Molecular Basis of Methylation and Chain-Length Programming in a Fungal Iterative Highly Reducing Polyketide Synthase

Xiao-Long Yang, ${ }^{\text {ab } \ddagger}$ Steffen Friedrich, ${ }^{\text {ab }}$ Sen Yin, ${ }^{\text {ab }}$ Oliver Piech, ${ }^{\text {ab }}$ Katherine Williams, ${ }^{\text {abc }}$ Thomas J. Simpson ${ }^{\text {c }}$ and Russell J. Cox. ${ }^{\text {ab* }}$

Electronic Supplementary Information

Contents

1. Mapping peptide fragments onto FAS structure (Table S1) 3
2. Multiple alignment between TENS and FAS and position of peptides 4
3. LCMS chromatograms for experiments 2-32 13
4. LC-HRMS data for extract from Expt. 8 55
5. UV spectra of compounds 56
6. MS data for compounds 58
7. HR-MS data for compounds 1, 3, 6-13 60
8. NMR data for compound 13 73
9. Experimental Section 85
10. List of primers used in this study (Table S2) 96

11. The \% identity and similarity between the $t e n S$ and $d m b S$ swap regions (Table S4) 102
12. Protein Modelling 104
13. References 106
14. Mapping Swapped Fragments onto porcine mFAS structure (porcine mFAS numbering)

Fragment	Start	Stop	Size	Size	Size	Size
1A1	1042^{2}	1121	79	142	227	479
$1 \mathrm{~A} 2^{1}$	1122	1185	63	14		
1B1 ${ }^{1}$	1186^{3}	1216	30	85		
1B2	1217	1272	55	85		
2 A 1	1273	1303	30	78	140	
2 A 2	1304	1352	48	78		
2B1	1353	1393	40	62		
2B2	1394	1416	22			
3A	1417	1473	56	112	112	
3B	$1474{ }^{4}$	1530	56	112		
4A	1881	1953	73	143	281	281
4B	1953	2024	70			
5A	2024	2092	69	138		

Table S1. Protein positions used for swaps relative to the porcine mFAS structure. Same colour code was used as in Table 1 in main paper.

Notes

1. residues 1136-1215 (inc) are missing from the mFAS structure
2. 1042-1084 part of DH
3. 1085-1111 DH to CMeT linker
4. 1521-1530 ψ KR-ER linker
5. Multiple Alignment of $\boldsymbol{\beta}$-Processing Domains.

		951	1000
			DH DH
TENS	(951)	GHGGGSAAPFISDLPLYPWDHDEEYWRESRISRRHRTGKDESHE	HELLGRRT
DMBS	(946)	GHGG-SAAPFISDLPLYPWDHDEEYWRESRISRRYRTGKDESHE	HELLGRRT
mFAS pig mFAS rat	(830)	ISPH------------IKWDHSQAWDVPSAADFPSGSSCSSVAVYKFDVSISPH----------IKWDHSQTWDIPVAEDFPNGSSSSSATVYNIDAS	
	(830)		
		1001	1050
		DH ${ }^{\text {a }}$ (************	DH
TENS	(1001)	PDDNEREIRWRNLLKVSELPWTQGHRVLGEVLLPGAAYISMAIE	IEAGRRLA
DMBS	(995)	PDDNEREIRWRNLLKVSELPWTQGHRVLGEVLLPGAAYISMAIE	IEAGRRLA
mFAS pig mFAS rat	(868)	PESP---------------DHYLVDHCIDGRVLFPGTGYLWITWKTLARALSESS-------------DHYLVDHCIDGRVLFPGTGYLYLVWKTLARSL	
	(868)		
		1051	1100
		DH	DH
TENS	(1051)	LDQGREARLLEVSDVDILRPVVVADNKEGTETLFTVRLLDEYAS	ASTGKKSD
DMBS	(1045)	LDQGRQVCLLEVFDVDILRPVVVADNKEGTETLFTVRLLDEHTVSAKKLD	
mFAS pig mFAS rat	(904)		
	(904)		
		1101	1150
		DH	DH
TENS	(1101)	ELITASFSFYIYNSPASTSIVHTCEGRIAVQLGAKLGSEAGANSMPQLPH	
DMBS	(1095)	EIITASFSFYIHNSSASTSVVHTCEGRMAVHLGAKLGSGVGANSMPQLPQ	
mFAS pig	(931)	VSLEVRLLEASHAFEVSDSNGSLIASGKVYQWESPDPKLFDTRA	RAAVDPAD
mFAS rat	(931)	VPLEVRLLEASHAFEVSDS-GNLIVSGKVYQWEDPDSKLFDHPE	PEVPIPAE

		1151
		DH DH
TENS	(1151)	REPSISNLQQLDCEKLYSVFETIGLEYSGAFRRIVSSSRCLGHATATASW
DMBS	(1145)	RELSVSNLQPIDCEKLYSLFETIGLEYSGAFRAINSSSRRLGHATASASW
mFAS pig	(981)	STAEFRLSQdDVYKDLRLRGYDYGPFFQLVLESDLEGNR-----------
mFAS rat	(980)	SESVSRLTQGEVYKELRLRGYDYGPHFQGVYEATLEGEQ-----------
		1201
		DH DH
TENS	(1201)	PTTDLNDCYLIHPAILDVAFQTIFVARAHPDSGQLSSALLPSRIERVRVV
DMBS	(1195)	ASLDLNNCYLIHPAILDVAFQTMFVARAHPDSGQLNSALLPSRIERVRVI
mFAS pig	(1020)	
mFAS rat	(1019)	---
		1251
		DH * DH
		1 A 1
TENS	(1251)	PSLAMGSKLQNNENFNAAIDSWALNQTASSLTGNINVYDAESGRALIQVE
DMBS	(1245)	PSSAMESKLQSNENINAEIDSWVLNQTVSSLTGDLNVYDTDTGIPLLQVE
mFAS pig	(1020)	--GRLeWnDSWVSFLDAMLHMSILAPGQLGLYLPTRFTSIRIDPVT
mFAS rat	(1019)	--GKLLWKDNWVTEMDTMLQISILGFSKQSLQLPTRVTAIYIDPAT
		1301
		DH DHCmeT
		1A1 1A1
TENS	(1301)	GFEVRAVGEPDASKDRLLFYETVWGRDISIMGLSDPIRDETSDAMVHNLS
DMBS	(1295)	GFEVRAVGEPDASKDRLLFSETVWGRDISIMGLSDPIRNETTDAAVQSLA
MILS	(1341)	QSLA
CurJ	(64)	EELS
mFAS pig	(1064)	
mFAS rat	(1063)	HLQKVYMLEGDTQVADVTTSRCLGVTVSGGVYISRLQTTATSRRQQEQIV

		1851
		ER ER
TENS	(1850)	EDGADGSSQQVLWLHEPEAELLSNGTMMVPRVKARKSLNDTYLASTRAIS
DMBS	(1842)	GDGADGGSQQVLWSHEPEVDLLSSGTMMIPRVKLRKSLNDTYLASTRAIS
mFAS pig	(1584)	SPDSIPG
mFAS rat	(1578)	SPDAIPG
		1901
		R ER
TENS	(1900)	TTVDARCVSVQAVAGPAKMLLRPVEDFAGEHAISNQTSDSKVHIQVESTL
DMBS	(1892)	TTVDARCVPVQAVAGPAKIMLRPVEDIAVDHEISSQTSDPKVHIQVEVTL
mFAS pig	(1591)	KWLTRDCMLGMEFSGRDASGRRVMGMVPAEGLATSVLILQHATWEVPSTW
mFAS rat	(1585)	KWASRDCMLGMEFSGRDKCGRRVMGLVPAEGLATSVLLSPDFLWDVPSSW
		19512000
		ER ER
TENS	(1950)	HIPEALDGTCLYLVCGWTRTAET----SVPVIALSANNASMVAVESKAVA
DMBS	(1942)	HIPEALDGTCLYLVCGWTRPAEASDTSSVPVMALSTSNASIIAVEPKAVA
mFAS pig	(1641)	TLEEAASVPIVYTTAYYSLVVRGRMQ------------------PGESVL
mFAS rat	(1635)	TLEEAASVPVVYTTAYYSLVVRGRIQ------------------HGETVL
		20012050
		ER ER
TENS	(1996)	MIDEVDVKPETLLRVFQHMAMQALDSAVKRHGQGQSTALIYGADEELAKL
DMBS	(1992)	MIDEVDLKPEALLRVFQHMAMQAVDSAVRRHGQRQRTALIYGADEELAEL
mFAS pig	(1673)	IHSGSGGVGQAAIAIALSRGCRVFTTVGSAEKRAYLQARFPQLDETCFAN
mFAS rat	(1667)	IHSGSGGVGQAAISIALSLGCRVFTTVGSAEKRAYLQARFPQLDDTSFAN
		20512100
		LR
TENS	(2046)	TSERFAVRESKVYFASSRTFAPGDWLKVQPLLSKFALSQMIPADVEVFID
DMBS	(2042)	TSKRCAVRESKIYFASSHSAAPGDWLKVHRLSSKFAMSQMVPSGVQVFID
mFAS pig	(1723)	SRDTSFEQHVLRHTAGKGVDLVLNSLAEEKLQASVRCLAQHGRFLEIGKF
mFAS rat	(1717)	SRDTSFEQHVLLHTGGKGVDLVLNSLAEEKLQASVRCLAQHGRFLEIGKF

		2451
		KR KR
		5B 5B
TENS	(2442)	PPTKPLDLTKRKPVWISDPRLGPCLPFSTLENQMMASEQAAAASAVDSLA
DMBS	(2437)	PPTKPLDLTRRQAVWLSDPRLGHMLPYSTLENQMIASGQAAA-S-ADSLA
MILS	(2435)	PPTKSLDSSRRKALWLSDPRLGHMVPYSASADQAVTSEQA
AmphB	(478)	RPSALLSTVPEAVSALSDE-
mFAS pig mFAS rat	(2108)	SFVLAEKKAAAPRDGSSQK------
	(2102)	--------SFVLVEKKAVAHGDGEAQR------
		2501
		ACP ${ }^{\text {a }}$ (****
TENS	(2492)	QQVSEATTDEEAAVAALKGFATKLEGILLLPLGSIGEDSAGRPVTDLGID
DMBS	(2485)	QQVSEATTDEEATAAVLKGFATKLEGILLLPPGSIGEDSAGRPVTDLGID
mFAS pig mFAS rat	(2127)	DLVKAVAHILGIRDVASINPDSTLVDLGLD
	(2121)	-DLVKAVAHILGIRDLAGINLDSSLADLGLD
		2551
		******** ACP
TENS	(2542)	SLVAVEIRTWFLKQLRVDVPVMKILGGSTVGQLSALAAKLARQDAKKRAQ
DMBS	(2535)	SLVAVEIRTWFLKQLRVDVPVMKILGGSTVGQLSALAAKLARQDAKKQAQ
mFAS pig mFAS rat	(2157)	SLMGVEVRQILEREHDLVLSMREVRQLSLRKLQELSSKTSTDADPATPTS
	(2151)	SLMGVEVRQILEREHDLVLPIREVRQLTLRKLQEMSSKAGSDTELAAPK-

Identity within PKS-NRPS
 Identity within mFAS
 RED Identity between PKS-NRPS and mFAS
 C = Cofactor binding
 $\mathrm{S}=$ Substrate binding
 $B=$ Mutated Buried Residue

3. LCMS chromatograms

Expt 3. TenS ($\Delta d m b S-C M e T)$ with $\operatorname{Ten} \mathrm{C}$

Amplified HPLC profile of Expt 3.

