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Geometry relaxation and vibrational spectrum calculation

This step is commonly accomplished by methods based on Density Functional Theory, as they 
provide an acceptable accuracy-cost ratio. We use the package Gaussian09 to perform the 
geometry relaxation and the vibrational spectrum calculation.[1] In the folder Relax-Geom-Vib-
Spec-Calc one finds the input uranocenium.inp and the output uranocenium.log which crashed 
and was subsequently restarted in uranocenium-r.log. In the output uranocenium-r.log one 
finds the relaxed geometry, the harmonic frequencies, the reduced masses, the force constants 
and the displacement vectors of each vibrational mode. 

In the input uranocenium.inp one finds the experimental crystallographic geometry of 
[Dy(Cpttt)2]+ (ref. 3 in main text), where we have replaced Dy3+ by U3+. The resultant structure has 
a charge of +1 and a ground spin multiplicity (2S+1) of 4. This structure is relaxed in vacuum. Of 
course, a more realistic relaxation often requires to include the nearest environment of the 
molecule, although it may be kept frozen in order not to increase the computational cost (ref. 9 
in main text). Since our main goal in this manuscript is to focus on the novel methodology that 
we are proposing, we decided to relax this geometry in vacuum in order not to unnecessarily 
increase the computational cost. Thus, we apply our method to [U(Cpttt)2]+ and study its 
magnetic relaxation mediated only by molecular vibrations in vacuum. As a matter of fact, the 
experimental geometry of [Dy(Cpttt)2]+ was also relaxed in vacuum elsewhere by independent 
authors, and reasonable results regarding geometry relaxation, vibrational spectrum and 
relaxation dynamics were obtained (ref. 3 in main text). We employ a similar procedure as in 
[Dy(Cpttt)2]+, namely, the functional was PBEPBE, complemented with the GD3BJ empirical 
dispersion. Basis sets: cc-pVDZ for carbon and hydrogen atoms, and the effective core potential 
Stuttgart-RSC-1997-ECP for the uranium atom. The same description and procedure applies to 
UTp3.

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2020



Generation of distorted geometries. Determination of the CFP second 
derivatives at the relaxed geometry. 

From the vibrational spectrum calculation (see output uranocenium-r.log), we get a -3N
dimensional Cartesian displacement vector  for each vibrational mode , where jw

uur
1,...,j R

 is the number of vibrating atoms and  is the number of vibrational modes. Given the N R
-dimensional Cartesian vector  that contains the atom coordinates of the relaxed 3N eqv

uur

geometry, each distorted geometry , represented by the -dimensional Cartesian vector d 3N

, is generated as , where  is a given real value of the distortion d
jv

uur
d d
j eq j jv v Q w 

uur uur uur
d
jQ

coordinate  of the vibrational mode . Note that when , the relaxed geometry is jQ j 0d
jQ 

recovered . We are going to explain now how we choose the set of values  for a d
j eqv v

uur uur
 dj d
Q

given vibrational mode . First, we calculate the minimum value , i.e., the minimum j min
jQ

displacement of the given vibrational mode . The key idea is to produce a significant distortion j
respect to the relaxed geometry. In other words, the distortion must produce on each 
component of each vibrating atom position a change at least equal to the experimental 
crystallographic error of this component. Since each displacement vector is normalized, we have 

, i.e., , where  is the min min
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equilibrium position of the atom , and  is the minimum distorted position i  ,min ,min ,min, ,i i i
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of the atom  under the vibrational mode . As said, each  must equal , which i j ,mini i
j eq  i

is the experimental crystallographic error in the  component of the atom . Thus, we propose  i
that the minimum displacement  for the given vibrational mode  be: min

jQ j
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hydrogen atoms because of their low electron density, and the relevant post-processing 
software does not attribute any crystallographic error to the hydrogen atoms in the 
experimental structure. Thus, we decide not to include any hydrogen atom in the expression of 

. Sometimes, there exist components in the displacement vectors  that are zero or close min
jQ jw

uur

enough to zero. This means that some components of some atoms do not change or hardly 
change from their equilibrium values when the vibrational mode  is working. We also decide j
to exclude from the  expression those atom components which do not change or hardly min

jQ
change. To decide which atom components must be excluded, we use a threshold in the 
corresponding component of the displacement vector. If the absolute value of the 
corresponding component in the displacement vector is not greater than the threshold, then we 

set , see below.0i 

First, to determine the minimum displacements  we include the code prefactor-v2.f90 in min
jQ

the folder Home-Made-Codes, along with the input prefactor-v2-input and the output prefactor-
v2-output. Inside the code, one finds the variables nmod (number of vibrational modes), nato 
(number of atoms, namely, all vibrating atoms but the hydrogen atoms), and the threshold th 



to decide whether a given component of a given displacement vector is small enough or not. In 
the input prefactor-v2-input, one first needs to introduce the three lattice parameters (in 
Angstroms) , ,  of the experimental structure. Since we lack an experimental structure of a b c
[U(Cpttt)2]+, we used the lattice parameters of [Dy(Cpttt)2]+. Note that the protocol to choose the 

 values for each vibrational mode  is not unique, we only need some distorted geometries d
jQ j

around the relaxed geometry in order to calculate the CFPs second derivatives respect to the 
distortion coordinate for each vibrational mode . Thus, it is not strictly necessary to have some j
of the real parameters of the system under study. We need the lattice parameters (in 
Angstroms) because in prefactor-v2-input we introduce the crystallographic errors in fractional 
coordinates, and  must be calculated in Angstroms. Whenever the crystallographic errors min

jQ
are introduced in orthogonal coordinates in Angstroms, one will set the three lattice parameters 
to be 1.0. After the lattice parameters in prefactor-v2-input, we introduce the crystallographic 
errors in fractional coordinates as said. The first row is for the metal, and the following rows are 
for the remaining atoms, in this case, carbon atoms. These crystallographic errors are from the 
[Dy(Cpttt)2]+ experimental structure. The error in the x-component is more or less the same for 
all the carbon atoms. Thus, we used the average value for the x-component of the error in each 
carbon atom. We analogously proceed for the y and z components of the error. To end up, after 
the crystallographic errors, the displacement vectors are introduced as directly provided by the 
output of Gaussian09 (keep the blank lines between lattice parameters, crystallographic errors 
and displacement vectors). From these displacement vectors, we must to remove those rows 
corresponding to the hydrogen atoms whenever they exist. The order both in the 
crystallographic error rows and in the displacement vectors rows has to be the same. For 
example, since the first row in each one of our displacement vectors corresponds to the metal 
atom, the first row of the crystallographic errors table must also correspond to the metal atom. 
Since we gave the same crystallographic error to each carbon atom and since all remaining rows 
of the displacement vectors (once those rows corresponding to hydrogen atoms have been 
removed) correspond to carbon atoms, there is no need to care about the order of the remaining 
rows in the crystallographic errors table. The lapack library is not required. To run the code, we 
use the compiler gfortran and the command line: gfortran –o aa prefactor-v2.f90 (aa is the 
executable name). In the output prefactor-v2-output, each minimum displacement  is min

jQ
given after printing each displacement vector as “minimum displacement (Angstroms)”.

