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Overview of the Linear Combination of Atomic Orbitals (LCAO) Method 

The atomistic origin of electronic bands in solids is an established theory in solid-state chemistry 
and physics and the subject of many excellent texts.1 We briefly review it here. We use a qualitative 
Linear Combination of Atomic Orbitals (LCAO) method to develop our picture of electronic bands 
(Figure 2). This model assumes that the electronic states of the solid will be some linear combination 
of the atomic orbitals of all the constituent atoms. This is exactly equivalent to the Molecular Orbital 
(MO) theory familiar to most molecular chemists. In MO theory, we combine the ligands to form 
symmetry-adapted linear combinations (SALCs) based on the point symmetry of the molecule. 
Similarly, we will begin by finding SALCs of the six σ-bonding halide p orbitals present in the 
double perovskite unit cell, based on their octahedral point symmetry. Unlike molecules that 
possess only point symmetry, extended solids also display translational symmetry, which 
propagates the unit cell through translations along the three unit-cell axes. Following our 
construction of the SALCs, we must then go beyond MO theory by introducing these additional 
translational symmetry elements. We do this by tessellating our SALCs from unit cell to unit cell 
across the crystal lattice. The resulting electronic states are called Bloch waves because the SALCs 
form a set of periodic patterns that run along various directions in the lattice. Mathematically, 
translation of the halide SALCs requires the introduction of a new quantum number, k, which 
describes how the phases of the halide SALCs change upon translation. Each value of k corresponds 
to a different Bloch wave with a different periodicity/spatial frequency. Although k can hold a wide 
range of values, we focus on specific values of k where all unit cells are either perfectly in phase or 
out of phase with the origin. These values of k are called high-symmetry k points and are usually 
extrema or inflection points within an electronic band because every unit cell is fully involved in 
the electronic state. By focusing on these high-symmetry k points, we can generally find the most 
important points in each band. Other values of k typically interpolate between the high-symmetry 
k points.  

 Once we have found halide-only Bloch waves at each high-symmetry k point, we return to 
MO theory to evaluate their interactions with the central metal orbitals. For some of these Bloch 
waves, the symmetry of the surrounding halide ligands will match that of the metal cation orbitals, 
and they will interact to form bonding and antibonding combinations with lower and higher 
energies, respectively. Other Bloch waves will have mismatched symmetry and show non-bonding 
interactions with the metal orbitals. After evaluating the bonding/antibonding/non-bonding 
character of the metal orbitals with each Bloch wave, we can qualitatively rank their relative 
energies. Plotting these energies versus k and interpolating between them allows us to construct a 
band diagram (such as is produced in a DFT calculation) which can be used to determine if the 
bandgap is direct or indirect, symmetry-allowed or symmetry-forbidden.  
 

Computational Methods 

Our first principles density functional theory (DFT) calculations were performed using the Vienna 
Ab Initio Simulation Package (VASP).2 We used the exchange-correlation approximation PBEsol3 
to relax the geometries of Cs2AgBiBr6, Cs2Sn□Br6, and Cs2NaBiCl6, resulting in lattice parameters 
of 11.19 Å, 10.82 Å, and 10.78 Å, in good agreement with the experimental values of 11.25 Å,4 
10.77 Å,5 and 10.84 Å,6 respectively. The Brillouin zone integrations were performed on a grid of 
4×4×4 k-points, with a cutoff energy for the plane wave expansion of 600 eV and forces were 
relaxed until smaller than 0.0001 eV/ Å. Projector Augmented Wave (PAW) potentials7 were used 



with the following valence configurations: Cs: 5s25p66s1, Ag 4d105s1, Bi 6s26p3, Br 4s24p5, Cl 
3s23p5, Sn 5s25p2, and Na 3s1. 

For band structure calculations, we used the same exchange-correlation functional and included 
spin-orbit coupling self-consistently, using a plane wave energy cutoff of 500 eV. Atomic orbital 
contributions at each k-point were obtained by projecting PBEsol+SOC Kohn-Sham orbitals onto 
spherical harmonics within spheres centered at each ion. 