Expt 4. TenS ($\Delta d m b S-1-C M e T)$ with $T e n C$

Amplified HPLC profile of Expt 4.

Expt 5. TenS ($\Delta d m b S-2-C M e T)$ with TenC

Expt 6. TenS ($\Delta d m b S-2 A+2 B 1-C M e T)$ with $T e n C$

Amplified HPLC profile of Expt 6.

Expt 7. TenS ($\Delta d m b S-2 A 2+2 B-C M e T)$ with $T e n C$

Amplified HPLC profile of Expt 7.

Expt 8. TenS (Δ dmbS-2A-CMeT) with TenC

Expansion of Expt 8.

Expt 9. TenS ($\Delta d m b S-2 A 2+2 B 1-C M e T)$ with TenC

Expt 10. TenS ($\Delta d m b S-2 B-C M e T)$ with TenC

Expt 11. TenS (Δ dmbS-2A1-CMeT) with TenC

Expt 12. TenS (Δ dmbS-2A2-CMeT) with TenC

Expt 13. TenS ($\Delta d m b S-2 B 1-C M e T)$ with TenC

Expt 14. TenS ($\Delta d m b S-2 B 2-C M e T)$ with $\operatorname{Ten} \mathrm{C}$

Expt 15. TenS (Δ dmbS- $\Psi K R$) with TenC

Expt 17. TenS ($\Delta d m b S-2-\Psi K R)$ with TenC

Expt 18. TenS ($\Delta d m b S-1 A-C M e T)$ with $T e n C$

Expt 19. TenS ($\Delta d m b S-1 B-C M e T)$ with $T e n C$

Expt 20. TenS (Δ dmbS-1A1-CMeT) with TenC

Expt 21. TenS (Δ dmbS-1A2-CMeT) with TenC

Expt 22. pTYGS-arg-Ten $\mathrm{C}+\operatorname{TenS}(\Delta d m b S-1 \mathrm{~B} 1-C M e T)$

Expt 23. pTYGS-arg-TenC+TenS (Δ dmbS-1B2-CMeT)

Expt 25. pTYGS-arg-TenC + TenS (Δ dmbS-3-KR)

Ampflified HPLC profile of Expt 25.

Expt 26. pTYGS-arg-TenC+TenS ($\Delta d m b S-4-K R$)

Expt 27. pTYGS-arg-TenC+TenS ($\Delta d m b S-3 A-K R$)

Ampflified HPLC profile of Expt 27.

Expt 28. pTYGS-arg-TenC + TenS (Δ dmbS-3B-KR)

Ampflified HPLC profile of Expt 28.

Expt 29. pTYGS-arg-TenC + TenS (Δ dmbS-4A-KR)

Expt 30. pTYGS-arg-TenC+TenS (Δ dmbS-4B-KR)

Ampflified HPLC profile of Expt 30.

Expt 31. pTYGS-arg-TenC + TenS (Δ milS-KR)

Ampflified HPLC profile of Expt 31.

Expt 32. pTYGS-arg-TenC+TenS (Δ milS-3/4-KR)

Ampflified HPLC profile of Expt 32.

-53-

Expt. 33. pTYGS-arg-TenC+TenS(Δ MilS Q2398-V2409)
11 TEST
SY $3038-1-4$
EIC 354 ES-

4. LC-HRMS data for extract from experiment 8.

Extracted ions ES+

Extracted ions ES-

5. UV spectra of compounds

3

6. MS data for compounds (ESI, negative ion mode)

7. HR-MS data for compounds $\mathbf{1 , 3 , 6} \mathbf{6 - 1 4}$.

HR-MS of 1

Elemental Composition Report

Single Mass Analysis

Tolerance $=10.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
323 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-50 $\quad \mathrm{H}: 0-70$
$\mathrm{N}: 0-4$
O: 0-20

1 uL injection Q-Tof Premier UPLC-MS
13-Nov-2014 10:49:05
FHSHMT-NO12 951 (9.724) AM (Cen,5, 90.00, Ar, 10000.0,556.28,0.70,LS 5); Cm (923:951)
1: TOF MS ES +

HR-MS of 3

Elemental Composition Report

Single Mass Analysis

Tolerance $=10.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
299 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-50 H: 0-70
$\mathrm{N}: ~ 0-4$
O:
$0-20$

1 uL injection Q-Tof Premier UPLC-MS
FHSHMT-NO12 744 (7.606) AM (Cen,5, 90.00, Ar, 10000.0,556.28,0.70,LS 5); Cm (742:748)

Minimum:		-1.5							
		$\begin{array}{llll}\text { Maximum: } & 10.0 & 10.0 & 50.0\end{array}$							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form			
342.1695	342.1705	-1.0	-2.9	9.5	27.0	C20	H24	N	04
	342.1665	3.0	8.8	5.5	66.7	C15	H24	N3	06
	342.1764	-6.9	-20.2	0.5	97.8	C13	H28	N	09
	342.1606	8.9	26.0	14.5	27.2	C22	H20	N3	0

HR-MS of 6

Elemental Composition Report

Single Mass Analysis

Tolerance $=10.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
318 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{lll}\text { C: 0-50 } & \mathrm{H}: 0-70 & \mathrm{~N}: 0-4\end{array}$

1 uL injection Q-Tof Premier UPLC-MS

HR-MS of 7

Elemental Composition Report

Single Mass Analysis

Tolerance $=10.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
323 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-50 H: 0-70
$\mathrm{N}: ~ 0-4$
O: 0-20

1 uL injection Q-Tof Premier UPLC-MS
FHSHMT-NO12 757 (7.743) AM (Cen,5, 50.00, Ar, 10000.0,556.28.0.70,LS 5); Cm (753:757)

13-Nov-2014 10:49:05 1: TOF MS ES + $3.57 \mathrm{e}+003$

Minimum:		-1.5							
		$\begin{array}{llll}\text { Maximum: } & 10.0 & 10.0 & 50.0\end{array}$							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form			
356.1855	356.1862	-0.7	-2.0	9.5	18.7	C21	H26	N	04
	356.1822	3.3	9.3	5.5	55.8	C16	H26	N3	06
	356.1921	-6.6	-18.5	0.5	86.8	C14	H30	N	09
	356.1763	9.2	25.8	14.5	23.6	C23	H22	N3	0

HR-MS of 8

Elemental Composition Report

Single Mass Analysis

Tolerance $=10.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
301 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-50 $\quad \mathrm{H}: 0-70 \quad \mathrm{~N}: 0-4 \quad \mathrm{O}: 0-20$
1 uL injection \quad Q-T of Premier UPLC-MS
13-Nov-2014 10:49:05 1: TOF MS ES + $2.92 \mathrm{e}+003$
FHSHMT-NO12 694 (7.098) AM (Cen,5, 90.00, Ar, 10000.0.556.28,0.70,LS 5); Cm (690:696)

HR-MS of 9

Elemental Composition Report

Single Mass Analysis

Tolerance $=10.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
318 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-50 H: 0-70
$\mathrm{N}: ~ 0-4$
O: 0-20

1 uL injection
Q-Tof Premier UPLC-MS
13-Nov-2014
10:49:05
FHSHMT-NO12 685 (7.007) AM (Cen,5, 90.00, Ar, 10000.0.556.28.0.70,LS 5); Cm (681:685)

HR-MS of 10

Elemental Composition Report

Single Mass Analysis

Tolerance $=10.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
257 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: } 0-50 & H: 0-70 & N: 0-4 & O\end{array}$
1 uL injection Q-Tof Premier UPLC-MS 13-Nov-2014
FHSHMT-NO12 648 (6.625) AM (Cen,5, 70.00, Ar, 10000.0.556.28,0.70,LS 5); Cm (643:650)

HR-MS of 11

Elemental Composition Report

Single Mass Analysis

Tolerance $=10.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
257 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-50 H: 0-70
$\mathrm{N}: ~ 0-4$
O: 0-20

1 uL injection Q-Tof Premier UPLC-MS
FHSHMT-NO12 596 (6.099) AM (Cen,5, 90.00, Ar, 10000.0.556.28,0.70,LS 5)

HR-MS of 12 (negative ion mode)

 mental Composition Report
single Mass Analysis

Tolerance $=10.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
1096 formula(e) evaluated with 10 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 0-50 & \mathrm{H}: ~ 0-100 & \mathrm{~N}: ~ 0-12 & \mathrm{O}: 0-10 & \mathrm{Na}: 0-1\end{array}$
Friedrich Q-Tof Premier UPLC-MS
SF 4-006-18-2, neg 973 (9.950) AM (Cen,4, 19.00, Ar,9500.0.554.26.0.70,LS 5)

