# **Electronic Supplementary Information (ESI) for**

# An Exceptionally Stable Octacobalt-Cluster-Based Metal-Organic Framework for Enhanced Water Oxidation Catalysis

Ning-Yu Huang,<sup>1#</sup> Jian-Qiang Shen,<sup>1,2#</sup> Zi-Ming Ye,<sup>1</sup> Wei-Xiong Zhang,<sup>1</sup> Pei-Qin Liao,<sup>1\*</sup> and Xiao-Ming Chen<sup>1</sup>

<sup>1</sup> MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China

<sup>2</sup> Department of Chemical and Biomolecular Engineering, University of California Los Angeles, CA 90095, USA

<sup>#</sup> These authors contributed equally to this work.

\*E-mail: <u>liaopq3@mail.sysu.edu.cn</u>

#### Supplementary Index

**Experimental details.** 

Figure S1. XPS spectra of Co4-bdt.

- Figure S2. SEM, TEM images and the corresponding particle size distribution of Co4-bdt.
- Figure S3. PXRD patterns of Co4-bdt after activated and variable-temperature PXRD of Co4-bdt.

Figure S4. TG curves of Co4-bdt.

Figure S5. PXRD patterns of Co4-bdt after immersed in 6 M KOH.

Figure S6. N<sub>2</sub> adsorption and desorption isotherms of Co4-bdt at 77 K.

Figure S7. Control photocatalytic experiments using Co4-bdt as catalyst.

Figure S8. Different approaches to regenerate the PWO activity of Co4-bdt.

Figure S9. Dependence of initial rate of O<sub>2</sub> production on Co4-bdt and other MOFs.

Figure S10. Kinetics of O<sub>2</sub> formation in the oxidation reaction with chemical oxidants [Ru(bpy)<sub>3</sub>]<sup>3+</sup>.

Figure S11. Time-dependent oxygen evolution curves of Co4-bdt.

Figure S12. Stability tests of Co4-bdt after photocatalytic measurements.

Figure S13. Framework structures and coordination geometries of metal centers of the catalysts.

Figure S14. PXRD patterns of the catalysts.

Figure S15. SEM images of the catalysts

Figure S16. O<sub>2</sub> production profiles of the repeated photocatalytic water oxidation reactions.

Figure S17. Cyclic voltammetry curves for Co4-bdt at pH = 7 and the capacitive current density

(Ja/2-Jc/2) as a function of scan rate in the region of 0.85~1.25 V vs. RHE.

Figure S18. Onset potentials and Tafel plots of Co4-bdt and other MOFs.

Figure S19. Gas chromatography profiles of  $O_2$  and  $N_2$  in the electrolytic cell using Co4-bdt as anode after 0 and 9000 s electrolysis.

Figure S20. Dependence of the peak ratio of  $H_2^{18}O/H_2^{16}O$  and GC-MS profiles of the acidolyzed Co4-bdt.

Figure S21. GC-MS profile of PWO experiments with <sup>18</sup>O-labeled or unlabeled catalysts.

Figure S22. GC-MS profiles of the repeated photocatalytic water oxidation reactions.

**Figure S23**. GC-MS profiles of PWO experiments with <sup>18</sup>O-labeled **Co4-bdt** (in pH=9 aqueous solution ( $H_2^{16}O$ ) for 10 min) and <sup>18</sup>O-labeled **Co4-bdt** (after PWO experiment).

Figure S24. Rietveld refinement plots of Co4-bdt before and during PWO experiment.

 Table S1. Crystallographic Data for Co4-bdt.

Table S2. Comparison of the photocatalytic activities of Co4-bdt and heterogeneous catalysts.

Table S3. Comparison of the photocatalytic activities of Co4-bdt and homogeneous catalysts.

Table S4. Summary of the results of the photocatalytic water oxidation.

 Table S5. Summary of the results of the repeated photodriven water oxidation reaction.

Table S6. The obtained gas chromatography peak areas of  $O_2/N_2$  in the electrolytic cell.

**Table S7.** Comparison of the OER activities of **Co4-bdt** and benchmarked catalysts working at pH = 7.

**Table S8**. Summary of the  $H_2^{16}O$  and  $H_2^{18}O$  peak intensity of the acidolyzed **Co4-bdt**.

**Table S9**. Summary of the  ${}^{18/16}O_2$  peak intensity of the photodriven water oxidation reaction.

## Experimental section

**Photocatalytic Measurements**. A solution of 10 mL borate buffer containing (10 mg, 5 µmol) **Co4-bdt** was prepared and then 0.1 mL of the as-prepared solution was dispersed in 9.9 mL fresh borate buffer. After the borate buffer solution of **Co4-bdt** was mixed with [Ru(bpy)<sub>3</sub>]SO<sub>4</sub> and Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, the reaction mixture was purged with argon for 5 min and then the reaction was initiated with light irradiation. The total volume of the solution was 2.0 mL. The generation of dissolved oxygen was analyzed by a Hanstech Clark-type electrode irradiated under an LED light ( $\lambda = 450 \pm 5$  nm, with a light intensity of 100 mW cm<sup>-2</sup> and irradiated area of approximately 0.5 cm<sup>2</sup>). Each photocatalytic reaction was repeated three times to confirm the reliability of the data. The turnover frequency (TOF) was calculated using the initial rates of gas evolution (the slope of no<sub>2</sub>/n<sub>catalyst</sub> – time curves).

The concentration of Co in the filtrate was detected by the inductively coupled plasma-mass spectrometry. After PWO reaction (500 nmol catalysts in 2 mL solution), 1 mL of the filtrate was used for tests. The concentration of Co in the concentrated filtrate was detected as 6.05 ng/mL. Therefore, the dissolved Co ions of the MOF was 6.05 ng mL<sup>-1</sup> × 25 mL)/(250 nmol × 8 × 59 g mol<sup>-1</sup>) = 0.13%).