  

Figure S1. General molecular-orbital diagram for a molecular metal-hexahalide octahedral complex. The A1g and Eg 
ligand sets are σ-bonding, the T2g set is π-bonding and the T1g and T2u sets are non-bonding. T1u has two sets; one σ 
and one nonbonding. The exact electronic configuration shown is for Ag+ but the electronic configuration of any other 
octahedral ion can be obtained by adding or subtracting the appropriate number of electrons.



Geometric Details of the Double Perovskite Unit Cell 

The conventional cubic cell of the Fm–3m double perovskite shows the face-centered-cubic symmetry of 
the lattice and contains four formula units (black lines in Figure S2). It is possible to find a smaller 
rhombohedral cell (red lines in Figure S2A & C) which contains only one formula unit and is the unit cell 
of the lattice. The axes of the rhombohedral cell (a1, a2, a3) are oriented along the face-diagonals of the 
cubic cell and are angled at 60° from one another. The high-symmetry k points of the double perovskite 
structure are defined with respect to the rhombohedral cell and we utilize this cell exclusively for all of our 
analysis.  

To make the double perovskite translational symmetry easier to visualize, we project the rhombohedral 
unit-cell vectors onto a Cartesian plane. One rhombohedral vector (a1) runs diagonally along the Cartesian 
xz plane. The difference between the remaining two rhombohedral vectors (a2 − a3) gives another vector 
that also runs diagonally along the Cartesian xz plane at a 90° angle from the a1 vector (Figure S2B & D).  
Thus, we can combine the three values stored in k as two orthogonal vectors in the Cartesian xz plane, as 
in Figure 4. The Cartesian xy and yz planes can be expressed similarly using different combinations of the 
rhombohedral axes.  

Figure S2. A) Symmetry relations between the conventional (black) and rhombohedral (red) double perovskite cells. 
The conventional cell vectors are x, y, and z and the rhombohedral unit-cell vectors are a1, a2, and a3. B) Projection of 
the rhombohedral vectors onto the xz-plane to give two orthogonal vectors used to construct Bloch waves. C) and D) 
Alternative perspectives of A and B. Orange and grey spheres represent the B and B′ atoms, respectively. 



Relativistic Effects 

The theory we have developed in the main text is a nonrelativistic one, and it does not account for 
the effects of spin-orbit coupling (SOC) on the band structure. Despite this, we obtain remarkable 
correspondence between our predictions and DFT calculations, which include spin-orbit coupling, 
even in compounds with heavy elements where relativistic effects are known to be significant. In 
general, SOC can be viewed as a relatively small perturbation to the overall energy of the electronic 
states. The primary effects of this perturbation are additional splitting of nominally degenerate 
bands derived from p and d orbitals. The relative dispersion of each band is also affected to a lesser 
extent. 

A comparison of the DFT band structure of Cs2AgBiBr6, our first case study, with and without spin-
orbit coupling provides an excellent example of this (Figure S3). Without spin-orbit coupling, our 
LCAO method exactly reproduces the energetic ordering and degeneracies of the conduction and 
valence bands. However, inclusion of spin-orbit coupling results in a small splitting of the valence 
bands near L and a larger splitting of the conduction band into p1/2 and p3/2 branches at all k points. 
More significant effects are observed in the conduction band, consistent with greater participation 
of orbitals from the heavier Bi3+ cation in those states.  

The remarkable concurrence we see between our predictions and relativistic DFT calculations can 
be attributed to the relatively small effect SOC has on band dispersion. For compounds with 
reasonably dispersive bands the differences in energy between high-symmetry k points tend to be 
greater than the SOC perturbation. Indeed, for all the 3D double perovskites we have examined 
here, inclusion of spin-orbit coupling does not change the position of the VBM and CBM. This will 
not always be the case, particularly for materials with very flat bands. For example, in the 2D double 
perovskite (BA)4AgBiBr8 (BA = n-butylammonium), spin-orbit coupling plays a key role in 
generating the material’s direct bandgap.8 

  

Figure S3. Band structure of the double perovskite Cs2AgBiBr6 computed by DFT with A) spin-orbit coupling included 
and B) spin-orbit coupling omitted. The band structures are shown in duplicate and the orbital contributions of the B-
site atoms (Ag and Bi) are given in color with the size of the dots proportional to the size of the contribution. Halide 
contributions are also present but have been omitted for clarity.  