HR-MS of 12 (positive ion mode)

smental Composition Report

Single Mass Analysis

Tolerance $=10.0$ PPM $/$ DBE: $\min =-1.5, \max =50.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
1103 formula(e) evaluated with 10 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 0-50 & \mathrm{H}: ~ 0-100 & \mathrm{~N}: 0-12 & 0 & 0-10 \\ \mathrm{Na}: ~ 0-1\end{array}$
Friedrich Q-Tof Premier UPLC-MS
SF 4-006-18-2 929 (9.507) AM (Cen,4, 35.00, Ar,9500.0.556.28.0.70,1S 5): Cm (929-968) 12-Jan-201712:04:35
SF 4-006-18-2 929 (9.507) AM (Cen,4, 35.00, Ar,9500.0.556.28.0.70, LS 5); Cm (929:968)

Minimum:				-1.5						
Maximum:		5.010 .0		50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	mula			
382.2019	382.2018	0.1	0.3	10.5	73.3	C23	H28	N	04	
	382.2026	-0.7	-1.8	-0.5	314.8	C10	H29	N7	07	Na
	382.2010	0.9	2.4	-1.5	386.7	C7	H28	N9	09	
	382.2008	1.1	2.9	12.5	96.5	C22	H25	N5	Na	
	382.2032	-1.3	-3.4	15.5	74.0	C24	H24	N5		
	382.2040	-2.1	-5.5	4.5	276.0	C11	H25	N11	03	Na
	382.1994	2.5	6.5	7.5	102.8	C21	H29	N	04	Na
	382.1991	2.8	7.3	11.5	119.0	C19	H24	N7	02	
	382.2050	-3.1	-8.1	2.5	248.3	C12	H28	N7	07	
	382.2053	-3.4	-8.9	-1.5	229.3	C14	H33	N	09	Na

HR-MS of 13 (negative ion mode)

remental Composition Report

Page 1
Single Mass Analysis
Tolerance $=20.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
736 formula(e) evaluated with 14 results within limits (up to 50 closest results for each mass)
Elements Used:

Minimum:
Maximum:

Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula			
396.1768	396.1771	-0.3	-0.8	7.5	14.4	C18	H26	N3	07
	396.1752	1.6	4.0	20.5	12.0	C30	H22	N	
	396.1784	-1.6	-4.0	12.5	13.6	C19	H22	N7	03
	396.1744	2.4	6.1	8.5	23.9	C14	H22	N9	05
	396.1803	-3.5	-8.8	-0.5	52.8	C7	H2 6	N9	010
	396.1731	3.7	9.3	3.5	28.1	C13	H26	N5	09
	396.1811	-4.3	-10.9	11.5	8.5	C23	H26	N	05
	396.1717	5.1	12.9	-1.5	34.5	C12	H30	N	013
	396.1824	-5.6	-14.1	16.5	10.6	C24	H22	N5	\bigcirc
	396.1712	5.6	14.1	16.5	9.8	C25	H22	N3	02
	396.1829	-6.1	-15.4	-1.5	37.7	C11	H30	N3	012
	396.1704	6.4	16.2	4.5	42.4	C9	H22	N11	07
	396.1843	-7.5	-18.9	3.5	31.7	C12	H26	N7	08
	396.1690	7.8	19.7	-0.5	50.4	C8	H26	N7	011

HR-MS of 13 (positive ion mode)

smental Composition Report

Single Mass Analysis

Tolerance $=20.0$ PPM $/$ DBE: $\min =-1.5, \max =50.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
740 formula(e) evaluated with 11 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-40
$\mathrm{H}: 0-100 \quad \mathrm{~N}: 0-11$
0: 0-16

HRMS of 14

Single Mass Analysis
Tolerance $=10.0 \mathrm{PPM} / \mathrm{DBE}: \min =-0.5, \max =60.0$
Selected filters: None
Monoisotopic Mass, Even Electron Ions
765 formula(e) evaluated with 8 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llllll}\text { C: } 0-75 & \mathrm{H}: 0-120 & \mathrm{~B}: 0-2 & \mathrm{~N}: 0-1 & \mathrm{O}: 0-15 & \mathrm{Na}: 0-1\end{array}$
new sample, Sen Yin, BEH Phenyl up to 100% ACN Q-Tof Premier UPLC-MS

8. NMR Characterisation

8.1 Compound 13

(DMSO-d ${ }_{6}, 600 \mathrm{MHz}$)					
position	$\delta_{\mathrm{H}} / \mathrm{ppm}$	Mult./J	$\delta_{\mathrm{C}} / \mathrm{ppm}$	COSY	HMBC (H to C)
2	-	-	163.6 (C)	-	-
3	-	-	100.4 (C)	-	-
4	-	-	194.9 (C)	-	-
5	4.06 (1H)	m	62.4 (CH)	18	4
6	-	-	172.4 (C)	-	-
7	7.04 (1H)	d (15.1 Hz)	119.6 (CH)	8	6,9
8	7.46 (1H)	dd (15.0, 11.4 Hz)	144.9 (CH)	7,9	6,10
9	6.53 (1H)	m	125.7 (CH)	8,10	7
10	$6.88(1 \mathrm{H})$	m	149.0 (CH)	9	8,12
11	-	-	137.1 (C)	-	-
12	1.59 (3H)	s	12.9 (CH3)	13	13,10
13	5.18 (1H)	m	135.1 (CH)	12	12,15
14	2.35 (1H)	m	42.5 (CH)	13, 15, 16	
15	3.29 (2H)	m	64.3 (CH2)	14	13,16
16	1.15 (2H)	m	24.3 (CH2)	14, 17	15,17
17	0.78 (3H)	m	11.6 (CH3)	16	14,16
18	2.83 (2H)	broad s	35.8 (CH2)	5	
19	-	-	126.0 (C)	-	-
20	6.92 (2H)	m	130.7 (CH)	21	
21	6.61 (2H)	m	114.9 (CH)	20	
22	-	-	155.9 (C)	-	-

${ }^{\mathbf{1}} \mathbf{H}$-NMR spectrum of $\mathbf{1 3}$

${ }^{1} \mathbf{H}-{ }^{1} \mathbf{H}-\mathrm{COSY}$ spectrum of $\mathbf{1 3}$

HSQC spectrum of 13

HMBC spectrum of 13

8.2 NMR Characterisation of 14

$\mathbf{5 0 0} / \mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{d m s o}-\mathbf{d}_{\mathbf{6}}$					
$\mathbf{P o s}$	$\delta_{\mathbf{H}} / \mathbf{p p m}$	$\mathbf{m u l t} / \mathbf{H z}$	$\boldsymbol{\delta}_{\mathbf{c}} / \mathbf{p p m}$	COSY	HMBC (H to C)
$\mathbf{2}$	-	-	175.1	-	-
$\mathbf{3}$	-	-	102.5	-	-
$\mathbf{4}$	-	-	191.2	-	-
$\mathbf{5}$	3.68	m	69.9		
$\mathbf{6}$	-	-	174.1	-	-
$\mathbf{7}$	7.55	$\mathrm{~d}, J=15.8$	129.1	8	6
$\mathbf{8}$	7.18	m	139.5	7,9	
$\mathbf{9}$	6.47	m	131.3	8,10	
$\mathbf{1 0}$	6.63	m	140.2	9,11	
$\mathbf{1 1}$	6.34	m	127.0	10,12	13
$\mathbf{1 2}$	6.42	m	141.3	11	
$\mathbf{1 3}$	-	-	133.1	-	-
$\mathbf{1 4}$	5.41	$\mathrm{~d}, J=9.6$	142.2	15,19	12,19
$\mathbf{1 5}$	2.42	m	34.5	14,18	13,16
$\mathbf{1 6}$	$1.28,1.36$	m	29.8	15,17	$14,15,17,18$
$\mathbf{1 7}$	0.81	$\mathrm{t}, J=6.9$	12.3	16	15,16
$\mathbf{1 8}$	0.95	$\mathrm{~d}, J=6.6$	21.1	15	$14,15,16$
$\mathbf{1 9}$	1.74	s	12.9	14	$12,13,14$
$\mathbf{2 0}$	2.62,	m	37.5	5	22
$\mathbf{2 1}$	2.84	-	$\mathrm{dd}, J=13.9,3.9$		
$\mathbf{2 2}$	6.96	$\mathrm{~d}, J=8.2$	128.5	-	
$\mathbf{2 3}$	6.60	$\mathrm{~d}, J=8.2$	130.8	23	$21,23,24$
$\mathbf{2 4}$	-	-	156.2	22	$21,22,24$
$\mathbf{2 4 - 0 H}$	9.11		brs	-	-
				-	

1H spectrum of 14

f 1 (ppm)

9. Experimental Section

9.1 General

LC-MS data were obtained using a Waters LCMS system comprising of a Waters 2767 autosampler, Waters 2545 pump system, a Phenomenex Kinetex column (2.6 $\mu, \mathrm{C}_{18}, 100 \AA, 4.6 \times 100 \mathrm{~mm}$) equipped with a Phenomenex Security Guard precolumn (Luna C $\mathrm{C}_{5} 300 \AA$) eluted at $1 \mathrm{~mL} / \mathrm{min}$. Detection was by Waters 2998 Diode Array detector between 200 and 400 nm ; Waters 2424 ELSD and Waters SQD-2 mass detector operating simultaneously in ES+ and ES- modes between $100 \mathrm{~m} / z$ and $650 \mathrm{~m} / \mathrm{z}$. Solvents were: A, HPLC grade $\mathrm{H}_{2} \mathrm{O}$ containing 0.05% formic acid; B, HPLC grade MeOH containing 0.045% formic acid; and $\mathbf{C}, \mathrm{HPLC}$ grade $\mathrm{CH} \mathrm{H}_{3} \mathrm{CN}$ containing 0.045% formic acid). Gradients were as follows.

Method 1. Kinetex $/ \mathrm{CH}_{3} \mathrm{CN}$: $0 \mathrm{~min}, 10 \% \mathbf{C} ; 10 \mathrm{~min}, 90 \% \mathbf{C} ; 12 \mathrm{~min}, 90 \% \mathbf{C} ; 13 \mathrm{~min}, 10 \% \mathbf{C} ; 15 \mathrm{~min}, 10 \% \mathbf{C}$.

Semi-Preparative LCMS and compound purification.