The determination of the total TON was performed as described below. A borate buffer solution (50 mM, pH 9.0, 50 mL) containing Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (20.0 mM) and a borate buffer solution (50 mM, pH 9.0, 50 mL) containing [Ru(bpy)<sub>3</sub>]SO<sub>4</sub> (10.0 mM) were prepared and syringe. Because the photosensitizer and sacrificial agents is easy to be deactivated under irradiation<sup>1</sup>, two syringes carrying Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> and [Ru(bpy)<sub>3</sub>]SO<sub>4</sub> solution respectively were placed at the dual channel syringe pump separately and both solutions were slowly injected into the quartz reactor at the rate of 5  $\mu$ L/min. During the injection, the solution was irradiated under an LED light. After one week or two weeks, the catalysts were recovered from the solution and used for the PWO reaction immediately.

Considering the time of PWO reaction is 100 s for each run, 1 or 2 weeks (604800 s or 1209600 s) of the injection and irradiation can be regarded as 6048 or 12096 rounds of recycle tests. As the performance of **Co4-bdt** does not decline after two weeks, the total TON can be calculated as 12096 times of the TON in a single run, which is 83 determined by a single PWO run. Therefore, the total TON of **Co4-bdt** > 12096 \* 83 = 1003968



Scheme S1 Photo of the photodriven water oxidation recycle system

Isotope labelling experiment. Isotopically pure <sup>18</sup>O-labeled Co<sub>4</sub>-bdt can be prepared via hydrothermal reaction with heavy-oxygen water,  $H_2^{18}O$ . <sup>18</sup>O-labeled Co<sub>3</sub>-in was synthesized via solvothermal reaction with  $H_2^{18}O$  as solution. <sup>18</sup>O-labeled Co<sub>2</sub>-bbta was synthesized according to the previous literature,<sup>2</sup> except that the  $H_2^{16}O$  solution of KOH was replaced by a  $H_2^{18}O$  solution of KOH. Isotopic tracing experiments (ITEs) were carried out by using <sup>18</sup>O-labeled or unlabeled Co<sub>4</sub>-bdt, Co<sub>3</sub>-in and Co<sub>2</sub>-bbta as photocatalyst. The suspensions were prepared by mixing 5 mL of the solvent ( $H_2^{16}O$ ) with 10 mg of the catalyst (<sup>18</sup>O-labeled or unlabeled catalysts), 77 mg of [Ru(bpy)<sub>3</sub>]SO<sub>4</sub> and 120 mg of Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>. Before illumination, the reactor was purged with N<sub>2</sub> gas (flow = 30 ml min<sup>-1</sup>) for 20 minutes in order to remove dissolved oxygen. The gas in the headspace was withdrawn using a gas-tight syringe and analyzed by GC-MS as the background. Then the light was turned on for 10 minutes and gas in the headspace was withdrawn and analyzed as the sample signal. The intensity of each signal from mass spectrum was calculated with background correction.

**Preparation of working electrodes.** Co4-bdt microcrystals coated on GCE using Nafion as binder: A suspension was prepared by dispersing Co4-bdt microcrystals (10 mg) in a mixed solution

(2 mL) containing ethanol (1.9 mL) and a 5 wt% Dupont Nafion 117 solution (0.1 mL), followed by ultrasonication for 30 min. Then the suspension (8  $\mu$ L) was pipetted on a GCE surface of a rotating disk electrode (RDE, 5 mm in diameter, Pine Research Instrumentation). Prior to pipette, the GCE was polished carefully with 1.0, 0.3 and 0.05  $\mu$ m alumina powder, successively, and rinsed with ultrapure water, followed by ultrasonication in ethanol and ultrapure water successively. The working electrode was dried at ambient temperature before electrochemical measurements.

Electrochemical Measurements. All measurements were performed in an RDE setup equipped with a three compartment electrochemical glass cell, a Luggin capillary, a PINE rotator (Pine Research Instrumentation), and a CHI 760E electrochemical workstation at room temperature with the O<sub>2</sub> saturated electrolyte, which was a 1.0 M potassium phosphate buffer (pH = 7) for OER. LSV was performed at a scan rate of 5 mV s<sup>-1</sup> and an electrode spin rate of 1200 rpm. All potentials were referenced to a saturated calomel electrode (SCE) reference electrode, and Pt wire was used as the counter electrode in all measurements. All potentials were adjusted to compensate for the ohmic potential drop losses ( $R_s$ ) that arose from the solution resistance and calibrated with respect to reversible hydrogen electrode (RHE).  $E_{vs.RHE} = E_{vs.SCE} + 0.2412 + 0.05916pH-iR_s$ .

**Measurement of the Faraday efficiency**. A piece of glass electrode (surface area =  $0.5 \text{ cm}^2$ ) attached with microcrystalline **Co4-bdt**, was used as the working electrode. The head space volume of the electrolytic cell and the volume of solution were measured to be 32.0 and 28.0 mL, respectively. Before measurement, the cell was purged by Ar gas for about 30 min to reduce the O<sub>2</sub> background. The oxygen concentrations were measured using gas chromatography (Agilent 7820A) equipped with Molecular sieve 5 Å capillary column and thermal conductivity detector.

A linear relationship between the O<sub>2</sub> concentration and its GC peak area was obtained by plotting three GC measurements of calibrated diluted O<sub>2</sub> samples:



The turnover frequency (TOF) of the catalyst for OER is defined as

 $\text{TOF} = n_{\text{O2}}/n_{\text{cat}}/t$ 

where  $n_{02}$  is the amount of oxygen (mol) produced,  $n_{cat}$  is the amount of catalytic active centers in the catalyst (mol) and *t* is the electrolysis time (s).

