Molecular Basis of Methylation and Chain-Length Programming in a Fungal Iterative Highly Reducing Polyketide Synthase

Xiao-Long Yang,^{ab‡} Steffen Friedrich,^{ab} Sen Yin,^{ab} Oliver Piech,^{ab} Katherine Williams,^{abc} Thomas J. Simpson^c and Russell J. Cox.^{ab*}

Electronic Supplementary Information

- a. Institute for Organic Chemistry, Leibniz University of Hannover, Schneiderberg 1B, 30167, Hannover, Germany.
- b. BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167, Hannover, Germany.
- c. School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
- * Corresponding Author: russell.cox@oci.uni-hannover.de
- Present address: School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China.

Contents

1.	Mapping peptide fragments onto FAS structure (Table S1)		
2.	Multiple alignment between TENS and FAS and position of peptides	4	
3.	LCMS chromatograms for experiments 2-32	13	
4.	LC-HRMS data for extract from Expt. 8	55	
5.	UV spectra of compounds	56	
6.	MS data for compounds	58	
7.	HR-MS data for compounds 1, 3, 6-13	60	
8.	NMR data for compound 13	73	
9.	Experimental Section	85	
10.	List of primers used in this study (Table S2)	96	
11.	C-MeT-ΨKR swap boundaries in <i>tenS</i> (Table S3)	101	
12.	The % identity and similarity between the <i>tenS</i> and <i>dmbS</i> swap regions (Table S4)	102	
13.	Protein Modelling	104	
14.	References	106	

1. Mapping Swapped Fragments onto porcine mFAS structure (porcine mFAS numbering)

Fragment	Start	Stop	Size	Size	Size	Size
1A1	1042 ²	1121	79	142		
1A2 ¹	1122	1185	63	142	227	
1B1 ¹	1186 ³	1216	30	95	227	
1B2	1217	1272	55	83		
2A1	1273	1303	30	70		470
2A2	1304	1352	48	/8	140	4/9
2B1	1353	1393	40	62	140	
2B2	1394	1416	22	02		
3A	1417	1473	56	112	112	
3B	14744	1530	56	112	112	
4A	1881	1953	73	142		
4B	1953	2024	70	143	201	201
5A	2024	2092	69	120	281	201
5B	2092	2162	69	138		

Table S1. Protein positions used for swaps relative to the porcine mFAS structure. Same colour code was used as in Table 1 in main paper.

Notes

- 1. residues 1136 1215 (inc) are missing from the mFAS structure
- 2. 1042 1084 part of DH
- 3. 1085 1111 DH to CMeT linker
- 4. 1521 1530 ψKR-ER linker

2. Multiple Alignment of β-Processing Domains.

			1351					14	100
			CMeT					Cn	neT
			1A1 12	11A2				1	.A2
TENS		(1351)	EAIERV	SLFYVROLM	GELSTADRI	R <mark>OANWYH</mark> I	T <mark>RMLAAF</mark> DY	HLAKVHEET	HL
DMBS		(1345)	EAIERV	SLFYVROLM	SELSTKDR	REANWYHS	S <mark>RMLTAF</mark> EF	HLARIHEDI	HL
MILS		(1345)	EAGERV:		ISELTAE <mark>DR</mark>	DQ <mark>ANWYH</mark> I	r <mark>rml</mark> q <mark>af</mark> dh	I <mark>HL</mark> TEVKND <mark>I</mark>	HL
CurJ		(68)	VDYIVQ	G <mark>l</mark> lQMGWSY	QPTESF <mark>D</mark> LI	D-CLGVVE	PTQVRL <mark>f</mark> ef	RL <mark>L</mark> QILAEVO	;I <mark>L</mark>
mFAS	pig	(1114)	PILEKF	C <mark>FTPHVE</mark> SG	CLAGNTAL	QEELQLCF	R <mark>GLAQ</mark> ALQI	KVAQQGLKN	
MEAS	rat	(1113)	PTLEKE	/ <mark>etenve</mark> le	CT2F2A1 <mark>T</mark>	<mark>Фидло</mark> г	A <mark>GLA</mark> K <mark>ALQ</mark> I	ATQQGLKM	T.T. 🔽
			1401 CMom					14	150
			CMET 1 a 2		1 a 2 1 1	B1		Cn 1	B1
			±112				в в	-	
TENS		(1401)	HLRPEW	LA <mark>DDW</mark> AVIQ	T <mark>IDEAYPD</mark>	AVELQMLH	- <mark>HA</mark> V <mark>GQN</mark> VAI	<mark>VI</mark> R <mark>G</mark> KKHLI	EV
DMBS		(1395)	HV <mark>RQ</mark> EWI	LS <mark>DDW</mark> S <mark>VIQ</mark>	I <mark>IDEAYPD'</mark>	TVELQMLH	<mark>HA</mark> IGQNMAN	I <mark>VI</mark> RGEKHMI	LEV
MILS		(1394)	HL <mark>R</mark> RE <mark>W</mark> I	LS <mark>DDW</mark> AAIH	A <mark>IDEAYPD'</mark>	TVELQMLH	<mark>ia</mark> vgk <mark>n</mark> mvs	S <mark>VI</mark> K <mark>G</mark> EQHMI	'EA
CurJ		(123)	-NQQQ <mark>W</mark> Q	QVQKT-QSQ	SLLSQ <mark>YPD</mark> I	E-T <mark>L</mark> TL <mark>L</mark> E	ERCASQLSO	G <mark>V</mark> LR <mark>G</mark> EIDPV	7QL
mFAS	pig	(1164)	PGLDGA)APREA <mark>PQ</mark> Q	SLPRLLAA	ACQ <mark>LQ</mark> LNG	GNLQLELG	VLAQ <mark>E</mark>	
mFAS	rat	(1163)	PGL <mark>E</mark> -	DL <mark>PQ</mark> H	G <mark>LPRLLAA</mark>	ACQ <mark>LQ</mark> LNG	GNLQLELGE	VLAR <mark>E</mark>	
			1451					15	500
			CMeT				ł	*******Cn	leT
			1B1	1B11B2				1	B2
TENC		(1/51)				T ANAT TOTA			
TENS		(1401)		JURLIIEUN			LIINIPROP Imtrtddoru	TIFICACTO	
MTT.S		(1443) (1444)			GMQQGNIIF.		LIFKFFRC LTFKFPRC	ILEIGAGIO	
CurJ		(180)	VFPQ	GDLQLYK <mark>D</mark> S	AVAKVMNT	IVEKVIM	KAMEKLPPS	LEIGAGTO	
mFAS	piq	(1208)	<mark>RPL</mark>	CDDPLLSG		ACVDTALF	ENMASP <mark>KM</mark> K	VVEVLAGD	
mFAS	rat	(1201)	RLL	PEDPLISG	LLNSQALK	ACIDTALE	EN <mark>LSTL</mark> KMF	VVEVLAGE	ĤL

			1501		1550
			СМеТ		CmeT
			1B2 1B2 <mark>2</mark>	A1	2A1
			В	cc c ccc	S
TENS		(1501)	TWAALSAIGEAFDTYTYTD	DLSVGFFENAVERFSAFRH <mark>RM</mark> V <mark>FR</mark> ALDI	EKDP
DMBS		(1495)	TWAVLSAIDETEDTYTYTD	NESVGFFETAVERFSAFRHKMIFKALDI	EKSP
MILS		(1494)	TSAVLNALDDAFDTYTYTD	LSVGFFETAMERFSSFRHKMIFKALDV	EKDV
CurJ		(236)	TSYTIPHINPNOTEYTETD	LGALFTSKAOEKFODYRF-LGYOTLDT	EVDP
		(,			— ·
mFAS	piq	(1255)	YSRTPALLNTOPVMDLDYT	ATDRNPOALEAAOAKLEOLHVTOGOWD	PAN-
mFAS	rat	(1248)	YSHTSALLNTOPMLOLEYT		PSG-
1112 110	Lac	(1210)			
			1551		1600
			СМеТ		CmeT
			2A2		2A2
			222		S .
TENS		(1551)	ASOSFDLNSYDIIIATNVL	HATRNLGVTLGNVRALLKPGGYLLLNE	KTGP
DMBS		(1545)	AAOSFDLGSYDIIIATNVL	HATRNLDITLGNVRSLLKPGGYLLLNE	KTGP
MILS		(1544)	ATOGFDLGSYDIIIAANVL	HATRSLEVTLGNVRSLLKAGGYLLLNE	KTGA
CurJ		(285)	SSOGFESHRYDVIIAANVL	HATTSLKOTLSHVROLLAPGGILVLYF	AT-T
		(/			
mFAS	piq	(1304)	-PAPGSLGKADLLVCNCAL	ATLGDPAVAVGNMAAT <mark>LK</mark> EGGFLLLHT	LLAG
mFAS	rat	(1297)	-PAPTNLGALDLVVCNCAL	ATLGDPALALD <mark>NMVAALK</mark> D <mark>GGFLL</mark> MHT	VLKG
			1601		1650
					CmeT
			2в1	2B1 <mark>2B2</mark>	2B2
			S S SSSS S	SS	
TENS		(1601)	ESLRATFNFGGL <mark>E</mark> GWWLAE	EKER-QLSPL <mark>MSPDGWD</mark> AQLQ <mark>K</mark> AS <mark>FSG</mark>	VDHI
DMBS		(1595)	ESLRATFNFGGLEGWWLAE	EEER-QLSPLLSPDGWDSQLQKTQFSG	V <mark>DH</mark> V
MILS		(1594)	ESLRATFNFGGLQGWWLAE	EEDR-QLSPLMSPGGWDAQLQRARFSG	I <mark>DH</mark> V
CurJ		(334)	R <mark>S</mark> RWVDLI <mark>FGLLEGWW</mark> -TD	YEL <mark>R</mark> -PDY <mark>PL</mark> LNREQ <mark>W</mark> KKVLSETG <mark>F</mark> TÇ	VVTL
mFAS	pig	(1353)	HPLGEMVGFLTSPEQGGRH	IL <mark>LSQ</mark> DQ <mark>WESLF</mark> AGAS <mark>LHLV</mark> A <mark>LKRSFYG</mark>	SVLF
mFAS	rat	(1346)	HA <mark>lge</mark> tlac <mark>l</mark> p <mark>s</mark> ev <mark>q</mark> pgps	F <mark>LSQ</mark> EE <mark>WESLF</mark> SRKA <mark>LHLV</mark> G <mark>LKKSFYG</mark>	TALF