Second, we calculate how many distorted geometries we need for each vibrational mode . For j
that purpose, we include the excel file Number-Distorted-Geom in the folder Home-Made-
Codes. In this file, the input consists of the harmonic frequencies ν and the force constants k as 
directly provided by the Gaussian09 output uranocenium-r.log. If the values of ν and k are 
changed, the values of l.c.(n=0) and l.c.(n=1) will be automatically changed. The variables 
l.c.(n=0) and l.c.(n=1) are the classical limits (Angstroms) in the distortion coordinate 
corresponding to the ground and first excited harmonic vibrational levels of a given vibrational 
mode . Let us recall that the minimum displacement  (Angstroms) for each vibrational j min

jQ
mode  is provided by the code prefactor-v2.f90. We take the maximum displacement j
(Angstroms) of the distortion coordinate of a given vibrational mode  as the value , j min

j jQ s

where  is the natural number such that  is the smallest real number above l.c. (n=0). js min
j jQ s

Thus, the number of distorted geometries for the given vibrational mode  is . j 2 js



To end up, we need to generate the distorted geometries for each vibrational mode. For that, 
we include the code geom_dist.f90 in the folder Home-Made-Codes. In the input 
geom_dist_input, we first provide the minimum displacement  (Angstroms) and the natural min

jQ

number  for each vibrational mode . These pairs -each one of them corresponds to a given js j
vibrational mode - have to be ordered with increasing frequency. Then (keep the blank line), j
we write the relaxed geometry in Cartesian coordinates (Angstroms) along with the chemical 
symbol of each atom. And then (keep again the blank lines), we write the displacement vectors 
as directly provided by Gaussian09. These displacement vectors have to also appear with 
increasing frequency. Let us recall that each row of each displacement vector corresponds to a 
vibrating atom. Thus, the order of the rows in each displacement vector has to be the same as 
that of the relaxed geometry. For example, the first row in our relaxed geometry is for uranium. 
Thus, the first row of all displacement vectors must also correspond to uranium. We suggest to 
introduce both the relaxed geometry and the displacement vectors in this input as directly 
provided by the Gaussian09 output. The code geom_dist.f90 provides the distorted geometries 
of each vibrational mode with the format required by the input simpre.dat in the package 
SIMPRE1.2 (ref. 12 in main text). Thus, the first row both in the relaxed geometry and in each 
displacement vector must always correspond to the metal. Moreover, all the metal-coordinating 
ligand atoms must be grouped together and must appear both in the relaxed geometry and in 
each displacement vector right after the first row (which corresponds to the metal). We suggest 
to build the Gaussian09 input such that the input geometry have the metal in the first row and 
the metal-coordinating ligand atoms grouped together in the following rows. Inside the code 
geom_dist.f90, there are some parameters: nmod is the number of vibrational modes, nato is 
the number of all vibrating atoms (including now also the hydrogen atoms whenever they are 
present), iesf decides whether the relaxed geometry and the distorted geometries are printed 
in Cartesian (Angstroms) or spherical coordinates (Angstroms, degrees, degrees), imax is the 
number of metal-coordinating ligand atoms plus one (i.e., this number exactly includes the metal 
and the metal-coordinating ligand atoms, only the rows from 2 to imax of the relaxed geometry 
and of the distorted geometries will be printed), rres is the radial displacement (Angstroms) to 
approach each metal-coordinating ligand atom to the metal ion (see REC model below), ceff is 
the effective charge to apply to each metal-coordinating ligand atom (see REC model below). 
The angles “the” and “phi” are used to rotate the relaxed geometry and the distorted geometries 
if desired. First, a clock-wise rotation of angle "the" (degrees) is performed around the Y=(0,1,0) 
axis. Then, an anticlock-wise rotation of angle "phi" (degrees) is performed around the Z=(0,0,1) 
axis. If this rotation is not desired, just set the=0.0d0 and phi=0.0d0. The rotation we use 
(the=84.9d0, phi=26.9d0 in degrees) is such that the two carbon rings that coordinate the metal 
become parallel to the XY plane. This rotation option only works when iesf=1. In the output 
geom_dist_output, one finds the relaxed geometry and the distorted geometries for each 
vibrational mode and for each value of the distortion coordinate. The rows containing the atom 
positions are ready to be used in the input simpre.dat in the package SIMPRE1.2 (ref. 12 in main 
text). To run geom_dist.f90, the library lapack is not required. We use the compiler gfortran and 
the command line: gfortran –o aa geom_dist.f90 (aa is the executable name). 

All in all, for each mode , several distorted geometries  are generated around the j  jd
d

v
uur

relaxed geometry  by following the corresponding displacement vector . Then, we run  a eqv
uur

jw
uur

SIMPRE calculation at each distorted geometry  to determine the set of CFPs  in cm-1 d
jv

uur
q k
kA r



by following the same procedure employed to determine . Namely, to apply   
,

q k
k eq k q
A r

the same radial distance variations and charge magnitudes to the metal-coordinating atoms in 
these distorted geometries. Thus, for each mode  and each CFP we have a set of pairs j

. In the folder CFPs-vs-Dist-Coord, one finds, for each vibrational mode,    ,
dq k d

k jj d
A r Q

these CFPs (cm-1) at each value of the distortion coordinate (Angstrom). The files in this folder 
are ready to plot each CFP evolution against the corresponding evolution of the distortion 

coordinate, for example, by using the Igor package. By fitting each plot “  vs ” to  dq k
k j
A r d

jQ

a second order polynomial and evaluating its second derivative at  (let us recall that the 0jQ 
second derivatives in Eq. 1 are evaluated at the relaxed geometry, which corresponds to 

 for all ) we access . The values of these second derivatives for 0jQ  j  2 2/q k
k j eq
A r Q 

each CFP and for each vibrational mode are provided in the input frrmcfpd2.inp (which can be 
found in the folder Home-Made-Codes). In general, to fit each plot “CFP vs ”, we use the jQ
smallest degree polynomial that provides the best visual and most reasonable fitting (see SI of 
ref. 9 in main text).

Transition rates

The system vibrations that perturb the equilibrium electronic structure (corresponding to the 
relaxed geometry) are considered as harmonic. To determine the probability per unit time (i.e., 
the transition rate) of driving a transition from a state of the system characterized by the ket 

, where  is a given initial eigenstate with energy  and the quantum number  ,i jE n iE iE jn
describes the eigenstate of a given 1D harmonic vibrational mode , to another state j

 either by emitting or by absorbing a phonon, where  is the energy of a given , 1f jE n  fE
final eigenstate, is common to proceed by employing the so-called Fermi Golden Rule. This rule 
is usually prepared to incorporate a given expression of the phonon density of states. For 
example, the most employed phonon density of states is that of the Debye model, where this 
density is proportional to the square of the phonon frequency. Then, one integrates the 
transition rate over this phonon frequency up to the Debye cut-off, and the resultant expression 
depends on some parameters such as the crystal longitudinal and transverse sound velocities 
besides the Debye temperature. Let us recall that the current main goal is the development of 
fully ab-initio methodologies, in particular, by not assuming any specific form in the phonon 
density of states. This means being able to incorporate the vibrational spectrum as provided by 
a first-principles calculation. In solid state systems, vibrational energies are close enough so that 
it is considered they form an energy continuum. That is why the phonon frequency in the Debye 
model appears as a continuous variable -not discrete- which is subsequently integrated over a 
given real interval. On the contrary, a first-principles software will always provide a finite 
number of vibrations (each one with its harmonic frequency, reduced mass, force constant and 
displacement vector). These vibrations are the result of diagonalizing the so-called force matrix, 
which has always a finite size because computers only deal with finite quantities. To incorporate 
this finite set of vibrations into the transition rates, we need to replace the standard integral of 



the phonon frequency over a real interval by a summation over this given set of vibrations. Thus, 
the transition rates we show below are the result of adapting the standard Fermi Golden Rule, 
where the integral over the phonon frequency have been substituted by a summation over all 
vibrational modes (ref. 3 in main text). Indeed, the spin-vibration coupling is calculated up to 
second order in perturbation theory. Thus, there no exist crossed interactions among different 
vibrational modes and the transition rate expressions are just a summation over independent 
vibrations (ref. 9 in main text). These transition rates have been derived under the so-called 
Born-Oppenheimer approximation, which assumes that the electronic and nuclear dynamics are 
uncoupled and it results in non-adiabatic electronic transitions. 

Orbach transition rates:

This relaxation process is a finite sequence of direct transitions  where each one of i f

them is driven by only one resonant phonon with the energy difference . The process f iE E

starts in an initial eigenstate with unity population. The spin is excited to higher intermediate 
eigenstates in the potential barrier through phonon absorption. Once the barrier has been 
crossed (either by overcoming the highest eigenstate or by tunneling), this is followed by a 
cascade of de-excitations until reaching a final eigenstate through phonon emission.

