10 μ mol, 91%).

¹H NMR (500.18 MHz, CDCl₃): δ = 8.98 (dd, ³*J*_{H-H} = 7.2 Hz, ⁴*J*_{H-H} = 1.2 Hz, 2H; H-2), 8.90 (d, ³*J*_{H-H} = 7.6 Hz, 2H; H-7), 8.90–8.85 (m, 2H; H-b), 8.78 (d, ³*J*_{H-H} = 7.9 Hz, 2H; H-d), 8.38 (d, ³*J*_{H-H} = 8.0 Hz, 2H; H-4), 8.12 (d, ³*J*_{H-H} = 7.8 Hz, 2H; H-5), 7.99–7.94 (m, 2H; H-c), 7.85 (vt, 2H; H-3), 7.80 (vt, 2H; H-6) ¹³C{¹H} NMR (125.77 MHz, CDCl₃): δ = 146.6 (C-e), 142.6 (C-a), 142.2 (C-2), 139.1 (C-d),

137.5 (C-4), 134.4* (C-f), 133.0 (C-4a), 131.7 (C-8a), 131.5 (C-5), 131.4 (C-8), 126.7 (C-7), 126.7 (C-c), 126.6 (C-3), 126.5 (C-6), 123.0 (C-b), n.o. (C-1)

¹¹B{¹H} NMR (160.48 MHz, CDCl₃): n.o.

*These signals were only detectable in the ^{H,C}HMBC-spectrum.

Experiments related to mechanistic investigations

2,2'-Bipyridyl (32 mg, 203 µmol; bpy) was dissolved in THF (60 mL), neat 1,5cyclooctadiene (20 mg, 185 µmol; COD) and Ni(COD)₂ (53 mg, 203 µmol) were added, and the mixture was stirred at room temperature for 15 min. Bromobenzene (29 mg, 185 µmol) was added to the deeply purple-colored mixture and stirred for 20 h; the reaction progress (to furnish biphenyl) was monitored by TLC. After the addition of solid **B**₂-**TBPA** (20 mg, 46 µmol), stirring was continued for 19 h at room temperature, the mixture was placed in an ice bath, and quenched by bubbling air through it. A yellow solution containing an off-white precipitate was obtained. All volatiles were removed under vacuum and the brownish solid residue was subjected to flash-column chromatography (*c*-hexane \rightarrow *c*-hexane:CH₂Cl₂ = 1:1; large cartridge). Biphenyl (12 mg, 78 µmol, 85% yield) was obtained as a white solid, **ODBE** (10 mg, 23 µmol, 50% yield) as a bright yellow solid, and **B**₂-**TBPA** (3 mg, 7 µmol, 16% yield) recovered as a yellow solid (¹H NMR spectroscopic control).

2,2'-Bipyridyl (10 mg, 64 μ mol; bpy) was dissolved in pyridine (15 mL; py), neat 1,5cyclooctadiene (6 mg, 58 μ mol; COD) and Ni(COD)₂ (18 mg, 64 μ mol) were added, and the mixture was stirred at room temperature for 1 h. The resulting dark-colored mixture was slowly added (over 4 h using a syringe pump) at room temperature to a pale yellow solution of 4 (17 mg, 29 μ mol) in pyridine (40 mL). After complete addition, stirring was continued

for 24 h at room temperature, the mixture was placed in an ice bath, and quenched by bubbling air through it. A beige solution containing an off-white precipitate was obtained. All volatiles were removed under vacuum and the brownish solid residue was subjected to flash-column chromatography (*c*-hexane \rightarrow *c*-hexane:CH₂Cl₂ = 1:1). The fraction containing the luminescent **B**₂-TBPA was evaporated to dryness under reduced pressure and the residue washed with ice-cold *n*-pentane (2 × 1 mL). **B**₂-TBPA was obtained as a yellow solid. Yield: 9 mg (21 µmol, 73%). The formation of **B**₂-TBPA was confirmed by ¹H NMR.

2,2'-Bipyridyl (9 mg, 56 µmol; bpy) was dissolved in THF (15 mL), neat 1,5-cyclooctadiene (5 mg, 51 µmol; COD) and Ni(COD)₂ (16 mg, 56 µmol) were added, and the mixture was stirred at room temperature for 1 h. The resulting deeply purple-colored mixture was slowly added (over 4 h using a syringe pump) at room temperature to a solution of 4 (15 mg, 26 µmol) in THF (40 mL). The initial pale yellow solution turned dark during the process. After complete addition, stirring was continued for 24 h at room temperature, the mixture was placed in an ice bath, and quenched by bubbling air through it. A yellow solution containing an off-white precipitate was obtained. All volatiles were removed under vacuum and the brownish solid residue was subjected to flash-column chromatography (*c*-hexane \rightarrow *c*-hexane:CH₂Cl₂ = 1:1). The fraction containing the luminescent **ODBE** was evaporated to dryness under reduced pressure and the residue washed with ice-cold *n*-pentane (3 × 2 mL). **ODBE** was obtained as a bright yellow solid. Yield: 7 mg (16 µmol, 62%). The formation of **ODBE** was confirmed by ¹H NMR.

3. Plots of $^1H, \ ^{11}B\{^1H\}, \ ^{13}C\{^1H\}, \ ^{19}F$ and $\ ^{19}F\{^1H\}$ NMR spectra of all new compounds

Figure S3-1: ¹H NMR spectrum of **1,5-Difluoro-9,10-dibromo-9,10-dihydro-9,10-diboraanthracene (1**^F) (CDCl₃, 500.18 MHz).

Figure S3-2: ${}^{13}C{}^{1}H$ NMR spectrum of 1,5-difluoro-9,10-dibromo-9,10-dihydro-9,10-dibroma-9,10-dihydro-9,10-dibroma-9,10-dihydro-9,10-dibroma-9,10-dihydro-9,10-dibroma-9,10-dihydro-9,10-dibroma-9,10-dihydro-9,10-dibroma-9,10-dihydro-9,10-dibroma-9,10-dihydro-9,10-dibroma-9,10-dihydro-9,10-dibroma-9,10-dihydro-9,10-dibroma-9,10-dibroma-9,10-dibroma-9,10-dihydro-9,10-dibroma-9,10-dibr

Figure S3-3: ${}^{11}B{}^{1}H{}$ NMR spectrum of 1,5-difluoro-9,10-dibromo-9,10-dihydro-9,10-diboraanthracene (1^F) (CDCl₃, 160.48 MHz).