When the electrolysis current is all used for OER,

 $TOF_{theoretical} = J/(4 \times F \times m/M)$ 

Where *J* is the current density  $(mA \text{ cm}^{-2})$  at a given overpotential, *F* is the faraday constant (96485 C mol<sup>-1</sup>), *m* is the mass loading of the catalyst (mg cm<sup>-2</sup>), and M is the molecular weight of the catalyst unified with one active center per formula unit.

The Faraday efficiency for OER is calculated by

 $F_{\text{OER}} = \text{TOF} / \text{TOF}_{\text{theoretical}} \times 100\%$ 

Computational Methods. All simulations/calculations were performed by the Materials Studio 5.0 package. All energies were calculated by the periodic density functional theory (PDFT) method by the Dmol3 module. Full geometry optimizations with fixed cell parameters were performed to the widely The generalized with systems. used gradient approximation (GGA) the Perdew-Burke-Ernzerhof (PBE) functional and the double numerical plus d-functions (DNP) basis set, TS for DFT-D correction as well as the Effective Core Potentials (ECP) were used. The energy, force and displacement convergence criterions were set as  $1 \times 10^{-5}$  Ha,  $2 \times 10^{-3}$  Ha and  $5 \times 10^{-3}$  Å, respectively.



**Figure S1**. XPS spectrum of **Co4-bdt**. For **Co4-bdt**, the Co  $2p_{3/2}$  and  $2p_{1/2}$  peaks appear at *ca*. 781.7 eV and 797.2 eV and the Co  $2p_{3/2}$  and  $2p_{1/2}$  satellite peaks appear at *ca*. 786.4 eV and 803.2 eV, indicating the presence of Co(II) instead of Co(III).



**Figure S2**. (a) SEM images and (b) the corresponding particle size distribution of **Co4-bdt**. (c) TEM images.



Figure S3. (a) PXRD patterns of Co4-bdt after activated at 150  $^{\circ}$ C under N<sub>2</sub> for 30 min and (b) after heated at different temperatures under N<sub>2</sub> for 30 min.



**Figure S4**. TG curves of **Co4-bdt**. For the as-synthesized sample, there is a small weight decline between 500 and 600 °C in the TGA curve, which might be ascribed to amorphous impurity. The amorphous impurity could be removed by the treatment of MeOH-exchanged.



Figure S5. PXRD patterns of Co4-bdt after immersed in 6 M KOH.



Figure S6. N2 adsorption (solid) and desorption (open) isotherms of Co4-bdt at 77 K.



Figure S7. Control photocatalytic experiments using Co4-bdt as catalyst.

We further carried out a series of control experiments for **Co4-bdt** (Figure S13). When the reaction was operated in the absence of the MOF, light irradiation, photosensitizer, or sacrificial agent, just trace amount of  $O_2$  were detected, demonstrating the catalysis role of the MOF and necessities of the photosensitizer, sacrificial agent, and visible-light.



**Figure S8**. Using **Co4-bdt** as catalyst, addition of  $Na_2S_2O_8 + [Ru(bpy)_3]^{2+}$  (blue line),  $Na_2S_2O_8$  (orange line) and  $[Ru(bpy)_3]^{2+}$  (green line), respectively, to regenerate the PWO activity.



**Figure S9**. Dependence of initial rate of O<sub>2</sub> production on (a) **Co4-bdt** (b) **Co4-cpt**; (c) **Co3-in**; (d) **Co2-bbta**; (e) **Co-mim** and (f) **Co-dobdc** concentration at 15  $\mu$ M [Ru(bpy)<sub>3</sub>]<sup>3+</sup>. Conditions: 80 mM sodium borate buffer at pH 9.0, 298 K.



**Figure S10**. Kinetics of O<sub>2</sub> formation in the oxidation reaction with chemical oxidants  $[Ru(bpy)_3]^{3+}$ . Conditions: 0.5 nmol catalysts, 15  $\mu$ M  $[Ru(bpy)_3]^{3+}$ , 80 mM sodium borate buffer at pH 9.0, 298 K.



**Figure S11**. Time-dependent oxygen evolution curves of **Co4-bdt**. Conditions: 0.2 nmol catalysts, 1 M  $[\text{Ru}(\text{bpy})_3]^{3+}$ , 8 M sodium borate buffer at pH 9.0, 298 K. Notably, the TON value of **Co4-bdt** remained  $1.2 \times 10^6$  after 1 run, indicating that the TON is far greater than one million.



**Figure S12**. Stability tests of **Co4-bdt** after photocatalytic measurements in borate buffer (pH =9.0) for  $10^4$  cycles (a) PXRD patterns and (b) SEM images.



**Figure S13**. Framework structures and coordination geometries of metal centers (with and without terminal H<sub>2</sub>O) of (a) **Co4-cpt**, (b) **Co3-in**, (c) **Co2-bbta**, (d) **Co-dobdc**, (e) **Co-mim** and (f) **Co4-bdt**. Gray, light gray, red, blue and purple spheres represent C, H, O, N and Co atoms, respectively.



Figure S14. PXRD patterns of (a) Co4-cpt, (b) Co3-in, (c) Co2-bbta, (d) Co-dobdc and (e) Co-mim.



Figure S15. SEM images of (a) Co4-cpt, (b) Co3-in, (c) Co2-bbta, (d) Co-dobdc, (e) Co-mim.