Phonon absorption:  Eq. S1 2 2
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R

fi j j j j j i f
j

i H f n n E E  


     h

Phonon emission:  Eq. S2 2 2
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 is the number of vibrational modes.R

Second-order Raman transition rates: 

The transition from  to  is not direct but driven through an intermediate eigenstate , i f c

and involves two resonant phonons with the energy differences  and . The c iE E f cE E

first phonon  mixes  with , while the second one  mixes  with . Now, the case j i c l c f

 will have a certain transition rate whose value is not necessarily zero. Given  and i fE E i

, we include in the transition rate expression all intermediate eigenstates  but the ones f c

with an energy  equal to either  or  (ref. 3 in main text). Thus, given  and , for cE iE fE i f

each  only one of the following four options regarding the order in the energies is possible: c

(i) , (ii) , (iii) , (iv) . The transition rate i c fE E E  i c fE E E  i c fE E E  i c fE E E 
expression is as follows: 
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Eq. S3

In case of (i), the phonon  is absorbed and the phonon  is emitted; thus j l

 and . In case of (ii), the phonon  is  
2
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2

, 1j j jc j n n  

. In case of (iii), the phonon  is emitted and the phonon  is emitted;   2
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thus  and . In case of (iv), the phonon  is  
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, 1l l lc l n n  

Matrix elements of the strain tensor:

    Eq. S4
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These matrix elements describe the strain suffered by the lattice, which is encoded in the so-
called strain tensor , when the vibrational mode  absorbs or emits a phonon, respectively.  j j
The vibration bath is considered to be thermalized, i.e., its dynamics is much faster than that of 
the magnetic relaxation. Thus, these matrix elements are proportional to the Bose-Einstein 
statistics of the given vibrational mode , and depend only on temperature (ref. 22 and 24 in j
main text).[2] Note that when temperature  the left matrix element in Eq. S4 vanishes, 0T 
but not the right term which tends to 1. This means that some transition rates do not necessarily 
vanish as , and thus the spin is expected to relax even at very low temperature.0T 

Distribution of phonon energies:

,    Eq. S5 
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22

j
j

 
 

 

  
       

h h
h 1,...,j R

There is another modification implemented in the above transition rates. The original 

expressions contain the Dirac delta function , where  is the energy  j  h h f iE E  h

difference between the final and the initial eigenstates. The conservation of energy implies that 
 must equal the phonon energy  of a given vibrational mode . Otherwise, both h jh j

 and the corresponding transition rate vanish, i.e., there is no spin transition. As  j  h h

said above, first-principles packages provide a discrete vibrational spectrum. Thus, it is quite 
unlikely to find a vibrational mode whose phonon energy exactly matches a given energy 

difference , and hence one would not observe any spin relaxation. To solve this issue f iE E

(ref. 3 in main text), the Dirac delta function is replaced by a Gaussian convoluted spectrum 



around the phonon energy  of the given vibrational mode . In other words, we let the jh j

phonon energy have an uncertainty width around its value . This width is determined by jh
the standard deviation parameter , and can be estimated by inspecting  the experimental IR 
and Raman vibrational spectra (the full-width-half-maximum linewidth is twice as much as ) 
(ref. 3 in main text). This parameter has to be estimated carefully, since a too small value makes 
the Gaussian convoluted spectrum become too much similar to a delta function, and no 
relaxation is observed. On the contrary, a too large value means a continuously flat vibrational 
spectrum, which is not observed for molecular systems. Our case study just aims to demonstrate 
the methodology that we are proposing, and we have no experimental vibrational spectra of 

[U(Cpttt)2]+. Thus, we decided to employ the same value as in [Dy(Cpttt)2]+, which is . 110cm :

Resolution of the master equation

It is important to stress that the master equation in Eq. 2 is not invariant by time reversal. Thus, 
it is only valid for large enough times when irreversibility in the macroscopic system has been 
established. Irreversibility is reached above the time scale in which the relevant system-
environment collisions occur. Since spin-vibration interactions are much faster than relaxation 
in magnetic molecules, we can safely assume the attainment of this macroscopic irreversibility 
(ref. 22 in main text). A more complete description of relaxation would need to use density 
matrix formalism, since the employed picture consists in a spin population flowing among the 
several eigenstates, which thus disregards any coherent superposition of them. 

Orbach process:

We explain now how to solve the master equation in Eq. 2 (ref. 3, 22, 23 in main text). For that, 
we make use of the Orbach transition rates in Eq. S1 and Eq. S2. First, we need to build the so-
called master matrix  from the transition rates, whose size is  (  is the     2 1 2 1J J   J
ground electron spin quantum number of the magnetic metal ion). As explained in the main text, 
after diagonalizing the equilibrium crystal field Hamiltonian we obtain the lowest  2 1J 
eigenstates, which are truncated to the  components of the ground  multiplet and Jm J
subsequently renormalized in the case of studying a U3+-based molecular magnet. Then, these 
eigenstates  must be ordered. In our case, the order we consider is the one provided in the e
input rates.inp for the code rates.f (see section “Fortran code to evaluate magnetic relaxation 
dynamics”). In this input, we write the eigenstates row-wise; the row  is for the first eigenstate 1

 and the row  is for the last one . The master matrix  is:1e 2 1J  2 1Je  

 1e 2e …
2Je 2 1Je 

1e

2e
…

2Je

2 1Je 



First, we fill in the off-diagonal elements. Given initial and final eigenstates  and , the i f

positions of  and  in  determine the column and the row of the off-diagonal element i f 

to fill in, resp. If , we use the transition rate  (phonon absorption). If , we f iE E fi f iE E

use the transition rate  (phonon emission). If , we use  (ref. 3 in main text, we if f iE E 0 
are not including quantum tunneling of magnetization due to the action of a spin bath). Now, if 
the off-diagonal element ( , ) has been filled with , the symmetric off-diagonal element f i fi

( , ) is filled with . If the off-diagonal element ( , ) has been filled with , the i f if f i if

symmetric off-diagonal element ( , ) is filled with . If the off-diagonal element ( ,i f fi f

) has been filled with , the symmetric off-diagonal element ( , ) is also filled with i 0  i f

. Each diagonal element in a given position  is the negative summation of the 0   ,e e

off-diagonal elements in the given  column. By numerical diagonalization,  real e 2 1J 

eigenvectors  and eigenvalues  are obtained, where  are the positive  1 2 1, ,,...,
Je k e k 


1/ kt kt

 relaxation times of the system (  are thus the  relaxation rates of the 2 1J  1/ kt 2 1J 

system). One of these rates  is always zero, and corresponds to the situation in which the 
0

1/ kt
system has reached the thermal equilibrium. From these formalism, an expression for the total 
magnetization  as a function of time is obtained, Eq. S6, which depends on the population  M t

 and on the magnetization  of each eigenstate .  0 1ep t  eM e

The expression of  is shown in Eq. S7, and is a finite sum proportional to the   ep t 2 1J 

exponential functions . The coefficients  are obtained by solving the linear / kt te  2 1

1

J
k k

 



equation system in Eq. S7 after setting  and introducing the  initial populations 0t  2 1J 
. The magnetizations  are calculated as the derivatives  0 0 1ep t   eM

 evaluated at , where  is a static magnetic field and  is the ˆ
e ZEM e H e

B


 


0B  B ˆ
ZEH

Zeeman Hamiltonian.[3] After applying the Hellmann-Feynman theorem,  can be rewritten eM

as . We consider that the given magnetic molecule shows an axial 
ˆ
ZE

e
HM e e
B


 


anisotropy, with an axis either easy or hard that defines the Z axis. The magnetic field is applied 

in this Z direction, and thus the Zeeman Hamiltonian is , where  is the Bohr ˆ ˆ
ZE B zH gBJ B

magneton and  is the free-ion Landé factor. Hence, . Let us write the g ˆ
e B zM g e J e 

eigenstate  in the basis set of the ground  multiplet as , where e J  
2 1

1
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e
j

e c j j J




  
 are complex coefficients such that  is normalized. After some algebra, it is easy to  ec j e

obtain the expression  for the expectation value of the z    
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z e
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component of the electron spin operator . Ĵ
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In practice,  of the exponential functions in Eq. S7 vanish quickly (there are  2 1J  2 1J 
relaxation rates that are extremely fast), and  behaves as a single decaying exponential  M t

(corresponding to the only one slow relaxation rate) plus a constant derived from . 
0

1/ 0kt 
This fact is due to the double-well anisotropy. Indeed, each one of these  fast relaxation 2 1J 
rates describes spin dynamics inside a given side of the potential barrier. On the contrary, the 
spin jump over the barrier takes a much longer time and is accounted for by the slowest 
relaxation rate. 