Discussion of σ-bonding bands 

Derivation of σ-bonding SALCs 

To construct σ-bonding SALCs, we consider the six halide p orbitals within the rhombohedral unit cell that 
point directly at the B site and which overall have Oh point symmetry. Figure S4A defines our labeling 
scheme for these six orbitals. Figure S4C gives the reducible representation (Γred) generated by observing 
how many of these six orbitals remain unchanged under each symmetry operation. Γred can be decomposed 
into the sum of three irreducible representations, A1g + T1u + Eg, which will define the symmetry of our 
SALCs. The SALCs for each irreducible representation, shown in Figure 2, were found using the projection 
operator. The projection operator takes the character (χj) of each symmetry operation in the irreducible 
representation and multiplies it by the projection table entry (pj) for that operation.  

Figure S4. A) The octahedral arrangement of halide p orbitals, present in the double perovskite unit cell, used to 
construct the σ-bonding SALCs. B) Projection table based on orbital ϕ1 showing its relationship to the other orbitals in 
A under the symmetry operations of the Oh point group (green columns). C) Decomposition of the reducible 
representation for the orbitals in A into their irreducible representations (A1g, Eg, & T1u).   



𝑷𝑷𝑖𝑖(𝜑𝜑𝑥𝑥) = 1
𝑁𝑁
∑ 𝜒𝜒𝑗𝑗 × 𝑝𝑝𝑗𝑗  (1) 

The projection table for φ1 is given in Figure S4B. This table is obtained by determining which halide p 
orbital φ1 maps onto under each symmetry operation (for example, under the eight C3 rotation operators, φ1 
maps onto φ2, φ3, φ5, and φ6). The normalization factor, N, is defined as follows: 

𝑁𝑁 = �∑(𝑐𝑐𝑥𝑥)2   (2) 

where cx is the coefficient for each φx after application of the projection operator. The SALC for A1g can be 
determined through direct application of the projection operator 

𝑷𝑷𝐴𝐴1𝑔𝑔(𝜑𝜑1) = 1
√6

(𝜑𝜑1 + 𝜑𝜑2 + 𝜑𝜑3 + 𝜑𝜑4 + 𝜑𝜑5 + 𝜑𝜑6)   (3) 

One of the two SALCs of the Eg representation can likewise be determined directly 

𝑷𝑷𝐸𝐸𝑔𝑔(𝜑𝜑1) =  1
2√3

(2𝜑𝜑1 − 𝜑𝜑2 − 𝜑𝜑3 + 2𝜑𝜑4 − 𝜑𝜑5 − 𝜑𝜑6)  (4) 

The other Eg SALC may be found from a linear combination of 𝑷𝑷𝐸𝐸𝑔𝑔(𝜑𝜑2) and 𝑷𝑷𝐸𝐸𝑔𝑔(𝜑𝜑3) 

1
𝑁𝑁
�𝑷𝑷𝐸𝐸𝑔𝑔(𝜑𝜑2) − 𝑷𝑷𝐸𝐸𝑔𝑔(𝜑𝜑3)� = 1

2
( 𝜑𝜑2 − 𝜑𝜑3 + 𝜑𝜑5 − 𝜑𝜑6)  (5) 

where 

𝑷𝑷𝐸𝐸𝑔𝑔(𝜑𝜑2) = 1
2√3

( −𝜑𝜑1 + 2𝜑𝜑2 − 𝜑𝜑3 − 𝜑𝜑4 + 2𝜑𝜑5 − 𝜑𝜑6)  (6) 

𝑷𝑷𝐸𝐸𝑔𝑔(𝜑𝜑3) = 1
2√3

( −𝜑𝜑1 − 𝜑𝜑2 + 2𝜑𝜑3 − 𝜑𝜑4 − 𝜑𝜑5 + 2𝜑𝜑6)  (7)           