Figure S3-4: ¹⁹F NMR spectrum of 1,5-difluoro-9,10-dibromo-9,10-dihydro-9,10-diboraanthracene (1^F) (CDCl₃, 470.64 MHz).

Figure S3-5: ${}^{19}F{}^{1}H$ NMR spectrum of 1,5-difluoro-9,10-dibromo-9,10-dihydro-9,10-diboraanthracene (1^F) (CDCl₃, 282.29 MHz).

Figure S3-6: ¹H NMR spectrum of 1,5,9,10-tetrabromo-9,10-dihydro-9,10-diboraanthracene (1^{Br}) (CDC1₃, 400.13 MHz).

Figure S3-7: ${}^{13}C{}^{1}H$ NMR spectrum of 1,5,9,10-tetrabromo-9,10-dihydro-9,10-diboraanthracene (1^{Br}) (CDCl₃, 100.61 MHz).

diboraanthracene (1^{Br}) (CDCl₃, 128.38 MHz).

Figure S3-9: ¹H NMR spectrum of 9,10-bis(8-bromonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{H,Br}) (CDCl₃, 500.18 MHz).

Figure S3-10: ${}^{13}C{}^{1}H$ NMR spectrum of 9,10-bis(8-bromonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene ($2^{H,Br}$) (CDCl₃, 125.77 MHz).

Figure S3-11: ¹¹B{¹H} NMR spectrum of 9,10-bis(8-bromonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene ($2^{H,Br}$) (CDCl₃, 160.48 MHz).

Figure S3-12: ¹H NMR spectrum of 9,10-bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene ($2^{H,I}$) (CDCl₃, 500.18 MHz).

Figure S3-13: ${}^{13}C{}^{1}H$ NMR spectrum of 9,10-bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{H,I}) (CDCl₃, 125.77 MHz).

Figure S3-14: ¹¹B{¹H} NMR spectrum of 9,10-bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene ($2^{H,I}$) (CDCl₃, 160.48 MHz).

Figure S3-15: ¹H NMR spectrum of 1,5-difluoro-9,10-bis(8-bromonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{F,Br}) (CDCl₃, 500.18 MHz).

Figure S3-16: ${}^{13}C{}^{1}H$ NMR spectrum of 1,5-difluoro-9,10-bis(8-bromonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{F,Br}) (CDCl₃, 125.77 MHz).

Figure S3-17: ¹¹B{¹H} NMR spectrum of 1,5-difluoro-9,10-bis(8-bromonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene ($2^{F,Br}$) (CDCl₃, 160.48 MHz).

Figure S3-18: ¹⁹F NMR spectrum of 1,5-difluoro-9,10-bis(8-bromonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{F,Br}) (CDCl₃, 470.64 MHz).

Figure S3-19: ${}^{19}F{}^{1}H$ NMR spectrum of 1,5-difluoro-9,10-bis(8-bromonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{F,Br}) (CDCl₃, 282.29 MHz).

Figure S3-20: ¹H NMR spectrum of 1,5-difluoro-9,10-bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene ($2^{F,I}$) (CDCl₃, 500.18 MHz).

Figure S3-21: ${}^{13}C{}^{1}H$ NMR spectrum of 1,5-difluoro-9,10-bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{F,I}) (CDCl₃, 125.77 MHz).

-52.1

Figure S3-22: ${}^{11}B{}^{1}H{}$ NMR spectrum of 1,5-difluoro-9,10-bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{F,I}) (CDCl₃, 160.48 MHz).

Figure S3-23: ¹⁹F NMR spectrum of 1,5-difluoro-9,10-bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene ($2^{F,I}$) (CDCl₃, 470.64 MHz).

Figure S3-24: ${}^{19}F{}^{1}H$ NMR spectrum of 1,5-difluoro-9,10-bis(8-iodonaphth-1-yl)-9,10-dihydro-9,10-diboraanthracene (2^{F,I}) (CDCl₃, 282.29 MHz).

Figure S3-25: ¹H NMR spectrum of **1,5-dibromo-9,10-bis(8-bromonaphth-1-yl)-9,10-dibydro-9,10-diboraanthracene (2**^{Br,Br}) (CDCl₃, 500.18 MHz).

Figure S3-26: ¹³C{¹H} NMR spectrum of 1,5-dibromo-9,10-bis(8-bromonaphth-1-yl)-9,10-dibydro-9,10-diboraanthracene ($2^{Br,Br}$) (CDCl₃, 125.77 MHz).

Figure S3-27: ¹¹B{¹H} NMR spectrum of 1,5-dibromo-9,10-bis(8-bromonaphth-1-yl)-9,10-dibydro-9,10-diboraanthracene ($2^{Br,Br}$) (CDCl₃, 160.48 MHz).

Figure S3-28: ¹H NMR spectrum of 1,5-dibromo-9,10-bis(8-iodonaphth-1-yl)-9,10-dibydro-9,10-diboraanthracene ($2^{Br,I}$) (CDCl₃, 500.18 MHz).

Figure S3-29: ${}^{13}C{}^{1}H$ NMR spectrum of 1,5-dibromo-9,10-bis(8-iodonaphth-1-yl)-9,10-dibydro-9,10-diboraanthracene (2^{Br,I}) (CDCl₃, 125.77 MHz).

Figure S3-30: ¹¹B{¹H} NMR spectrum of 1,5-dibromo-9,10-bis(8-iodonaphth-1-yl)-9,10-dibydro-9,10-diboraanthracene ($2^{Br,I}$) (CDCl₃, 160.48 MHz).