		1651	1700
		CMeT CMeT <mark>YKR</mark>	YKR
		<mark>2B2 2B2</mark> 3A	3A
TENS	(1650)	VHDVQEDQQDK <mark>QQNSMIMSQAVDD</mark> TFYARLSPLSEMA <mark>NLLP</mark> MI	N <mark>EPLLIIG</mark>
DMBS	(1644)	VHDVQEEGKQQNSMIMSQAVDDAFYARLSPLSEMASLLPT(2 <mark>EPLLLIG</mark>
MILS	(1643)	<mark>VHD</mark> IP <mark>E</mark> E-P-K <mark>QQ</mark>	
CurJ	(383)	PEVEGMAEALS <mark>QQ</mark>	
mFAS pig	(1403)	LCRQQTPODSPVFLSVEDTSFRWVDSLKDILADASS	R <mark>PVWL</mark> M <mark>A</mark> V
mFAS rat	(1396)	LCRRLSPQDKPIFLPVEDTSFQWVDSLKSILATSSS	Q <mark>pvwl</mark> t <mark>a</mark> m
		1701	1750
		VKD	T 1 3 0
			52
TENS	(1700)	GQTTATLKMIKEIQKLLPRQWRHKVRLIASVDHVEAEGLPAH	SDVICLQE
DMBS	(1692)	GQTNTTLRIIKEIQKQLPRKWRHKIRLIASVDQLEDEDLPAH	SDVIC <mark>VQE</mark>
mFAS pig	(1447)	GCSTSGVVGMVNCLRKEPGGHRIRCVLVSNLSSTSPAPEMHP	S <mark>SSELQKV</mark>
mFAS rat	(1440)	NCPTSGVVGLVNCLRKEPGGHRIRCILLSNLSSTSHVPKLDP	G <mark>SSELQKV</mark>
		1751	1800
		YKR YKRER	ER
		3B 3B	
TENS	(1750)	LDRGLFTTAMTSKCLDALKTLFINTRNLLWVTNAQNSSSMTP1	RASMFRGI
DMBS	(1742)	LDRGLFTTAMTSK <mark>RL</mark> NALK <mark>SLFMNT</mark> K <mark>NLLWVTNAQNSSSMTPI</mark>	RASMFRGI
mFAS pig	(1497)		VL
mFAS rat	(1490)	LESDLVMNVYRDGAWGAFRHFQLEQDKPEEQTAHAFVN	<mark>VL</mark>
		1801	1850
		ER	ER
TENS	(1800)	TRVLDGEVPHIRTQVLGIEPRETPSATARTLLEAFLRLRSDD	GRH <mark>A</mark> GNV <mark>D</mark>
DMBS	(1792)	TRVMDGEVPHIRTQILGIEPIGAPSTIARNLLEAFLRLRFDD'	fyq <mark>a</mark> ati <mark>d</mark>
mFAS pig	(1537)	S <mark>RGDL</mark> SSIRWVCSPLHYALPASCQDRLCSVYYTSLNFRD	VMLATGKL
mFAS rat	(1530)	T <mark>RGDL</mark> ASIRWVS <mark>SPL</mark> KHMQ <mark>P</mark> PS <mark>S</mark> SGAQLCTVYYASLNFRD.	IMLATGKL

	1851 1900
TENS (1850) DMBS (1842)	ER EDGADGSSQQVLWLHEPEAELLSNGTMMVPRVKARKSLNDTYLASTRAIS G <mark>DGADG</mark> GSQQVLWSHEPEVDLLSSGTMMIPRVKLRKSLNDTYLASTRAIS
mFAS pig (1584) mFAS rat (1578)	<mark>SPD</mark> S <mark>IPG</mark> SPD <mark>AIPG</mark>
	1901 1950
TENS (1900) DMBS (1892)	ER TTVDARCVS <mark>VQAVAGPAKMLLRPVED</mark> FAGEHAISNQTSDSKVHIQVESTL TTVDARCVPVQAVAGPAKIMLRPVEDIAVDHEISSQTSDPKVHIQVEVTL
mFAS pig (1591) mFAS rat (1585)	KWLT <mark>RDCMLGMEFSGRD</mark> AS <mark>GRRVMG</mark> MVPAEGLATSVLLLQHATWEVPSTW KWAS <mark>RDCMLGMEFSGRD</mark> KC <mark>GRRVMG</mark> LVPAEGLATSVLLSPDFLWD <mark>VPS</mark> SW
	1951 2000
TENS (1950) DMBS (1942)	HK HIPEALDGTCLYLVCGWTRTAETSVPVIALSANNASMVAVESKAVA HIPEALDGTCLYLVCGWTRPAEASDTSSVPVMALSTSNASIIAVEPKAVA
mFAS pig (1641) mFAS rat (1635)	TLEEAASVPIVYTTAYYSLVVRGRMQPGESVL TLEEAASVPV <mark>VYTTAYYSLVVRGR</mark> IQHGETVL
	2001 2050
TENS (1996) DMBS (1992)	ER MIDEVDVKPETLLRVFQHMAMQALDSAVKRHGQG <mark>Q</mark> STALIYGADEELAKL MIDEVDLKPEALLRVFQHMAMQAVDSAVRRHGQRQRTALIYGADEELAEL
mFAS pig (1673) mFAS rat (1667)	IHSGSGGVGQAAI <mark>AIALS</mark> RGCRVFTTVGSAEKRAYLQARFPQL <mark>D</mark> ETCFAN IHSGSGGVGQAAI <mark>SIALS</mark> LGCRVFTTVGSAEKRAYLQARFPQLDD <mark>T</mark> SFAN
	2051 2100
TENS (2046) DMBS (2042)	ER TSERFAVRESKVYFASSRTFAPGDWLKVQPLLSKFALSQMIPADVEVFID TSKRCAVRESKIYFASSHSAAPGDWLKVHRLSSKFAMSQMVPSGVQVFID
mFAS pig (1723) mFAS rat (1717)	SRDTSFEQHVLRHTAGKGVDLVLNSLAEEKLQASVRCLAQHGRFLEIGKF SRDTSFEQHVLLHTGGKGVDLVLNSLAEEKLQASVRCLAQHGRFLEIGKF

		2101	2150
TENS DMBS	(2096) (2092)	ER CLGDTESFDACRTLQSCLSTTRTVQHRLDACLLSQMSRCSPDALVI CLGGTESFDACRTLQSCLPTTCTVHR-LDACLLSEMSQCSPDFLLI	ER DAYSY DAYSY
mFAS pig mFAS rat	(1773) (1767)	DLSNNHA <mark>LGMA</mark> V <mark>FLKNVTFHGILLD</mark> SLFEEGGAT <mark>WQEV</mark> SELLKAGI DLSNNHPLGMAIFLKNVTFHGILLDALFEGANDSWREVAELLKAGI	IQE <mark>GV</mark> IRD <mark>GV</mark>
		2151	2200
TENS DMBS	(2146) (2141)	EK AKTQSNAE <mark>FS</mark> WNGYVKTFTAAELAGKLSHSLIHSVYMTNWQKKDSI AQTQSNAGFSRSDNIKTFTAAELAGKLSHSLINSMYITDWQKQDAI	ER ILVTV ILVTV
mFAS pig mFAS rat	(1823) (1817)	VQ <mark>PLKCTVFP</mark> RTK <mark>VEAAFRYMAQGKHIGKV</mark> VI <mark>QVREEE</mark> QGPAPR <mark>G</mark> I VK <mark>PLKCTVFP</mark> KAQ <mark>VE</mark> D <mark>AFRYMAQGKHIGKV</mark> LV <mark>QVREEE</mark> PEAMLP <mark>G</mark> A	LP <mark>P</mark> IA AQ <mark>P</mark> TL
		2201 ER KR ******** 4A	2250 KR 4A
TENS DMBS MILS AmphB	(2196) (2191) (2196) (235)	PPLQTRGLFKSDRTYLMVGAAGGLGTSICRWMVRNGARHVVVTSRN PPLQTRGLFKSDRTYLMVGAAGGLGTSLCRWMVRNGARHVVVTSRN LFQSDRTYLMVGAAGGVGTSLCRWMVRHGARHVIVTSRN RPPVHGSVLVTGGTGGIGGRVARRLAEQGAAHLVLTSR	IPK IPK IPK RGAD-
mFAS pig mFAS rat	(1873) (1867)	LTGL <mark>SKTFCPPHKSYVITGGLGGFGL</mark> Q <mark>LA</mark> Q <mark>WL</mark> R <mark>LRGAQ</mark> K <mark>LVLTSRS</mark> ISAI <mark>SKTFCPEHKSYIITGGLGGFGL</mark> E <mark>LA</mark> R <mark>WLVLRGAQ</mark> RLVLTSRS	SGIRT SGIRT
		2251	2300
		AA 4A4B C CCCC	4B CC
TENS DMBS MILS AmphB	(2244) (2239) (2237) (279)	ADPEMLNEAERYGAA <mark>VQVVPMDAC</mark> SKDSVQTVVDMIRATMPPIAGV ADPEMLNEAERYGAIVRVVPMDACNKDSVQTVVDTIRATMPPIAGV GDPTMLSEAKQYGATVRVVSMDVCDRRSVEAVVGMIRATMPPIACV GAAELRAELEQL <mark>G</mark> VRVTIAACDAADREALAALLAEL-PEDA <mark>P</mark> LTA <mark>V</mark>	/CNAA /CNAA /CNAA /FHS <mark>A</mark>
mFAS pig mFAS rat	(1923) (1917)	GYQARQVREWRRQGVQVLVSTSNASSLDGARSLITEATQLGPVGGV GYQAKH <mark>VREWRRQG</mark> IH <mark>VLVSTSNVSSLEGAR</mark> ALIAEATKLGPVGGV	VFNLA VFNLA

		2301		2350
		KR		KR
		4B		4B
		CCS	CC	B CBCC
TENS	(2294)	MVLRDKLFLDMNVD <mark>HM</mark> KDV <mark>I</mark>	LGPKMQ <mark>GTE</mark> HLDSIFAQ <mark>E</mark>	P <mark>LDFF</mark> V <mark>LL</mark> S <mark>S</mark> S
DMBS	(2289)	MVLCDKLFLDMDVDQMNNT <mark>I</mark>	<mark>LGPK</mark> VD <mark>GTE</mark> Y <mark>LDSIFA</mark> H <mark>E</mark>	P <mark>LDFF</mark> I <mark>LL</mark> G <mark>S</mark> A
MILS	(2287)	MVLCDKLFLDMDVDILNNT	LGPKVD <mark>GTE</mark> ILDSIFSE <mark>E</mark>	A <mark>LDFF</mark> I <mark>LL</mark> G <mark>S</mark> T
AmphB	(328)	G <mark>V</mark> AH <mark>D</mark> D-PV <mark>D</mark> LTLGQLDALN	IRA <mark>K</mark> LTAARH <mark>L</mark> HELTADL	D <mark>LD</mark> A <mark>F</mark> V <mark>L</mark> FS <mark>S</mark> G
mFAS pig	(1973)	MVLRDA <mark>VLENQTPE</mark> FFQDVS	S <mark>KPKY</mark> S <mark>GT</mark> A <mark>NLDR</mark> VTREA	CPELDYFVIFSSV
mFAS rat	(1967)	MVLRDAMLENQTPELFQDVI	J <mark>KPKY</mark> N <mark>GT</mark> L <mark>NLDR</mark> ATREA	CPELDYFV <mark>A</mark> FSSV
		2351		2400
		KR		KR
		5A		5A
TENO	(2242)	S SSS S C		CCCC CCCS C
IENS	(234Z) (2227)	AAILNNIGQSNIHCANLIMI	JSLVINKKSKGLAASIIH	TCHUCDECVUAR
MILS	(2337)	ATTANNI COSNYHCANI YMI	SIVAOR PRECIARSIII	T <mark>GVTCDTGIVAR</mark> M
AmphB	(2233)	AAVFGSG <mark>GQ</mark> PG <mark>Y</mark> AA <mark>AN</mark> AYLI	DALAEH <mark>RRS</mark> LGLTASSVA	W <mark>G</mark> TWGEV <mark>G</mark> MATDP
	(
mFAS pig	(2023)	SCGRGNAGQANYGFANSAM	LRICEK <mark>RRHDGL</mark> PGLAVQ EDICEO DDUDGL DGLAVQ	WGAIGDVGVVLET
MEAS IAU	(2017)	2CGRONAG201 GFAND 1M	IKICEŐ <mark>KK</mark> UDGFEGTAAŐ	WGAIGDVGIILEA
		2401		2450
		KR		KR
		5A B 57 C 9 99 99	45B	5B
TENS	(2392)	VDDTKVOMSLGTTRVMSVS	TDVHHAFAEAVRGGOPD	SRSGS <mark>H</mark> NIIMGIE
DMBS	(2387)	VDDNRIOSNIATMRAMRLS	TDVHHAFAOAVRGGOLD	SRSGSYNIIMGIE
MILS	(2385)	GDDAKVHSNRDVMRATTLS	TDVHHAFAEAVRGGSPG	SPIGSYNIIMGID
AmphB	(337)	EVHDRLVRQGVLAMEPPEHA	ALGALDQMLNDDTAAAPI	TMDWEMFAPAFTN
mFAS piq	(2073)	MGTNDTVIGGTLPQRIASC	EVLDLFLSQPHPVLS	
mFAS rat	(2067)	MGTNDTVVGGTLPQRISSC	1 <mark>EVLDLFL</mark> NQPHAVLS	

