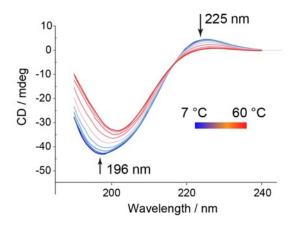
Supporting Information for:

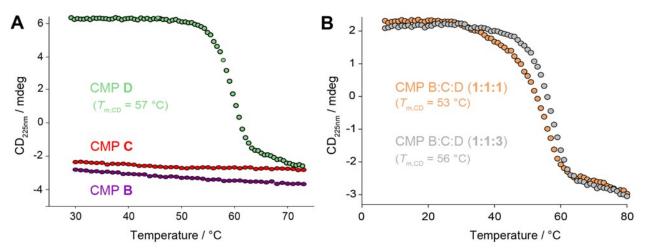
Temperature-controlled Electrospray Ionization Mass Spectrometry as a Tool to Study Collagen Homo- and Heterotrimers

Martin Köhler, Adrien Marchand, Nina B. Hentzen, Jasmine Egli, Alina I. Begley, Helma Wennemers* and Renato Zenobi*

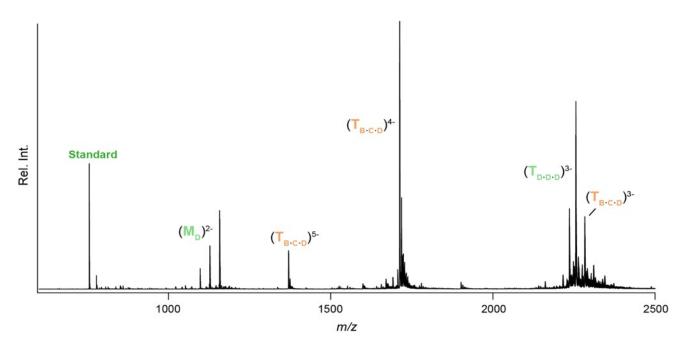
Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland

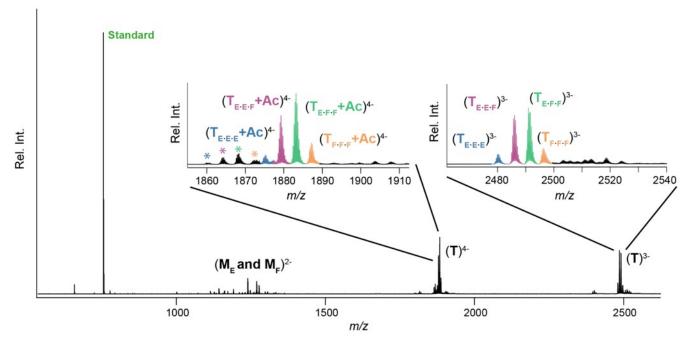

*Correspondence and requests for materials should be addressed to

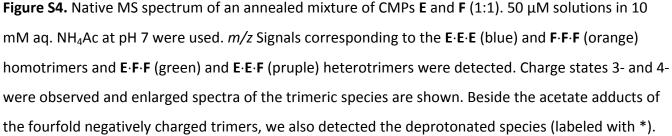
R.Z. (email: zenobi@org.chem.ethz.ch, Tel.: +41 44 632 43 76)

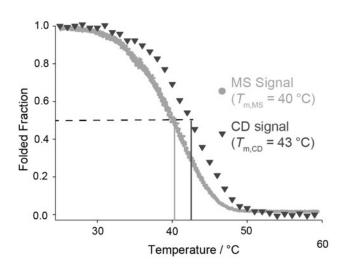

and H.W. (email: helma.wennemers@org.chem.ethz.ch, Tel.: +41 44 633 37 77)

Contents of supporting information:


- Figure S1. CD spectroscopy scans of CMP A at different temperatures
- Figure S2. Thermal denaturation profiles via CD spectroscopy of CMPs B, C, D and B:C:D mixtures
- Figure S3. Native MS spectrum of an annealed mixture of CMP B:C:D (1:1:3)
- Figure S4. Native MS spectrum of an annealed mixture of CMP E:F (1:1)
- Figure S5. Comparison of melting curves of CMP E:F (1:1) obtained via CD spectroscopy and MS
- Figure S6. Native MS spectrum of CMP A with corresponding ion mobility data
- **Table S1.** Overview of T_m values obtained via CD spectroscopy and MS


Figure S1. CD spectroscopy of CMP **A** (50 μ M in 10 mM aq. NH₄Ac at pH 7) at different temperatures ranging from 7 °C to 60 °C. Two CD bands were detected at 225 nm and 196 nm, which are indicative of triple helix formation.




Figure S2. (**A**) CD spectroscopic thermal denaturation studies of CMP **B** (purple), **C** (red) and **D** (green). 50 μ M solutions in 10 mM aq. NH₄Ac at pH 7 were used. Only CMP **D** showed a characteristic, sigmoidal melting curve with a $T_{M,CD}$ = 57 °C (heating rate of 1 °C/min). (**B**) CD spectroscopic thermal denaturation studies of mixtures of CMPs **B**, **C**, and **D** in molar ratios of 1:1:1 (orange) and 1:1:3 (gray). 100 μ M solutions in 10 mM aq. NH₄Ac at pH 7 were used. The following melting temperatures were obtained: **B**:**C**:**D** (1:1:1): $T_{M,CD}$ = 53 °C and **B**:**C**:**D** (1:1:3): $T_{M,CD}$ = 56 °C (heating rate of 1 °C/min).

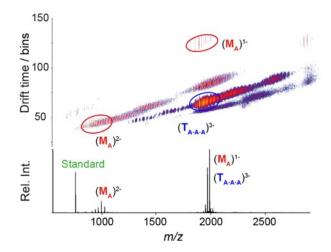

Figure S3. Native MS spectrum of an annealed mixture of CMPs **B**:**C**:**D** (1:1:3). 100 μ M of total peptide concentration in 10 mM aq. NH₄Ac at pH 7 was used. *m/z* Signals corresponding to the specific **B**·**C**·**D** heterotrimer and the **D**·**D**·**D** homotrimer are present.

Figure S5. Folded fractions of the triple helices formed in a mixture of CMPs **E** and **F** (1:1) as a function of temperature, as monitored by CD spectroscopy (triangles) and MS (dots). 50 μ M solutions in 10 mM aq. NH₄Ac at pH 7 were used. For comparison with melting temperatures obtained by CD spectroscopy, the signals of all trimeric species detected by temperature-controlled MS were summed up and normalized. The obtained melting temperatures of $T_{m,CD}$ = 43 °C and $T_{m,MS}$ = 40 °C are in good agreement (heating rate of 1°C/min).

Figure S6. Native ESI MS spectrum of CMP **A** with the corresponding ion mobility. The signal of the triply negatively charged $\mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}$ homotrimer ($T_{A \cdot A \cdot A}$) overlaps with the signal of the singly charged CMP **A** monomer (M_A).

Table S1. Comparison of T_m values as determined by thermal denaturation studies^a using CD spectroscopy or temperature-controlled nESI MS as monitoring tools. All values determined at a heating rate of 1 °C/min for 50 μ M (or 100 μ M for B·C·D) solutions in 10 mM aq. NH₄Ac at pH 7.

Entry	Composition of triple helix	T _{m,CD} / ℃	T _{m,MS} ∕°C
1	Α·Α·Α	46	45
2	B·C·D	53	53
3	D·D·D	57	55
4	E·E·E	38	35
5	E·E·F	n.d.	38
6	E·F·F	n.d.	42
7	F·F·F	46	43