Since  is independent of the script , we redefine the magnetization  as g e eM

. Thus, . We can also redefine the total /e e BM M g%    
2 1 2
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e e
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M c j j J
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magnetization  as . Thus,  M t    / BM t M t g%

. By fitting the plot “  vs ” to an        
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exponential function , the overall Orbach-mediated magnetic relaxation time   /tf t a be  

 is extracted, which is dominated by the slowest relaxation rate  at the working  1/ kt
temperature as explained.

Second-order Raman process:

Each off-diagonal element (column , row ) of the master matrix is filled by calculating the i f
transition rate given in Eq. S3. The diagonal elements are also built by adding the elements of 
the corresponding column and changing the sign of the summation. The master matrix is 
diagonalized, which allows us reaching the total magnetization whose time decay is fitted to a 
single exponential function to extract the Raman-mediated magnetic relaxation time at the 
working temperature. 

In the following table, we show the second-order Raman relaxation time calculated at different 
temperatures for [U(Cpttt)2]+. 

Table S1. Thermal evolution of the second-order Raman relaxation time for [U(Cpttt)2]+.

Temperature (K) Second-order Raman Relaxation Time (s)
11 1,3·1011

12 2,0·1010

13 4,1·109

14 1,0·109

15 3,2·108

20 5,2·106



25 4,4·105

30 8,4·104

40 1,0·104

50 2,7·103

The reason to calculate the Orbach and second-order Raman relaxation times up to 50 K is 
because at this temperature the Orbach relaxation time (Fig. 3) is already reaching the lowest 
value for a relaxation time that is experimentally observed, which is around 10-5-10-6 s. The 
reason to calculate the relaxation times above 6 K in case of the Orbach process (Fig. 3) and 
above 11 K in case of the second-order Raman process is because below these temperatures the 
smallest relaxation rates (eigenvalues of the corresponding master matrix) cannot be 
distinguished from the computational numerical noise. For example, below these temperatures 
one finds that the two smallest relaxation rates are both positive. It is important to note that 
only one relaxation rate  may be positive as much, and this rate in fact should be strictly 

0
1/ kt

zero (see above). Nevertheless, because of the computational numerical noise, it may have a 
rather non-zero value. That is why we introduce the thresholds eot (in case of the Orbach master 
matrix) and ert (in case of the second-order Raman master matrix), which have to be given a 
value such that they are above the magnitude of the smallest relaxation rate and below the 
magnitude of the second smallest relaxation rate (see section “Fortran code to evaluate 
magnetic relaxation dynamics”). The remaining  relaxation rates should be all of them always 2J
real and negative. Below these temperatures, we have also found (i) imaginary relaxation rates 
(although they are rather small and comparable to the computational numerical noise), (ii) the 
two smallest relaxation rates which are too similar to be distinguished and to decide which one 
should be strictly zero, and (iii) the smallest non-zero relaxation rates too small that makes the 
magnetization not to decay with time (which is interpreted as an infinite relaxation time). 

Determination of relaxation pathways and identification of vibrations 
promoting relaxation

To get further insight into the spin dynamics, a proper re-cast of the Orbach master matrix  
provides the different relaxation pathways at the working temperature. In this master matrix, 
the ket that determines a given column is the initial eigenstate  of a given direct transition, i

while the ket of a given row is the final eigenstate  of the same direct transition. At time f

, we place all the initial population in the [U(Cpttt)2]+ eigenstate with , see 0t  ˆ 4.15zJ  

Fig. 4. Note that in Fig. 4 the eigenstates are not ordered from left to right by increasing  ˆ
zJ

value. Nevertheless, let us consider the appearance order from left to right of each one of these 

eigenstates in this figure. Thus, the eigenstate with  is first, the one with ˆ 4.15zJ  

 is second, and so on until the final eigenstate with . We only ˆ 1.28zJ   ˆ 4.15zJ  

consider those relaxation pathways whose direct transitions are always to a final eigenstate 
 which is to the right of the given initial eigenstate  in Fig. 4 (ref. 3 in main text). For f i

example, from the eigenstate with  the direct transitions can be to any other ˆ 4.15zJ  



eigenstate but the one with  (let us recall that in this approach we are not ˆ 4.15zJ  

considering direct transitions between degenerate eigenstates), while from the eigenstate with 

 the direct transitions can only be to the one with  or to the one ˆ 0.64zJ   ˆ 1.28zJ  

with . Sometimes (ref. 3 in main text), these equilibrium eigenstates may be pure ˆ 4.15zJ  

in the sense that their  expectation values coincide with the several  values. ˆ
zJ ,...,Jm J J  

In this case, they would be ordered from left to right by increasing  value, and to re-cast ˆ
zJ

the Orbach master matrix only those direct transitions that increase the  value (but the ˆ
zJ

ones between degenerate eigenstates) would be considered, where  the  eigenstate ˆ
zJ J 

would be the one with unit population at . In our case, to do the re-cast, in the Orbach 0t 
master matrix we only need to keep those entries that correspond to a direct transition between 
non-degenerate eigenstates, where the final eigenstate  is found to the right of the initial f

eigenstate  in Fig. 4. The remaining entries, including the ones in the main diagonal, are now i
filled with a zero (transitions from a given eigenstate to the same eigenstate are excluded). In 
the input rates.inp of the code rates.f, right after writing the initial populations at time , 0t 
one writes a table whose size is the same as that of the Orbach master matrix (see section 
“Fortran code to evaluate magnetic relaxation dynamics”). We write “1” at those positions that 
correspond to those direct transitions that are kept; at the remaining positions we write “0”. 
The re-casted Orbach master matrix appears in the output rates.out, in the section “Orbach 
relaxation pathway”. Once the Orbach master matrix is re-casted, it needs now to be normalized 
in terms of percentages. The normalized re-casted Orbach master matrix appears in rates.out 
right after the re-casted Orbach master matrix. For that, right after the re-casting table just 
mentioned, we first write in rates.inp the total number of possible direct transitions between 
consecutive eigenstates from left to right in Fig. 4. Since there are 10 eigenstates, this total 
number is 9. Then, after this number we write the order of the equilibrium eigenstates as they 

appear in Fig.4 from left to right. The rightmost eigenstate  is excluded because ˆ 4.15zJ  

there are no more eigenstates to the right, hence, there are no possible direct transitions from 
this eigenstate to keep. This order depends on the order with which the eigenstates were 
introduced at the beginning of rates.inp. In this input, we wrote the eigenstates in this order: 1 

, 2 , 3 , 4 , 5 , 6 ˆ 4.15zJ   ˆ 4.15zJ   ˆ 1.28zJ   ˆ 1.28zJ   ˆ 0.64zJ  

, 7 , 8 , 9 , 10 . The order ˆ 0.64zJ   ˆ 1.49zJ   ˆ 1.49zJ   ˆ 1.78zJ   ˆ 1.78zJ  

we need to write in rates.inp is:  ->  ->  -> ˆ 4.15zJ   ˆ 1.28zJ   ˆ 0.64zJ  

 ->  ->  ->  ->  -> ˆ 1.49zJ   ˆ 1.78zJ   ˆ 1.78zJ   ˆ 1.49zJ   ˆ 0.64zJ  

 -> . Thus, we write in rates.inp the sequence 1 3 5 7 9 10 8 6 4 (note ˆ 1.28zJ   ˆ 4.15zJ  

that the number 2 which corresponds to the  eigenstate is not present). The ˆ 4.15zJ  

normalization in terms of percentages is based on the order of the sequence 1 3 5 7 9 10 8 6 4, 
and is as follows. These numbers in this sequence have now to be read as if they are referring 
to the corresponding columns of the re-casted Orbach master matrix (let us recall that the 



eigenstates that determine the several columns of this matrix are the initial eigenstates in the 
direct transitions). The first position in this sequence corresponds to the eigenstate with unity 
population at time , and the populations of all direct transitions that departure from this 0t 
eigenstate must amount to 100%. Thus, we sum all the elements in the column 1 of the re-casted 
Orbach master matrix, divide each one of these elements by this sum, and multiply each result 
by 100. After this process, each element of the first column in the normalized re-casted Orbach 

master matrix gives the population that flows from the eigenstate 1 ( ) to the rest ˆ 4.15zJ  

of the eigenstates. In particular, the element (3,1) (row 3 and column 1) gives the population 

 that flows from the eigenstate 1 ( ) to the eigenstate 3 ( ). Now, 1 3P
ˆ 4.15zJ   ˆ 1.28zJ  

the process is repeated in the column 3 of the re-casted Orbach master matrix. We add all the 
elements in the column 3, divide each element by this sum, and now multiply each result by 