Figure S3-31: ¹H NMR spectrum of B₂-TBPA (CDCl₃, 500.18 MHz).

Figure S3-32: ¹³C{¹H} NMR spectrum of B₂-TBPA (CDCl₃, 125.77 MHz).

Figure S3-33: ${}^{11}B{}^{1}H{}$ NMR spectrum of B₂-TBPA (CDCl₃, 160.48 MHz).

Figure S3-34: ¹H NMR spectrum of 4 (CDCl₃, 500.18 MHz). *Note:* Only the ¹H NMR shifts corresponding to the major compound were picked.

Figure S3-35: ¹³C{¹H} NMR spectrum of **4** (CDCl₃, 125.77 MHz). *Note:* Only the ¹³C NMR shifts corresponding to the major compound were picked.

Figure S3-36: ¹¹B{¹H} NMR spectrum of 4 (CDCl₃, 160.48 MHz).

Figure S3-37: ¹H NMR spectrum of ODBE (CDCl₃, 500.18 MHz).

Figure S3-38: ¹³C{¹H} NMR spectrum of **ODBE** (CDCl₃, 125.77 MHz).

Figure S3-39: ${}^{11}B{}^{1}H$ NMR spectrum of ODBE (CDCl₃, 160.48 MHz).

Figure S3-40: ¹H NMR spectrum of **ODBE** (C₆D₆, 500.18 MHz).

Figure S3-41: ¹³C{¹H} NMR spectrum of **ODBE** (C₆D₆, 125.77 MHz).

Figure S3-42: ¹¹B{¹H} NMR spectrum of ODBE (C₆D₆, 160.48 MHz).

Figure S3-43: ¹H NMR spectrum of ODBE·DMAP (C₆D₆, 500.18 MHz).

Figure S3-44: ¹³C{¹H} NMR spectrum of **ODBE**·**DMAP** (C₆D₆, 125.77 MHz).

Figure S3-45: ¹¹B{¹H} NMR spectrum of ODBE \cdot DMAP (C₆D₆, 160.48 MHz).

Figure S3-46: Blow-up of the ¹H NMR spectra (CDCl₃, 300.03 MHz) showing the partial hydrolysis of the B–O–B bond in **ODBE** (a) and two drops of added H₂O over the course of 2 h (b) and after 4 h (c).

Figure S3-47: ¹H NMR spectrum of 3 (CDCl₃, 500.18 MHz).

Figure S3-48: ${}^{13}C{}^{1}H$ NMR spectrum of 3 (CDCl₃, 125.77 MHz).

Figure S3-49: ¹¹B{¹H} NMR spectrum of **3** (CDCl₃, 160.48 MHz). *Note*: Due to halogen scrambling between BBr₃ and CDCl₃ the following species are observed in the ¹¹B{¹H} NMR spectrum: BCl₃, BBrCl₂, BBr₂Cl, and BBr₃.

4. Photophysical and electrochemical properties of B₂-TBPA and ODBE

Figure S4-1: Normalized UV-vis absorption and emission spectra of **B₂-TBPA**, measured in *c*-hexane ($\lambda_{ex} = 340$ nm).

Figure S4-2: UV-vis absorption spectra of B₂-TBPA measured in *c*-hexane, THF, and pyridine at a concentration of 10^{-4} M.

Figure S4-3: UV-vis absorption spectra of **B**₂-**TBPA** in the presence of various amounts of 4-dimethylaminopyridine (DMAP), measured in C₆H₆ at a concentration of 10^{-4} M.

Figure S4-4: UV-vis absorption spectra of **B₂-TBPA** in the presence of various amounts of $[n-Bu_4N]F$ (TBAF), measured in CH₂Cl₂ at a concentration of 10^{-4} M.

Figure S4-5: Normalized UV-vis absorption and emission spectra of **ODBE**, measured in *c*-hexane ($\lambda_{ex} = 300 \text{ nm}$).

Figure S4-6: UV-vis absorption spectra of **ODBE** in the presence of various amounts of 4-dimethylaminopyridine (DMAP), measured in C₆H₆ at a concentration of 10^{-4} M.

Figure S4-7: Cyclic voltammogram of the **B**₂-**TBPA** in CH₂Cl₂ (room temperature, supporting electrolyte: $[n-Bu_4N][PF_6]$ (0.1 M), scan rate 200 mV s⁻¹).

Figure S4-8: Cyclic voltammogram of the first reduction event of the **B**₂-**TBPA** in CH₂Cl₂ (room temperature, supporting electrolyte: $[n-Bu_4N][PF_6]$ (0.1 M), scan rate 200 mV s⁻¹).

Figure S4-9: Cyclic voltammogram of the **B₂-TBPA** in THF (room temperature, supporting electrolyte: $[n-Bu_4N][PF_6]$ (0.1 M), scan rate 200 mV s⁻¹).

Figure S4-10: Cyclic voltammogram of the first reduction event of the **B₂-TBPA** in THF (room temperature, supporting electrolyte: $[n-Bu_4N][PF_6]$ (0.1 M), scan rate 200 mV s⁻¹).

Figure S4-11: Cyclic voltammogram of the first reduction event of the **B₂-TBPA** in pyridine (room temperature, supporting electrolyte: $[n-Bu_4N][PF_6]$ (0.1 M), scan rate 200 mV s⁻¹).

Figure S4-12: Cyclic voltammogram of the **ODBE** in CH_2Cl_2 (room temperature, supporting electrolyte: [*n*-Bu₄N][PF₆] (0.1 M), scan rate 200 mV s⁻¹).