**Figure S16**. O<sub>2</sub> production profiles of the repeated photocatalytic water oxidation reactions. (a) **Co4-cpt**, (b) **Co3-in**, (c) **Co2-bbta**, (d) **Co-mim** and (e) **Co-dobdc** and (f) **Co4-bdt**.



**Figure S17.** (a) Cyclic voltammetry curves for **Co4-bdt** at pH = 7; (b) the capacitive current density (Ja/2-Jc/2) as a function of scan rate in the region of 0.85~1.25 V *vs*. RHE.



**Figure S18**. Onset potentials of (a) **Co4-bdt** (b) **Co4-cpt**; (c) **Co3-in**; (d) **Co2-bbta**; (e) **Co-mim** and (f) **Co-dobdc** as well as (g) their Tafel plots at pH = 7.



Figure S19. Gas chromatography profiles of  $O_2$  and  $N_2$  in the electrolytic cell using Co4-bdt as anode after 0 and 9000 s electrolysis at the current density of 2 mA cm<sup>-2</sup> in water at pH = 7.



Figure S20. (a) Dependence of the peak ratio of  $H_2^{18}O/H_2^{16}O$  and (b-d) GC-MS profiles of the acidolyzed Co4-bdt.



**Figure S21**. GC-MS profiles of PWO experiments with (a) <sup>18</sup>O-labeled or (b) unlabeled **Co4-bdt**, (c) <sup>18</sup>O-labeled or (d) unlabeled **Co3-in** and (e) <sup>18</sup>O-labeled or (f) unlabeled **Co2-bbta**. Note: The intensity of <sup>16</sup>O<sup>16</sup>O (m/z = 32) is much weaker than that of <sup>18</sup>O<sup>16</sup>O (m/z = 34), which indicated that the <sup>18</sup>O-labeled  $\mu_{\pm}$ OH was exchanged by the water molecule during photodriven water oxidation reaction.



**Figure S22**. GC-MS profiles of the repeated photocatalytic water oxidation reactions with (a-c) <sup>18</sup>O-labeled and (d-f) unlabeled **Co4-bdt**.



**Figure S23**. GC-MS profiles of PWO experiments with (a) <sup>18</sup>O-labeled **Co4-bdt** (in pH=9 aqueous solution ( $H_2^{16}O$ ) for 10 min) and (b) <sup>18</sup>O-labeled **Co4-bdt** (after PWO experiment).



Figure S24. Rietveld refinement plots of Co4-bdt (a) before and (b) during PWO experiment.

| Complex                             | Co4-bdt        |
|-------------------------------------|----------------|
| Formula                             | C60H44N36O6C08 |
| Formula weight                      | 1834.73        |
| Temperature (K)                     | 150(2)         |
| Crystal system                      | Cubic          |
| Space group                         | Fm3m           |
| a/Å                                 | 25.363(15)     |
| $V/\text{\AA}^3$                    | 16315(14)      |
| Z                                   | 4              |
| $ ho_{ m calc}$ /g cm <sup>-3</sup> | 0.750          |
| $R_1 [I > 2\sigma(I)]^{[a]}$        | 0.0501         |
| $wR_2$ (all data) <sup>[b]</sup>    | 0.1553         |
| GOF                                 | 1.122          |

 Table S1. Crystallographic Data for Co4-bdt

<sup>[a]</sup>  $R_I = \sum ||F_o| - |F_c|| / \sum |F_o|;$  <sup>[b]</sup>  $wR_2 = \sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]^{1/2}.$ 