. In this way, the sum of all the incoming populations to the eigenstate 3 ( ) 1 3P
ˆ 1.28zJ  

equals the sum of all the outcoming populations from the same eigenstate, which is not 
necessarily 100. Now, each element of the third column in the normalized re-casted Orbach 

master matrix gives the population that flows from the eigenstate 3 ( ) to the rest ˆ 1.28zJ  

of the eigenstates that are to the right in Fig. 4 (but the one with ). The process is ˆ 1.28zJ  

repeated again now with the column 5 of the re-casted Orbach master matrix, and finishes with 
the column 4 of this matrix. It is possible that the sum of the elements of a given column of the 
re-casted Orbach master matrix be below the computational numerical precision, which means 
this sum is as if it was zero. If this sum is zero from the point of view of the employed computer, 
each element of the given column can also be considered to be zero, since they are all always 
positive. Thus, it is not possible to divide these elements by the just mentioned sum. We 
introduce the threshold pot = 1.0d-16 in the code rates.f to decide when this sum has to be 
considered as zero. In this case, all the elements of the given column in the re-casted Orbach 
master matrix are set to be zero. 

Once the re-casted Orbach master matrix has been normalized, each direct transition that 
compose each relaxation pathway can now be decomposed into the contributions from the 
several vibrational modes. Indeed, let us recall that each direct transition corresponds to an 
element of the re-casted Orbach master matrix. These elements are in fact transition rates, 
which are a sum over the several vibrational mode contributions, see Eq. S1 and Eq. S2. What 
we do in rates.f is to normalize each vibrational mode contribution in terms of percentages, i.e., 
we divide each contribution by the value of the given transition rate and then multiply the result 
by 100. If this percentage is above a threshold (between 0.0 and 100.0), then the vibrational 
mode number along with its contribution percentage is printed in the output rates.out (see 
section “Fortran code to evaluate magnetic relaxation dynamics”). This threshold is the last real 
number written in the input rates.inp. If a given transition rate in the re-casted Orbach master 
matrix is below the computational numerical precision, it can be considered to be zero. This 
means that each vibrational mode contribution to this transition rate can also be considered to 
be zero, since all of the contributions are positive. In this case, no vibrational modes 
corresponding to the given transition rate are shown in rates.out. To decide when a given 
transition rate has to be considered as zero, we use the threshold mct=1.0d-16 in the code 
rates.f. Once the most contributing vibrational modes are identified, we can now visually inspect 
how the molecule vibrates to check which atomic movements are involved. Then, chemical 
modifications in the molecular structure can be rationally proposed in order to remove these 



modes and suppress magnetic relaxation as much as possible, with the hope of improving the 
molecular magnet performance. In the outputs that are placed in the folder Orbach-rp-Raman, 
one can find those vibrational modes that contribute (>10%) to each direct transition of the 
Orbach-mediated relaxation pathways (see Fig. 4) at the several working temperatures. 

Above T = 30 K, the thermally activated relaxation is at play. The spin population flows through 
excited doublets by absorption and emission of phonons (Fig. 4). We identify up to six vibrations 
involved in this relaxation mechanism. These are the calculated vibrations 16, 17, 18, 19, 20 ,21, 
with harmonic frequencies ν16 = 135.0115 cm-1, ν17 = 136.8658 cm-1, ν18 = 170.0364 cm-1, ν19 = 
172.5580 cm-1, ν20 = 175.4401 cm-1, ν21 = 175.7696 cm-1 (see folder Animations), which closely 
match the gaps between the equilibrium ground and first excited doublets (159.3 cm-1), and first 
and second excited doublets (171.7 cm-1). The vibration 16 is a rocking-like deformation of the 
two Cpttt rings: the two hydrogen atoms bounded to each Cpttt ring moves towards and away 
from the U3+ ion. As a side effect, there are also rigid movements of the terc-butyl substituents. 
This kind of vibration was also identified in a previous study on the molecular magnet 
[Dy(Cpttt)2]+ (calculated 64-67 vibrations of ref. 3 in main text) as the one promoting the first step 
in the most likely relaxation pathway from the ground doublet to the first excited doublet. It was 
proposed to substitute these two hydrogen atoms in the Cpttt rings by bulkier substituents in 
order to block this vibration and, in fact, this substitution was carried out in a subsequent study 
(ref. 5 in main text). This modification worked since this vibration is no longer observed and, 
indeed, the blocking temperature is increased from 60 K to 80 K. The experimental effective 
barrier Ueff is also increased from 1223 cm-1 to 1541 cm-1. The vibration 17 involves kind of rigid 
movements in the terc-butyl substituents. The modes 18 and 21 are symmetric and 
antisymmetric breathing vibrations: the two Cpttt rings moves towards and moves away from 
the U3+ ion at once and out of phase, respectively, and are also found in the recently reported 
molecular magent Dy-5* (vibrations 66, 67, 68 of ref. 5 in main text). This vibration could be 
suppressed by bounding these two Cpttt rings, such as it happens in stapled bis-phthalocyanines. 
The vibrations 19 and 20 involve methyl rotations in the terc-butyl substituents. These rotations 
could be partially suppressed if one replaces the methyl groups –CH3 by the heavier fluorinated 
analogs –CF3. 

Fortran code to evaluate magnetic relaxation dynamics

In the folder Home-Made-Codes one finds the code rates.f, which is aimed to evaluate magnetic 
relaxation dynamics as we explain below, and the three inputs it needs, which are already 
prepared such as we used them: rates.inp, matrix.inp, frrmcfpd2.inp (matrix.inp is found in the 
subfolder Pert-Ham-Temp for each temperature, do not forget to rename this input before 
running rates.f). The code can generate up to three outputs: rates.orbach.out (see the folder 
Orbach-mag), rates.raman.out, and rates.out (see the folder Orbach-rp-Raman). To run rates.f, 
the library lapack is required. To compile, we use the compiler gfortran and the command line 
is: gfortran –o aa –llapack rates.f, where aa is the executable name. A useful information to run 
the codes is the numerical value of the ground electron spin quantum number  of the selected J
magnetic metal ion: , , ,  ( ) 5 / 2J Ce III   Pr( ) 4J III  ( ( ), ( )) 9 / 2J Nd III U III 

, , , ,  ( ) 4J Pm III   ( ) 5 / 2J Sm III   ( ) 6J Tb III   ( ) 15 / 2J Dy III 

, , , . We describe  ( ) 8J Ho III   ( ) 15 / 2J Er III   ( ) 6J Tm III   ( ) 7 / 2J Yb III 

now these inputs, the code and the outputs:



frrmcfpd2.inp: this input contains the harmonic frequencies with increasing energy (cm-1, as 
directly provided by the Gaussian09 output uranocenium-r1.log), reduced masses accordingly 
ordered with the harmonic frequencies (chemical atomic mass units, as directly provided by the 

Gaussian09 output uranocenium-r1.log), the second derivatives of the CFPs  respect to q k
kA r

the distortion coordinate of each vibrational mode evaluated at the relaxed geometry (cm-1·Å-2, 
the order of these derivatives is (2,0), (2,1), (2,-1), (2,2), (2,-2), (4,0), (4,1), (4,-1), (4,2), (4,-2), 
(4,3), (4,-3), (4,4), (4,-4), (6,0), (6,1), (6,-1), (6,2), (6,-2), (6,3), (6,-3), (6,4), (6,-4), (6,5), (6,-5), (6,6), 
(6,-6), where the parenthesis (k,q) represents the scripts k = 2, 4, 6, q = -k,…, +k), and the CFPs 

 determined at the relaxed geometry (cm-1, given in the same order as that in each  q k
k eq
A r

one of the second derivatives). Actually, rates.f only needs the harmonic frequencies from this 
input.