	$\lambda_{\rm abs} [{\rm nm}]^a$	$\lambda_{\text{onset}}[\text{nm}]^b$	$\lambda_{\rm em} [{\rm nm}]^a$	$\Phi_{\rm PL} [\%]^c$	Stokes shift	Elumo	$E_{1/2}$ [V]	$E_{\rm G}^{\rm opt}$
	$(\epsilon [M^{-1}cm^{-1}])$				$[\mathbf{cm}^{-1}]^d$	$[eV]^e$		[eV] ^f
B₂-TBPA	340 (14100)	472	472	69	719	-3.15 ^g	-1.65 ^g	2.63
	432 (8300)		496			-3.07^{h}	-1.73^{h}	
	456 (14600)					-2.64^{i}	-2.16^{i}	
ODBE	295 (15600)	486	411	45	1179	_/_	$-2.19^{g,k}$	2.55
	307 (13900)		426					
	350 (11100)							
	379 (18900)							
	392 (17200)							
	441 (1841)							
	467 (1353)							

Table S4-1: Photophysical and electrochemical data of B_2 -TBPA and ODBE. Optical measurements were performed in *c*-hexane.

^{*a*} Resolved vibrational fine structure (italicized values). ^{*b*} Each onset wavelength (λ_{onset}) was determined by constructing a tangent on the point of inflection of the bathochromic slope of the most red-shifted absorption maximum. ^{*c*} Quantum yields were determined by using a calibrated integrating sphere. ^{*d*} Stokes shifts represent the difference between each longest wavelength absorption maximum and the corresponding shortest wavelength emission maximum. ^{*e*} $E_{LUMO} = -4.8 \text{ eV} - E_{1/2}^{\text{Red1}}$ (FcH/FcH⁺ = -4.8 eV vs vacuum level). ^{*f*} Optical band gap $E_{G}^{\text{opt}} = 1240/\lambda_{\text{onset}}$. ^{*g*} Measurements were performed in CH₂Cl₂. ^{*h*} Measurements were performed in THF. ^{*i*} Measurements were performed in pyridine. ^{*k*} Only an irreversible reduction event was observed for compound **ODBE**.

5. X-Ray crystal structure analyses

Data for **ODBE** were collected on a STOE IPDS II-T two-circle diffractometer with an Incoatec Microfocus tube with mirror optics using CuK_{α} radiation ($\lambda = 1.54186$ Å). Data for the remaining structures were collected on a STOE IPDS II two-circle diffractometer with a Genix Microfocus tube with mirror optics using Mo K_{α} radiation ($\lambda = 0.71073$ Å). The data were scaled using the frame scaling procedure in the *X-AREA* program system.^[S23] The structures were solved by direct methods using the program *SHELXS* and refined against F^2 with full-matrix least-squares techniques using the program *SHELXL*.^[S24]

CCDC 1922188 crystallizes together with 1 equiv of C_6H_6 ($2^{H,Br} \cdot C_6H_6$). The bromonaphthyl residue at B(1) is disordered over two positions with a site occupation factor of 0.8550(11) for the major occupied sites. The minor occupied atoms were isotropically refined.

CCDC 1922189 ($syn-2^{Br,I}$) crystallizes with two symmetry-independent molecules, $syn-2^{Br,I}$ and $syn-2^{Br,I}(A)$, in the asymmetric unit. In $syn-2^{Br,I}(A)$, the iodonaphthyl residue at B(2A) is disordered over two positions with a site occupation factor of 0.914(2) for the major occupied sites. The minor occupied atoms were isotropically refined with a common displacement parameter for the C atoms. The geometric parameters of the minor occupied atoms were restrained to those of a non-disordered iodonaphthyl moiety.

The molecule of CCDC 1922190 (B_2 -TBPA) is located on a two-fold rotation axis. Due to the absence of anomalous scatterers, the absolute structure could not be determined.

CCDC 1922191 (**ODBE**) was non-merohedrally twinned with a fractional contribution of 0.485(4) for the minor domain.

CCDC 1922192 crystallizes with 0.5 equiv of C_6H_6 (**ODBE**·**pthz**·**0.5** C_6H_6), the displacement parameters of all non-H atoms were treated with a rigid bond restraint (RIGU in *SHELXL*). There are two symmetry-independent molecules, **ODBE**·**pthz** and **ODBE**·**pthz**(A), in the asymmetric unit.

Figure S5-1: Molecular structure of $2^{H,Br} \cdot C_6H_6$ in the solid state; *syn/anti* ratio in the crystal = 0.855/0.145, only the *syn*-conformer is shown. Displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths [Å], atom…atom distances [Å], and bond angles [°]: C(1)-B(1) = 1.569(4), C(11)-B(1) = 1.569(4), C(21)-B(1) = 1.591(4), C(2)-B(2) = 1.570(4), C(12)-B(2) = 1.559(4), C(31)-B(2) = 1.583(4); B(1)…Br(1) = 2.690(3), B(2)…Br(2) = 2.801(3); C(1)-B(1)-C(11) = 118.6(2), C(1)-B(1)-C(21) = 119.0(2), C(11)-B(1)-C(21) = 119.3(2), C(2)-B(2)-C(12) = 119.1(2), C(2)-B(2)-C(31) = 120.4(2), C(12)-B(2)-C(31) = 119.3(2).

Figure S5-2: Molecular structure of $syn-2^{Br,I}$ in the solid state. The compound crystallizes with two symmetry-independent molecules, $syn-2^{Br,I}$ and $syn-2^{Br,I}(A)$, in the asymmetric unit. In $syn-2^{Br,I}(A)$, the iodonaphthyl residue at B(2A) is disordered over two positions with a site occupation factor of 0.914(2) for the major occupied sites. Shown and discussed here is only the non-disordered $syn-2^{Br,I}$. Displacement ellipsoids are drawn at the 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths [Å], atom…atom distances [Å], and bond angles [°]: C(1)–B(1) = 1.589(12), C(11)–B(1) = 1.587(13), C(21)–B(1) = 1.583(10), C(2)–B(2) = 1.565(13), C(12)–B(2) = 1.570(12), C(31)–B(2) = 1.606(12); B(1)…I(1) = 2.775(9), B(2)…I(2) = 2.822(10); C(1)–B(1)–C(11) = 118.8(6), C(1)–B(1)–C(21) = 114.7(7), C(11)–B(1)–C(21) = 121.2(7), C(2)–B(2)–C(12) = 120.5(7), C(2)–B(2)–C(31) = 120.8(7), C(12)–B(2)–C(31) = 115.4(7).