| Meterial                                                                                                 | photosensitizer                                                     | TOF<br>(s <sup>-1</sup> ) | TON              | Ref.                                             |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------|------------------|--------------------------------------------------|
| Co4-bdt<br>[Co8(OH)6(bdt)4(Hbdt)2]                                                                       | $[Ru(bpy)_3]SO_4(pH = 9.0)$                                         | 3.059                     | >10 <sup>6</sup> | This work                                        |
| $\begin{split} & [Co^{II}(H_2O)_{1.79}]_{1.42}[(Co^{III}_{0.85} \\ & Pt^{IV}_{0.15})(CN)_6] \end{split}$ | $[Ru(bpy)_3]SO_4 (pH = 8.0)$                                        | 45.5*10 <sup>-3</sup>     | 2.18             | Angew. Chem. Int. Ed. <b>2015</b> , 54, 5613.    |
| NiFe <sub>2</sub> O <sub>4</sub>                                                                         | $[Ru(bpy)_3]SO_4 (pH = 8.0)$                                        | 1.24*10-3                 | 0.75 (1)         |                                                  |
| Co <sub>3</sub> O <sub>4</sub>                                                                           | $[Ru(bpy)_3]SO_4 (pH = 8.0)$                                        | 1.16*10-3                 | N/A              | J. Am. Chem. Soc., <b>2012</b> ,134, 19572.      |
| MIL-101(Fe)                                                                                              | $[Ru(bpy)_3]SO_4 (pH = 10.0)$                                       | 41*10-3                   | 16.8             | Small <b>2016</b> , <i>12</i> , 1351             |
| NiMnO <sub>3</sub>                                                                                       | $[Ru(bpy)_3]SO_4 (pH = 7.0)$                                        | 3.1*10 <sup>-3</sup>      | 0.53             | Phys. Chem. Chem. Phys.                          |
| α-MnO <sub>2</sub>                                                                                       | $[Ru(bpy)_3]SO_4 (pH = 7.0)$                                        | 1.16*10-3                 | 0.59             | <b>2013</b> , <i>15</i> , 19125.                 |
| LaCoO <sub>3</sub>                                                                                       | $[Ru(bpy)_3](ClO_4)_2(pH = 7.0)$                                    | 2.84*10-3                 | 1.84             |                                                  |
| CoWO <sub>4</sub>                                                                                        | $[Ru(bpy)_3](ClO_4)_2(pH = 7.0)$                                    | 0.756*10-3                | 0.52             |                                                  |
| Co <sub>3</sub> O <sub>4</sub>                                                                           | [Ru(bpy) <sub>3</sub> ](ClO <sub>4</sub> ) <sub>2</sub> (pH = 7.0)  | 2.05*10-3                 | 1.21             |                                                  |
| $La_{0.7}Sr_{0.3}CoO_3$                                                                                  | $[Ru(bpy)_3](ClO_4)_2 (pH = 7.0)$                                   | 1.64*10 <sup>-3</sup>     | 1.11             | Phys. Chem. Chem. Phys., <b>2012</b> , 14, 5753. |
| NdCoO <sub>3</sub>                                                                                       | [Ru(bpy) <sub>3</sub> ](ClO <sub>4</sub> ) <sub>2</sub> (pH = 7.0)  | 2.40*10-3                 | NA               |                                                  |
| YCoO3                                                                                                    | $[Ru(bpy)_3](ClO_4)_2 (pH = 7.0)$                                   | 0.70*10-3                 | NA               |                                                  |
| Co-ZIF-67                                                                                                | [Ru(bpy) <sub>3</sub> ](ClO <sub>4</sub> ) <sub>2</sub>             | 35*10-3                   | 52.5             | New J. Chem., <b>2016</b> , 40, 3032             |
| MIL-101(Fe)                                                                                              | [Ru(bpy) <sub>3</sub> ](ClO <sub>4</sub> ) <sub>2</sub> (pH = 10.0) | 100*10-3                  | 27.3             | Small <b>2016</b> , <i>12</i> , 1351             |
| NiO/CoO/Fe <sub>2</sub> O <sub>3</sub>                                                                   | $[Ru(bpy)_3]Cl_2$ (pH = 8.5)                                        | 1.16*10-3                 | 1.89             | Dalton Trans. 2015, 44, 15628.                   |
| CoNCN                                                                                                    | $[Ru(bpy)_3]Cl_2(pH = 9.0)$                                         | 29.4*10 <sup>-3</sup>     | NA               | J. Mater. Chem. A, <b>2015</b> , <i>3</i> , 5072 |
| CoPOM/MIL-101(Cr)                                                                                        | [Ru(bpy)3]Cl2                                                       | 7.1*10 <sup>-3</sup>      | 8.52             | Applied Catalysis A: General, 2016, 521, 83      |
| Mn <sub>2</sub> O <sub>3</sub> (bixbyite)                                                                | $[Ru(bpy)_3]Cl_2(pH = 8.0)$                                         | 0.37*10-3                 | NA               |                                                  |
| Mn <sub>3</sub> O <sub>4</sub> (hausmannite)                                                             | $[Ru(bpy)_3]Cl_2(pH = 8.0)$                                         | 0.16*10-3                 | NA               | J. Am. Chem. Soc. 2013, 135, 3494.               |
| λ-MnO <sub>2</sub> (spinel)                                                                              | $[Ru(bpy)_3]Cl_2(pH = 8.0)$                                         | 0.055*10-3                | NA               |                                                  |

Table S2. Comparison of the photocatalytic activities of Co4-bdt and heterogeneous catalysts.

**Table S3.** Comparison of the photocatalytic activities of Co4-bdt and homogeneous catalysts. The parameters better than that of Co4-bdt are highlighted in blue.

| Meterial                                                                          | photosensitizer TOF<br>(s <sup>-1</sup> )               |                 | TON     | Ref.                                         |
|-----------------------------------------------------------------------------------|---------------------------------------------------------|-----------------|---------|----------------------------------------------|
| Cos                                                                               | [Ru(bpy) <sub>3</sub> ]SO <sub>4</sub>                  | 3.059           | >106    | This work                                    |
| PSII                                                                              | [Ru(bpy) <sub>3</sub> ]Cl <sub>2</sub>                  | 10 <sup>7</sup> | 500     | Biochem. J. <b>1980</b> , 188, 351           |
| $[(A\text{-}\alpha\text{-}SiW_9O_{34})_2Co_8(OH)_6(H_2O)_2(CO_3)_3]^{16\text{-}}$ | [Ru(bpy) <sub>3</sub> ]Cl <sub>2</sub>                  | 10              | 1436    | ChemSusChem <b>2015</b> , 8, 2630            |
| $[Co^{II}_{4}(hmp)_{4}(\mu\text{-OAc})_{2}(\mu_{2}\text{-OAc})_{2}(H_{2}O)_{2}]$  | [Ru(bpy)3]Cl2                                           | 7               | 40      | J. Am. Chem. Soc., <b>2013</b> , 135, 18734. |
| [Co <sup>III</sup> 4O4(OAc)4(py)4]                                                | [Ru(bpy) <sub>3</sub> ]Cl <sub>2</sub>                  | 0.02            | 40      | J. Am. Chem .Soc., <b>2011</b> , 133, 11446. |
| $[Co^{III}_4O_4(OAc)_4(p-C_5H_4X)_4]$                                             | [Ru(bpy) <sub>3</sub> ]Cl <sub>2</sub>                  | 0.07            | 140     | J. Am. Chem. Soc., 2012, 134, 11104.         |
| $[Co_3Ln(hmp)_4(OAc)_5H_2O] (Ln = Er, Tm, Yb)$                                    | [Ru(bpy) <sub>3</sub> ]Cl <sub>2</sub>                  | 9               | 160-200 | J. Am. Chem. Soc., <b>2015</b> , 137, 11076. |
| $[Co(qpy)(OH_2)_2]^{2+}$                                                          | [Ru(bpy)3]Cl2                                           | 4               | 335     | Energy Environ. Sci. <b>2012,</b> 5, 7903.   |
| $Na_{30}K_{2}[_{4}(GeW_{9}O_{34})_{4}]51H_{2}O$                                   | [Ru(bpy) <sub>3</sub> ]Cl <sub>2</sub>                  | 0.1             | 38.75   | J. Am. Chem. Soc. <b>2014</b> , 136, 5359    |
| $Na_{50}[Ni_{25}(H_2O)_2OH)_{18}(CO_3)_2(PO_4)_6(SiW_9O_{34})_6]$                 | [Ru(bpy)3]Cl2                                           | 0.34            | 204.5   | J. Am. Chem. Soc. <b>2015</b> , 137, 5486.   |
| CoTPPS                                                                            | [Ru(bpy) <sub>3</sub> ](NO <sub>3</sub> ) <sub>2</sub>  | 0.17            | 121.8   | Chem. Commun. <b>2013,</b> 49, 6325          |
| Salen Co(II)                                                                      | [Ru(bpy)3](ClO4)2                                       | 6.4             | 854     | Chem. Commun. 2014, 50, 2167                 |
| $Na_{10}[Co_4(H_2O)_2(PW_9O_{34})_2]27H_2O$                                       | [Ru(bpy) <sub>3</sub> ](ClO <sub>4</sub> ) <sub>2</sub> | 5               | 75      | Science, <b>2010</b> , 328, 342.             |