Similarly, the first T1u SALC is found directly 

𝑷𝑷𝑇𝑇1𝑢𝑢(𝜑𝜑1) =  1
√2

(𝜑𝜑1 − 𝜑𝜑4)     (8) 

while the other two T1u SALCs are found by changing the starting orbital: 

𝑷𝑷𝑇𝑇1𝑢𝑢(𝜑𝜑2) =  1
√2

(𝜑𝜑2 − 𝜑𝜑5)     (9) 

𝑷𝑷𝑇𝑇1𝑢𝑢(𝜑𝜑3) =  1
√2

(𝜑𝜑3 − 𝜑𝜑6)     (10) 

 

  



Halide-only Bloch waves derived from σ-bonding SALCs 

As discussed in main text Section 2.3, there are 11 non-degenerate Bloch waves at the three high-symmetry 
k points: 3 each at Γ and L and 5 at X. The following 13 figures (Figures S5 – S17) depict each of these 
Bloch waves. For ease of visualization, we have chosen to show the doubly degenerate Eg set in two separate 
figures at the isotropic k points Γ and L. The triply degenerate T1u set is shown together at the Γ and L 
points. At the anisotropic k point X, the degeneracy of both the Eg and T1u sets is reduced. The T1u set splits 
into a doubly degenerate and a singly degenerate representation while the Eg set splits into two non-
degenerate representations. All four non-degenerate representations are shown in separate figures (Figures 
S14 – S17). 

 

 

 

 

  

Figure S5. Derivation of the Bloch wave at Γ derived from the A1g SALC (red circle). 



 

  

Figure S6. Derivation of the Bloch wave at L derived from the A1g SALC (red circle). 

Figure S7. Derivation of the Bloch wave at X derived from the A1g SALC (red circle). 



  

 

 

 

 

 

 

 

 

  

Figure S8. Derivation of the Bloch wave at Γ derived from the T1u SALCs (red circle).  
All three degenerate SALCs (T1u(1), T1u(2), and T1u(3)) are shown.

Figure S9. Derivation of the Bloch wave at L derived from the T1u SALCs (red circle).  
All three degenerate SALCs (T1u(1), T1u(2), and T1u(3)) are shown.



 

 

 

  

Figure S10. Derivation of the Bloch wave at X derived from the T1u SALC. The 
anisotropic translational symmetry at X splits the T1u into singly and doubly degenerate 
sets. Only the singly degenerate SALC (T1u(1)) is shown.

Figure S11. Derivation of the Bloch wave at X derived from the T1u SALC (red circle).  
The anisotropic translational symmetry at X splits the T1u into singly and doubly 
degenerate sets. Only the doubly degenerate SALCs (T1u(2) and T1u(3)) are shown.



 

 

 

  

Figure S12. Derivation of the Bloch wave at Γ derived from the Eg(1) SALC (red circle).  
This Bloch wave is degenerate with the one shown in Figure S13 but is shown separately 
for ease of visualization.

Figure S13. Derivation of the Bloch wave at Γ derived from the Eg(2) SALC (red circle). 
This Bloch wave is degenerate with the one shown in Figure S12 but is shown separately 
for ease of visualization. 



 

  

Figure S14. Derivation of the Bloch wave at L derived from the Eg(1) SALC (red circle).  
This Bloch wave is degenerate with the one shown in Figure S15 but is shown separately 
for ease of visualization.

Figure S15. Derivation of the Bloch wave at L derived from the Eg(2) SALC (red circle). 
This Bloch wave is degenerate with the one shown in Figure S14 but is shown separately 
for ease of visualization.



 

  

Figure S16. Derivation of the Bloch wave at X derived from the Eg(1) SALC (red circle). 
This Bloch wave is not degenerate with the one shown in Figure S17. 

Figure S17. Derivation of the Bloch wave at X derived from the Eg(2) SALC (red circle). 
This Bloch wave is not degenerate with the one shown in Figure S16. 