Figure S5-3: Molecular structure of **B**₂-**TBPA** in the solid state. Displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths [Å], bond angles [°], torsion angles [°], and dihedral angle [°]: B(1)-C(1) = 1.572(7), B(1)-C(11) = 1.548(6), B(1)-C(2A) = 1.540(6), C(3A)-C(13) = 1.486(5); C(2A)-B(1)-C(1) = 118.3(4), C(2A)-B(1)-C(11) = 116.5(4), C(11)-B(1)-C(1) = 125.2(4); C(11)-B(1)-C(1)-C(6) = -21.1(6), C(1)-B(1)-C(11)-C(20) = -20.7(7), Ph(1)-Naph(11)//Ph(1A)-Naph(11A) = 42.20(4). Ph(X)-Naph(X): phenylene and naphthylene ring containing the carbon atom C(X). Symmetry operation used to generate equivalent atoms: -x+1, y, -z+1.

Figure S5-4: Molecular structure of **ODBE** in the solid state. Displacement ellipsoids are drawn at the 50% probability level. Selected bond lengths [Å], bond angles [°], torsion angles [°], and dihedral angle [°]: B(1)–C(1) = 1.567(13), B(1)–C(21) = 1.458(16), B(1)–O(1) = 1.418(13), B(2)–C(11) = 1.496(15), B(2)–C(31) = 1.564(14), B(2)–O(1) = 1.382(14), C(1)–C(2) = 1.392(14), C(2)–C(12) = 1.470(14), C(6)–C(23) = 1.451(15), C(11)–C(12) = 1.464(12), C(16)–C(33) = 1.508(13); B(1)–O(1)–B(2) = 134.8(10), O(1)–B(1)–C(1) = 119.6(11), O(1)–B(1)–C(21) = 118.3(10), C(1)–B(1)–C(21) = 112.2(10), O(1)–B(2)–C(11) = 126.6(11), O(1)–B(2)–C(31) = 113.9(10), C(11)–B(2)–C(31) = 119.1(11); O(1)–B(1)–C(21)–C(21)–C(30) = -14.3(19), O(1)–B(2)–C(31)–C(40) = -13.0(17), C(3)–C(2)–C(12)–C(13) = -37.4(16); Ph(1)//Ph(11)= 41.8(3). Ph(X): phenylene ring containing the carbon atom C(X).

Figure S5-5: Molecular structure of ODBE • pthz • 0.5C₆H₆ in the solid state. There are two symmetry-independent molecules, **ODBE** \cdot **pthz** and **ODBE** \cdot **pthz**(A), and one C₆H₆ molecule in the asymmetric unit. Bond lengths and angles of both molecules are equal within the experimental error margins. Shown and discussed here is therefore only molecule **ODBE**•**pthz**. Displacement ellipsoids are drawn at the 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths [Å], bond angles [°], torsion angles [°], and dihedral angles [°]: B(1)-C(1) = 1.599(15), B(1)-C(21) = 1.617(14), B(1)-N(1) = 1.686(14), B(1)-O(1) = 1.426(13), B(2)-C(11) = 1.538(15), B(2)-C(31) = 1.575(16), B(2)-O(1) = 1.575(1.370(12), C(1)-C(2) = 1.404(13), C(2)-C(12) = 1.540(12), C(6)-C(23) = 1.492(14),B(1)-C(1) = 114.2(9), O(1)-B(1)-C(21) = 110.2(8), C(1)-B(1)-C(21) = 113.0(8), O(1)-C(21) = 113.0(8), O(1)-C(1) = 113.0(8), O(1)-C(1) = 113.0(8), O(1)-C(1) = 1B(1)-N(1) = 104.9(7), C(1)-B(1)-N(1) = 107.6(8), C(21)-B(1)-N(1) = 106.2(8), O(1)-B(2)-C(21)-C(30) = 42.5(14), O(1A)-B(1A)-C(21A)-C(30A) = 51.2(12), O(1)-B(2)-C(31)-C(31)-C(30A) = 51.2(12), O(1)-B(2)-C(31)-C(31)-C(30A) = 51.2(12), O(1)-B(2)-C(31)-C(31)-C(30A) = 51.2(12), O(1)-B(2)-C(31)-C(31)-C(30A) = 51.2(12), O(1)-B(2)-C(31)-C(C(40) = 3.0(16), O(1A)-B(2A)-C(31A)-C(40A) = 26.0(15), C(3)-C(2)-C(12)-C(13) =C(3A)-C(2A)-C(12A)-C(13A) = 40.0(14);42.8(15). Ph(1)//Ph(11)= 47.9(4), Ph(1A)/Ph(11A) = 44.4(4), Ph(1)/Ph(23) = 18.0(5), Ph(1A)/Ph(23A) = 13.2(6). Ph(X):phenylene ring containing the carbon atom C(X).

compound	2 ^{H,Br} ·C ₆ H ₆	2 ^{Br,I}	B ₂ -TBPA
CCDC	1922188	1922189	1922190
formula	$C_{32}H_{20}B_2Br_2$	$C_{32}H_{18}B_2Br_2I_2$	$C_{32}H_{18}B_2$
Iormuta	x C ₆ H ₆		
Mr	664.03	837.70	424.08
<i>T</i> (K)	173(2)	173(2)	173(2)
radiation, λ (Å)	0.71073	0.71073	0.71073
crystal system	monoclinic	triclinic	monoclinic
space group	$P2_{1}/c$	<i>P</i> –1	<i>C</i> 2
<i>a</i> (Å)	9.4242(3)	10.1254(6)	24.030(5)
<i>b</i> (Å)	23.7038(9)	11.9749(7)	3.8493(6)
<i>c</i> (Å)	13.4085(4)	23.3063(15)	10.627(3)
α (°)	90	89.356(5)	90
β (°)	100.468(3)	89.874(5)	92.763(19)
γ (°)	90	84.455(5)	90
$V(\text{\AA}^3)$	2945.46(17)	2812.5(3)	981.8(4)
Ζ	4	4	2
D_{calcd} (g cm ⁻³)	1.497	1.978	1.434
<i>F</i> (000)	1336	1584	440
μ (mm-1)	2.779	5.099	0.080
	0.450 x 0.170 x	0.170 x 0.110 x	0.110 x 0.030 x
crystal size (mm)	0.070	0.040	0.010
crystal form, color	yellow needle	colorless plate	light brown plate
reflections collected	49497	35871	7193
independent reflections	6477	12391	1976
R _{int}	0.0803	0.0611	0.0808
data/restraints/parameters	6477/0/430	12391/140/721	1976/1/154
$R_1, wR_2 (I > 2\sigma(I))$	0.0427, 0.0939	0.0567, 0.1259	0.0611, 0.1262
R_1 , wR_2 (all data)	0.0509, 0.0976	0.0988, 0.1424	0.0855, 0.1358
Goodness-of-fit on F^2	1.146	0.935	1.036
largest diff peak and hole (e $Å^{-3}$)	0.510, -0.411	1.282, -1.137	0.281, -0.263