| Meterial                      | $TOF^{1st}(s^{-1})$ | $\Phi_{02}^{1st}$ (%) | TOF <sup>2nd</sup> (s <sup>-1</sup> ) | $\Phi_{02}^{2nd}$ (%) |
|-------------------------------|---------------------|-----------------------|---------------------------------------|-----------------------|
| Co4-bdt                       | 3.054               | 1.61                  | 3.031                                 | 1.60                  |
| Co4-cpt                       | 3.018               | 1.59                  | 1.498                                 | 0.79                  |
| Co3-in                        | 2.369               | 1.24                  | 0.483                                 | 0.25                  |
| <b>Co2-bbta</b><br>MAF-X27-OH | 1.745               | 0.92                  | 0.694                                 | 0.37                  |
| <b>Co-dobdc</b><br>Co-MOF-74  | 0.766               | 0.40                  | 0.380                                 | 0.20                  |
| Co-mim<br>ZIF-67              | 0.576               | 0.31                  | 0.366                                 | 0.19                  |

Table S4. Summary of the results of the photocatalytic water oxidation.

All photochemical experiments in this work were carried out under exposure to monochromatic light beam with an excitation wavelength of 450 nm. The apparent quantum yield of O<sub>2</sub> ( $\Phi_{O2}$ ):

 $\Phi_{02} = [2 \times (number of the produced molecule) / (number of photons)] \times 100\%$ 

Photon flux = (I×S) /  $(h \times c / \lambda)$  = 1.9×10<sup>-7</sup> mol/s.

Light intensity (I) = 100 mW/cm<sup>2</sup>. Area (S) =  $0.50 \text{ cm}^2$ .  $\lambda = 450 \text{ nm}$ .

*h* is Planck constant =  $6.62606957 \times 10^{-34}$  J s , *c* is velocity of light =  $3 \times 10^8$  m/s.

Note that the apparent quantum yield calculation does not consider the catalyst amount and many other aspects (such as the transparency of the reaction container), meaning that only the experiments carried out with the same setting are suitable for comparison of the apparent quantum yields.

| MOFs    | Co4-bdt           | Co4-cpt             | Co3-in              | Co2-bbta          | Co-dobdc            | Co-mim              |
|---------|-------------------|---------------------|---------------------|-------------------|---------------------|---------------------|
| Ι       | 3.033             | 2.960               | 2.294               | 1.721             | 0.746               | 0.586               |
| II      | 3.033             | 3.021               | 2.410               | 1.780             | 0.749               | 0.585               |
| III     | 3.097             | 3.021               | 2.405               | 1.735             | 0.803               | 0.556               |
| Average | 3.054             | 3.018               | 2.369               | 1.743             | 0.766               | 0.576               |
|         | $3.054 \pm 0.030$ | $3.018 {\pm} 0.046$ | $2.369 {\pm} 0.054$ | $1.745 \pm 0.025$ | $0.766 {\pm} 0.026$ | $0.576 {\pm} 0.014$ |

Table S5. Summary of the results of the repeated photodriven water oxidation reaction.

|              | <b>O</b> <sub>2</sub> | $N_2$  | O <sub>2</sub> /N <sub>2</sub> Ratio |
|--------------|-----------------------|--------|--------------------------------------|
| Air          | 1462.3                | 4352.1 | 0.336                                |
| After 0 s    | 8.967                 | 21.20  | 0.423                                |
| After 9000 s | 209.38                | 21.63  | 9.68                                 |

Table S6. The obtained gas chromatography peak areas of  $O_2/N_2$  in the electrolytic cell are:

The GC peak area (denoted as *A*) has a relationship: *A* (oxygen produced) = *A* (oxygen 9000 s) – *A* (oxygen 0 s) – *A* (oxygen leak from air) in which *A* (oxygen leak from air) = *A* (nitrogen leak from air) × ( $O_2/N_2$  Ratio) = (*A* (nitrogen 9000 s) – *A* (nitrogen 0 s)) × 0.336 = (21.63–21.20) × 0.336 = 0.144.

Therefore, A (oxygen produced) = A (oxygen 9000 s) – A (oxygen 0 s) – A (oxygen leak from air) = 209.38 - 8.967 - 0.144 = 200.27.