Analysis of halide-halide interactions 

In situations where a metal-based atomic orbital cannot participate in a band (either because the metal is 
missing from the B/B′ site or because the orbital’s energy is too different in energy relative to that of the 
halides), the relative energies of the various k points are determined by halide-halide interactions as shown 
for Cs2Sn□Br6 in Section 3.2 in the main text. However, as discussed in Section 3.2, we must determine 
which halide-halide interactions are most important. The closest halide-halide contact is along the edge of 
the halide octahedron. However, the orbitals from these halides point towards the octahedral center and, 
therefore, have a 90° angle between them. This interaction (which we will call the 90° interaction) might 
be expected to be weak. The 180° interaction involving halides directly across the octahedron from one 
another involves p orbitals arranged for maximal overlap. However, these orbitals are a factor of √2 (~ 1.4 
times) farther away. In the face of these competing factors, we have decided to determine the predominant 
interaction empirically. We do this by assuming that either the 90° interaction or the 180° interaction is the 
important one or that they both are equally important. We then determine the energetic order of SALCs for 
each case by looking at the net degree of bonding/antibonding (Figure S18).  

We compare these predictions to DFT-generated band structures for materials in which one or both metal-
based atomic orbitals do not participate in the valence/conduction band. In all cases, we find that 
considering only the 90° interaction gives predictions that agree with the DFT calculations, while 
considering the 180° or both the 90° and 180° give incorrect predictions. However, we should point out 
that most of the available DFT calculations are on bromide or iodide perovskites. It is possible that for 
lighter halides, the 180° interaction becomes more important. We expect that in fluorides and possibly some 

Figure S18. Analysis of the halide-halide bonding and antibonding interactions generated by the five possible 
configurations of p orbitals around a non-participatory metal site. The three scenarios consider only 90° interactions 
(top), only 180° interactions (middle) or equal 90° and 180° interactions (bottom). Empirically, we find that considering 
only 90° interactions gives the correct predictions. 



chlorides, the 90° orbital overlap will be reduced (since the radial extension of the 2p/3p orbitals is less 
than in 4p/5p) and the 180° overlap increased (due to smaller lattice spacings). 

 

Discussion of π-bonding bands 

Derivation of π-bonding SALCs 

We follow the same procedure for constructing π-bonding SALCs that we used for forming σ-
bonding SALCs. Now we use the remaining twelve p orbitals that lie orthogonal to the metal halide 
σ-bonds as our basis set (Figure S19A). We must consider all twelve at once rather than two sets of 
six because the px and py orbitals (named assuming the pz orbital points along the metal halide σ-
bond) on each halide are related to one another by C4 proper rotation axes and σd mirror planes. Our 
numbering scheme is given in Figure S19A. Decomposition of the orbital characters into their 

Figure S19. A) The octahedral arrangement of halide p orbitals, present in the double perovskite unit cell, used to 
construct the π-bonding SALCs. B) Projection table based on orbital ϕ1showing its relationships to the other orbitals in 
A under the symmetry operations of the Oh point group (green columns). C) Decomposition of the reducible 
representation for the orbitals in A into their irreducible representations (T1g, T2g, T1u, & T2u).     



irreducible representations (Figure S19C) gives Γ𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇1𝑔𝑔 + 𝑇𝑇2𝑔𝑔 + 𝑇𝑇1𝑢𝑢  + 𝑇𝑇2𝑢𝑢, the expected 
representations for π orbitals in an octahedral ligand field.  

To generate orbital pictures of these irreducible representations, we again apply the projection 
operator using the table given in Figure S19B. Since all four irreducible representations are triply 
degenerate, this can be done relatively easily by applying the projection operator to ϕ1, ϕ2, and a 
third orbital that is not involved in the first two representations. The resulting equations for each 
irreducible representation are shown below with the corresponding pictures given in Figure S20. 