Purification of compounds was generally achieved using a Waters mass-directed autopurification system comprising of a Waters 2767 autosampler, Waters 2545 pump system, a Phenomenex Kinetex Axia column ($5 \mu, \mathrm{C}_{18}, 100 \AA, 21.2 \times 250 \mathrm{~mm}$) equipped with a Phenomenex Security Guard precolumn (Luna $\mathrm{C}_{5} 300 \AA$) eluted at $20 \mathrm{~mL} / \mathrm{min}$ at ambient temperature. Solvent A, HPLC grade $\mathrm{H}_{2} \mathrm{O}+0.05 \%$ formic acid; Solvent B, HPLC grade $\mathrm{CH}_{3} \mathrm{CN}+0.045 \%$ formic acid. The postcolumn flow was split (100:1) and the minority flow was made up with HPLC grade $\mathrm{MeOH}+0.045 \%$ formic acid to $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$ for simultaneous analysis by diode array (Waters 2998), evaporative light scattering (Waters 2424) and ESI mass spectrometry in positive and negative modes (Waters SQD-2). Detected peaks were collected into glass test tubes. Combined tubes were evaporated under a flow of dry N_{2} gas, weighed, and residues dissolved directly in NMR solvent for NMR analysis.

9.2 Strains and culturing

Escherichia coli TOP10 (Invitrogen) was used as the host for plasmids that did not contain a Gateway destination cassette. Gateway destination vectors were propagated in $c c d B$ survival cells (Invitrogen). Saccharomyces cerevisiae strain YPH499 (Stratagene) was used as the host for plasmid assembly by homologous recombination. Aspergillus oryzae strain M-2-3, an arginine auxotroph, was obtained from Professor Teruo Fujii, the University of Tokyo and mycelium was routinely maintained at $28^{\circ} \mathrm{C}$ on MEA (3.36% malt extract agar). Aspergillus oryzae strain NSAR1 was obtained as a gift from the Kitamoto group. ${ }^{[1]}$

9.3 General techniques for DNA manipulation

Polymerase chain reactions were performed with PrimeSTAR ${ }^{\circledR}$ HS DNA Polymerase (TaKaRa Bio Inc.). PCR products were cloned into the pENTRY-YA vector (Invitrogen) through yeast homologous recombination and confirmed by DNA sequencing, and then transferred to the expression vector pTYGS-arg using Gateway LR in vitro recombination (Invitrogen) leading to constructs. Restriction digests were carried out according to the manufacturer's protocols (NEB, Fermentas, Promega). The primers used to amplify each fragment were synthesized by Sigma, and are listed in Table S1.

9.4 Rebuilding tenS with tenC expression system

The pTYGS-arg vector was digested with AscI to produce the vector fragment. PCR fragment tenC was amplified using primers XL1 and XL2 using Beauveria bassiana genomic DNA as the template. Yeast recombination was used to reassemble the vector fragment with tenC, and the resulting plasmid pTYGS-arg-tenC was sequenced. Then, the previously constructed plasmid YA-tenS was transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to ten S with ten C.

9.5 Construction of hybrid plasmids

$T e n S(\Delta d m b S-C M e T)$

The plasmid YA-ten S was digested with $X b a \mathrm{I}$ to excise the DNA sequences of the partial AT, DH, CMeT and partial $\Psi \mathrm{KR}$ domains of ten S to produce the vector fragment VF1. Fragments F2 and F3 were amplified by PCR using XL3 and XL4, XL5 and XL6 respectively as primer and YA-tenS as the template. Fragment F4 harbouring the swap sequence was amplified by PCR using primers $X L 7$ and $X L 8$ and the synthetic $d m b S-C M e T$ as template. Yeast recombination was used to assemble the vector fragment VF1 with F2, F3 and F4. The resulting plasmid YA-tenS ($\Delta d m b S-C M e T$) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to $T e n S(\Delta d m b S-C M e T)$.

$T e n S$ (\triangle dmbS-1-CMeT)

Fragment F5 harbouring swap sequence was amplified using primers $X L 7$ and $X L 9$ and the synthetic $d m b S-C M e T$ as template. Fragment F6 was amplified by PCR using XL10 and XL11 as primers and YA-tenS as the template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F5 and F6. The resulting plasmid YA-ten $S(\Delta d m b S-1-C M e T)$ harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-tenC using

Gateway LR in vitro recombination (Invitrogen) leading to $\operatorname{Ten} S(\Delta d m b S-1-C \mathrm{MeT})$.

TenS (Δ dmbS-2-CMeT)

Fragment F7 was amplified by PCR using XL12 and XL13 as primers and YA-tenS as the template. Fragment F8 harbouring swap sequence was amplified by PCR using primers $X L 8$ and $X L 14$ and the synthetic $d m b S-C M e T$ as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7 and F8. The resulting plasmid YA-tenS ($\Delta d m b S-2-C M e T$) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta \mathrm{dmbS}-2-\mathrm{CMeT}$).

$T e n S(\Delta d m b S-1 A-C M e T)$

Fragment F9 harbouring swap sequence was amplified by PCR using primers XL15 and XL16 and the synthetic dmbS-CMeT as template. Fragment F10 was amplified by PCR using XL17 and XL18 as primers and YA-tenS as the template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F6, F9 and F10. The resulting plasmid YA-tenS ($\Delta d m b S-1 \mathrm{~A}-C \mathrm{MeT}$) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S-1 \mathrm{~A}-C \mathrm{MeT}$).

$T e n S$ ($\Delta d m b S-1 \mathrm{~B}-C M e T)$

Fragment F11 was amplified by PCR using XL12 and XL19 as primers and YA-tenS as the template. Fragment F12 harbouring swap sequence was amplified by PCR using primers $X L 20$ and $X L 21$ and the synthetic $d m b S-C M e T$ as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F6, F11 and F12. The resulting plasmid YA-tenS ($\triangle d m b S-1 \mathrm{~B}-\mathrm{CMeT}$) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S-1 \mathrm{~B}-C \mathrm{MeT}$).

TenS (Δ dmbS-2A-CMeT)

Fragment F13 harbouring swap sequence was amplified by PCR using primers XL14 and XL22 and the synthetic dmbS-CMeT as template. Fragment F14 was amplified by PCR using XL11 and XL23 as primers and YA-tenS as the template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7, F13 and F14. The resulting plasmid YA-tenS ($\Delta d m b S-2 \mathrm{~A}-C \mathrm{MeT}$) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S-2 \mathrm{~A}-\mathrm{CMeT}$).

TenS (Δ dmbS-2B-CMeT)

Fragment F15 was amplified by PCR using XL24 and XL25 as primers and YA-tenS as the template. Fragment F16 harbouring swap sequence was amplified by PCR using primers $X L 8$ and $X L 26$ and the synthetic $d m b S-C M e T$ as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7, F15 and F16. The resulting plasmid YA-tenS ($\Delta d m b S-2 \mathrm{~B}-\mathrm{CMeT}$) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta \mathrm{dmbS}-2 \mathrm{~B}-\mathrm{CMeT}$).

TenS (Δ dmbS-1A1-CMeT)

Fragment F26 harbouring swap sequence was amplified by PCR using primers $X L 38$ and $X L 39$ and the synthetic $d m b S-1 \mathrm{~A} 1-C$ MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F6, F10 and F26. The resulting plasmid YA-tenS ($\Delta d m b S$-1A1-CMeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS (Δ dmbS-1 A1CMeT).

TenS (Δ dmbs-1A2-CMeT)

Fragment F27 harbouring swap sequence was amplified by PCR using primers $X L 38$ and $X L 40$ and the synthetic $d m b S-1 \mathrm{~A} 2-C$ MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F6, F10 and F27. The resulting plasmid YA-tenS ($\Delta d m b S$-1A2-CMeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S$-1A2CMeT).

TenS (Δ dmbS-1B1-CMeT)

Fragment F31 harbouring swap sequence was amplified by PCR using primers $X L 47$ and $X L 48$ and the synthetic $d m b S-1 \mathrm{~B} 1-C$ MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F6, F11 and F31. The resulting plasmid YA-tenS ($\Delta d m b S$-1B1-CMeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS (Δ dmbS-1B1CMeT).

TenS (Δ dmbs-1B2-CMeT)

Fragment F32 harbouring swap sequence was amplified by PCR using primers $X L 47$ and $X L 48$ and the synthetic $d m b S-1 \mathrm{~B} 2-C$ MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F6, F11 and F32. The resulting plasmid YA-tenS ($\Delta d m b S$-1B2-CMeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S$-1B2CMeT).

TenS (Δ dmbS-2A1-CMeT)

Fragment F24 harbouring swap sequence was amplified by PCR using primers $X L 34$ and $X L 35$ and the synthetic $d m b S$-2A1-CMeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7, F14 and F24. The resulting plasmid YA-tenS ($\Delta d m b S$-2A1-CMeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS (Δ dmbS-2A1CMeT).

TenS (Δ dmbS-2A2-CMeT)

Fragment F25 harbouring swap sequence was amplified by PCR using primers $X L 36$ and $X L 37$ and the synthetic $d m b S$-2A2-CMeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7, F14 and F25. The resulting plasmid YA-tenS ($\Delta d m b S$-2A2-CMeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS (Δ dmbS-2A2CMeT).

TenS (Δ dmbS-2B1-CMeT)

Fragment F17 harbouring swap sequence was amplified by PCR using primers $X L 27$ and $X L 28$ and the synthetic $d m b S-2 \mathrm{~B} 1-C$ MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7, F15 and F17. The resulting plasmid YA-tenS ($\Delta d m b S-2 \mathrm{~B} 1-C \mathrm{MeT}$) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS (Δ dmbS-2B1CMeT).

$T e n S(\Delta d m b S-2 B 2-C M e T) ~$

Fragment F18 harbouring swap sequence was amplified by PCR using primers $X L 27$ and $X L 28$ and the synthetic $d m b S-2 \mathrm{~B} 2-C$ MeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F7, F15 and F18. The resulting plasmid YA-tenS ($\Delta d m b S$-2B2-CMeT) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to TenS (Δ dmbS-2B2CMeT).

TenS (Δ dmbS-2A+2B1-CMeT)

Fragment F19 harbouring swap sequence was amplified by PCR using primers $X L 14$ and $X L 29$ and the synthetic $d m b S$ - CMeT as template. Fragment F20 was amplified by PCR using XL6 and XL30 as primers and YA-tenS as the template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F7, F19 and F20. The resulting plasmid YA-tenS ($\Delta d m b S-2 \mathrm{~A}+2 \mathrm{~B} 1-C M e T)$ harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to $T e n S$ ($\Delta d m b S-2 \mathrm{~A}+2 \mathrm{~B} 1-C \mathrm{MeT}$).