		2451	2500
		KR	KR
		5B	5B
TENS	(2442)	PPTKPLDLTKRKPVWISDPRLGPCLPFSTLENQMMAS	SEQAAAASAVDSLA
DMBS	(2437)	PPTKPLDLTRRQAVWLSDPRLGHMLPYSTLENQMIAS	G <mark>qaaa</mark> -s-adsla
MILS	(2435)	PPTK <mark>SLD</mark> SSR <mark>R</mark> KAL <mark>WLSDPRLGHM</mark> VP <mark>YS</mark> ASAD <mark>Q</mark> AVT <mark>S</mark>	Se <mark>q</mark> a
AmphB	(478)	R <mark>P</mark> SAL <mark>L</mark> STVPEAVSA <mark>LSD</mark> E	
mFAS pig	(2108)	<mark>SFVL</mark> A <mark>EKKA</mark> AA	PR <mark>DG</mark> SS <mark>Q</mark> K
mFAS rat	(2102)	SFVL <mark>VEKKA</mark> V <mark>A</mark> F	IG <mark>DG</mark> EA <mark>Q</mark> R
		2501	2550
		ACP	****
TENS	(2492)	QQVSEATTDEEAAVAALKGFATKLEGILLLPLGSIGE	EDSAGRPVTDLGID
DMBS	(2485)	QQVSEATTDEEATAAVLKGFATKLEGILLLPPGSIGE	EDSAGRPVTDLGID
mFAS pig	(2127)	<mark>DLVKAVAHILGIRD</mark> V <mark>A</mark> S	S <mark>IN</mark> PDSTLVDLGLD
mFAS rat	(2121)	DLVKAVAHILGIRDLA	G <mark>IN</mark> LDSSLADLGLD
		2551	2600
		*****	ACP
TENS	(2542)	<mark>SLVAVEIRTWFLKQLRVDVPVMKILGGSTVGQLSAL</mark> A	<mark>AAKLARQDAKK</mark> R <mark>AQ</mark>
DMBS	(2535)	SLVAVEIRTWFLKQLRVDVPVMKILGGSTVGQLSAL	AAKLARQDAKK <mark>Q</mark> AQ
mFAS pig	(2157)	<mark>SLMGVEVR</mark> QILEREHDLVL <mark>S</mark> MREVRQL <mark>S</mark> LRKLQELSS	SK <mark>TST<mark>D</mark>ADP<mark>A</mark>TPTS</mark>
mFAS rat	(2151)	SLMGVEVRQILEREHDLVLPIREVRQLTLRKLQEMSS	SKAGS <mark>D</mark> TEL <mark>A</mark> APK-

**** = 'active site'

Identity within PKS-NRPSIdentity within mFASREDIdentity between PKS-NRPS and mFAS

C = Cofactor binding

S = Substrate binding

B = Mutated Buried Residue

3. LCMS chromatograms

Expt 3. TenS (Δ dmbS-CMeT) with TenC

Amplified HPLC profile of Expt 3.

Expt 4. TenS (\triangle dmbS-1-CMeT) with TenC

Expt 5. TenS (\triangle dmbS-2-CMeT) with TenC

Amplified HPLC profile of Expt 6.

Expt 7. TenS (\triangle dmbS-2A2+2B-CMeT) with TenC

Amplified HPLC profile of Expt 7.

Expt 8. TenS (\triangle dmbS-2A-CMeT) with TenC

Expansion of Expt 8.

Expt 9. TenS (\triangle dmbS-2A2+2B1-CMeT) with TenC

Expt 11. TenS (\triangle dmbS-2A1-CMeT) with TenC

- 29 -

Expt 15. TenS (Δ dmbS-ΨKR) with TenC

Expt 18. TenS (Δ dmbS-1A-CMeT) with TenC

Expt 19. TenS (\triangle dmbS-1B-CMeT) with TenC

Expt 20. TenS (\triangle dmbS-1A1-CMeT) with TenC

Expt 21. TenS (A dmbS-1A2-CMeT) with TenC

Expt 22. pTYGS-arg-TenC+TenS (Δ dmbS-1B1-CMeT)

11.00

Expt 23. pTYGS-arg-TenC+TenS (Δ dmbS-1B2-CMeT)

Expt 25. pTYGS-arg-TenC+TenS (Δ dmbS-3-KR)

Ampflified HPLC profile of Expt 25.

Expt 26. pTYGS-arg-*Ten*C+*Ten*S (Δ *dmb*S-4-KR)

Expt 27. pTYGS-arg-TenC+TenS (A dmbS-3A-KR)

Expt 28. pTYGS-arg-TenC+TenS (Δ dmbS-3B-KR)

Ampflified HPLC profile of Expt 28.

Expt 29. pTYGS-arg-TenC+TenS (Δ dmbS-4A-KR)

Expt 30. pTYGS-arg-TenC+TenS (A dmbS-4B-KR)

Ampflified HPLC profile of Expt 30.

Expt 31. pTYGS-arg-TenC+TenS (Δ milS-KR)

Ampflified HPLC profile of Expt 31.

Expt 32. pTYGS-arg-TenC+TenS (Δ milS-³/₄-KR)

Expt. 33. pTYGS-arg-*TenC*+*TenS*(Δ*MilS* Q2398-V2409)

4. LC-HRMS data for extract from experiment 8.

5. UV spectra of compounds

6. MS data for compounds (ESI, negative ion mode)

7. HR-MS data for compounds 1, 3, 6-14.

HR-MS of 1

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

323 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-50 H: 0-70 N: 0-4 O: 0-20

1 uL injection	Q-TOFFIEITIEF OF LO-MO
SUCURT NO12 051 (0 724) AM (Cop 5 9	0 00 Ar 10000 0 556 28 0 70 LS 5) ⁻ Cm (923:951)

13-Nov-2014

10:49:05 1: TOF MS ES+

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 299 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-50 H: 0-70 N: 0-4 O: 0-20 1 uL injection Q-Tof Premier UPLC-MS

FHSHMT-NO12 744 (7.606) AM (Cen,5, 90.00, Ar,10000.0,556.28,0.70,LS 5); Cm (742:748)

13-Nov-2014

1: TOF MS ES+

10:49:05

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

318 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-50 H: 0-70 N: 0-4 O: 0-20

1 uL injection	Q-Tof Premier UPLC-MS	13-Nov-2014 10:49:05
FHSHMT-NO12 728 (7.443) AM (Cen,5, 90.00	1: TOF MS ES+ 3.31e+003	

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons

323 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-50 H: 0-70 N: 0-4 O: 0-20 1 uL injection Q-Tof Premier UPLC-MS

13-Nov-2014 10:49:05 1: TOF MS ES+ 3.57e+003

FHSHMT-NO12 757 (7.743) AM (Cen,5, 50.00, Ar, 10000.0, 556.28, 0.70, LS 5); Cm (753:757)

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 301 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-50 H: 0-70 N: 0-4 O: 0-20 1 uL injection Q-Tof Premier UPLC-MS

FHSHMT-NO12 694 (7.098) AM (Cen, 5, 90.00, Ar, 10000.0, 556.28, 0.70, LS 5); Cm (690:696)

13-Nov-2014 10:49:05 1: TOF MS ES+ 2.92e+003

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 318 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-50 H: 0-70 N: 0-4 O: 0-20 1 uL injection Q-Tof Premier UPLC-MS

FHSHMT-NO12 685 (7.007) AM (Cen.5, 90.00, Ar, 10000.0.556.28,0.70, LS 5); Cm (681:685)

13-Nov-2014 10:49:05 1: TOF MS ES+ 2.10e+003

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 257 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-50 H: 0-70 N: 0-4 O: 0-20 1 uL injection Q-Tof Premier UPLC-MS

FHSHMT-NO12 648 (6.625) AM (Cen, 5, 70.00, Ar, 10000.0, 556.28, 0.70, LS 5); Cm (643:650)

13-Nov-2014 10:49:05 1: TOF MS ES+ 3.52e+003

Elemental Composition Report

Single Mass Analysis

Tolerance = 10.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 257 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-50 H: 0-70 N: 0-4 O: 0-20 1 uL injection Q-Tof Premier UPLC-MS

FHSHMT-NO12 596 (6.099) AM (Cen,5, 90.00, Ar,10000.0,556.28,0.70,LS 5)

13-Nov-2014

1: TOF MS ES+

10:49:05

HR-MS of 12 (negative ion mode)

mental Composition Report

Page 1

ingle Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions

1096 formula(e) evaluated with 10 results within limits (up to 50 closest results for each mass)

Elements Used:

C: 0-50 H: 0-100 N: 0-12 O: 0-10 Na: 0-1

Friedrich Q-Tof Premier UPLC-MS 12-Jan-201711:49:03 SF 4-006-18-2, neg 973 (9.950) AM (Cen.4, 19.00, Ar, 9500.0, 554.26, 0.70, LS 5) 1: TOF MS ES-380.1860 823 100-375.2981 % 381,1914 389.2799 391.2843 376.2945 377.2835 379.2254 366.1675 368.1869 382.2004 383.2613 386.1632 375,1630 2361 390.2631 373.2802 17 392.4161 0 m/z 365.0 367.5 372.5 375.0 377.5 370.0 380.0 382.5 385.0 390.0 392.5 387.5 Minimum: -1.5 Maximum: 5.0 10.0 50.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula 380.1860 380.1862 -0.2 -0.5 11.5 4.6 C23 H26 Ν 04 380.1853 0.7 1.8 -0.5 48.1 C7 H26 N9 09 380.1851 0.9 13.5 2.4 7.4 C22 H23 N5 Na 380.1870 -1.0 -2.6 0.5 37.2 C10 H27 N7 07 Na 380.1875 -1.5 -3.916.5 5.1 C24 H22 N5 380.1838 2.2 8.5 H27 5.8 8.0 C21 N 04 Na 380.1883 -2.3 -6.0 5.5 31.4 C11 H23 N11 03 Na 380.1835 2.5 6.6 12.5 10.0 C19 H22 N7 02 380.1894 -3.4 -8.9 3.5 27.6 C12 H26 N7 07 380.1897 -3.7 -9.7 -0.5 25.0 C14 H31 N O9 Na

HR-MS of 12 (positive ion mode)

emental Composition Report

Page 1

12-Jan-201712:04:35

1: TOF MS ES+

9.41e3

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions

1103 formula(e) evaluated with 10 results within limits (up to 50 closest results for each mass) Elements Used:

C: 0-50 H: 0-100 N: 0-12 O: 0-10 Na: 0-1

382.2019 % 383,2057 400.1506 404.1855 417.2289 376,1524 393.2426 425.2850 433.2331 413.2687 443.2280 449.3500 3.2200 m/z O Laber 370.0 380.0 390.0 400.0 410.0 420.0 430.0 440.0 450.0 Minimum: -1.5 Maximum: 5.0 50.0 10.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula 382.2019 382.2018 0.1 0.3 10.5 73.3 C23 H28 N 04 382.2026 -0.7-1.8 -0.5 314.8 C10 H29 N7 07 Na 382.2010 0.9 2.4 -1.5 386.7 H28 N9 C7 09 382.2008 1.1 2.9 12.5 96.5 C22 H25 N5 Na 382.2032 -1.3 15.5 -3.4 74.0 C24 H24 N5 382.2040 -2.1 -5.5 4.5 276.0 C11 H25 N11 03 Na 382.1994 2.5 6.5 7.5 102.8 C21 H29 N 04 Na 382.1991 2.8 7.3 11.5 119.0 H24 N7 02 C19 382.2050 -3.1-8.1 2.5 248.3 C12 H28 N7 07 382.2053 -3.4 -8.9 -1.5 229.3 C14 H33 N 09 Na