Table S5-1. Selected crystallographic data for 2^{H,Br}·C₆H₆, 2^{Br,I}, and B₂-TBPA.

compound	ODBE	ODBE · pthz · 0.5C ₆ H ₆	
CCDC	1922191	1922192	
formula	$C_{32}H_{18}B_2O$	$C_{40}H_{24}B_2N_2O \ x \ 0.5$	
Iormuta		C_6H_6	
Mr	440.08	609.28	
<i>T</i> (K)	173(2)	173(2)	
radiation, λ (Å)	1.54186	0.71073	
crystal system	monoclinic	triclinic	
space group	$P2_{1}/c$	<i>P</i> –1	
<i>a</i> (Å)	3.8376(6)	14.113(4)	
b (Å)	13.5325(14)	14.980(5)	
<i>c</i> (Å)	38.521(6)	16.668(5)	
α (°)	90	103.27(3)	
β (°)	93.020(12)	101.80(2)	
γ (°)	90	108.84(2)	
$V(Å^3)$	1997.7(5)	3093.9(17)	
Ζ	4	4	
D_{calcd} (g cm ⁻³)	1.463	1.308	
<i>F</i> (000)	912	1268	
μ (mm-1)	0.656	0.077	
	0.350 x 0.040 x	0.190 x 0.030 x 0.020	
crystal size (mm)	0.020		
any stal former color	light brown	colorless needle	
crystal form, color	needle		
reflections collected	10326	35886	
independent reflections	3544	10890	
R _{int}	0.1008	0.2623	
data/restraints/parameters	3544/0/318	10890/882/865	
$R_1, wR_2 (I > 2\sigma(I))$	0.1307, 0.2252	0.1174, 0.2009	
R_1 , wR_2 (all data)	0.2342, 0.2720	0.3199, 0.2919	
Goodness-of-fit on F^2	1.780	0.881	
largest diff peak and hole (e $Å^{-3}$)	0.396, -0.428	0.309, -0.318	

Table S5-2. Selected crystallographic data for ODBE and ODBE ·pthz·0.5C₆H₆.

6. TD-DFT calculation data of B₂-TBPA and ODBE

Table S6-1. TD-DFT calculated electronic transitions for B_2 -TBPA along with their corresponding excitation energies and oscillator strengths.

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	\mathbf{S}_1	HOMO \rightarrow LUMO (98%)	462.83 (2.68)	0.3321
	S_2	HOMO-1 \rightarrow LUMO (90%)	417.82 (2.97)	0.0004
	3 2	HOMO–2 \rightarrow LUMO (6%)	417.82 (2.97)	
		HOMO−2 → LUMO (70%)		
	S_3	HOMO \rightarrow LUMO+1 (24%)	392.65 (3.16)	0.0002
		HOMO–1 \rightarrow LUMO (4%)		
		$HOMO \rightarrow LUMO+1 (66\%)$	-	0.0061
	S_4	HOMO−2 → LUMO (19%)	379.78 (3.26)	
B ₂ -TBPA		HOMO-4 \rightarrow LUMO (11%)		
	S5 S6	HOMO-3 \rightarrow LUMO (55%)		0.0003
		$HOMO-1 \rightarrow LUMO+1$ (34%)	368.57 (3.36)	
		HOMO–5 \rightarrow LUMO (3%)		
		HOMO-4 \rightarrow LUMO+1 (3%)		
		$HOMO-1 \rightarrow LUMO+1$ (57%)		
		HOMO-3 \rightarrow LUMO (35%)	353.20 (3.51)	0.3293
		HOMO-2 \rightarrow LUMO+1 (4%)		

Compound	Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
	\mathbf{S}_1	HOMO \rightarrow LUMO (96%)	397.18 (3.12)	0.0719
-	S_2	HOMO−1 → LUMO (98%)	394.73 (3.14)	0.274
-	S ₃	HOMO \rightarrow LUMO+1 (96%)	367.98 (3.37)	0.1493
	S4	HOMO-1 \rightarrow LUMO+1 (93%)	352.29 (3.52)	0.0674
-		HOMO−2 → LUMO (81%)		0.0009
	S	HOMO-1 \rightarrow LUMO+2 (8%)	334.82 (3.70)	
	S_5	HOMO-3 \rightarrow LUMO+1 (5%)	554.82 (5.70)	0.0009
		HOMO– $6 \rightarrow$ LUMO (4%)		
	S ₆	HOMO $-3 \rightarrow$ LUMO (68%)		0.0534
ODBE		HOMO-2 \rightarrow LUMO+1 (13%)	324.22 (3.82)	
		HOMO \rightarrow LUMO+2 (10%)		
		HOMO-6 \rightarrow LUMO+1 (4%)		
		HOMO-1 \rightarrow LUMO+2 (45%)		
		HOMO-4 \rightarrow LUMO (24%)		
		HOMO–2 \rightarrow LUMO (8%)		
		HOMO– $6 \rightarrow$ LUMO (6%)	308.88 (4.01)	0.0651
		HOMO \rightarrow LUMO+4 (4%)		
		HOMO-3 \rightarrow LUMO+1 (3%)		
		HOMO-1 \rightarrow LUMO+5 (3%)		

Table S6-2. TD-DFT calculated electronic transitions for **ODBE** along with their corresponding excitation energies and oscillator strengths.