Giving  $n_{02} = O_2$  concentration(%) × head space volume / (22.4 × 298 / 273) = (200.27 + 0.968)/5772.14 × 32.0 / 1000 / 24.45 mol = 4.563 ×10<sup>-5</sup> mol = 4.563 µmol. Because  $n_{cat}$  = mass loading (mg cm<sup>-2</sup>) × electrode area (cm<sup>2</sup>) / molecular weight / 1000 = 8 × 0.22 × 0.5 / 2213 / 1000 = 3.976 × 10<sup>-7</sup> mol, TOF = 4.563 × 10<sup>-5</sup> / 3.976 × 10<sup>-7</sup> / 18000 = 0.00638 s<sup>-1</sup>.

Considering all Co ions in **Co4-bdt** (2213 g mol<sup>-1</sup>) as catalytic centers, M = 2213/8 = 276.62 g mol<sup>-1</sup>. TOF<sub>theoretical</sub> = 2.0 / (4 × 96485 × 0.22 / 276.62) = 0.00652 s<sup>-1</sup> for **Co4-bdt** at 2.0 mA cm<sup>-2</sup>.

 $F_{\text{OER}} = 0.00638 \text{ s}^{-1}/0.00652 \text{ s}^{-1} \times 100\% = 97.8\%$ 

Considering there is small amount of  $O_2$  dissolved in the solution which have been omitted (can be hardly measured accurately), the Faraday efficiency of **Co4-bdt** for OER can be considered as near/virtually 100%.

| Table S7. | Comparison | of the OER | activities of | Co4-bdt and | benchmarked | catalysts v | vorking at pH = |
|-----------|------------|------------|---------------|-------------|-------------|-------------|-----------------|
| 7.        |            |            |               |             |             |             |                 |

| Catalyst                                                                                                  | Onset<br>potential<br>(V vs.<br>RHE) | Overpotential<br>at 2 mA<br>cm <sup>-2</sup> (mV vs.<br>RHE) | Tafel<br>slope<br>(mV<br>dec <sup>-1</sup> ) | Mass loading<br>(mg cm <sup>-2</sup> ) | Substrate | Binder | Ref                                                            |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------|-----------|--------|----------------------------------------------------------------|
| Co4-bdt                                                                                                   | 1.54                                 | 352                                                          | 71                                           | 0.22                                   | GC        | Nafion |                                                                |
| Co4-cpt                                                                                                   | 1.54                                 | 355                                                          | 68                                           | 0.22                                   | GC        | Nafion |                                                                |
| Co3-in                                                                                                    | 1.54                                 | 385                                                          | 85                                           | 0.22                                   | GC        | Nafion |                                                                |
| Co2-bbta                                                                                                  | 1.548                                | 489                                                          | 120                                          | 0.22                                   | GC        | Nafion | This work                                                      |
| Co-dobdc                                                                                                  | 1.620                                | 544                                                          | 129                                          | 0.22                                   | GC        | Nafion | -                                                              |
| Co-mim                                                                                                    | 1.703                                | 638                                                          | 193                                          | 0.22                                   | GC        | Nafion |                                                                |
| Fe3-Co2                                                                                                   | 1.623                                | 463                                                          | 170                                          | 0.2                                    | GC        | Nafion | J. Am. Chem.                                                   |
| MOF-74-Co                                                                                                 | 1.641                                | 545                                                          | 127                                          | 0.2                                    | GC        | Nafion | Soc. 2017, 139,                                                |
| ZIF-67                                                                                                    | 1.688                                | 639                                                          | 192                                          | 0.2                                    | GC        | Nafion | 1778                                                           |
| MAF-X27-OH                                                                                                | 1.548                                | 489                                                          | 127                                          | 0.2                                    | GC        | Nafion | J. Am. Chem.<br>Soc., <b>2016</b> , 138,<br>8336.              |
| Composite of cobalt(II)<br>5,10,15,20-tetraethynyl-por<br>phyrin complex and<br>multiwall carbon nanotube | NA                                   | 620 (at 0.2 mA<br>cm <sup>-2</sup> )                         | 150                                          | 0.1                                    | GC        | Nafion | Chem. Mater.<br><b>2015</b> , 27, 4586                         |
| Co(OH)2                                                                                                   | 1.69                                 | 710 (at 1 mA<br>cm <sup>-2</sup> )                           | 400                                          | NA                                     | GC        | Nafion | Nanoscale <b>2013</b> ,<br>5, 6826                             |
| Fe based film                                                                                             | NA                                   | 550                                                          | NA                                           | 2.78                                   | GC        | Nafion | Angew. Chem.<br>Int. Ed. <b>2015</b> , 54,<br>4870             |
| NiOx                                                                                                      | NA                                   | 760                                                          | NA                                           | NA                                     | ITO glass | Nafion | Adv. Energy<br>Mater. <b>2014</b> , 4,<br>1301929              |
| Mn oxide film                                                                                             | NA                                   | 620                                                          | 80                                           | NA                                     | ITO glass | Nafion | <i>Energy Environ.</i><br><i>Sci.</i> <b>2012</b> , 5,<br>7081 |
| K2xCo(2-x)[Fe(CN)6]                                                                                       | NA                                   | 470 (at 0.1 mA<br>cm <sup>-2</sup> )                         | NA                                           | NA                                     | ITO glass | Nafion | J. Am. Chem.<br>Soc. <b>2013</b> , 135,<br>13270.              |
| Co3(PO4)2                                                                                                 | NA                                   | 460                                                          | NA                                           | NA                                     | ITO glass | Null   | Science <b>2008</b> ,<br>321, 1072                             |
| Fe based film                                                                                             | 1.70                                 | 504                                                          | 47                                           | 12.3 nmol                              | ITO glass | Nafion | ACS Appl. Mater.                                               |