HR-MS of 13 (negative ion mode)

iemental Composition Report

Page 1

05-Oct-201710:30:24

1: TOF MS ES-

582.8839

580

560

941

Single Mass Analysis

Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Selected filters: None

-4.3

-5.6

5.6

-6.1

-7.5

6.4

7.8

5.1

-10.9

12.9

-14.1

-15.4

-18.9

14.1

16.2

19.7

11.5

-1.5

16.5

16.5

-1.5

4.5

3.5

-0.5

8.5

34.5

10.6

37.7

42.4

31.7

50.4

9.8

Monoisotopic Mass, Even Electron Ions 736 formula(e) evaluated with 14 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-40 H: 0-100 N: 0-11 O: 0-16 Friedrich Q-Tof Premier UPLC-MS SY 2011A, neg 349 (3.307) AM (Cen,4, 70.00, Ar,11000.0,554.26,0.70,LS 5) 396.1768 100-% 464.1669 397.1822 316.9434 384.9349 310.9313 465.1718 277.1416 398.1816 452,9170 325,1793 514.9053 532.1506 362.9386 0 hourse m/z 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 Minimum: -1.5 Maximum: 5.0 20.0 50.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula 396.1768 396.1771 -0.3 -0.8 7.5 14.4 C18 H26 N3 07 396.1752 1.6 4.0 20.5 12.0 C30 H22 N 396.1784 -1.6 -4.0 12.5 13.6 C19 H22 N7 03 396.1744 2.4 6.1 8.5 23.9 C14 H22 N9 05 396.1803 -3.5 -8.8 -0.5 52.8 C7 H26 N9 010 396.1731 3.7 9.3 3.5 28.1 C13 H26 09 N5

396.1811

396.1717

396.1824

396.1712

396.1829

396.1704

396.1843

396.1690

H26

H30

H22

H22

H30

C9 H22 N11

H26

H26 N7

N 05

Ν 013

N5 0

N3 02

N3

N7 011

012

07

08

C23

C12

C24

C25

C11

C12

C8

HR-MS of 13 (positive ion mode)

mental Composition Report

Page 1

Single Mass Analysis

Tolerance = 20.0 PPM / DBE: min = -1.5, max = 50.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions 740 formula(e) evaluated with 11 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-40 H: 0-100 N: 0-11 O: 0-16 Friedrich Q-Tof Premier UPLC-MS 05-Oct-201708:40:25 SY 2011A 256 (2.621) AM (Cen,4, 70.00, Ar,11000.0,556.28,0.70,LS 5) 1: TOF MS ES+ 1.14e3 398.1949 100 % 399.2006 420.1767 421.1815 398.1461 400.2037 417.1684 431.2592 436.1449 442.1605 390.1707 408,1707 448.3494 0-----m/z 390.0 400.0 450.0 385.0 395.0 405.0 410.0 415.0 420.0 425.0 430.0 435.0 440.0 445.0 Minimum: -1.5 Maximum: 5.0 20.0 50.0 DBE i-FIT Formula Mass Calc. Mass mDa PPM 15.2 398.1949 0.8 2.0 11.5 398.1941 C19 H24 N7 03 398.1959 -1.0 -2.5 -1.5 78.6 C7 H28 N9 010 -1.8 398.1967 -4.5 10.5 6.6 C23 H28 Ν 05 6.5 20.8 H28 N3 07 398.1927 2.2 . 5.5 C18 398.1981 -3.2 -8.0 15.5 4.4 C24 H24 N5 0 4.0 10.0 19.5 1.6 C30 H24 Ν 398.1909 4.9 12.3 7.5 35.0 C14 H24 05 398.1900 N9 -5.0 -12.6 47.2 08 398.1999 2.5 C12 H28 N7 398.1887 6.2 15.6 2.5 44.4 C13 H28 N5 09 398.2013 -6.4 -16.1 7.5 38.5 C13 H24 N11 04 398.2026 -7.7 -19.3 1.5 32.4 C16 H32 N 010

Monoisotopio 765 formula(Elements Us C: 0-75 H: new sample, Si SY066-c 663 (6	c Mass, Even Elec e) evaluated with ed: 0-120 B: 0-2 I en Yin, BEH Phenyl u	ctron lons 8 results w N: 0-1 O:	ithin limits	(all results	(up to 1000)	6			
100-	5.778) AM (Cen,4, 70. 406	o to 100% AC 00, Ar,11000.0 .2021	0-15 Na N 0,554.26,0.5	: 0-1 Q-Tof Premier 5,LS 5)	UPLC-MS	tor each	mass)		24-Jun-201910:20:16 1: TOF MS ES- 697
%	843 309.1712	474.1953 475.1	917 564.139	11 724.4180 8	35.4153 97	3.4373	1157	.5002	1246.6748 1395.6708
100 Minimum: Maximum:	200 300 4	00 500 5.0	600 10.0	-0.5 60.0	00 900	1000		1200	
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	ıla		
406.2021	406.2018 406.2013 406.2032 406.2037 406.1997 406.1994 406.2053	0.3 0.8 -1.1 -1.6 2.4 2.7 -3.2	0.7 2.0 -2.7 -3.9 5.9 6.6 -7.9	12.5 4.5 -0.5 7.5 11.5 9.5 0.5	1.5 7.6 18.5 4.1 3.4 2.2 10.5	C25 C18 C13 C20 C22 C23 C16	H28 H30 H31 H29 H26 H29 H33	N 04 B N B2 N B N B2 N N 04 N 09	07 Na 010 Na 07 05 Na Na 010
	100 %- 112.94 0- 100 Minimum: Maximum: Mass 406.2021	100 %- 112.9843 309.1712 0 112.9843 309.1712 0 112.9843 309.1712 0 100 200 300 4 Minimum: Maximum: Mass Calc. Mass 406.2021 406.2018 406.2032 406.2032 406.2037 406.1997 406.1994 406.2053 406.2053	100 %- 112.9843 309.1712 474.1953 475.1 475.1 100 200 300 400 500 Minimum: Maximum: 5.0 Mass Calc. Mass mDa 406.2021 406.2018 0.3 406.2032 -1.1 406.2032 -1.1 406.2037 -1.6 406.1997 2.4 406.1994 2.7 406.2053 -3.2 406.2056 -3.5	100 %- 112.9843 309.1712 0 112.9843 309.1712 0 474.1953 475.1917 475.1917 564.139 400 500 600 Minimum: Maximum: 5.0 10.0 Mass Calc. Mass mDa PPM 406.2021 406.2018 0.3 0.7 406.2013 0.8 2.0 406.2032 -1.1 -2.7 406.2037 -1.6 -3.9 406.1997 2.4 5.9 406.1994 2.7 6.6 406.2053 -3.2 -7.9 406.2056 -3.5 -8.6	100 % 112.9843 309.1712 474.1953 475.1917 564.1391724.4180 8 475.1917 564.1391724.4180 8 475.1917 0 100 200 300 400 500 600 700 8 Minimum: 5.0 10.0 60.0 Mass Calc. Mass mDa PPM DBE 406.2021 406.2018 0.3 0.7 12.5 406.2013 0.8 2.0 4.5 406.2032 -1.1 -2.7 -0.5 406.2037 -1.6 -3.9 7.5 406.1997 2.4 5.9 11.5 406.1997 2.4 5.9 11.5 406.1994 2.7 6.6 9.5 406.2053 -3.2 -7.9 0.5 406.2056 -3.2 -7.9 0.5	100 % 112.9843 309.1712 474.1953 475.1917 564.1391724.4180 835.4153 97 100 200 300 400 500 600 700 800 900 Minimum: Maximum: 5.0 10.0 60.0 Mass Calc. Mass mDa PPM DBE i-FIT 406.2021 406.2018 0.3 0.7 12.5 1.5 406.2013 0.8 2.0 4.5 7.6 406.2032 -1.1 -2.7 -0.5 18.5 406.2037 -1.6 -3.9 7.5 4.1 406.1997 2.4 5.9 11.5 3.4 406.1994 2.7 6.6 9.5 2.2 406.2053 -3.2 -7.9 0.5 10.5 406.2056 -3 5 -8.6 2.5 12.8	100 100 112.9843 309.1712 474.1953 475.1917 564.1391724.4180 835.4153 973.4373 112.9843 309.1712 475.1917 100 200 300 400 500 600 700 800 900 1000 Minimum: 5.0 10.0 60.0 Mass Calc. Mass mDa PPM DBE i-FIT Formu 406.2021 406.2018 0.3 0.7 12.5 1.5 C25 406.2032 -1.1 -2.7 -0.5 18.5 C13 406.2037 -1.6 -3.9 7.5 4.1 C20 406.1997 2.4 5.9 11.5 3.4 C22 406.1994 2.7 6.6 9.5 2.2 C23 406.2053 -3.2 -7.9 0.5 10.5 C16 406.2053 -3.2 -7.9 0.5 10.5 C16	100 474.1953 474.1953 475.1917 112.9843 309.1712 475.1917 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 1100 1100 Maximum: 5.0 100.0 60.0 Mass Calc. Mass mDa PPM DBE 1-FIT Formula 406.2013 0.8 0.8 2.0 406.2032 -1.1 -2.7 -0.5 18.5 406.2037 -1.6 -3.9 406.1997 2.4 5.9 11.5 406.1997 2.4 5.9 <td>100 474.1953 475.1917 112.9843 309.1712 475.1917 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 1000 100 200 300 400 500 600 700 800 900 1000 100 1200 Mass Calc. Mass mDa PPM DBE 1-FIT 406.2013 0.8 406.2032 -1.1 -2.7 -0.5 406.2037 -1.6 -3.9 7.5 4.1 C20 <</td>	100 474.1953 475.1917 112.9843 309.1712 475.1917 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 1000 100 200 300 400 500 600 700 800 900 1000 100 1200 Mass Calc. Mass mDa PPM DBE 1-FIT 406.2013 0.8 406.2032 -1.1 -2.7 -0.5 406.2037 -1.6 -3.9 7.5 4.1 C20 <
8. NMR Characterisation

8.1 Compound 13

(DMSO-d ₆ , 600 MHz)						
position	δ _H /ppm	Mult./J	δ _c / ppm	COSY	HMBC (H to C)	
2	-	-	163.6 (C)	-	-	
3	-	-	100.4 (C)	-	-	
4	-	-	194.9 (C)	-	-	
5	4.06 (1H)	m	62.4 (CH)	18	4	
6	-	-	172.4 (C)	-	-	
7	7.04 (1H)	d (15.1 Hz)	119.6 (CH)	8	6, 9	
8	7.46 (1H)	dd (15.0, 11.4 Hz)	144.9 (CH)	7,9	6, 10	
9	6.53 (1H)	m	125.7 (CH)	8, 10	7	
10	6.88 (1H)	m	149.0 (CH)	9	8, 12	
11	-	-	137.1 (C)	-	-	
12	1.59 (3H)	S	12.9 (CH3)	13	13, 10	
13	5.18 (1H)	m	135.1 (CH)	12	12, 15	
14	2.35 (1H)	m	42.5 (CH)	13, 15, 16		
15	3.29 (2H)	m	64.3 (CH2)	14	13, 16	
16	1.15 (2H)	m	24.3 (CH2)	14, 17	15, 17	
17	0.78 (3H)	m	11.6 (CH3)	16	14, 16	
18	2.83 (2H)	broad s	35.8 (CH2)	5		
19	-	-	126.0 (C)	-	-	
20	6.92 (2H)	m	130.7 (CH)	21		
21	6.61 (2H)	m	114.9 (CH)	20		
22	-	-	155.9 (C)	-	-	