matrix.inp: this input contains the perturbing Hamiltonian 

 of each vibrational mode  at a given temperature     
2,4,6

ˆˆ
k

q k q
j k k kjk q k

H A r T O
 

   j T

(see Eq. 1 in main text), where , ,  are the Stevens factors and  are the 2  4  6  ˆ q
kO

Stevens equivalent operators. These Hamiltonians in matrix.inp follow the harmonic frequencies 
order in frrmcfpd2.inp. Each perturbing Hamiltonian is a  complex matrix    2 1 2 1J J  

with the same units as the parameters  (here, in cm-1), written in the ordered    q k
k j
A r T

basis set , where  is the ground electron spin quantum number. The  ,...,J J  J

parameters  are determined by running the cfppert.f code (see the section    q k
k j
A r T

“Fortran codes to calculate CFPs thermal evolution”).

rates.inp: 

The first row contains the lowest  energies (cm-1) calculated at the relaxed geometry, i. 2 1J 
e., those obtained by diagonalizing the equilibrium crystal field Hamiltonian 

, which is built with the CFPs  of the relaxed  
2,4,6

ˆˆ
k

q k q
eq k k keqk q k

H A r O
 

    q k
k eq
A r

geometry. Let us recall that for U+3-based molecular magnets the diagonalization is performed 
by using the CONDON package (ref. 20 in main text), where the Hamiltonian includes both the 
ground and excited multiplets and the CFPs must be introduced in Wybourne notation since J
this software uses a rather different implementation of the crystal field operators.

The following  rows contain the lowest  eigenstates calculated at the relaxed 2 1J  2 1J 
geometry, i. e., those obtained by diagonalizing the equilibrium crystal field Hamiltonian 

(see above). The coefficients are complex and such that each eigenstate is normalized. ˆ
eqH

These  rows are accordingly ordered with the corresponding  energies. Let us 2 1J  2 1J 
recall that for U3+-based molecular magnets (see above) the lowest  eigenstates obtained 2 1J 
by the CONDON package must be truncated to the  components of the ground  multiplet Jm J
and then renormalized. Each eigenstate –either truncated and then renormalized or not- is 
written from left to right in the ordered basis set given by  (leftmost coefficient),…,  J J
(rightmost coefficient), where  is the ground electron spin quantum number.J



The following row contains the initial population, at time , of the lowest  0t  2 1J 
eigenstates. These initial populations are accordingly ordered with the corresponding  2 1J 
eigenstates. Each initial population must be a number between 0.0 and 1.0. The summation of 
all initial populations must be equal to 1. In our case study, the initial population is all in the 
truncated eigenstate with . For the remaining rows, see the section 3.99zJ  

“Determination of relaxation pathways and identification of vibrations promoting relaxation”.

rates.f: 

The variables iorb, icpr, iram are switches to turn on or to turn off the calculation of the time 
evolution of magnetization by using the Orbach transition rates (output: rates.orbach.out), the 
calculation of the relaxation pathways and determination of the involved vibrations (output: 
rates.out), and the calculation of the time evolution of magnetization by using the second-order 
Raman transition rates (output: rates.raman.out), respectively. If one wants to set icpr = 1, then 
it is mandatory to set iorb = 1.

The variable temp is the working temperature (K), while sigma (cm-1) is the Gaussian width 
employed in the transition rates (see section “Transition rates”). The number of time points to 
calculate the magnetization and to show both in rates.orbach.out and in rates.raman.out is 
npmag. The variables tim (s) and tfm (s) are the initial and final time points, respectively. 
Depending on which is the time scale where magnetization decays, one will have to change tim 
and tfm until detecting the magnetization decay with time. The number of vibrational modes is 
nmodos, dj is the numerical value of the ground electron spin quantum number , and idtot is J

.2 1J 

The following variables are thresholds which are necessary to take some important decisions. 
As it is known (see section “Resolution of the master equation”), one of the eigenvalues of the 
master matrix is strictly zero. Because of computational numerical noise and since computers 
work with finite precision arithmetic, the smallest eigenvalue is not zero (see description of the 
output rates.out below). The numerical value of this eigenvalue may be taken as a measure of 
the computational numerical noise. Since this smallest eigenvalue must be zero, we give the 
thresholds eot (s-1) and ert (s-1) a value a bit above the absolute value of this smallest eigenvalue. 
The threshold eot works when using the Orbach transition rates, while ert works in case of using 
the second-order Raman transition rates. One can first run a rates.f calculation, check the 
eigenvalues and then decide a value for both eot and ert. The threshold edt (cm-1) is used to 
decide whether the energies of two given eigenstates are different. For the description of pot 
and mct see the section “Determination of relaxation pathways and identification of vibrations 
promoting relatxation”.

rates.out: this output is broken down into three sections: “Orbach mechanism”, “Orbach 
relaxation pathway”, and “Raman mechanism”. These sections will appear or not depending on 
which switches iorb, icpr, iram are turned on. At the beginning of each section, one can read the 
working temperature. 

In the sections “Orbach mechanism” and “Raman mechanism” one finds first the eigenvalues of 
the master matrix. These eigenvalues must be always real and negative (but maybe the smallest 
one which, as said above, is technically zero). They are printed as complex numbers to check 
whether the imaginary part is zero. Then, the eigenvectors of the master matrix are printed row-
wise and appear in the same order as that of the corresponding eigenvalues. Let us recall that 
the master matrix is built in the ordered basis set given by the lowest  eigenstates 2 1J 



calculated at the relaxed geometry as provided in the input rates.inp (see section “Resolution of 
the master equation”). Thus, the components of each eigenvector follow the same order as that 
of these lowest  eigenstates in the rates.inp input. Then, one finds the coefficients 2 1J 

, which are the solution of a linear equation system built from the initial populations  2 1

1

J
k k

 



(see section “Resolution of the master equation”). Each one of these coefficients appear in Eq. 
S6 along with its corresponding eigenvalue . In the rates.out output, these coefficients 1/ kt
are shown in the same order as that of the corresponding eigenvalues. Then, the lowest 

 energies calculated at  the relaxed geometry (provided in the rates.inp input) are printed, 2 1J 
along with the  expectation values of the corresponding eigenstates provided also in the zJ
rates.inp input. To end up these two sections, one finds the master matrix. 

In the section “Orbach relaxation pathway” one first finds the re-casted Orbach master matrix, 
which is subsequently normalized in terms of percentage (see section “Determination of 
relaxation pathways and identification of vibrations promoting relaxation”). To end up, it is 
shown those vibrational modes that contribute to the Orbach transition rates in the re-casted 
Orbach master matrix above a given threshold. This threshold is provided in the rates.inp input 
(see section “Determination of relaxation pathways and identification of vibrations promoting 
relaxation”).  First, each pair i -> f identifies the relevant Orbach transition rate which is the 
component of the re-casted Orbach master matrix in the column “i” and in the row “f” (see 
section “Resolution of the master equation”). After i -> f, those modes whose percentage 
contribution (in parenthesis) to the corresponding Orbach transition rate is above the given 
threshold are displayed. 