Table S6-3. Primary orbitals which contribute to the calculated transitions of B_2 -TBPA. H-atoms have been omitted for clarity.

Table S6-4. Primary orbitals which contribute to the calculated transitions of **ODBE**. Hatoms have been omitted for clarity.

Figure S6-1: Predicted UV-vis spectra of B₂-TBPA for its first seven excited states (left) and ODBE for its first six excited states (right).

	8 -	-	
Compound	HOMO (eV)	LUMO (eV)	$E_{\mathrm{gap}}\left(\mathrm{eV}\right)$
B ₂ -TBPA	-5.52	-2.41	3.11
ODBE	-5.57	-2.05	3.52

Table S6-5. HOMO/LUMO energies of B₂-TBPA and ODBE.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	5	0	1.342659	-0.591081	-0.048865
2	6	Ő	0.109909	-1.514797	-0.339535
3	6	0	-1.190999	-0.933502	-0.274849
4	5	0	-1.342658	0.591091	-0.048854
5	6	0	-0.109913	1.514804	-0.339561
6	6	0	1.190997	0.933515	-0.27485
0 7	6	0	2.350528	1.725158	-0.471975
8	6	0	2.17958	3.084072	-0.812735
9	6	0	0.912909	3.637815	-0.93834
9 10	6	0	-0.226295	2.866382	-0.68885
10	1	0	3.035384	3.72809	-0.982793
11	1	0	0.811707	4.682781	-1.221672
12	1	0	-1.206133	3.322214	-0.794566
14	6 6	0	-2.35053	-1.725146	-0.471962 -0.812607
15		0	-2.179591	-3.084089	
16	6	0	-0.912921	-3.637847	-0.938167
17	6	0	0.226286	-2.866397	-0.688738
18	1	0	1.206124	-3.322238	-0.794426
19	1	0	-3.035401	-3.728124	-0.982574
20	1	0	-0.811721	-4.682838	-1.221407
21	6	0	-2.746834	1.079779	0.389131
22	6	0	2.746839	-1.079783	0.389076
23	6	0	2.973615	-2.324084	0.97817
24	6	0	3.868871	-0.203895	0.191216
25	6	0	5.188598	-0.678174	0.493224
26	6	0	5.351222	-1.967127	1.064558
27	6	0	4.262974	-2.768341	1.329671
28	1	0	4.396347	-3.742663	1.792033
29	1	0	2.126872	-2.971078	1.185459
30	1	0	6.35745	-2.305909	1.301666
31	6	0	3.704721	1.138367	-0.300767
32	6	0	4.851847	1.886942	-0.548346
33	6	0	6.147878	1.393708	-0.302627
34	6	0	6.318072	0.136974	0.228019
35	1	0	7.006861	2.022563	-0.519796
36	1	0	7.311089	-0.248299	0.446585
37	1	0	4.769389	2.894311	-0.939802
38	6	0	-2.973606	2.324039	0.978314
39	6	0	-4.262966	2.768278	1.329835
40	6	0	-5.351217	1.967092	1.064652
41	6	0	-5.188596	0.678175	0.493236
42	6	0	-3.868868	0.203905	0.191223
43	6	0	-6.318071	-0.136947	0.227953
44	6	0	-6.147876	-1.393645	-0.30278
45	6	0	-4.851843	-1.886879	-0.548489
46	6	0	-3.704719	-1.138336	-0.300815
47	1	0	-7.006861	-2.022474	-0.520018
48	1	0	-4.769381	-2.894218	-0.940025
49	1	0	-7.31109	0.248316	0.446529
50	1	0	-4.396338	3.742566	1.792268
51	1	0	-6.357446	2.305864	1.301777
52	1	0	-2.126863	2.971013	1.185657
54	1	v	2.120005	2.7/1013	1.105057

 Table S6-6. Atomic coordinates for the optimized geometry of B2-TBPA

 Center
 Atomic
 Coordinates (Angstroms)

Center	Atomic	Atomic	_	linates (Angstro	
Number	Number				,
		Туре	Х	Y	Z
1	5	0	1.269725	-0.296975	0.108528
2	6	0	1.638144	1.173792	-0.200766
3	6	0	0.69139	2.234853	-0.294054
4	6	0	-0.691309	2.234893	0.293826
5	6	0	-1.638086	1.173834	0.200784
6	5	0	-1.269731	-0.296883	-0.108782
7	8	0	-0.000014	-0.80665	-0.000271
8	6	0	-1.078246	3.433029	0.916676
9	6	0	-2.373661	3.610258	1.392829
10	6	0	-3.332263	2.628791	1.19213
11	6	0	-2.99979	1.414413	0.565039
12	6	0	2.999873	1.414321	-0.564975
13	6	0	3.332377	2.628524	-1.19237
14	6	0	2.37378	3.60995	-1.393338
15	6	0	1.078359	3.432849	-0.917151
16	6	0	-4.070693	0.415128	0.282247
17	6	0	-3.759165	-0.901959	-0.19672
18	6	0	-2.405926	-1.310378	-0.389603
19	6	0	-5.414942	0.748527	0.420803
20	6	0	-6.453921	-0.16289	0.143638
21	6	0	-6.166152	-1.434927	-0.291921
22	6	0	-4.816858	-1.828287	-0.476146
23	6	0	-4.489104	-3.130959	-0.935325
24	6	0	-3.177184	-3.514471	-1.113084
25	6	0	-2.14136	-2.60052	-0.835008
26	6	0	2.40585	-1.310568	0.389217
27	6	0	3.759136	-0.902057	0.196803
28	6	0	4.07074	0.415107	-0.281835
29	6	0	2.141213	-2.600814	0.834261
30	6	0	3.177004	-3.514781	1.112453
31	6	0	4.488961	-3.131152	0.935216
32	6	0	4.81679	-1.828362	0.47641
33	6	0	6.166122	-1.434867	0.292744
34	6	0	6.453963	-0.16271	-0.142437
35	6	0	5.41501	0.748672	-0.419807
36	1	0	-0.348402	4.223111	1.058249
37	1	0	-2.638917	4.528515	1.910506
38	1	0	-4.33677	2.807992	1.556481
39 40	1	0	4.336877	2.80758	-1.556823
40	1	0	2.639039	4.528051	-1.911289
41	1	0	0.348529	4.222912	-1.058904
42	1	0	-5.701804	1.746184	0.73158
43	1	0	-7.48487	0.154395	0.27421
44 45	1 1	0	-6.96055 5 200582	-2.146096	-0.50522
		0	-5.299583	-3.825759	-1.144762
46	1	0	-2.941883	-4.515147	-1.465786
47 48	1	0	-1.107068	-2.902963	-0.975992
	1	0	1.106893	-2.903336	0.974877
49 50	1	0	2.941635	-4.515535	1.464884
50	1	0	5.299409	-3.825944	1.144795
51 52	1 1	0 0	6.960487 7.484935	-2.146029 0.15468	0.506187 -0.272558
52 53	1	0	7.484933 5.701871	1.746443	-0.272338
22	1	U	5./018/1	1./40443	-0./30222