For the T1g irreducible representation: 

𝑷𝑷𝑇𝑇1𝑔𝑔(𝜑𝜑1) = 1
2

 (𝜑𝜑1 − 𝜑𝜑4 + 𝜑𝜑10 + 𝜑𝜑11)    (11) 

𝑷𝑷𝑇𝑇1𝑔𝑔(𝜑𝜑2) = 1
2

 (𝜑𝜑2 − 𝜑𝜑5 + 𝜑𝜑7 + 𝜑𝜑12)    (12) 

𝑷𝑷𝑇𝑇1𝑔𝑔(𝜑𝜑6) = 1
2

 (−𝜑𝜑3 + 𝜑𝜑6 + 𝜑𝜑8 − 𝜑𝜑9)    (13) 

For the T2g irreducible representation: 

𝑷𝑷𝑇𝑇2𝑔𝑔(𝜑𝜑1) = 1
2

 (𝜑𝜑1 + 𝜑𝜑4 − 𝜑𝜑10 + 𝜑𝜑11)    (14) 

𝑷𝑷𝑇𝑇2𝑔𝑔(𝜑𝜑2) = 1
2

 (𝜑𝜑2 + 𝜑𝜑5 − 𝜑𝜑7 + 𝜑𝜑12)    (15) 

𝑷𝑷𝑇𝑇2𝑔𝑔(𝜑𝜑6) = 1
2

 (𝜑𝜑3 + 𝜑𝜑6 + 𝜑𝜑8 + 𝜑𝜑9)    (16) 

For the T1u irreducible representation: 

𝑷𝑷𝑇𝑇1𝑢𝑢(𝜑𝜑1) = 1
2

 (𝜑𝜑1 + 𝜑𝜑6 − 𝜑𝜑8 − 𝜑𝜑11)    (17) 

𝑷𝑷𝑇𝑇1𝑢𝑢(𝜑𝜑2) = 1
2

 (𝜑𝜑2 + 𝜑𝜑3 − 𝜑𝜑9 − 𝜑𝜑12)    (18) 

𝑷𝑷𝑇𝑇1𝑢𝑢(𝜑𝜑5) = 1
2

 (𝜑𝜑4 + 𝜑𝜑5 + 𝜑𝜑7 + 𝜑𝜑10)    (19) 

For the T2u irreducible representations: 

𝑷𝑷𝑇𝑇2𝑢𝑢(𝜑𝜑1) = 1
2

 (𝜑𝜑1 − 𝜑𝜑6 + 𝜑𝜑8 − 𝜑𝜑11)    (20) 

𝑷𝑷𝑇𝑇2𝑢𝑢(𝜑𝜑2) = 1
2

 (𝜑𝜑2 − 𝜑𝜑3 + 𝜑𝜑9 − 𝜑𝜑12)    (21) 

𝑷𝑷𝑇𝑇2𝑢𝑢(𝜑𝜑5) = 1
2

 (−𝜑𝜑4 + 𝜑𝜑5 + 𝜑𝜑7 − 𝜑𝜑10)    (22) 



Halide-only Bloch waves derived from π-bonding SALCs 

We use the same procedure to generate the π-bonding Bloch waves that we used for the σ-bonding ones 
(see main text and Figures S5-S17), translating each SALC in Figure S20 according to the symmetry 
dictated by the high-symmetry k points Γ, L, and X. In lieu of showing each translation individually, we 
simply show the table of all 16 resulting Bloch waves in Figures S21 and S22. These are the π-bonding 
equivalents of the Bloch waves shown in Figure 5. The Bloch waves at Γ and L shown in Figure S21 are 
constructed from one representation of each triply degenerate set. Two additional degenerate Bloch waves 
can be generated starting from the remaining two representations (not shown in Figure S21). The Bloch 
waves at X in Figure S22 are split by translational symmetry giving a doubly degenerate and singly 
degenerate set. These are both shown in Figure S22. As in the σ-bonding case, the application of 
translational symmetry on the initial SALC in the B site determines the symmetry around the B’ site. The 

Figure S20. Representations of the π-bonding SALCs generated with the projection operator. Each representation is 
triply degenerate. 



interaction of these Bloch waves with metal-centered orbitals was determined by inspection. In principle, 
the T1u derived Bloch waves could interact with metal-centered p orbitals. However, from Figure S1, it is 
clear that the π T1u set is predominantly non-bonding due to the existence of the more strongly interacting 
σ T1u set. Therefore, potential interactions of the T1u set with metal-centered p orbitals were excluded from 
Figures S21 and S22.  