TenS (Δ dmbS-2A2+2B1-CMeT)

Fragment F21 was amplified by PCR using XL12 and XL31 as primers and YA-tenS as the template. Fragment F22 harbouring swap sequence was amplified by PCR using primers $X L 32$ and $X L 33$ and the synthetic $d m b S-C \mathrm{MeT}$ as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F20, F21 and F22. The resulting plasmid YA-tenS ($\Delta d m b S-2 \mathrm{~A} 2+2 \mathrm{~B} 1-C M e T)$ harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S-2 \mathrm{~A} 2+2 \mathrm{~B} 1-\mathrm{CMeT}$).

$T e n S(\Delta$ dmbS-2A2+2B-CMeT)

Fragment F23 harbouring swap sequence was amplified by PCR using primers $X L 8$ and $X L 32$ and the synthetic $d m b S$-CMeT as template. Yeast recombination was used to reassemble the vector fragment VF1 with F2, F3, F21 and F23. The resulting plasmid YA-tenS ($\Delta d m b S-2 \mathrm{~A} 2+2 \mathrm{~B}-\mathrm{CMeT}$) harbouring the domain swap was sequenced and then transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S-2 A 2+2 B-$ CMeT).

$T e n S(\Delta d m b S-3-\Psi K R)$

The plasmid YA-tenS was digested with $K p n \mathrm{I}$ to excise the DNA sequences of the partial DH, $C \mathrm{MeT}, \Psi \mathrm{KR}, \mathrm{ER}$ and partial KR domains of ten S to produce the vector fragment VF2. Fragment F28 harbouring the swap sequence was amplified by PCR using primers $X L 41$ and $X L 42$ and the synthetic $d m b S-\Psi K R-C M e T$ as template. Fragments F29 and F30 were amplified by PCR using XL43 and XL44, XL45 and XL46 respectively as primer and YA-tenS as the template. Yeast recombination was used to assemble the vector fragment VF2 with F28, F29 and F30. The resulting plasmid YA-tenS ($\Delta d m b S-3-\Psi K R$) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S-3-\Psi K R$).

TenS (\triangle dmbS-3a-世KR)

Fragment F33 harbouring the swap sequence was amplified by PCR using primers $X L 41$ and $X L 42$ and the synthetic $d m b S-1-\Psi K R-C M e T$ as template. Yeast recombination was used to assemble the vector fragment VF2 with F29, F30 and F33. The resulting plasmid YA-tenS ($\Delta d m b S-3 \mathrm{a}-\Psi \mathrm{KR}$) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S$ - 3 a $\Psi K R)$.

$T e n S(\Delta d m b S-3 \mathrm{~b}-\Psi \mathrm{KR})$

Fragment F34 harbouring the swap sequence was amplified by PCR using primers $X L 41$ and $X L 42$ and the synthetic $d m b S-2-\Psi K R-C M e T$ as template. Yeast recombination was used to assemble the vector fragment VF2 with F29, F30 and F34. The resulting plasmid YA-tenS ($\Delta d m b S-3 \mathrm{~b}-\Psi \mathrm{KR}$) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S$ - 3 b $\Psi K R)$.

TenS (Δ dmbS-4-KR)

The plasmid pE-YA-tenS was digested with XbaI and AgeI to produce the vector fragment VF3. Fragment F35 was amplified by PCR (Q5) using tenSF1 and tenSR1 as primers and pE-YA-tenS as the template to create a patch for VF3. Fragments F36 and F37 were amplified by PCR (Q5) using TDSLk1-F and TDSLk1-R, T2A-F and TDSLk2-R respectively as primers and pE-YA-tenS as the template. Fragment F38 harbouring the swap sequence was amplified by PCR using D1A-

TLk-F and D1B-TLk-R as primers with pE-YA1-dmbS as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F36, F37 and F38. The resulting plasmid pE-YA-tenS $(\Delta d m b S-4-K R)$ harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S-4-\mathrm{KR}$).

$T e n S(\Delta d m b S-4 A-K R)$

Fragment F39 was amplified by PCR using T1B-F and TDSLk2-R as primers and pE-YA-tenS as the template. Fragment F40 harbouring the swap sequence was amplified by PCR using D1A-TLk-F and D1A-TLk-R as primers with pE-YA1-dmbS as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F36, F39 and F40. The resulting plasmid pE-YA-tenS ($\Delta d m b S-4 \mathrm{~A}-\mathrm{KR}$) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S-4 \mathrm{~A}-\mathrm{KR}$).

TenS (Δ dmbS-4B-KR)

Fragment F41 was amplified by PCR (Q5) using TDSLk1-F and T1A-R as primers and pE-YA-tenS as the template. Fragment F42 harbouring the swap sequence was amplified by PCR using D1B-TLk-F and D1B-TLk-R as primers with pE-YA1-dmbS as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F37, F41 and F42. The resulting plasmid pE-YA-tenS ($\Delta d m b S-4 \mathrm{~B}-\mathrm{KR}$) harbouring the domain swap was sequenced and transferred to the expression vector p TYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S-4 \mathrm{~B}-\mathrm{KR}$).

TenS (Δ dmbs-5-KR)

Fragment F43 and F44 were amplified by PCR (Q5) using TDSLk1-F and T1B-R, TDSLk2-F and TDSLk2-R respectively as primers and pE-YA-tenS as the template. Fragment F45 harbouring the swap sequence was amplified by PCR using D2A-TLk-F and D2B-TLk-R as primers with pE-YA1-dmbS as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F43, F44 and F45. The resulting plasmid pE-YA-tenS($\Delta d m b S-5-\mathrm{KR}$) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S-5-\mathrm{KR}$).

$T e n S(\Delta d m b S-5 A-K R)$

Fragment F46 was amplified by PCR (Q5) using T2B-F and TDSLk2-R as primers and pE-YA-tenS as the template. Fragment F47 harbouring the swap sequence was amplified by PCR using D2A-TLk-F and D2A-TLk-R as primers with pE-YA1-dmbS as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F43, F46 and F47. The resulting plasmid pE-YA-tenS ($\Delta d m b S-5 \mathrm{~A}-\mathrm{KR}$) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S-5 \mathrm{~A}-\mathrm{KR}$).

TenS (Δ dmbS-5B-KR)

Fragment F48 was amplified by PCR (Q5) using TDSLk1-F and T2A-R as primers and pE-YA-tenS as the template. Fragment F49 harbouring the swap sequence was amplified by PCR using D2B-TLk-F and D2B-TLk-R as primers with pE-YA1-dmbS as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F44, F48 and F49. The resulting plasmid pE-YA-tenS ($\Delta d m b S$ - $5 \mathrm{~B}-\mathrm{KR}$) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta d m b S-5 \mathrm{~B}-\mathrm{KR}$).

TenS (Δ milS-KR)

The plasmid pE-YA-tenS was digested with $X b a I$ and AgeI to produce the vector fragment VF3. Fragment F35 was amplified by PCR (Q5) using tenSF1 and tenSR1 as primers and pE-YA-tenS as the template to create a patch for VF3. Fragments F51 and F52 were amplified by PCR (Q5) using TDSLk1-F and TDSLk1-R, T2A-F and TDSLk2-R respectively as primers and pE-YA-tenS as the template. Fragment F50 harbouring the swap sequence was amplified by PCR using TMS-F and TMS-R as primers with pE-YA1-milS as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F50, F51 and F52. The resulting plasmid pE-YA-tenS($\Delta m i l S$-KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta m i l S$-KR).

TenS (Δ milS-3/4-KR)

The plasmid pE-YA-tenS was digested with XbaI and AgeI to produce the vector fragment VF3. Fragment F35 was amplified by PCR (Q5) using tenSF1 and tenSR1 as primers and pE-YA-tenS as the template to create a patch for VF3. Fragments F53 and F54 were amplified by PCR (Q5) using TDSLk1-F and TDSLK1(3/4)-R, TDSLK1(3/4)-F and TDSLk2-R respectively as primers and pE-YA-tenS as the template. Fragment F55 harbouring
the swap sequence was amplified by PCR using TenS(3/4)-F and TenS(3/4)-R as primers with pE-YA1-milS as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F53, F54 and F55. The resulting plasmid pE-YA-tenS($\Delta m i l S$-KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-tenC using Gateway LR in vitro recombination (Invitrogen) leading to TenS ($\Delta m i l S-3 / 4-K R$).

TenS (Δ milS-12m-KR)

The plasmid pE-YA-tenS was digested with XbaI and AgeI to produce the vector fragment VF3. Fragment F35 was amplified by PCR (Q5) using tenSF1 and tenSR1 as primers and pE-YA-tenS as the template to create a patch for VF3. Fragments F57 and F58 were amplified by PCR (Q5) using TDSLk1-F and LK1sub-R, LK2sub-F and TDSLk2-R respectively as primers and pE-YA-tenS as the template. Yeast recombination was used to assemble the vector fragment VF3 with F35, F57 and F58. The resulting plasmid pE-YA-tenS(Δ milS-12m-KR) harbouring the domain swap was sequenced and transferred to the expression vector pTYGS-arg-ten C using Gateway LR in vitro recombination (Invitrogen) leading to TenS (Δ milS$12 m-\mathrm{KR}$).