Fortran codes to calculate CFPs thermal evolution

In the folder Home-Made-Codes one finds the codes cfptemp.f and cfppert.f. The input is 
frrmcfpd2.inp in both cases (see the section “Fortran code to evaluate magnetic relaxation 
dynamics”). 

cfptemp.f: this code calculates the CFPs  in cm-1 at a given temperature  (see the  q k
kA r T T

file CFPs-vs-Temp). To set the temperature, open the code and change the variable temp (K), 
where the number of vibrational modes is also found. The output is cfptemp.out. In this output, 
the CFPs at the relaxed geometry, at T = 0 K and at the given temperature are printed. The library 
lapack is not required. To compile, we use the compiler gfortran and the command line: gfortran 
–o aa cfptemp.f (aa is the executable name).

cfppert.f: this code calculates the parameters  in cm-1 (see Eq. 1 in main text)    q k
k j
A r T

for all vibrational modes  at a given temperature  (see the folder cfppert-temp). To set the j T
temperature, open the code and change the variable temp (K), where the number of vibrational 
modes is also found. The output is cfppert.out. In this output, the parameters 

 are printed for each vibrational mode. These parameters are printed in two    q k
k j
A r T

columns. In the left column and from top to bottom, they appear as: (2,0), (2,1), (2,2), (4,0), 
(4,1), (4,2), (4,3), (4,4), (6,0), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6). In the right column and from top 
to bottom they appear as: nothing(always 0.00000000), (2,-1), (2,-2), nothing(always 
0.00000000), (4,-1), (4,-2), (4,-3), (4,-4), nothing(always 0.00000000), (6,-1), (6,-2), (6,-3), (6,-4), 



(6,-5), (6,-6). In these parenthesis, the first number is the script k = 2, 4, 6, while the second 
number is the script q = -k,…, +k. Now, we use cfppert.out as an input for the code cfptomat.f 
(which can also be found in the folder Home-Made-Codes) in order to generate the perturbing 

Hamiltonians  that appear in the input matrix.inp (see section “Fortran code to evaluate ˆ
jH

magnetic relaxation dynamics”). Inside the code cfptomat.f one finds the following variables: 
inn, which selects the magnetic metal ion; dj, which is the metal ground electron spin quantum 
number , idtot, which is  and has also to be changed when needed in the function oplm J 2 1J 
and in the subroutine operators; nmod, which is the number of vibrational modes. The library 
lapack is not required. To compile, we use the compiler gfortran and the command lines: 
gfortran –o aa cfppert.f and gfortran –o aa cfptomat.f (aa is the executable name).

Description of the REC (Radial Effective Charge) model, and generation of 
an initial guess for the effective charges and the effective radial distances

The REC model is an electrostatic semi-empirical model commonly used in molecular 
magnetism, which provides an estimation of the crystal field parameters (CFPs) and allows 
rationalizing the magnetic properties of a given f-block single-ion magnetic coordination 
compound.(ref. 18 in main text) From the calculated CFPs, the model gives the ground-J 
multiplet energy levels and their corresponding wave-functions as a linear combination of the 
different mJ = -J,…, +J microstates. For that, the (crystallographic) atomic coordinates of the first 
coordination sphere are required as an input. The REC model is implemented in the portable 
fortran SIMPRE computational package.([4] and ref. 11 in main text) This code parameterizes 
the electric field effect produced by the coordinating ligands by using the Crystal Field 
Hamiltonian in Eq. S8, expressed in terms of the Stevens Equivalent Operators (SEOs)[5]:

   Eq. S8   
2,4,6 2,4,6

ˆ ˆˆ 1
k k

q q q k q
k k k k k k

k q k k q k
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In Eq. S8, k is the order (also called rank or degree) and q is the range, which varies between k 

and –k, of the SEOs . These are defined by Ryabov in terms of the angular momentum ˆ q
kO

operators J± and Jz,[6] where the components  and  correspond to the SEOs with  ˆ q
kO c  ˆ q

kO s

q  0 and q < 0 respectively.[7] Note that all the Stevens CFPs  are real, whereas the q k
kA r

matrix elements of  (q < O) are imaginary.  are the ,  and   Stevens coefficients for k = ˆ q
kO k

2, 4, 6, respectively, which are tabulated and depend on the number of f electrons.[8]  are k
the Sternheimer shielding parameters of the 4f electronic shell,[7] and <rk> are the expectation 
values of the radius kth power.[9]

In SIMPRE, the  parameters are determined by the following relations (second relation when q
kA

q>0, third relation when q<0):  



Eq. S9

                                                                                     

                                                                                                      (q>0)           

In Eq. S9, Ri, i and i are the effective polar coordinates of the point charges, and Zi is the 
magnitude of the effective point charge, associated to the i-th donor atom with the lanthanide 
ion at the coordinate origin, N is the number of ligands; e is the electron charge, pkq are the 
prefactors of the spherical harmonics and Zkq are the tesseral harmonics expressed in terms of 
the polar coordinates for the i-th donor atom.

In the REC model, any given ligand is modeled as an effective point charge placed between the 
lanthanide ion and the ligand coordinating atom at a distance Reff from the lanthanide ion, which 
is smaller than the real lanthanide-ion-donor-atom distance (ri).(ref. 18 in main text) To account 
for the effect of covalency, a radial displacement vector (Dr) is defined, in which the polar 
coordinate r of each coordinating atom is collectively varied as Reff = ri-Dr, and at the same time 
the charge magnitude (Zi) is scanned in order to achieve a minimum deviation between the 
calculated and the experimental target property P (e.g. the ground-J multiplet energy levels), 
whereas i and i remain constant (see Fig. S1).

Figure S1: Lone electronic pair of a donor atom X oriented towards the nucleus of a trivalent 
lanthanide ion. The effective charge is located between the lanthanide ion and X at Reff  = ri-Dr.

As a starting point for the fitting, we can estimate the effective distances of the coordinating 
atoms by using the following semi-empirical approximation for Dr :(ref. 19 in main text) 

   Eq. S10
 
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In Eq. S10, NL is the coordination number of the lanthanide ion, VM is the valence of the 
lanthanide ion, and EM and EL are the Pauling electronegativity of the lanthanide ion and the 
donor atom, respectively. The effective charge Zi is estimated by using Eq. S11:

   Eq. S11,X CN r if D Z

In Eq. S11, f is a factor that depends on the coordination number (CN) and on the coordinating 
atom (X).(ref. 19 in main text) The use of Eq. S11 is limited, since its use for a given system 
requires to know f in advance and, for that, one first has to know the REC parameters of a large 



enough set of coordination compounds with different lanthanide ion but with the same or 
similar ligands with the same coordination number.

In order to obtain the REC parameters (Dr and Zi) of the target compound, we need to vary both 
of them until a satisfactory fitting of a given property P –either experimental (e.g. spectroscopic 
energy levels, spectroscopically-determined CFPs, or magnetic properties) or calculated (e.g. via 
ab initio calculations)– is achieved. In the case of lanthanide single-ion coordination compounds, 
a fit of the ground-J multiplet energy levels will always be the desired option. Unfortunately, we 
cannot extrapolate this procedure to actinides, where the effects of excited multiplets are more 
important and thus are not negligible at all. In that case, in SIMPRE, one can fit the CASSCF or 
spectroscopically-determined CFPs using the REC model, and then obtain the energy level 
scheme by using the full Hamiltonian in the CONDON package.(ref. 20 in main text) The so-called 
full model therein considers inter-electronic repulsion, spin-orbit coupling, the ligand field 
potential, and, of course, both ground and excited J multiplets.[10] In the fitting procedures, we 
define the relative error E as:

   Eq. S12
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In Eq. S12,Pref  is the relevant property to fit and Pfit is the best fit to Pref, and n is the number of 
points used in the fiting.

Projection on [U(Cpttt)2]+ of the CASSCF energies evaluated at the 
[Dy(Cpttt)2]+ experimental geometry 

To determine the REC parameters that describe the crystal field produced by the two 
coordinating Cpttt = {C5H2

tBu3-1,2,4} rings in [U(Cpttt)2]+, our starting point will be the CASSCF 
energy levels determined by Goodwin et al. at the experimental geometry of [Dy(Cpttt)2]+.(ref. 3 
in main text)  The experimental crystallographic coordinates of the first coordination sphere of 
[Dy(Cpttt)2]+ are used as an input in SIMPRE, and the two REC parameters are varied to fit the 
calculated CASSCF energy levels at the experimental geometry of [Dy(Cpttt)2]+. By using the REC 
model, the best fit, with an error of E = 0.03 % (Eq. S12), results in Dr = 1.313 Å and Zi = 0.068. 
The calculated ground J multiplet energy levels (Efit) by SIMPRE with these REC parameters are 
compared with the CASSCF ones (Eref) in Table S2. 

Table S2: Ground-J multiplet Kramers doublets determined by CASSCF (Eref) and by the REC 
model (Efit) for [Dy(Cpttt)2]+. E = |Eref - Efit|. Relative errors are < 2.6 %.