¹³C-NMR spectrum of 13

- 76 -

- 77 -

- 78 -

8.2 NMR Characterisation of 14

500 / 125 MHz, dmso-d ₆							
Pos	δ _н / ppm	mult. / Hz	δ _c / ppm	COSY	HMBC (H to C)		
2	-	-	175.1	-	-		
3	-	-	102.5	-	-		
4	-	-	191.2	-	-		
5	3.68	m	69.9				
6	-	-	174.1	-	-		
7	7.55	d, J = 15.8	129.1	8	6		
8	7.18	m	139.5	7,9			
9	6.47	m	131.3	8, 10			
10	6.63	m	140.2	9, 11			
11	6.34	m	127.0	10, 12	13		
12	6.42	m	141.3	11			
13	-	-	133.1	-	-		
14	5.41	d, J = 9.6	142.2	15, 19	12, 19		
15	2.42	m	34.5	14, 18	13, 16		
16	1.28, 1.36	m	29.8	15, 17	14, 15, 17, 18		
17	0.81	t, J = 6.9	12.3	16	15, 16		
18	0.95	d, J = 6.6	21.1	15	14, 15, 16		
19	1.74	S	12.9	14	12, 13, 14		
20	2.62,	m	37.5	5	22		
	2.84	dd, J = 13.9, 3.9					
21	-	-	128.5	-	-		
22	6.96	d, J = 8.2	130.8	23	21, 23, 24		
23	6.60	d, J = 8.2	115.2	22	21, 22, 24		
24	-	-	156.1	-	-		
24-0H	9.11	brs	-	-	23		

1H spectrum of 14

13C Spectrum of 14

COSY spectrum of 14

HSQC Spectrum of 14

HMBC Spectrum of 14

9. Experimental Section

9.1 General

LC-MS data were obtained using a Waters LCMS system comprising of a Waters 2767 autosampler, Waters 2545 pump system, a Phenomenex Kinetex column (2.6 μ , C₁₈, 100 Å, 4.6 × 100 mm) equipped with a Phenomenex Security Guard precolumn (Luna C₅ 300 Å) eluted at 1 mL/min. Detection was by Waters 2998 Diode Array detector between 200 and 400 nm; Waters 2424 ELSD and Waters SQD-2 mass detector operating simultaneously in ES+ and ES- modes between 100 *m/z* and 650 *m/z*. Solvents were: **A**, HPLC grade H₂O containing 0.05% formic acid; **B**, HPLC grade MeOH containing 0.045% formic acid; and **C**, HPLC grade CH₃CN containing 0.045% formic acid). Gradients were as follows.

Method 1. Kinetex/CH₃CN: 0 min, 10% C; 10 min, 90% C; 12 min, 90% C; 13 min, 10% C; 15 min, 10% C.

Semi-Preparative LCMS and compound purification.

Purification of compounds was generally achieved using a Waters mass-directed autopurification system comprising of a Waters 2767 autosampler, Waters 2545 pump system, a Phenomenex Kinetex Axia column (5 μ , C₁₈, 100 Å, 21.2 × 250 mm) equipped with a Phenomenex Security Guard precolumn (Luna C₅ 300 Å) eluted at 20 mL/min at ambient temperature. Solvent **A**, HPLC grade H₂O + 0.05% formic acid; Solvent **B**, HPLC grade CH₃CN + 0.045% formic acid. The post-column flow was split (100:1) and the minority flow was made up with HPLC grade MeOH + 0.045% formic acid to 1 mL·min⁻¹ for simultaneous analysis by diode array (Waters 2998), evaporative light scattering (Waters 2424) and ESI mass spectrometry in positive and negative modes (Waters SQD-2). Detected peaks were collected into glass test tubes. Combined tubes were evaporated under a flow of dry N₂ gas, weighed, and residues dissolved directly in NMR solvent for NMR analysis.

9.2 Strains and culturing

Escherichia coli TOP10 (Invitrogen) was used as the host for plasmids that did not contain a Gateway destination cassette. Gateway destination vectors were propagated in *ccdB* survival cells (Invitrogen). *Saccharomyces cerevisiae* strain YPH499 (Stratagene) was used as the host for plasmid assembly by homologous recombination. *Aspergillus oryzae* strain M-2-3, an arginine auxotroph, was obtained from Professor Teruo Fujii, the University of Tokyo and mycelium was routinely maintained at 28 °C on MEA (3.36% malt extract agar). *Aspergillus oryzae* strain NSAR1 was obtained as a gift from the Kitamoto group.^[1]

9.3 General techniques for DNA manipulation

Polymerase chain reactions were performed with PrimeSTAR[®] HS DNA Polymerase (TaKaRa Bio Inc.). PCR products were cloned into the pENTRY-YA vector (Invitrogen) through yeast homologous recombination and confirmed by DNA sequencing, and then transferred to the expression vector pTYGS-arg using Gateway LR *in vitro* recombination (Invitrogen) leading to constructs. Restriction digests were carried out according to the manufacturer's protocols (NEB, Fermentas, Promega). The primers used to amplify each fragment were synthesized by Sigma, and are listed in Table S1.

9.4 Rebuilding tenS with tenC expression system

The pTYGS-arg vector was digested with *Asc*I to produce the vector fragment. PCR fragment *tenC* was amplified using primers *XL1* and *XL2* using *Beauveria bassiana* genomic DNA as the template. Yeast recombination was used to reassemble the vector fragment with *tenC*, and the resulting plasmid pTYGS-arg-*tenC* was sequenced. Then, the previously constructed plasmid YA-*tenS* was transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *tenS* with *tenC*.

9.5 Construction of hybrid plasmids

TenS (Δ *dmbS*-*C*MeT)

The plasmid YA-*tenS* was digested with *Xba*I to excise the DNA sequences of the partial AT, DH, *C*MeT and partial Ψ KR domains of *tenS* to produce the vector fragment VF1. Fragments F2 and F3 were amplified by PCR using *XL3* and *XL4*, *XL5* and *XL6* respectively as primer and YA-*tenS* as the template. Fragment F4 harbouring the swap sequence was amplified by PCR using primers *XL7* and *XL8* and the synthetic *dmbS*-*C*MeT as template. Yeast recombination was used to assemble the vector fragment VF1 with F2, F3 and F4. The resulting plasmid YA-*tenS* (Δ *dmbS*-*C*MeT) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* (Δ *dmbS*-*C*MeT).

TenS (Δ *dmbS*-1-*C*MeT)

Fragment F5 harbouring swap sequence was amplified using primers XL7 and XL9 and the synthetic *dmbS-C*MeT as template. Fragment F6 was amplified by PCR using XL10 and XL11 as primers and YA-*tenS* as the template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F5 and F6. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -1-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using

Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* (Δ *dmbS*-1-*C*MeT).

TenS (Δ *dmbS*-2-*C*MeT)

Fragment F7 was amplified by PCR using *XL12* and *XL13* as primers and YA-*tenS* as the template. Fragment F8 harbouring swap sequence was amplified by PCR using primers *XL8* and *XL14* and the synthetic *dmbS-C*MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7 and F8. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -2-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -2-*C*MeT).

TenS (Δ *dmbS*-1A-*C*MeT)

Fragment F9 harbouring swap sequence was amplified by PCR using primers *XL15* and *XL16* and the synthetic *dmbS-C*MeT as template. Fragment F10 was amplified by PCR using *XL17* and *XL18* as primers and YA-*tenS* as the template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F6, F9 and F10. The resulting plasmid YA-*tenS* (Δ *dmbS*-1A-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* (Δ *dmbS*-1A-*C*MeT).

TenS (Δ *dmbS*-1B-CMeT)

Fragment F11 was amplified by PCR using *XL12* and *XL19* as primers and YA-*tenS* as the template. Fragment F12 harbouring swap sequence was amplified by PCR using primers *XL20* and *XL21* and the synthetic *dmbS-C*MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F6, F11 and F12. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -1B-CMeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -1B-CMeT).

TenS (△ dmbS-2A-CMeT)

Fragment F13 harbouring swap sequence was amplified by PCR using primers *XL14* and *XL22* and the synthetic *dmbS-C*MeT as template. Fragment F14 was amplified by PCR using *XL11* and *XL23* as primers and YA-*tenS* as the template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7, F13 and F14. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -2A-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -2A-*C*MeT).

TenS (△ dmbS-2B-CMeT)

Fragment F15 was amplified by PCR using XL24 and XL25 as primers and YA-*tenS* as the template. Fragment F16 harbouring swap sequence was amplified by PCR using primers XL8 and XL26 and the synthetic *dmbS-C*MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7, F15 and F16. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -2B-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -2B-*C*MeT).

TenS (\triangle *dmb*S-1A1-*C*MeT)

Fragment F26 harbouring swap sequence was amplified by PCR using primers *XL38* and *XL39* and the synthetic *dmbS*-1A1-*C*MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F6, F10 and F26. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -1A1-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -1A1-*C*MeT).

TenS (\triangle *dmbS*-1A2-*C*MeT)

Fragment F27 harbouring swap sequence was amplified by PCR using primers *XL38* and *XL40* and the synthetic *dmbS*-1A2-*C*MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F6, F10 and F27. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -1A2-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -1A2-*C*MeT).

TenS (\triangle *dmbS*-1B1-*C*MeT)

Fragment F31 harbouring swap sequence was amplified by PCR using primers XL47 and XL48 and the synthetic *dmbS*-1B1-*C*MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F6, F11 and F31. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -1B1-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -1B1-*C*MeT).

TenS (Δ *dmbS*-1B2-*C*MeT)

Fragment F32 harbouring swap sequence was amplified by PCR using primers *XL47* and *XL48* and the synthetic *dmbS*-1B2-*C*MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F6, F11 and F32. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -1B2-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -1B2-*C*MeT).

TenS (Δ *dmbS*-2A1-*C*MeT)

Fragment F24 harbouring swap sequence was amplified by PCR using primers *XL34* and *XL35* and the synthetic *dmbS*-2A1-*C*MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7, F14 and F24. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -2A1-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -2A1-*C*MeT).

TenS (Δ *dmb*S-2A2-*C*MeT)

Fragment F25 harbouring swap sequence was amplified by PCR using primers *XL36* and *XL37* and the synthetic *dmbS*-2A2-*C*MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7, F14 and F25. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -2A2-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -2A2-*C*MeT).

TenS (\triangle *dmbS*-2B1-CMeT)

Fragment F17 harbouring swap sequence was amplified by PCR using primers *XL27* and *XL28* and the synthetic *dmbS*-2B1-*C*MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7, F15 and F17. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -2B1-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -2B1-*C*MeT).

TenS (Δ *dmbS*-2B2-*C*MeT)

Fragment F18 harbouring swap sequence was amplified by PCR using primers *XL27* and *XL28* and the synthetic *dmbS*-2B2-*C*MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7, F15 and F18. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -2B2-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -2B2-*C*MeT).

TenS (\triangle *dmbS*-2A+2B1-*C*MeT)

Fragment F19 harbouring swap sequence was amplified by PCR using primers *XL14* and *XL29* and the synthetic *dmbS*-*C*MeT as template. Fragment F20 was amplified by PCR using *XL6* and *XL30* as primers and YA-*tenS* as the template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F7, F19 and F20. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -2A+2B1-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -2A+2B1-*C*MeT).

TenS (\triangle *dmbS*-2A2+2B1-*C*MeT)

Fragment F21 was amplified by PCR using *XL12* and *XL31* as primers and YA-*tenS* as the template. Fragment F22 harbouring swap sequence was amplified by PCR using primers *XL32* and *XL33* and the synthetic *dmbS*-*C*MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F20, F21 and F22. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -2A2+2B1-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -2A2+2B1-*C*MeT).