9.6 Transformation of Aspergillus oryzae M-2-3

Plasmid DNA for fungal transformation was prepared using Fermentas Miniprep kits. A. oryzae M-2-3 was grown on MEA plate for 10 days. Spores washed by 4 mL sterile water were inoculated into 100 mL GNB liquid medium (2% glucose, 1% nutrient broth number 2 (from Thermo Scientific)) and cultivated for 1 day at 30 ${ }^{\circ} \mathrm{C}$, 250 rpm . Collect the mycelia on a sterile filter paper (autoclaved with a filter funnel) under vacuum and wash with sterile water, then 0.8 M NaCl . Put the mycelia in a sterile falcon centrifuge tube. Add 10 ml of filter-sterilized protoplasting solution ($20 \mathrm{mg} / \mathrm{ml}$ lysing enzyme, Sigma L-1412, $10 \mathrm{ml} / \mathrm{ml}$ amount of driselase, $0.8 \mathrm{M} \mathrm{NaCl}, 10 \mathrm{mM}$ Na phosphate buffer pH 6) and incubate at $30^{\circ} \mathrm{C}, 100 \mathrm{rpm}$ for no longer than 3 hours. Filter the protoplasting solution through a syringe with glasswool inside. Centrifuge the filtrate at 3000 rpm for 10 min . Wash the pelleted protoplasts once with 0.8 M NaCl (ca. 15 ml) and then once with Solution $1\left(0.8 \mathrm{M} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{CaCl}_{2}, 50 \mathrm{mM}\right.$ Tris HCl pH 7.5$)$. Resuspend the protoplasts in Solution 1 to final concentration of $2.5 \times 10^{8} / \mathrm{ml}$ and add $1 / 5$ volume of Solution 2 (PEG $4000(60 \% \mathrm{w} / \mathrm{v})$ in solution 1 but $50 \mathrm{mM} \mathrm{CaCl}_{2}$). Put 0.2 ml portions into Falcon tubes. Add plasmid DNA ($<20 \mu \mathrm{l}$) and place on ice for 30 min . Add 1 ml of Sol 2, mix well gently and place at room temperature for 20 min . 10 ml soft agar $(0.8 \%$ agar containing $5 \% \mathrm{NaCl})$ was added to the transformation mixtures, and then poured onto two Czapek-Dox plates supplemented with sorbitol $(1 \mathrm{M})$ and incubated at $28^{\circ} \mathrm{C}$ for $5-10$ days.

9.7 Transformation of Aspergillus oryzae NSAR1

A. oryzae was grown for 4 days on MEA solid medium at $30^{\circ} \mathrm{C}$ until sporulation occurred. Conidia harvested from a single plate were used to inoculate 50 ml of GNB liquid medium ($1 \%\left(\mathrm{w} / \mathrm{v}\right.$) glucose, $2 \%(\mathrm{w} / \mathrm{v})$ nutrient broth no. 2 (Thermo Fisher) and incubated at $28^{\circ} \mathrm{C}$ with shaking at 200 rpm overnight. The germinated A. oryzae conidia were centrifuged at 8000 rpm for 10 min and the supernatant discarded. The pellet was washed once with $\mathrm{H}_{2} \mathrm{O}$ and once with 0.8 M NaCl . The pellet was then resuspended in 10 ml of filter sterilised protoplasting solution ($20 \mathrm{mg} / \mathrm{ml}$ Trichoderma lysing enzyme and $5 \mathrm{mg} / \mathrm{ml}$ Driselase in 0.8 M NaCl), and incubated at room temperature with gentle shaking for $1-1.5$ hours. Protoplasts were released from hyphae by pipetting with a wide-bore 5 ml pipette, and then filtered through sterile miracloth. The protoplasts were then centrifuged at 1000 xg for 5 min and the supernatant discarded. The pellet was then washed with solution 1 (0.8 M NaCl , $10 \mathrm{mM} \mathrm{CaCl}_{2}, 50 \mathrm{mM}$ Tris- HCl pH 7.5). The pellet was resuspended in 200-500 $\mu \mathrm{l}$ of solution 1 , and, for each transformation, $100 \mu \mathrm{l}$ transferred to a 50 ml centrifuge tube on ice. 5-10 $\mu \mathrm{g}(10 \mu \mathrm{max})$ of plasmid DNA was added to the protoplasts and gently mixed. The tube was incubated on ice for 2 min, after which 1 ml of solution $2\left(60 \%(\mathrm{w} / \mathrm{v})\right.$ PEG $3350,0.8 \mathrm{M} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{CaCl}_{2}, 50 \mathrm{mM}$ Tris- HCl pH 7.5$)$ was added and the tube was incubated at room temperature for 20 min. 40 ml of molten (approx. $50^{\circ} \mathrm{C}$) CZD/S top medium with appropriate supplements ($3.5 \%(\mathrm{w} / \mathrm{v}$) Czapek Dox broth, 1 M sorbitol, 0.8% (w/v) agar) was added and gently mixed. 10 ml each of the mix was overlaid onto four plates prepared with appropriate supplements (15 ml of 3.5% (w/v) Czapek Dox broth, 1 M sorbitol, $1.5 \%(\mathrm{w} / \mathrm{v})$ agar). The plates were then incubated at $28^{\circ} \mathrm{C}$ for 3-5 days until colonies appeared.
10. Table S2. List of primers used in this study (Blue, tenS sequence; Red, $d m b S$ sequence; Green, vector sequence; Black, $t e n C$ sequence).

Primer	template	direction	sequence 5'-3'	amplification
XL1	B. bassiana gDNA	fwd	TCAACACAAGATCCCAAAGTCAAAGGCGCGATGGCAGCCATCTCTTCCC	TenC
XL2	B. bassiana gDNA	rev	CTGGTAGACGTCATATAATCATACGGCGCGTCAGGGCAGCGCCTCCTCT	TenC
XL3	tenS	fwd	TGCAGCAACCTATGCGAGC	F2, F23
XL4	tenS	rev	TGCGGTCTGATTCAGAGCCC	F2
XL5	tenS	fwd	GCCGTGGATGACACGTTCTATGC	F3
XL6	tenS	rev	CACCCACAAGAGGTTTCGTGTATTG	F3, F20
XL7	$d m b S-C \mathrm{MeT}$	fwd	ATTGATTCTTGGGCTCTGAATCAGACCGCATCATCCTTGACCGGGGATCTC	F4, F5
XL8	$d m b S-C \mathrm{MeT}$	rev	GAGCCGGGCATAGAACGTGTCATCCACGGCTTGACTCATAATCATGGAGTTTTGCTGCTTG	F4, F8, F16, F23
XL9	$d m b S-C \mathrm{MeT}$	rev	AGCATTCTCGAAAAAGCCAACCGAGAGATCGGTGTAAGTGTATGTATCGAATGTCTCATCAATTG	F5
XL10	tenS	fwd	GATCTCTCGGTTGGCTTTTTCGAGAATGC	F6
XL11	tenS	rev	GAGCCGGGCATAGAACGTGTCATCC	F6, F14
XL12	tenS	fwd	TTCAACGCCGCGATTGATTCTTG	F7, F11, F21
XL13	tenS	rev	TGTGTAAGTATACGTGTCGAATGCC	F7
XL14	$d m b S-C \mathrm{MeT}$	fwd	GGTGAGGCATTCGACACGTATACTTACACAGATCTATCGGTTGGCTTCTTCG	F8, F13, F19
XL15	$d m b S-C M e T$	fwd	ATTGATTCTTGGGCTCTGAATCAGACCGCATCATCCTTGACCGGGGATC	F9
XL16	$d m b S-C \mathrm{MeT}$	rev	GGCGTGAAGCATCTGCAACTCGACAGCATCTGGGTACGCCTCATCAATG	F9
XL17	tenS	fwd	GATGCTGTCGAGTTGCAGATGC	F10
XL18	tenS	rev	GCGGAAAATCTCTCGACAGC	F10
XL19	tenS	rev	TGGGTATGCCTCATCAATGG	F11
XL20	$d m b S-C \mathrm{MeT}$	fwd	GTCATCCAAACCATTGATGAGGCATACCCAGATACTGTTGAGTTGCAGATGC	F12
XL21	$d m b S-C \mathrm{MeT}$	rev	AGCATTCTCGAAAAAGCCAACCGAGAGATCGGTGTAAGTGTATGTATCGAATG	F12
XL22	$d m b S-C \mathrm{MeT}$	rev	ACCAAAGTTAAAGGTAGCGCGAAGACTCTCTGGGCCAGTCTTTTCGTTC	F13
XL23	tenS	fwd	GAGAGTCTTCGCGCTACCTTTAACTTTG	F14
XL24	tenS	fwd	GCAATTGGTGAGGCATTCG	F15
XL25	tenS	rev	TGGGCCAGTCTTTTCGTTTAATAGC	F15

XL26	$d m b S-C \mathrm{MeT}$	fwd	TATCTGCTATTAAACGAAAAGACTGGCCCAGAGAGTCTTCGCGCCACC	F16
XL27	$d m b S-2 \mathrm{~B} 1-\mathrm{CMeT}$ and $d m b S-2 \mathrm{~B} 2-\mathrm{CMeT}$	fwd	AGCCCTCTTGAAGCCCGGC	F17, F18
XL28	$d m b S-2 \mathrm{~B} 1-\mathrm{CMeT}$ and $d m b S-2 \mathrm{~B} 2-\mathrm{CMeT}$	rev	CATTTCGGAAAGCGGGGAGAGC	F17, F18
XL29	$d m b S-C \mathrm{MeT}$	rev	TCGTGTACTATATGATCAACGCCAGAGAACGAGGCCTTTTGGAGCTGCGAATCCCAG	F19
XL30	tenS	fwd	GCCTCGTTCTCTGGCGTTGATC	F20
XL31	tenS	rev	TGGGTCTTTCTCAATATCGAGGGC	F21
XL32	$d m b S-C M e T$	fwd	TGGTCTTTAGAGCCCTCGATATTGAGAAAGACCCAGCCGCACAAAGCTTCGATCTCG	F22, F23
XL33	$d m b S-C \mathrm{MeT}$	rev	TCGTGTACTATATGATCAACGCCAGAGAACGAGGCCTTTTGGAGCTGCGAATCCCAG	F22
XL34	$d m b S-2 \mathrm{~A} 1-\mathrm{CMeT}$	fwd	GAGTGCAATTGGTGAGGCATTC	F24
XL35	$d m b S-2 \mathrm{~A} 1-\mathrm{CMeT}$	rev	AGCCCACCAAAGTTAAAGGTAG	F24
XL36	$d m b S$-2A2-CMeT	fwd	CAATTGGTGAGGCATTCGAC	F25
XL37	$d m b S-2 \mathrm{~A} 2-\mathrm{CMeT}$	rev	AGCCCACCAAAGTTAAAGGTAG	F25
XL38	$d m b S-1 \mathrm{~A} 1-\mathrm{CMeT}$	fwd	ATTGATTCTTGGGCTCTGAATCAGAC	F26, F27
XL39	$d m b S-1 \mathrm{~A} 1-\mathrm{CMeT}$	rev	GCCCAACGGCGTGAAGCATCTGCAACTCGACAGCATCTGGGTATGCCTCATCAATGGTTTG	F26
XL40	$d m b S$-1A2-CMeT	rev	GCCCAACGGCGTGAAGCATCTGCAACTCGACAGCATCTGGGTACGCCTCATCAATGATTTG	F27
XL41	$d m b S-\Psi K R-C M e T$, $d m b S-1-\Psi K R-C M e T$ and $d m b S-2-\Psi K R-$ CMeT	fwd	ATGCCCAGCTCCAAAAGGCCTC	F28, F33, F34
XL42	$d m b S-\Psi K R-C M e T$, $d m b S-1-\Psi K R-C M e T$ and $d m b S-2-\Psi K R-$ CMeT	rev	TCAATGCCAAGAACTTGGGTTCG	F28, F33, F34
XL43	tenS	fwd	ACTGCTACCTTATTCACCCTGCC	F29
XL44	tenS	rev	TTGACTCATGATCATGGAGTTTTGC	F29