Prediction of band extrema in π-bonding bands. 

To predict the band extrema in π-bonding bands (Table 1/Table S1), we use the same methods we used for 
σ-bonding. As in the σ-bonding case, we consider three possible scenarios: first, a band where metal-
centered orbitals from both B and B’ are involved, second a band where a metal-centered orbital from only 
the B site participates, and third, a band where no metal centered orbital is present. Only one set of metal 
orbitals (dxy, dxz, dyz) is capable of π-bonding, simplifying the possibilities significantly. In the first case, 
where both the B and B′ site contribute a dxy/dxz/dyz set, inspection of Figure S21/S22 shows two Bloch 
waves that match the dxy/dxz/dyz symmetry at both sites: a triply-degenerate wave at Γ and a singly degenerate 
wave at X (which only bonds with the dxy metal orbitals). Both are derived from the T2g irreducible 

Figure S21. Summary of all possible Bloch waves based on the π-bonding SALCs at the high symmetry k points Γ, 
and L. Here, only one unit cell is shown, but all others will have the same symmetry. Only one of three degenerate 
Bloch waves (derived from one of the three degenerate starting SALCs) is shown in each instance.  



representation. Following the logic we established in Section 3.1 in the main text, these two Bloch waves 
will be either the VBM (if the dxy/dxz/dyz orbitals are filled) or the CBM (if the orbitals are empty). This also 
implies that there will be a flat band from Γ to X since the B and B′ dxy orbitals participate in isoenergetic 
Bloch waves at both k points. These results are summarized in Table S1. 

In the second case, where only one B-site metal contributes a dxy/dxz/dyz orbital, we must turn again to halide-
halide interactions to determine the relative energy of a band at the various k points. The T2g-derived Bloch 
waves at all k points and the doubly degenerate T1g-derived set at X can all interact with at least one metal-
centered dxy/dxz/dyz orbital and all generate regions which permit 90° X – X interactions (Figure S23). In 
these regions, the 90° halide-halide interactions occur over the same distance they did in the σ Bloch waves 
(neglecting the typically small differences between B – X and B′ – X bond lengths) and therefore have 
effects of a similar magnitude. To find the VBM, we must find which of these Bloch waves has the most 
antibonding arrangement of 90° halide-halide interactions. For the VBM, this is the doubly degenerate set 
at X derived from T2g. The CBM will be the Bloch wave with the most bonding arrangement. For the CBM, 
this is both the singly degenerate T2g-derived set at X and the triply degenerate T2g-derived set at Γ. Again, 

Figure S22. Summary of all possible Bloch waves based on the π-bonding SALCs at the high-symmetry k point X.  
Here, only one unit cell is shown but all others will have the same symmetry. The originally triply degenerate sets split 
into doubly degenerate (top) and singly degenerate (bottom) sets due to the anisotropic translational symmetry at X.  



this implies that the conduction band should be 
flat, or nearly so, from Γ to X. These results are 
summarized in Table S1. Consistent with our 
prediction, DFT calculations of Cs2Hf□I6,9  and 
of Cs2Ti□I6,10 which have dxy/dxz/dyz based 
conduction bands, show the Γ and X conduction 
band minima lie within 0.02 eV and 0.07 eV, 
respectively, of each other. 

There is one case left to examine: the non-
bonding situation where no metal orbital 
participates in the π band. From the MO 
diagram in Figure S1, we can see that this 
situation will only be relevant for the valence band and only when a d0 metal is present. As discussed above, 
we look for the Bloch waves with the most antibonding configuration of 90° halide-halide interactions. The 
Bloch waves derived from T1u and T2u are incapable of these interactions, so we discount them. Of the 
remaining Bloch waves, the total 90° antibonding configuration is found at Γ and the singly degenerate set 
at X (derived from the T1g set).  