TenS (\triangle *dmbS*-2A2+2B-*C*MeT)

Fragment F23 harbouring swap sequence was amplified by PCR using primers *XL8* and *XL32* and the synthetic *dmbS-C*MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F21 and F23. The resulting plasmid YA-*tenS* ($\Delta dmbS$ -2A2+2B-*C*MeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -2A2+2B-*C*MeT).

TenS (\triangle *dmbS*-3- Ψ KR)

The plasmid YA-*tenS* was digested with *Kpn*I to excise the DNA sequences of the partial DH, *C*MeT, Ψ KR, ER and partial KR domains of *tenS* to produce the vector fragment VF2. Fragment F28 harbouring the swap sequence was amplified by PCR using primers *XL41* and *XL42* and the synthetic *dmbS*- Ψ KR-*C*MeT as template. Fragments F29 and F30 were amplified by PCR using *XL43* and *XL44*, *XL45* and *XL46* respectively as primer and YA-*tenS* as the template. Yeast recombination was used to assemble the vector fragment VF2 with F28, F29 and F30. The resulting plasmid YA-*tenS* (Δ *dmbS*-3- Ψ KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* (Δ *dmbS*-3- Ψ KR).

TenS (Δ *dmbS*-3a- Ψ KR)

Fragment F33 harbouring the swap sequence was amplified by PCR using primers *XL41* and *XL42* and the synthetic *dmbS*-1- Ψ KR-*C*MeT as template. Yeast recombination was used to assemble the vector fragment VF2 with F29, F30 and F33. The resulting plasmid YA-*tenS* (Δ *dmbS*-3a- Ψ KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* (Δ *dmbS*-3a- Ψ KR).

TenS (Δ *dmbS*-3b- Ψ KR)

Fragment F34 harbouring the swap sequence was amplified by PCR using primers *XL41* and *XL42* and the synthetic *dmbS*-2- Ψ KR-*C*MeT as template. Yeast recombination was used to assemble the vector fragment VF2 with F29, F30 and F34. The resulting plasmid YA-*tenS* (Δ *dmbS*-3b- Ψ KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* (Δ *dmbS*-3b- Ψ KR).

TenS (Δ *dmbS*-4-KR)

The plasmid pE-YA-*tenS* was digested with *XbaI* and *AgeI* to produce the vector fragment VF3. Fragment F35 was amplified by PCR (Q5) using tenSF1 and tenSR1 as primers and pE-YA-*tenS* as the template to create a patch for VF3. Fragments F36 and F37 were amplified by PCR (Q5) using TDSLk1-F and TDSLk1-R, T2A-F and TDSLk2-R respectively as primers and pE-YA-*tenS* as the template. Fragment F38 harbouring the swap sequence was amplified by PCR using D1A-

TLk-F and D1B-TLk-R as primers with pE-YA1-*dmbS* as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F36, F37 and F38. The resulting plasmid pE-YA-*tenS*($\Delta dmbS$ -4-KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -4-KR).

TenS (Δ dmbS-4A-KR)

Fragment F39 was amplified by PCR using T1B-F and TDSLk2-R as primers and pE-YA-*tenS* as the template. Fragment F40 harbouring the swap sequence was amplified by PCR using D1A-TLk-F and D1A-TLk-R as primers with pE-YA1-*dmbS* as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F36, F39 and F40. The resulting plasmid pE-YA-*tenS*($\Delta dmbS$ -4A-KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -4A-KR).

TenS (Δ dmbS-4B-KR)

Fragment F41 was amplified by PCR (Q5) using TDSLk1-F and T1A-R as primers and pE-YA-*tenS* as the template. Fragment F42 harbouring the swap sequence was amplified by PCR using D1B-TLk-F and D1B-TLk-R as primers with pE-YA1-*dmbS* as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F37, F41 and F42. The resulting plasmid pE-YA-*tenS*($\Delta dmbS$ -4B-KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -4B-KR).

TenS (Δ dmbS-5-KR)

Fragment F43 and F44 were amplified by PCR (Q5) using TDSLk1-F and T1B-R, TDSLk2-F and TDSLk2-R respectively as primers and pE-YA-*tenS* as the template. Fragment F45 harbouring the swap sequence was amplified by PCR using D2A-TLk-F and D2B-TLk-R as primers with pE-YA1-*dmbS* as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F43, F44 and F45. The resulting plasmid pE-YA-*tenS*($\Delta dmbS$ -5-KR) harbouring the advantage of the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -5-KR).

TenS (Δ *dmbS*-5A-KR)

Fragment F46 was amplified by PCR (Q5) using T2B-F and TDSLk2-R as primers and pE-YA-*tenS* as the template. Fragment F47 harbouring the swap sequence was amplified by PCR using D2A-TLk-F and D2A-TLk-R as primers with pE-YA1-*dmbS* as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F43, F46 and F47. The resulting plasmid pE-YA-*tenS*($\Delta dmbS$ -5A-KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -5A-KR).

TenS (Δ dmbS-5B-KR)

Fragment F48 was amplified by PCR (Q5) using TDSLk1-F and T2A-R as primers and pE-YA-*tenS* as the template. Fragment F49 harbouring the swap sequence was amplified by PCR using D2B-TLk-F and D2B-TLk-R as primers with pE-YA1-*dmbS* as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F44, F48 and F49. The resulting plasmid pE-YA-*tenS*($\Delta dmbS$ -5B-KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta dmbS$ -5B-KR).

TenS (Δ milS-KR)

The plasmid pE-YA-*tenS* was digested with *XbaI* and *AgeI* to produce the vector fragment VF3. Fragment F35 was amplified by PCR (Q5) using tenSF1 and tenSR1 as primers and pE-YA-*tenS* as the template to create a patch for VF3. Fragments F51 and F52 were amplified by PCR (Q5) using TDSLk1-F and TDSLk1-R, T2A-F and TDSLk2-R respectively as primers and pE-YA-*tenS* as the template. Fragment F50 harbouring the swap sequence was amplified by PCR using TMS-F and TMS-R as primers with pE-YA1-*milS* as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F50, F51 and F52. The resulting plasmid pE-YA-*tenS*($\Delta milS$ -KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS*($\Delta milS$ -KR).

TenS (Δ milS-3/4-KR)

The plasmid pE-YA-*tenS* was digested with *XbaI* and *AgeI* to produce the vector fragment VF3. Fragment F35 was amplified by PCR (Q5) using tenSF1 and tenSR1 as primers and pE-YA-*tenS* as the template to create a patch for VF3. Fragments F53 and F54 were amplified by PCR (Q5) using TDSLk1-F and TDSLk1(3/4)-R, TDSLk1(3/4)-F and TDSLk2-R respectively as primers and pE-YA-*tenS* as the template. Fragment F55 harbouring

the swap sequence was amplified by PCR using TenS(3/4)-F and TenS(3/4)-R as primers with pE-YA1-*milS* as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F53, F54 and F55. The resulting plasmid pE-YA-*tenS*($\Delta milS$ -KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta milS$ -3/4-KR).

TenS (Δ milS-12m-KR)

The plasmid pE-YA-*tenS* was digested with *XbaI* and *AgeI* to produce the vector fragment VF3. Fragment F35 was amplified by PCR (Q5) using tenSF1 and tenSR1 as primers and pE-YA-*tenS* as the template to create a patch for VF3. Fragments F57 and F58 were amplified by PCR (Q5) using TDSLk1-F and LK1sub-R, LK2sub-F and TDSLk2-R respectively as primers and pE-YA-*tenS* as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F57 and F58. The resulting plasmid pE-YA-*tenS*($\Delta milS$ -12m-KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-*tenC* using Gateway LR *in vitro* recombination (Invitrogen) leading to *TenS* ($\Delta milS$ -12m-KR).

9.6 Transformation of Aspergillus oryzae M-2-3

Plasmid DNA for fungal transformation was prepared using Fermentas Miniprep kits. *A. oryzae* M-2-3 was grown on MEA plate for 10 days. Spores washed by 4 mL sterile water were inoculated into 100 mL GNB liquid medium (2% glucose, 1% nutrient broth number 2(from Thermo Scientific)) and cultivated for 1 day at 30 °C, 250 rpm. Collect the mycelia on a sterile filter paper (autoclaved with a filter funnel) under vacuum and wash with sterile water, then 0.8 M NaCl. Put the mycelia in a sterile falcon centrifuge tube. Add 10 ml of filter-sterilized protoplasting solution (20 mg/ml lysing enzyme, Sigma L-1412, 10 ml/ml amount of driselase, 0.8 M NaCl, 10 mM Na phosphate buffer pH 6) and incubate at 30 °C, 100rpm for no longer than 3 hours. Filter the protoplasting solution through a syringe with glasswool inside. Centrifuge the filtrate at 3000 rpm for 10 min. Wash the pelleted protoplasts once with 0.8 M NaCl (ca. 15 ml) and then once with Solution 1 (0.8 M NaCl, 10 mM CaCl₂, 50 mM Tris HCl pH 7.5). Resuspend the protoplasts in Solution 1 to final concentration of 2.5 ×10⁸/ml and add 1/5 volume of Solution 2 (PEG 4000 (60% w/v) in solution 1 but 50 mM CaCl₂). Put 0.2 ml portions into Falcon tubes. Add plasmid DNA (<20 µl) and place on ice for 30 min. Add 1 ml of Sol 2, mix well gently and place at room temperature for 20 min. 10 ml soft agar (0.8% agar containing 5% NaCl) was added to the transformation mixtures, and then poured onto two Czapek-Dox plates supplemented with sorbitol (1 M) and incubated at 28°C for 5-10 days.

9.7 Transformation of Aspergillus oryzae NSAR1

A. oryzae was grown for 4 days on MEA solid medium at 30°C until sporulation occurred. Conidia harvested from a single plate were used to inoculate 50 ml of GNB liquid medium (1% (w/v) glucose, 2% (w/v) nutrient broth no. 2 (*Thermo Fisher*) and incubated at 28 °C with shaking at 200 rpm overnight. The germinated *A. oryzae* conidia were centrifuged at 8000 rpm for 10 min and the supernatant discarded. The pellet was washed once with H₂O and once with 0.8 M NaCl. The pellet was then resuspended in 10 ml of filter sterilised protoplasting solution (20 mg/ml *Trichoderma* lysing enzyme and 5 mg/ml Driselase in 0.8 M NaCl), and incubated at room temperature with gentle shaking for 1–1.5 hours. Protoplasts were released from hyphae by pipetting with a wide-bore 5 ml pipette, and then filtered through sterile miracloth. The protoplasts were then centrifuged at 1000 x g for 5 min and the supernatant discarded. The pellet was then washed with solution 1 (0.8 M NaCl, 10 mM CaCl₂, 50 mM Tris-HCl pH 7.5). The pellet was resuspended in 200-500 µl of solution 1, and, for each transformation, 100 µl transferred to a 50 ml centrifuge tube on ice. 5-10 µg (10 µl max) of plasmid DNA was added to the protoplasts and gently mixed. The tube was incubated at room temperature for 20 min. 40 ml of molten (approx. 50 °C) CZD/S top medium with appropriate supplements (3.5% (w/v) Czapek Dox broth, 1 M sorbitol, 0.8% (w/v) agar) was added and gently mixed. 10 ml each of the mix was overlaid onto four plates prepared with appropriate supplements (15 ml of 3.5% (w/v) Czapek Dox broth, 1 M sorbitol, 1.5% (w/v) agar). The plates were then incubated at 28 °C for 3-5 days until colonies appeared.