XL45	tenS	fwd	CAAAACTCTAGCTCCATGACTCCCAGAGC	F30
XL46	tenS	rev	ACCCATTATGATGTTGTGGGAGCCGC	F30
XL47	$d m b S-1 \mathrm{~B} 1-C \mathrm{MeT}$ and $d m b S-1 \mathrm{~B} 2-\mathrm{CMeT}$	fwd	AGACGACTGGGCCGTCATCCAAACCATTGATG	F31, F32
XL48	$d m b S-1 \mathrm{~B} 1-C \mathrm{MeT}$ and dmbS-1B2-CMeT	rev	TGCGGAAAATCTCTCGACAGCATTCTCG	F31, F32
tenSF1	$p E-Y A$-ten S	fwd	GGTCCTTGTCTGAAGAGTTG	F35
tenSR1	$p E-Y A$-ten S	rev	GGATATCACAAGCAAGAAGC	F35
TDSLkl-F	pE-YA-tenS	fwd	AGATCAGCAGGATAAGCAGC	F36, F41, F43, F48
TDSLkl-R	$p E$-YA-tenS	rev	AAGCCCACGGGTCTGGAG	F36
TDSLk2-F	$p E$-YA-tenS	fwd	GCCGCATCGGCGGTAGAC	F44
TDSLk2-R	pE-YA-tenS	rev	TCCTTTGGTGGTGGTGATG	F37, F39, F44, F46
T2A-F	$p E-Y A$-ten S	fwd	GCCATTCTGAATAATACAGGCC	F37
T2A-R	$p E$-YA-tenS	rev	CTCAGAGACACTCATGACTCG	F48
T1B-F	$p E-Y A$-ten S	fwd	ACTGTGGTGGACATGATTCG	F39
T1B-R	pE-YA-tenS	rev	AGCGCTCGAGCTTAGCAA	F43
T2B-F	pE-YA-tenS	fwd	ACGGATGTGCATCATGCCTT	F46
T1A-R	$p E-Y A$-ten S	rev	CTGCACAGAGTCTTTGCTGC	F41
D1A-TLk-F	$p E-Y A 1-d m b S$	fwd	ACTGTACCGCCCCTCCAGACCCGTGGGCTTTTCAAGAGCGACAGGACCTA	F38, F40
D1A-TLk-R	pE-YA1-dmbS	rev	CATGGTGGCACGAATCATGTCCACCACAGTCTGCACAGAGTCTTTGTTGC	F40
D1B-TLk-F	$p E-Y A 1-d m b S$	fwd	ATGGACGCTTGCAGCAAAGACTCTGTGCAGACTGTCGTGGATACGATTCG	F42
D1B-TLk-R	$p E-Y A 1-d m b S$	rev	GTTTGACTGGCCTGTATTATTCAGAATGGCAGCGGCAGAACCAAGCAGAA	F38, F42
D2A-TLk-F	pE-YA1-dmbS	fwd	GACTTTTTTGTCTTGCTAAGCTCGAGCGCTGCCATCTTGAATAACATGGG	F45, F47
D2A-TLk-R	$p E-Y A 1-d m b S$	rev	CGCCTCAGCAAAGGCATGATGCACATCCGTCTCAGAGAGCCTCATAGCTC	F47
D2B-TLk-F	$p E-Y A 1-d m b S$	fwd	GGTACCACGCGAGTCATGAGTGTCTCTGAGACTGACGTGCATCACGCCTT	F49
D2B-TLk-R	pE-YA1-dmbS	rev	CGCTAGACTGTCTACCGCCGATGCGGCGGCTGCTTGCCCCGAGGCAATCA	F45, F49

Primer	template	direction	sequence 5'-3'	amplification
tenSF1	pE-YA-tenS	fwd	GGTCCTTGTCTGAAGAGTTG	F35
tenSR1	pE-YA-tenS	rev	GGATATCACAAGCAAGAAGC	F35
$\begin{aligned} & \hline \text { TDSLk } \\ & 1-F \end{aligned}$	pE-YA-tenS	fwd	AGATCAGCAGGATAAGCAGC	$\begin{aligned} & \text { F36, F41, F43, } \\ & \text { F48, F51, F53, } \\ & \text { F58 } \end{aligned}$
$\begin{aligned} & \text { TDSLk } \\ & 1-R \end{aligned}$	pE-YA-tenS	rev	AAGCCCACGGGTCTGGAG	F36, F51
$\begin{aligned} & \hline \text { TDSLk } \\ & 2-F \end{aligned}$	pE-YA-tenS	fwd	GCCGCATCGGCGGTAGAC	F44, F52
$\begin{aligned} & \hline \text { TDSLk } \\ & 2-R \end{aligned}$	pE-YA-tenS	rev	TCCTTTGGTGGTGGTGATG	$\begin{aligned} & \hline \text { F37, F39, F44, } \\ & \text { F46, F52, F54, } \\ & \text { F57 } \end{aligned}$
T2A-F	pE-YA-tenS	fwd	GCCATTCTGAATAATACAGGCC	F37
T2A-R	pE-YA-tenS	rev	CTCAGAGACACTCATGACTCG	F48
T1B-F	$p E$-YA-tenS	fwd	ACTGTGGTGGACATGATTCG	F39
T1B-R	pE-YA-tenS	rev	AGCGCTCGAGCTTAGCAA	F43
T2B-F	pE-YA-tenS	fwd	ACGGATGTGCATCATGCCTT	F46
T1A-R	$p E$-YA-tenS	rev	CTGCACAGAGTCTTTGCTGC	F41
$\begin{aligned} & \hline \text { D1A- } \\ & \text { TLk-F } \end{aligned}$	pE-YA1- $d m b S$	fwd	ACTGTACCGCCCCTCCAGACCCGTGGGCTT TTCAAGAGCGACAGGACCTA	F38, F40
$\begin{aligned} & \hline \text { D1A- } \\ & T L k-R \end{aligned}$	pE-YA1- $d m b S$	rev	CATGGTGGCACGAATCATGTCCACCACAGT CTGCACAGAGTCTTTGTTGC	F40
$\begin{aligned} & \hline \text { DIB- } \\ & \text { TLk-F } \end{aligned}$	pE-YA1- $d m b S$	fwd	ATGGACGCTTGCAGCAAAGACTCTGTGCAG ACTGTCGTGGATACGATTCG	F42
$\begin{aligned} & \hline \text { D1B- } \\ & T L k-R \end{aligned}$	pE-YA1- $d m b S$	rev	GTTTGACTGGCCTGTATTATTCAGAATGGC AGCGGCAGAACCAAGCAGAA	F38, F42
$\begin{aligned} & D 2 A- \\ & T L k-F \end{aligned}$	pE-YA1- dmbS	fwd	GACTTTTTTGTCTTGCTAAGCTCGAGCGCTG CCATCTTGAATAACATGGG	F45, F47
$\begin{aligned} & \hline D 2 A- \\ & T L k-R \end{aligned}$	pE-YA1- dmbS	rev	CGCCTCAGCAAAGGCATGATGCACATCCGT CTCAGAGAGCCTCATAGCTC	F47
$\begin{aligned} & D 2 B- \\ & T L k-F \end{aligned}$	pE-YA1- dmbS	fwd	GGTACCACGCGAGTCATGAGTGTCTCTGAG ACTGACGTGCATCACGCCTT	F49
$\begin{aligned} & \text { D2B- } \\ & T L k-R \\ & \hline \end{aligned}$	pE-YA1- $d m b S$	rev	CGCTAGACTGTCTACCGCCGATGCGGCGGC TGCTTGCCCCGAGGCAATCA	F45, F49
TMS-F	PE-YA1-	fwd	ACTGTACCGCCCCTCCAGCCCGTGGGCTTT	F50

	milS		TCCAGAGCGACAAACCT	
TMS-R	$\begin{aligned} & \text { PE-YA1- } \\ & \text { milS } \\ & \hline \end{aligned}$	rev	CGCTAGACTGTCTACCGCCATGCGGCGGCC GCTTGCTCAGAAGTAACCG	F50
$\begin{aligned} & \text { TDSLK } \\ & 1(3 / 4)- \\ & R \\ & \hline \end{aligned}$	pE-YA-tenS	rev	GTTTGACTGACCTATGTTGTTCGCGATAGT AGCGCTCGAGCTTAG	F53
$\begin{aligned} & \text { TDSLK } \\ & 1(3 / 4)- \\ & F \end{aligned}$	pE-YA-tenS	fwd	GACGTCATGCGAGCCACGACACTCTCGGAG ACGGATGTGCATCATG	F54
$\begin{aligned} & \text { TenS(3/ } \\ & \text { 4) }-F \end{aligned}$	$\begin{aligned} & \text { PE-YA1- } \\ & \text { milS } \\ & \hline \end{aligned}$	fwd	ACTATCGCGAACAACATAG	F55
$\begin{aligned} & \text { TenS(3/ } \\ & \text { 4) }-R \end{aligned}$	$\begin{aligned} & \text { PE-YA1- } \\ & \text { milS } \end{aligned}$	rev	CTCCGAGAGTGTCGT	F55
$\begin{aligned} & \text { LK2sub } \\ & -F \\ & \hline \end{aligned}$	pE-YA-tenS	fwd	CACAGCAACCGAGACGTCATGCGAGCCAC GACACTCTCTGAGACGGATGTGC	F57
$\begin{aligned} & \text { LK1sub } \\ & -R \end{aligned}$	pE-YA-tenS	rev	GAGTGTCGTGGCTCGCATGACGTCTCGGTT GCTGTGCACCTTGGTGTCGTCA	F58