While the analysis we have just presented is fairly straightforward, there are two issues that can complicate 
accurate determination of band extrema when d0 – d9 cations (and therefore π-bonding bands) are involved. 

Table S1. Expected k points of the conduction band 
minimum (CBM) and valence band maximum 
(VBM) for all possible combinations involving a π-
bonding band. Note that the VBM and CBM should 
be evaluated independently. 

Orbitals Prediction 
B B′ VBM CBM 

dxy/dxz/dyz dxy/dxz/dyz X & Γ X & Γ 

dxy/dxz/dyz null X X & Γ 

null null X & Γ − 

Figure S23. Example of halide-halide interactions in a π-bonding Bloch wave. The green and red colored lines show 
90° halide-halide bonding and antibonding interactions, respectively. The example shown is the Bloch wave at L derived 
from one of the T2g SALCs. 



The first is the tendency of metals with partially occupied degenerate orbitals to undergo spontaneous Jahn-
Teller distortions which relieve the orbital degeneracy and break the cubic symmetry of the material. While 
extension of the theory to non-cubic systems is possible, it is beyond the scope of this work.  

The second issue is important when the double perovskite contains one d0 – d9 cation and one main group 
or d10 cation. The main group and d10 cations have HOMOs and LUMOs based on σ-bonds while the d0 – 
d9 cation will have π-bonding character as a component of either its HOMO or LUMO. Because the π- and 
σ-bonding are based on orthogonal sets of halide-p orbitals they cannot mix even if their electronic states 
have the same energy, making this a case of accidental degeneracy. Therefore, if both π and σ manifolds 
are potentially present near the band edges, some knowledge of the relative energies of the metal orbitals 
is necessary to determine the correct band extrema. A good example of this is the conduction band of 
Cs2AgYCl6 where one of the lowest conduction bands is based on the Ag 5s orbital and another is based on 
the Y 3dxy/3dxz/3dyz set.11 These bands cross without mixing and it is necessary to know that the Ag 5s band 
is lower in energy to predict the CBM correctly. For a more complete discussion of this example, see 
Reference 9. 

Discussion of the electronic structure of Cs2MBiCl6 (M = Na, K) 

As noted in Table 2, there is a small amount of alkali p character present in the conduction band of 
Cs2MBiCl6 (M = Na, K; Figures S24-S25). The appearance of this p character is unexpected since 
the lowest unoccupied orbital should be the Na 3s or K 4s. Overall, this contribution is small and 
we suspect it originates from sp-mixing of the Na 3s (K 4s) with either the filled Na 2p (K 3p) or 
the empty Na 3p (K 4p). This alkali p character is present only near Γ which, since the other metal 
orbital involved in the band is the Bi 6p, is consistent with the prediction of Figure 5. Table 1 
predicts that, given the orbital contributions (Bi 6p/M p), the CBM will be at Γ while if the alkali p 
character is absent (Bi 6p/null) the CBM will be at L. In the DFT-calculated structures in Figures 
S24-S25, we observe that the energies of the conduction band at Γ and L are within ca. 0.1 eV of 
one another, too close to reliably distinguish between them. Therefore, we suggest that the 
appearance of low levels of alkali p character in the conduction band is responsible for the flatness 
of the Cs2MBiCl6 conduction band from Γ to L. However, closer study would be required to confirm 
this.  



 
  

Figure 24. Band structure of the double perovskite Cs2NaBiCl6 computed with DFT. The band structure is shown in 
duplicate and the orbital contributions of the B-site atoms (Na and Bi) are given in color with the size of the dots 
proportional to the size of the contribution. Halide contributions are also present but have been omitted for clarity.

Figure 25. Band structure of the double perovskite Cs2KBiCl6 computed with DFT. The band structure is shown in 
duplicate and the orbital contributions of the B-site atoms (K and Bi) are given in color with the size of the dots 
proportional to the size of the contribution. Halide contributions are also present but have been omitted for clarity.
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