Primer	template	direction	sequence 5' - 3'	amplification
XL1	B. bassiana gDNA	fwd	TCAACACAAGATCCCAAAGTCAAAGGCGCGATGGCAGCCATCTCTTCCC	TenC
XL2	B. bassiana gDNA	rev	CTGGTAGACGTCATATAATCATACGGCGCGTCAGGGCAGCGCCTCCTCT	TenC
XL3	tenS	fwd	TGCAGCAACCTATGCGAGC	F2, F23
XL4	tenS	rev	TGCGGTCTGATTCAGAGCCC	F2
XL5	tenS	fwd	GCCGTGGATGACACGTTCTATGC	F3
XL6	tenS	rev	CACCCACAAGAGGTTTCGTGTATTG	F3, F20
XL7	dmbS-CMeT	fwd	ATTGATTCTTGGGCTCTGAATCAGACCGCATCATCCTTGACCGGGGATCTC	F4, F5
XL8	dmbS-CMeT	rev	GAGCCGGGCATAGAACGTGTCATCCACGGCTTGACTCATAATCATGGAGTTTTGCTGCTTG	F4, F8, F16, F23
XL9	dmbS-CMeT	rev	AGCATTCTCGAAAAAGCCAACCGAGAGATCGGTGTAAGTGTATGTA	F5
XL10	tenS	fwd	GATCTCTCGGTTGGCTTTTTCGAGAATGC	F6
XL11	tenS	rev	GAGCCGGGCATAGAACGTGTCATCC	F6, F14
XL12	tenS	fwd	TTCAACGCCGCGATTGATTCTTG	F7, F11, F21
XL13	tenS	rev	TGTGTAAGTATACGTGTCGAATGCC	F7
XL14	dmbS-CMeT	fwd	GGTGAGGCATTCGACACGTATACTTACACAGATCTATCGGTTGGCTTCTTCG	F8, F13, F19
XL15	dmbS-CMeT	fwd	ATTGATTCTTGGGCTCTGAATCAGACCGCATCATCCTTGACCGGGGATC	F9
XL16	dmbS-CMeT	rev	GGCGTGAAGCATCTGCAACTCGACAGCATCTGGGTACGCCTCATCAATG	F9
XL17	tenS	fwd	GATGCTGTCGAGTTGCAGATGC	F10
XL18	tenS	rev	GCGGAAAATCTCTCGACAGC	F10
XL19	tenS	rev	TGGGTATGCCTCATCAATGG	F11
XL20	dmbS-CMeT	fwd	GTCATCCAAACCATTGATGAGGCATACCCAGATACTGTTGAGTTGCAGATGC	F12
XL21	dmbS-CMeT	rev	AGCATTCTCGAAAAAGCCAACCGAGAGATCGGTGTAAGTGTATGTA	F12
XL22	dmbS-CMeT	rev	ACCAAAGTTAAAGGTAGCGCGAAGACTCTCTGGGCCAGTCTTTTCGTTC	F13
XL23	tenS	fwd	GAGAGTCTTCGCGCTACCTTTAACTTTG	F14
XL24	tenS	fwd	GCAATTGGTGAGGCATTCG	F15
XL25	tenS	rev	TGGGCCAGTCTTTTCGTTTAATAGC	F15

10. Table S2. List of primers used in this study (Blue, *tenS* sequence; Red, *dmbS* sequence; Green, vector sequence; Black, *tenC* sequence).

XL26	dmbS-CMeT	fwd	TATCTGCTATTAAACGAAAAGACTGGCCCAGAGAGTCTTCGCGCCACC	F16
XL27	dmbS-2B1-CMeT and	fwd	AGCCCTCTTGAAGCCCGGC	F17, F18
	dmbS-2B2-CMeT			
XL28	<i>dmbS</i> -2B1-CMeT and	rev	CATTTCGGAAAGCGGGGGAGAGC	F17, F18
	dmbS-2B2-CMeT			
XL29	dmbS-CMeT	rev	TCGTGTACTATATGATCAACGCCAGAGAACGAGGCCTTTTGGAGCTGCGAATCCCAG	F19
XL30	tenS	fwd	GCCTCGTTCTCTGGCGTTGATC	F20
XL31	tenS	rev	TGGGTCTTTCTCAATATCGAGGGC	F21
XL32	dmbS-CMeT	fwd	TGGTCTTTAGAGCCCTCGATATTGAGAAAGACCCAGCCGCACAAAGCTTCGATCTCG	F22, F23
XL33	dmbS-CMeT	rev	TCGTGTACTATATGATCAACGCCAGAGAACGAGGCCTTTTGGAGCTGCGAATCCCAG	F22
XL34	dmbS-2A1-CMeT	fwd	GAGTGCAATTGGTGAGGCATTC	F24
XL35	dmbS-2A1-CMeT	rev	AGCCCACCAAAGTTAAAGGTAG	F24
XL36	dmbS-2A2-CMeT	fwd	CAATTGGTGAGGCATTCGAC	F25
XL37	dmbS-2A2-CMeT	rev	AGCCCACCAAAGTTAAAGGTAG	F25
XL38	dmbS-1A1-CMeT	fwd	ATTGATTCTTGGGCTCTGAATCAGAC	F26, F27
XL39	dmbS-1A1-CMeT	rev	GCCCAACGGCGTGAAGCATCTGCAACTCGACAGCATCTGGGTATGCCTCATCAATGGTTTG	F26
XL40	dmbS-1A2-CMeT	rev	GCCCAACGGCGTGAAGCATCTGCAACTCGACAGCATCTGGGTACGCCTCATCAATGATTTG	F27
XL41	dmbS-ΨKR-CMeT,	fwd	ATGCCCAGCTCCAAAAGGCCTC	F28, F33, F34
	dmbS-1-ΨKR-CMeT			
	and <i>dmbS</i> -2-ΨKR-			
	CMeT			
XL42	dmbS-ΨKR-CMeT,	rev	TCAATGCCAAGAACTTGGGTTCG	F28, F33, F34
	dmbS-1-ΨKR-CMeT			
	and <i>dmbS</i> -2-ΨKR-			
	CMeT			
XL43	tenS	fwd	ACTGCTACCTTATTCACCCTGCC	F29
XL44	tenS	rev	TTGACTCATGATCATGGAGTTTTGC	F29

XL45	tenS	fwd	CAAAACTCTAGCTCCATGACTCCCAGAGC	F30
XL46	tenS	rev	ACCCATTATGATGTTGTGGGAGCCGC	F30
XL47	<i>dmbS</i> -1B1-CMeT and	fwd	AGACGACTGGGCCGTCATCCAAACCATTGATG	F31, F32
	dmbS-1B2-CMeT			
XL48	<i>dmbS</i> -1B1-CMeT and	rev	TGCGGAAAATCTCTCGACAGCATTCTCG	F31, F32
	dmbS-1B2-CMeT			
tenSF1	pE-YA-tenS	fwd	GGTCCTTGTCTGAAGAGTTG	F35
tenSR1	pE-YA-tenS	rev	GGATATCACAAGCAAGAAGC	F35
TDSLk1-F	pE-YA-tenS	fwd	AGATCAGCAGGATAAGCAGC	F36, F41, F43, F48
TDSLk1-R	pE-YA-tenS	rev	AAGCCCACGGGTCTGGAG	F36
TDSLk2-F	pE-YA-tenS	fwd	GCCGCATCGGCGGTAGAC	F44
TDSLk2-R	pE-YA-tenS	rev	TCCTTTGGTGGTGGTGATG	F37, F39, F44, F46
T2A-F	pE-YA-tenS	fwd	GCCATTCTGAATAATACAGGCC	F37
T2A-R	pE-YA-tenS	rev	CTCAGAGACACTCATGACTCG	F48
T1B-F	pE-YA-tenS	fwd	ACTGTGGTGGACATGATTCG	F39
T1B-R	pE-YA-tenS	rev	AGCGCTCGAGCTTAGCAA	F43
<i>T2B-F</i>	pE-YA-tenS	fwd	ACGGATGTGCATCATGCCTT	F46
T1A-R	pE-YA-tenS	rev	CTGCACAGAGTCTTTGCTGC	F41
D1A-TLk-F	pE-YA1-dmbS	fwd	ACTGTACCGCCCCTCCAGACCCGTGGGCTTTTCAAGAGCGACAGGACCTA	F38, F40
D1A-TLk-R	pE-YA1-dmbS	rev	CATGGTGGCACGAATCATGTCCACCACAGTCTGCACAGAGTCTTTGTTGC	F40
D1B-TLk-F	pE-YA1-dmbS	fwd	ATGGACGCTTGCAGCAAAGACTCTGTGCAGACTGTCGTGGATACGATTCG	F42
D1B-TLk-R	pE-YA1-dmbS	rev	GTTTGACTGGCCTGTATTATTCAGAATGGCAGCGGCAGAACCAAGCAGAA	F38, F42
D2A-TLk-F	pE-YA1-dmbS	fwd	GACTTTTTTGTCTTGCTAAGCTCGAGCGCTGCCATCTTGAATAACATGGG	F45, F47
D2A-TLk-R	pE-YA1-dmbS	rev	CGCCTCAGCAAAGGCATGATGCACATCCGTCTCAGAGAGCCTCATAGCTC	F47
D2B-TLk-F	pE-YA1-dmbS	fwd	GGTACCACGCGAGTCATGAGTGTCTCTGAGACTGACGTGCATCACGCCTT	F49
D2B-TLk-R	pE-YA1-dmbS	rev	CGCTAGACTGTCTACCGCCGATGCGGCGGCTGCTTGCCCCGAGGCAATCA	F45, F49

Primer	template	direction	sequence 5' - 3'	amplification
tenSF1	pE-YA-tenS	fwd	GGTCCTTGTCTGAAGAGTTG	F35
tenSR1	pE-YA-tenS	rev	GGATATCACAAGCAAGAAGC	F35
TDSLk	pE-YA-tenS	fwd	AGATCAGCAGGATAAGCAGC	F36, F41, F43,
1-F				F48, F51, F53,
	E VA (S			F58
1DSLK 1-R	pE-IA-tens	rev	AAGUUUAUGGGTUTGGAG	F30, F31
TDSLk	pE-YA-tenS	fwd	GCCGCATCGGCGGTAGAC	F44, F52
2-F	1			,
TDSLk	pE-YA-tenS	rev	TCCTTTGGTGGTGGTGATG	F37, F39, F44,
2-R				F46, F52, F54,
TAF	E VA (C	61		F57
12A-F	pE-YA-tenS	Iwd	GCCATTCTGAATAATACAGGCC	F3/
T2A-R	pE-YA-tenS	rev	CTCAGAGACACTCATGACTCG	F48
T1B-F	pE-YA-tenS	fwd	ACTGTGGTGGACATGATTCG	F39
T1B-R	pE-YA-tenS	rev	AGCGCTCGAGCTTAGCAA	F43
<i>T2B-F</i>	pE-YA-tenS	fwd	ACGGATGTGCATCATGCCTT	F46
T1A-R	pE-YA-tenS	rev	CTGCACAGAGTCTTTGCTGC	F41
DIA-	pE-YA1-	fwd	ACTGTACCGCCCCTCCAGACCCGTGGGCTT	F38, F40
TLk-F	dmbS		TTCAAGAGCGACAGGACCTA	
DIA-	pE-YA1-	rev	CATGGTGGCACGAATCATGTCCACCACAGT	F40
TLk-R	dmbS	C 1		E 40
	pE-YAI-	Iwa	ATGGACGCTTGCAGCAAGACTCTGTGCAG	F42
DIR_{-}	nE-VAL	rev	GTTTGACTGGCCTGTATTATTCAGAATGGC	F38 F42
TLk-R	dmbS		AGCGGCAGAACCAAGCAGAA	1'50, 1'42
D2A-	pE-YA1-	fwd	GACTTTTTTGTCTTGCTAAGCTCGAGCGCTG	F45, F47
TLk-F	dmbS		CCATCTTGAATAACATGGG	-)
D2A-	pE-YA1-	rev	CGCCTCAGCAAAGGCATGATGCACATCCGT	F47
TLk-R	dmbS		CTCAGAGAGCCTCATAGCTC	
D2B-	pE-YA1-	fwd	GGTACCACGCGAGTCATGAGTGTCTCTGAG	F49
TLk-F	dmbS		ACTGACGTGCATCACGCCTT	
D2B-	pE-YAI-	rev	CGCTAGACTGTCTACCGCCGATGCGGCGGC	F45, F49
TLK-K	ambs	6 1		F70
TMS-F	PE-YAI-	twd	ACIGIACCGCCCCTCCAGCCCGTGGGCTTT	F50