11. Table S3. swaps boundaries in TenS.

Swaps region	start	stop	Amino acid number
CMeT-YKR	S1279	A1784	505
CMeT	S1279	Q1670	391
1-CMeT	S1279	T1518	240
2-CMeT	D1519	Q1670	151
$2 \mathrm{~A}+2 \mathrm{~B} 1-\mathrm{CMeT}$	D1519	K1641	122
$2 \mathrm{~A} 2+2 \mathrm{~B}-\mathrm{CMeT}$	A1551	Q1670	119
2A2+2B1-CMeT	A1551	K1641	90
$1 \mathrm{~A}-\mathrm{CMeT}$	S1279	P1422	144
1B-CMeT	D1423	T1518	96
$2 \mathrm{~A}-\mathrm{CMeT}$	D1519	P1600	82
2B-CMeT	E1601	Q1670	69
$1 \mathrm{~A} 1-\mathrm{CMeT}$	S1279	L1358	80
1A2-CMeT	F1359	P1422	64
1B1-CMeT	D1423	T1462	40
1B2-CMeT	E1463	T1518	56
2A1-CMeT	D1519	P1550	32
2A2-CMeT	A1551	P1600	50
2B1-CMeT	E1601	K1641	40
2B2-CMeT	A1642	Q1670	29
YKR	A1671	A1784	114
3A-YKR	A1671	L1727	57
3B-YKR	I1728	A1784	57
KR	F2204	A2481	278
4-KR	F2204	A2342	139
5-KR	A2343	A2481	139
4A-KR	F2204	Q2273	70
4B-KR	T2274	A2342	69
5A-KR	A2343	E2411	69
5B-KR	T2412	A2481	70

12. Table $S 4$. The \% identity and similarity between the $t e n S$ and $d m b S$ amino acid sequences for the 14 different regions.

Expt. 1A1	AA sequence		$\begin{gathered} \text { Similarity } \\ \text { /Identity (\%) } \\ \hline 92 / 81 \end{gathered}$
	tenS	SSLTGNINVYDAESGRALIQVEGFEVRAVGEPDASKDRLLFYETVWGRDISIMGLSDPIRDETSDAMVHNLSEAIERVSL	
	$d m b S$	SSLTGDLNVYDTDTGIPLLQVEGFEVRAVGEPDASKDRLLFSETVGGRDISIMGLSDPIRNETTDAAVQSLAEAIERVSL	
1A2	tenS	FYVRQLMGELSTADRRQANWYHTRMLAAFDYHLAKVHEETHLHLRPEWLADDWAVIQTIDEAYP	92/77
	$d m b S$	FYVRQLMSELSTKDRREANWYHSRMLTAFEHHLARIHEDTHLHVRQEWLSDDWSVIQIIDEAYP	
1B1	tenS	DAVELQMLHAVGQNVADVIRGKKHLLEVLRVDNLLDRLYT	97/80
	$d m b S$	DTVELQMLHAIGQNMANVIRGEKHMLEVMRVNNLLDRLYT	
1B2	tenS	EDKGMHMANLFLANALEEITFKFPRCKILEIGAGTGATTWAALSAIGEAFDTYTYT	87/86
	$d m b S$	EDKGMQQGNHFLANALKEITFKFPRCKILEIGAGTGATTWAVLSAIDETFDTYTYT	
2A1	tenS	DLSVGFFENAVERFSAFRHRMVFRALDIEKDP	93/84
	$d m b S$	DLSVGFFETAVERFSAFRHKMIFKALDIEKSP	
2A2	tenS	ASQSFDLNSYDIIIATNVLHATRNLGVTLGNVRALLKPGGYLLLNEKTGP	96/90
	$d m b S$	AAQSFDLGSYDIIIATNVLHATRNLDITLGNVRSLLKPGGYLLLNEKTGP	
2B1	tenS	ESLRATFNFGGLEGWWLAEEKERQLSPLMSPDGWDAQLQK	$100 / 93$
	$d m b S$	ESLRATFNFGGLEGWWLAEEEERQLSPLLSPDGWDSQLQK	
2B2	tenS	ASFSGVDHIVHDVQEDQQDKQQNSMIMSQ	88/81
	$d m b S$	TQFSGVDHVVHDVQEEGKQQNSMIMSQ	
3 A	tenS	AVDDTFYARLSPLSEMANLLPMNEPLLIIGGQTTATLKMIKEIQKLLPRQWRHKVRL	89/79
	$d m b S$	AVDDAFYARLSPLSEMASLLPTQEPLLLIGGQTNTTLRIIKEIQKQLPRKWRHKIRL	
3B	tenS	IASVDHVEAEGLPAHSDVICLQELDRGLFTTAMTSKCLDALKTLLFINTRNLLWVTNA	92/82
	$d m b S$	IASVDQLEDEDLPAHSDVICVQELDRGLFTTAMTSKRLNALKSLFMNTKNLLWVTNA	
4A	tenS	FKSDRTYLMVGAAGGLGTSICRWMVRNGARHVVVVTSRNPKADPEMLNEAERYGAAVQVVPMDACSKDSVQ	99/94
	$d m b S$	FKSDRTYLMVGAAGGLGTSLCRWMVRNGARHVVVTSRNPKADPEMLNEAERYGAIVRVVPMDACNKDSVQ	

4B	tenS	TVVDMIRATMPPIAGVCNAAMVLRDKLFLDMNVDHMKDVLGPKMQGTEHLDSIFAQEPLDFFVLLSSS	88/79
	$d m b S$	TVVDTIRATMPPIAGVCNAAMVLCDKLFLDMDVDQMNNTLGPKVDGTEYLDSIFAHEPLDFFILIGSA	
5A	tenS	AILNNTGQSNYHCANLYMDSLVTNRRSRGLAASII HVGHVCDTGYVARLVDDTKVQMSLGTTRVMSVSE	88/77
	$d m b S$	AILNNMGQSNYHCANLYMDSLVKHRRSRGLAASIIHIGHVCDTGYVARMVDDNRIQSNIATMRAMRLSE	
5B	tenS	TDVHHAFAEAVRGGQPDSRSGSHNIIMGIEPPTKPLDLTKRKPVWISDPRLGPCLPFSTLENQMMASEQA	93/83
	$d m b S$	TDVHHAFAQAVRGGQLDSRSGSYNIIMGIEPPTKPLDLTRRQAVWLSDPRLGHMLPYSTLENQMIASGQA	
KR	tenS	FKSDRTYLMVGAAGGLGTSICRWMVRNGARHVVVVTSRNPKADPEMLNEAERYGAAVQVVPMDACSKDSVQTVVDMIRATMPPIAGVCNAAM VLRDKLFLDMNVDHMKDVLGPKMQGTEHLDSIFAQEPLDFFVLLSSSAILNNTGQSNYHCANLYMDSLVTNRRSRGLAASIIHVGHVCDTG YVARLVDDTKVQMSLGTTRVMSVSETDVHHAFAEAVRGGQPDSRSGSHNIIMGIEPPTKPLDLTKRKPVWISDPRLGPCLPFSTLENQMMA SEQA	84/71
	milS	FQSDRTYLMVGAAGGVGTSLCRWMVRHGARHVIVTSRNPKGDPTMLSEAKQYGATVRVVSMDVCDRRSVEAVVGMIRATMPPIAGVCNAAM VLCDKLFLDMDVDILNNTLGPKVDGTEILDSIFSEEALDFFILLGSTATIANNIGQSNYHCANLYMDSLVAQRRSRGLAASIIHIGYICDT GYVARLGDDAKVHSNRDVMRATTLSETDVHHAFAEAVRGGSPGSPIGSYNIIMGIDPPTKSLDSSRRKALWLSDPRLGHMVPYSASADQAV TSEQA	

13. Protein Modelling

Homolog modelling was done using the open free software SwissModel. In summary SwissModel uses four main steps, which are involved in building a homology model of a given protein structure: First the identification of structural template(s). Second the alignment of target sequence and template structure(s). Third building of the model and energy minimization and at least the assessment of the model's quality using QMEAN, a statistical potential of mean force. The proposed templates used for the-CMeT domain of TENS was CurJ (PDB: 5thz) and for the KR domain of TENS AmphB (PDB: 3mjv). This modelling resulted in a structure model of the C-MeT domain of Tenellin with a QMEAN value of -3.16 . The KR domain of Tenellin had a QMEAN value of -2.82 , which indicates that the quality of the generated structure model was good. For the generation of the chimeric $\mathrm{mFAS} /$ Tenellin structure, the single domains KR and C-MeT models were aligned with the mFAS structure. The alignment resulted in a RMDS value of KR (1.039) and C-MeT (2.71). Afterwards the coordinates of the PDB files of the KR and C-MeT domains were rewritten. The mFAS CMeT and KR domain were deleted and afterwards were this single structures in PyMOL (DeLano Scientific LLC, Version 1.8.2.0) were combined to give a new structure. Afterwards the chimeric mFAS/Tenellin structures were submitted for minimization in YASARA.

Figure 13.1: A, aligment of the Ψc-met domain of mFAS (green) with the generated C-Met domain of TENS based on the CurJ template (red); B, aligment of the KR domain of mFAS(green) with the genereated KR domain of TENS based on the AmpB template (blue). Note the substrate-binding helix no present in mFAS.

Substrate Docking

The substrate mimics (S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) 3-oxobutanethioate XX and S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) 2-methyl-3-oxobutanethioate $\mathbf{Z Z}$ were docked into the active site of the homolog generated models of the CmeT and KR domain of Tenellin using Autodock Vina Vina (PyRx 0.8). The homolog models were generated with SwissModel. Docking results including lowest binding energy and mean binding energy were obtained from the docking $\log (\mathrm{dlg})$ file. Afterwards were the different docked poses submitted for the minimized in YASARA. Images of the best docked poses for each of the substrate mimics was captured with the PyMOL visualization software.

Substrate XX

S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) 3oxobutanethioate

Substrate ZZ

S-(2-(3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl) 2-methyl-3-oxobutanethioate
14. References
[1] F. H. Jin, J.-i. Maruyama, P. R. Juvvadi, M. Arioka, K. Kitamoto, FEMS Microbiol. Lett. 2004, 239, 79-85.