Table S6-7. Atomic coordinates for the optimized geometry of **ODBE**

 Center
 Atomic
 Coordinates (Angstroms)

7. References

- [S1] E. Januszewski, A. Lorbach, R. Grewal, M. Bolte, J. W. Bats, H. Lerner and M. Wagner, *Chem. Eur. J.*, 2011, 17, 12696–12705.
- [S2] S. Brend'amour, J. Gilmer, M. Bolte, H.-W. Lerner and M. Wagner, *Chem. Eur. J.*, 2018, 24, 16910–16918.
- [S3] A. M. Brouwer, *Pure Appl. Chem.*, 2011, **83**, 2213–2228.
- [S4] T.-S. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentz and C. J. Bardeen, *Rev. Sci. Instrum.*, 2007, 78, 086105.
- [S5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. H. Petersson, M. Nakatsuji, X. Caricato, H. P. F. Li, A. Hratchian, J. Izmaylov, G. Bloino, J. L. Zheng, M. Sonnenberg, M. Hada, K. Ehara, R. Toyota, J. Fukuda, M. Hasegawa, T. Ishida, Y. Nakajima, O. Honda, H. Kitao, T. Nakai, J. A. Vreven, J. E. Montgomery Jr., F. Peralta, M. Ogliaro, J. J. Bearpark, E. Heyd, K. N. Brothers, V. N. Kudin, T. Staroverov, R. Keith, J. Kobayashi, K. Normand, A. Raghavachari, J. C. Rendell, S. S. Burant, J. Iyengar, M. Tomasi, N. Cossi, J. M. Rega, M. Millam, J. E. Klene, J. B. Knox, V. Cross, C. Bakken, J. Adamo, R. Jaramillo, R. E. Gomperts, O. Stratmann, A. J. Yazyev, R. Austin, C. Cammi, J. W. Pomelli, R. L. Ochterski, K. Martin, V. G. Morokuma, G. A. Zakrzewski, P. Voth, J. J. Salvador, S. Dannenberg, A. D. Dapprich, O. Daniels, J. B. Farkas, J. V. Foresman, J. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 Revision C.01, 2010.
- [S6] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, J. Cheminform., 2012, 4, 17.
- [S7] T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett., 2004, 393, 51–57.
- [S8] R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724–728.
- [S9] A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639–5648.
- [S10] Persistence of Vision Pty. Ltd. (2004). Persistence of Vision (TM) Raytracer. Persistence of Vision Pty. Ltd., Williamstown, Victoria, Australia. Http://Www.Povray.Org/.
- [S11] N. M. O'Boyle, A. L. Tenderholt and K. M. Langner, J. Comput. Chem., 2008, 29, 839–845.
- [S12] M. Weimar, G. Dürner, J. W. Bats and M. W. Göbel, J. Org. Chem., 2010, 75, 2718– 2721.
- [S13] P. A. A. Klusener, J. C. Hanekamp, L. Brandsma and P. von R. Schleyer, J. Org.

Chem., 1990, **55**, 1311–1321.

- [S14] K. Schickedanz, T. Trageser, M. Bolte, H.-W. Lerner and M. Wagner, Chem. Commun., 2015, 51, 15808–15810.
- [S15] W. Nakanishi, T. Matsuno, J. Ichikawa and H. Isobe, Angew. Chem. Int. Ed., 2011, 50, 6048–6051.
- [S16] W. Nakanishi, T. Yoshioka, H. Taka, J. Y. Xue, H. Kita and H. Isobe, Angew. Chem. Int. Ed., 2011, 50, 5323–5326.
- [S17] K. Ikemoto, R. Kobayashi, S. Sato and H. Isobe, Angew. Chem. Int. Ed., 2017, 56, 6511–6514.
- [S18] K. Ikemoto, J. Lin, R. Kobayashi, S. Sato and H. Isobe, *Angew. Chem. Int. Ed.*, 2018, 57, 8555–8559.
- [S19] K. Senthilkumar, M. Kondratowicz, T. Lis, P. J. Chmielewski, J. Cybińska, J. L. Zafra, J. Casado, T. Vives, J. Crassous, L. Favereau and M. Stępień, *J. Am. Chem. Soc.*, 2019, 141, 7421–7427.
- [S20] D. Myśliwiec and M. Stępień, Angew. Chem. Int. Ed., 2013, 52, 1713–1717.
- [S21] G. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi and K. Itami, *Science*, 2017, 356, 172–175.
- [S22] G. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi and K. Itami, J. Am. Chem. Soc., 2018, 140, 10054–10059.
- [S23] Stoe & Cie, X-AREA. Diffractometer Control Program System. Stoe & Cie, Darmstadt, Germany, 2002.
- [S24] G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2008, 64, 112–122.