	milS		TCCAGAGCGACAAACCT	
TMS-R	PE-YA1-	rev	CGCTAGACTGTCTACCGCCATGCGGCGGCC	F50
	milS		GCTTGCTCAGAAGTAACCG	
TDSLK	pE-YA-tenS	rev	GTTTGACTGACCTATGTTGTTCGCGATAGT	F53
1(3/4)-			AGCGCTCGAGCTTAG	
R				
TDSLK	pE-YA-tenS	fwd	GACGTCATGCGAGCCACGACACTCTCGGAG	F54
1(3/4)-			ACGGATGTGCATCATG	
F				
TenS(3/	PE-YA1-	fwd	ACTATCGCGAACAACATAG	F55
4)-F	milS			
TenS(3/	PE-YA1-	rev	CTCCGAGAGTGTCGT	F55
4)-R	milS			
LK2sub	pE-YA-tenS	fwd	CACAGCAACCGAGACGTCATGCGAGCCAC	F57
-F			GACACTCTCTGAGACGGATGTGC	
LK1sub	pE-YA-tenS	rev	GAGTGTCGTGGCTCGCATGACGTCTCGGTT	F58
- <i>R</i>			GCTGTGCACCTTGGTGTCGTCA	

11. Table S3. swaps boundaries in TenS.

Swaps region	start	stop	Amino acid number
<i>C</i> MeT-ΨKR	S1279	A1784	505
СМеТ	S1279	Q1670	391
1-CMeT	S1279	T1518	240
2-CMeT	D1519	Q1670	151
2A+2B1-CMeT	D1519	K1641	122
2A2+2B-CMeT	A1551	Q1670	119
2A2+2B1-CMeT	A1551	K1641	90
1A-CMeT	S1279	P1422	144
1B-CMeT	D1423	T1518	96
2A-CMeT	D1519	P1600	82
2B-CMeT	E1601	Q1670	69
1A1-CMeT	S1279	L1358	80
1A2-CMeT	F1359	P1422	64
1B1-CMeT	D1423	T1462	40
1B2-CMeT	E1463	T1518	56
2A1-CMeT	D1519	P1550	32
2A2-CMeT	A1551	P1600	50
2B1-CMeT	E1601	K1641	40
2B2-CMeT	A1642	Q1670	29
ΨKR	A1671	A1784	114
ЗА-ΨKR	A1671	L1727	57
ЗВ-ΨKR	I1728	A1784	57
KR	F2204	A2481	278
4-KR	F2204	A2342	139
5-KR	A2343	A2481	139
4A-KR	F2204	Q2273	70
4B-KR	T2274	A2342	69
5A-KR	A2343	E2411	69
5B-KR	T2412	A2481	70

Expt.		Similarity	
			/Identity (%)
1A1	tenS	SSLTGNINVYDAESGRALIQVEGFEVRAVGEPDASKDRLLFYETVWGRDISIMGLSDPIRDETSDAMVHNLSEAIERVSL	92/81
	dmbS	SSLTGDLNVYDTDTGIPLLQVEGFEVRAVGEPDASKDRLLFSETVWGRDISIMGLSDPIRNETTDAAVQSLAEAIERVSL	
1A2	tenS	FYVRQLMGELSTADRRQANWYHTRMLAAFDYHLAKVHEETHLHLRPEWLADDWAVIQTIDEAYP	92/77
	dmbS	FYVRQLMSELSTKDRREANWYHSRMLTAFEHHLARIHEDTHLHVRQEWLSDDWSVIQIIDEAYP	
1B1	tenS	DAVELQMLHAVGQNVADVIRGKKHLLEVLRVDNLLDRLYT	97/80
	dmbS	DTVELQMLHAIGQNMANVIRGEKHMLEVMRVNNLLDRLYT	
1B2	tenS	EDKGMHMANLFLANALEEITFKFPRCKILEIGAGTGATTWAALSAIGEAFDTYTYT	87/86
	dmbS	EDKGMQQGNHFLANALKEITFKFPRCKILEIGAGTGATTWAVLSAIDETFDTYTYT	
2A1	tenS	DLSVGFFENAVERFSAFRHRMVFRALDIEKDP	93/84
	dmbS	DLSVGFFETAVERFSAFRHKMIFKALDIEKSP	
2A2	tenS	ASQSFDLNSYDIIIATNVLHATRNLGVTLGNVRALLKPGGYLLLNEKTGP	96/90
	dmbS	AAQSFDLGSYDIIIATNVLHATRNLDITLGNVRSLLKPGGYLLLNEKTGP	
2B1	tenS	ESLRATFNFGGLEGWWLAEEKERQLSPLMSPDGWDAQLQK	100/93
	dmbS	ESLRATFNFGGLEGWWLAEEEERQLSPLLSPDGWDSQLQK	
2B2	tenS	ASFSGVDHIVHDVQEDQQDKQQNSMIMSQ	88/81
	dmbS	TQFSGVDHVVHDVQEEGKQQNSMIMSQ	
3A	tenS	AVDDTFYARLSPLSEMANLLPMNEPLLIIGGQTTATLKMIKEIQKLLPRQWRHKVRL	89/79
	dmbS	AVDDAFYARLSPLSEMASLLPTQEPLLLIGGQTNTTLRIIKEIQKQLPRKWRHKIRL	
3B	tenS	IASVDHVEAEGLPAHSDVICLQELDRGLFTTAMTSKCLDALKTLFINTRNLLWVTNA	92/82
	dmbS	IASVDQLEDEDLPAHSDVICVQELDRGLFTTAMTSKRLNALKSLFMNTKNLLWVTNA	
4A	tenS	FKSDRTYLMVGAAGGLGTSICRWMVRNGARHVVVTSRNPKADPEMLNEAERYGAAVQVVPMDACSKDSVQ	99/94
	dmbS	FKSDRTYLMVGAAGGLGTSLCRWMVRNGARHVVVTSRNPKADPEMLNEAERYGAIVRVVPMDACNKDSVQ	

12. Table S4. The % identity and similarity between the *tenS* and *dmbS* amino acid sequences for the 14 different regions.

4B	tenS	TVVDMIRATMPPIAGVCNAAMVLRDKLFLDMNVDHMKDVLGPKMQGTEHLDSIFAQEPLDFFVLLSSS	88/79
	dmbS	TVVDTIRATMPPIAGVCNAAMVLCDKLFLDMDVDQMNNTLGPKVDGTEYLDSIFAHEPLDFFILLGSA	
5A	tenS	AILNNTGQSNYHCANLYMDSLVTNRRSRGLAASIIHVGHVCDTGYVARLVDDTKVQMSLGTTRVMSVSE	88/77
	dmbS	AILNNMGQSNYHCANLYMDSLVKHRRSRGLAASIIHIGHVCDTGYVARMVDDNRIQSNIATMRAMRLSE	
5B	tenS	TDVHHAFAEAVRGGQPDSRSGSHNIIMGIEPPTKPLDLTKRKPVWISDPRLGPCLPFSTLENQMMASEQA	93/83
	dmbS	TDVHHAFAQAVRGGQLDSRSGSYNIIMGIEPPTKPLDLTRRQAVWLSDPRLGHMLPYSTLENQMIASGQA	
KR	tenS	FKSDRTYLMVGAAGGLGTSICRWMVRNGARHVVVTSRNPKADPEMLNEAERYGAAVQVVPMDACSKDSVQTVVDMIRATMPPIAGVCNAAM	84/71
		$\label{eq:vlrdklfldmnvdhmkdvlgpkmqgtehldsifaqepldffvllsssailnntgqsnyhcanlymdslvtnrrsrglaasiihvghvcdtg}$	
		${\tt YVARLVDDTKVQMSLGTTRVMSVSETDV} {\tt HAFAEAVRGGQPDSRSGSHNIIMGIEPPTKPLDLTKRKPVWISDPRLGPCLPFSTLENQMMA$	
		SEQA	
	milS	FQSDRTYLMVGAAGGVGTSLCRWMVRHGARHVIVTSRNPKGDPTMLSEAKQYGATVRVVSMDVCDRRSVEAVVGMIRATMPPIAGVCNAAM	
		VLCDKLFLDMDVDILNNTLGPKVDGTEILDSIFSEEALDFFILLGSTATIANNIGQSNYHCANLYMDSLVAQRRSRGLAASIIHIGYICDT	
		${\tt GYVARL} {\tt GDD} {\tt AKVHSNRDVMRATTLSETDV} {\tt HAFAEAVR} {\tt GSPGSPIGSYNIIM} {\tt GIDPPTKSLDSSRRKALWLSDPRL} {\tt GHMVPYSASAD} {\tt QAV}$	
		TSEQA	

13. Protein Modelling

Homolog modelling was done using the open free software SwissModel. In summary SwissModel uses four main steps, which are involved in building a homology model of a given protein structure: First the identification of structural template(s). Second the alignment of target sequence and template structure(s). Third building of the model and energy minimization and at least the assessment of the model's quality using QMEAN, a statistical potential of mean force. The proposed templates used for the-CMeT domain of TENS was CurJ (PDB: 5thz) and for the KR domain of TENS AmphB (PDB: 3mjv). This modelling resulted in a structure model of the *C*-MeT domain of Tenellin with a QMEAN value of -3.16. The KR domain of Tenellin had a QMEAN value of -2.82, which indicates that the quality of the generated structure model was good. For the generation of the chimeric mFAS/Tenellin structure, the single domains KR and *C*-MeT models were aligned with the mFAS structure. The alignment resulted in a RMDS value of KR (1.039) and *C*-MeT (2.71). Afterwards the coordinates of the PDB files of the KR and *C*-MeT domains were rewritten. The mFAS CMeT and KR domain were deleted and afterwards were this single structures in PyMOL (DeLano Scientific LLC, Version 1.8.2.0) were combined to give a new structure. Afterwards the chimeric mFAS/Tenellin structures were submitted for minimization in YASARA.

Figure 13.1: A, alignment of the Ψc -met domain of mFAS (green) with the generated C-Met domain of TENS based on the CurJ template (red); B, alignment of the KR domain of mFAS(green) with the generated KR domain of TENS based on the AmpB template (blue). Note the substrate-binding helix no present in mFAS.

Substrate Docking

The substrate mimics (S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) 3-oxobutanethioate **XX** and S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) 2-methyl-3-oxobutanethioate **ZZ** were docked into the active site of the homolog generated models of the CmeT and KR domain of Tenellin using Autodock Vina Vina (PyRx 0.8). The homolog models were generated with SwissModel. Docking results including lowest binding energy and mean binding energy were obtained from the docking log (dlg) file. Afterwards were the different docked poses submitted for the minimized in YASARA. Images of the best docked poses for each of the substrate mimics was captured with the PyMOL visualization software.

Substrate XX

OH

S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) 3oxobutanethioate

Substrate ZZ

S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) 2-methyl-3-oxobutanethioate

14. References

[1] F. H. Jin, J.-i. Maruyama, P. R. Juvvadi, M. Arioka, K. Kitamoto, *FEMS Microbiol. Lett.* **2004**, *239*, 79-85.