|                          |       |                                      |     | $\mathrm{cm}^{-2}$ |                             |        | Interfaces, 2015,<br>7. 21852.                       |
|--------------------------|-------|--------------------------------------|-----|--------------------|-----------------------------|--------|------------------------------------------------------|
| Co(OH)2                  | 1.59  | 650                                  | NA  | NA                 | FTO glass                   | Nafion | Nanoscale <b>2014</b> ,<br>6, 3376                   |
| CoNi LDHs                | 1.623 | 490 (at 1 mA<br>cm <sup>-2</sup> )   | 230 | NA                 | FTO glass                   | Nafion | Phys. Chem.<br>Chem. Phys.<br><b>2013</b> , 15, 7363 |
| Mn5O8                    | NA    | 513                                  | 154 | NA                 | FTO glass                   | Nafion | ACS Catal. <b>2015</b> , 5, 4624                     |
| Au/Co(OH)2               | NA    | 650                                  | 370 | NA                 | FTO glass                   | Nafion | Nanoscale <b>2013</b> ,<br>5, 6826                   |
| Co-ZIF-9                 | 1.6   | 690 (at 0.6 mA<br>cm <sup>-2</sup> ) | 193 | 0.3                | FTO glass                   | Nafion | Nanoscale, <b>2014</b> ,<br>6, 9930                  |
| Co0.66Cu0.34(CO3)0.5(OH) | 1.75  | 800                                  | NA  | NA                 | FTO glass                   | Nafion | Nanoscale <b>2014</b> ,<br>6, 3376                   |
| ZnCo2O4                  | NA    | 540                                  | 85  | NA                 | Pt-Ti alloy<br>coated glass | Nafion | J. Phys. Chem.<br>Lett. <b>2014</b> , 5,<br>2370     |
| LiMnP2O7                 | NA    | 600 (at 0.2 mA<br>cm <sup>-2</sup> ) | NA  | 0.25               | Al foil                     | Nafion | J. Am. Chem.<br>Soc. <b>2014</b> , 136,<br>4201      |

| Run     | $H_2^{16}O$                   | $H_2^{18}O$                 | $H_2{}^{18}O / H_2{}^{16}O$  |
|---------|-------------------------------|-----------------------------|------------------------------|
| Ι       | $2.83 \times 10^{6}$          | $1.51 	imes 10^4$           | $5.33 \times 10^{-3}$        |
| II      | $3.06 \times 10^{6}$          | $1.70 	imes 10^4$           | $5.55 \times 10^{-3}$        |
| III     | $2.59 	imes 10^6$             | $1.37 	imes 10^4$           | $5.30 \times 10^{-3}$        |
| Average | $2.83 	imes 10^6$             | $1.53 	imes 10^4$           | $5.40 \times 10^{-3}$        |
|         | $2.83 \pm 0.19 \times 10^{6}$ | $1.53 \pm 0.13 \times 10^4$ | $5.40\pm0.11 \times 10^{-3}$ |

**Table S8**. Summary of the  $H_2^{16}O$  and  $H_2^{18}O$  peak intensity of the acidolyzed **Co4-bdt**.

100 µmol of **Co4-bdt** was dissolved in 1mL concentrated sulfuric acid. The pH value of the solution was carefully adjusted to neutral by NaOH and the solution was diluted with water to 10 mL (556 mmol H<sub>2</sub>O). Theoretically, the extent of <sup>18</sup>O was calculated as 100\*6 µmol / 556 mmol = 0.108%. As shown in Figure S25 and Table S9, the peak ratio of H<sub>2</sub><sup>18</sup>O/H<sub>2</sub><sup>16</sup>O =  $5.40*10^{-3}$ . Based on the standard curve, H<sub>2</sub><sup>18</sup>O% = ( $5.40*10^{-3} - 0.001$ ) / 0.091 = 0.0484%. Therefore, the extent of <sup>18</sup>O catalyst incorporation was calculated as 0.0476% / 0.108% = 44.8%.

Table S9. Summary of the <sup>18/16</sup>O<sub>2</sub> peak intensity of the photodriven water oxidation reaction.

| Run     | <sup>18</sup> O-labeled     | Unlabeled                   |
|---------|-----------------------------|-----------------------------|
| Ι       | $2.53 	imes 10^4$           | $8.87 	imes 10^3$           |
| II      | $3.25 	imes 10^4$           | $9.01 	imes 10^3$           |
| III     | $2.82 	imes 10^4$           | $9.24 	imes 10^3$           |
| Average | $2.87 	imes 10^4$           | $9.04 	imes 10^3$           |
|         | $2.87 \pm 0.29 \times 10^4$ | $9.04\pm0.15 \times 10^{3}$ |

### References

(1) Huang, Z.; Luo, Z.; Geletii, Y. V.; Vickers, J. W.; Yin, Q.; Wu, D.; Hou, Y.; Ding, Y.; Song, J.; Musaev, D. G.; Hill, C. L.; Lian, T., Efficient Light-Driven Carbon-Free Cobalt-Based Molecular Catalyst for Water Oxidation. *J. Am. Chem. Soc.* **2011**, *133*, 2068-2071.

(2) Lu, X.-F.; Liao, P.-Q.; Wang, J.-W.; Wu, J.-X.; Chen, X.-W.; He, C.-T.; Zhang, J.-P.; Li, G.-R.; Chen, X.-M., An Alkaline-Stable, Metal Hydroxide Mimicking Metal–Organic Framework for Efficient Electrocatalytic Oxygen Evolution. *J. Am. Chem. Soc.* **2016**, *138*, 8336-8339.