Eref –CASSCF (cm-1) Efit –REC (cm-1) E (cm-1)



0 0 –

488.6 480.7 7.9

771.0 775.6 4.6

956.5 980.9 24.4

1122.2 1145.4 23.2

1277.5 1280.5 3.0

1399.3 1365.4 33.9

1476.1 1465.4 10.7

Subsequently, we apply these calculated REC parameters to the DFT-relaxed coordinates of the 
coordinating atoms in [U(Cpttt)2]+. This target compound has identical ligands as [Dy(Cpttt)2]+ and 
only the metal ion is different. This allows us to transfer the REC parameters from [Dy(Cpttt)2]+ to 
[U(Cpttt)2]+ as demonstrated in several works.([11,12] and refs. 17, 19 in main text) The input 
coordinates of the relaxed positions of the coordinating atoms in [U(Cpttt)2]+ (simpre.dat file) and 
the calculated CFPs (simpre.out) are reported in Table S3 and Table S4, respectively. This 
procedure is systematically repeated for each distorted geometry along each vibrational mode, 
and the corresponding set of CFPs is obtained by performing a millisecond calculation in SIMPRE.

Table S3: Relaxed input coordinates of the coordinating atoms in [U(Cpttt)2]+ after applying Dr = 
1.313 Å to the radial coordinate and using a magnitude charge of Zi = 0.068.

Label  ( Å)𝑅𝑒𝑓𝑓  ()𝜃  ()𝜙 𝑍𝑖

C1 1.3017302 16.9734964 170.7902831 0.06806

C2 1.3061774 15.4279100 349.0185755 0.06806

C3 1.3907467 39.0491022 39.7965899 0.06806

C4 1.4903647 49.2710181 80.8124802 0.06806

C5 1.3744865 40.4952024 122.0849379 0.06806

C6 1.3016208 163.0437971 63.0361018 0.06806

C7 1.3061446 164.5540736 244.7622728 0.06806

C8 1.3908882 140.9353178 194.0198766 0.06806

C9 1.4905911 130.7250294 153.0093834 0.06806

C10 1.3745142 139.5118956 111.7435627 0.06806

Table S4: Calculated CFPs for the [U(Cpttt)2]+ DFT-relaxed geometry in Stevens (  and q k
kA r

) and Wybourne ( ) notation.q
kB kqB



k q  (cm-1)𝐴𝑞
𝑘〈𝑟𝑘〉  (cm-1)𝐵𝑞

𝑘 (cm-1)𝐵𝑘𝑞 

2 0   997.8 -6.414 1995.6

2 1 -1118.3  7.188 -456.5

2 -1  -568.0  3.651 -231.9

2 2   -47.1  0.303  -38.5

2 -2   -64.4  0.414  -52.6

4 0   262.0 -0.076 2095.8

4 1  -623.1  0.181 -557.3

4 -1  -316.2  0.092 -282.8

4 2   -52.3  0.015  -66.1

4 -2   -71.1  0.021  -89.9

4 3   -36.9  0.011  -12.5

4 -3  -228.9  0.067  -77.4

4 4   -30.2  0.009  -28.9

4 -4    95.2 -0.028   91.0

6 0    67.4 -0.003 1079.1

6 1   823.0 -0.031 1016.0

6 -1   419.4 -0.016  517.7

6 2   374.3 -0.014  584.5

6 -2   512.9 -0.019  800.9

6 3  -202.4  0.008 -158.0

6 -3 -1254.1  0.048 -979.1

6 4  -184.9  0.007 -117.9

6 -4   581.4 -0.022  370.6

6 5   -98.3  0.004  -29.9

6 -5    98.6 -0.004   30.0

6 6   -50.6  0.002  -53.3

6 -6    17.1 -0.001   18.0

Finally, the CFPs in Wybourne notation of the [U(Cpttt)2]+ DFT-relaxed geometry are used as an 
input in the CONDON package to determine the equilibrium electronic structure of [U(Cpttt)2]+, 



reported in Fig. 1. The wave-functions as determined by CONDON are expressed as a linear 
combination of the several J multiplets (both ground and excited). We truncate them to the 
ground J multiplet and then renormalize the resulting expression. 

Determination of the REC parameters for the uranium-based SIM UTp3 

To determine the two REC parameters in UTp3 we start from its lowest 10 experimental energies 
-in the form of 5 degenerate Kramers doublets- reported in ref. 13. As explained in the step 2 of 
our methodology described in the main text, we first run a SIMPRE calculation on the 
experimental NdTp3 geometry with  = 0.06806 to determine an initial guess of CFPs. These iZ
CFPs are now introduced in CONDON with Wybourne notation to extract the corresponding 
lowest 10 energies but by selecting U3+ in the input instead of Nd3+. This process is iteratively 
repeated until obtaining a satisfactory match between the calculated energies by CONDON and 
the experimental ones. The REC parameters determined are  = 1.414 Å and  = 0.0305. The rD iZ
ground J multiplet energy levels (Efit) calculated by CONDON with these parameters are 
compared with the experimental ones (Eref) in Table S5.

Table S5: Ground-J multiplet Kramers doublets determined experimentally (Eref) and by the 
REC+CONDON method (Efit) for UTp3. E = |Eref - Efit|. Relative errors are < 11.0 %.

Eref -exp (cm-1) Efit -REC+CONDON(cm-1) E (cm-1)
0 0 -

270 268 2
567 574 7
693 617 76
805 717 88

Table S6: Relaxed input coordinates of the coordinating atoms in UTp3 after applying Dr = 1.414 
Å to the radial coordinate and using a magnitude charge of Zi = 0.0305. 

Label Reff (Å) (°) (°) Zi

N1 1.3391597 90.1072662 329.9395403 0.0305
N2 1.3385925 90.0922733 89.9405456 0.0305
N3 1.3387928 90.0696210 209.9420622 0.0305
N4 1.1604032 51.1959304 30.7005972 0.0305
N5 1.1601574 51.1974414 150.6905931 0.0305
N6 1.1603399 51.1800165 270.7172309 0.0305
N7 1.1558034 128.5308149 31.2350147 0.0305
N8 1.1554881 128.5508786 151.2494470 0.0305
N9 1.1558833 128.5303373 271.2252646 0.0305

Table S7: Calculated CFPs for the UTp3 DFT-relaxed geometry in Stevens (  and ) and q k
kA r q

kB

Wybourne ( ) notation.kqB



k q  (cm-1)q k
kA r  (cm-1)q

kB  (cm-1)kqB

2 0 -42.57383674 0.27366103 -85.14767347
2 1 -0.06629834 0.00042616 -0.02706619
2 -1 0.10233866 -0.00065782 0.04177958
2 2 0.00924865 -0.00005945 0.00755149
2 -2 -0.01272683 0.00008181 -0.01039141
4 0 -264.11623947 0.07688628 -2112.92991577
4 1 -1.18194763 0.00034407 -1.05716610
4 -1 0.90891315 -0.00026459 0.81295664
4 2 0.69564707 -0.00020251 0.87993167
4 -2 -1.19923537 0.00034911 -1.51692609
4 3 -121.08610621 0.03524910 -40.93457514
4 -3 87.95434454 -0.02560419 29.73399540
4 4 0.09552924 -0.00002781 0.09134343
4 -4 0.12123624 -0.00003529 0.11592402
6 0 36.89099621 -0.00140141 590.25593936
6 1 1.72507498 -0.00006553 2.12947878
6 -1 -0.97013783 0.00003685 -1.19756414
6 2 -1.00210675 0.00003807 -1.56472968
6 -2 0.33870143 -0.00001287 0.52886200
6 3 -50.15855746 0.00190542 -39.15979191
6 -3 -5.73091273 0.00021771 -4.47423852
6 4 -1.06653956 0.00004052 -0.67987125
6 -4 -1.88420231 0.00007158 -1.20109467
6 5 -9.70898835 0.00036882 -2.95051176
6 -5 2.89640123 -0.00011003 0.88020148
6 6 -2110.50736207 0.08017387 -2221.77903375
6 -6 -114.21442851 0.00433877 -120.23612292
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