Electronic Supplementary Information for:

Reversal of reaction type selectivity by Lewis acid coordination: the ortho photocycloaddition

of 1- and 2-naphthaldehyde

Simone Stegbauer, Noah Jeremias, Christian Jandl, and Thorsten Bach

Inhalt

1.	General information	S2
2.	Analytical methods	S4
3.	Experimental procedure	S6
3.1	Photochemical carbonyl addition reactions	S6
3.2	Lewis acid catalysed irradiation experiments of 1-naphthaldehyde	S14
3.3	Lewis acid catalysed irradiation experiments of 2-naphthaldehyde	S34
4.	NMR spectra of new compounds	S45
5.	Datasheets of fluorescent light sources	
6.	UV/Vis spectra	S68
7.	Luminescence measurements	
8.	Stereoconvergent reaction of 2-naphthaldehyde and 3-hexene	S74
9.	Low-temperature NMR experiments	S77
10.	X-ray crystallographic details	
11.	References	

1. General information

All air and moisture sensitive reactions were carried out in flame-dried glassware under a positive pressure of dry argon (4.8, purity 99.998%) using standard *Schlenk* techniques.

Commercially available chemicals were used without further purification unless otherwise mentioned.

For moisture sensitive reactions, tetrahydrofuran (THF) and dichloromethane (CH₂Cl₂) were dried using a MBSPS 800 *MBraun* solvent purification system. The following columns were used:

THF:	$2 \times MB$ -KOL-M type 2 (3 Å molecular sieve)
CH ₂ Cl ₂ :	2 × MB-KOL-A type 2 (aluminium oxide)

The following dry solvents are commercially available and were used without further purification:

acetonitrile: Acros Organics, 99.9% extra dry, over molecular sieves.

benzene: Sigma Aldrich, 99.8%, anhydrous.

toluene: Acros Organics, 99.5% extra dry, over molecular sieves.

For photochemical reactions, dry dichloromethane and dry acetonitrile were degassed by four freeze-pump-thaw cycles and stored over activated molecular sieve (dichloromethane: 4 Å molecular sieve, acetonitrile: 3 Å molecular sieve). *n*-Hexane was distilled from CaH₂, degassed by four freeze-pump-thaw cycles and stored over 3 Å activated molecular sieves.

Olefins for Lewis acid catalysed photoreactions were prepared as follows: 2,3-Dimethyl-2butene (\geq 99%, *Sigma Aldrich*) was degassed by four freeze-pump-thaw cycles and stored under argon before use. Cyclopentene (96%, *Sigma Aldrich*) was distilled, filtered over activated, basic aluminium oxide, degassed by four freeze-pump-thaw cycles and stored under argon prior to use. (*E*)- and (*Z*)-hex-3-ene [(*E*)-**17** >99.0%, *TCI*; (*Z*)-**17** >97.0%, *TCI*] were filtered over activated, basic aluminium oxide prior to use.

In the non-Lewis acid catalysed photoreactions 2,3-dimethyl-2-butene (98%, *Sigma Aldrich*) was distilled and used without further purification.

Technical solvents for column chromatography (pentane, diethyl ether, ethylacetate) were used after simple distillation.

Flash column chromatography was performed on silica 60 (*Merck*, 230-400 mesh) with the indicated eluent mixtures.

Photochemical experiments at 300 nm and 366 nm were carried out in flame-dried *Duran* tubes (diameter = 1 cm) in a positive geometry setup (cylindrical array of 16 UV-A lamps, *Rayonet* RPR-3000, $\lambda_{max} = 300$ nm or Fluorescent light tube, UV-A, $\lambda_{max} = 366$ nm) with the sample placed in the center of the illumination chamber.

Photochemical experiments using a LED were carried out in a *Schlenk* tube (diameter = 1 cm) with a polished quartz rod as an optical fiber, which was roughened by sandblasting at one end. The roughed end has to be completely submerged in the solvent during the reaction, in order to guarantee optimal and reproducible irradiation conditions.¹ If necessary the *Schlenk* tubes were cooled to $-40 \,^{\circ}$ C or $-78 \,^{\circ}$ C by using an *Huber* TC100E immersion cooler with ethanol as coolant.

Ice/water (0 °C) or dry ice/ethanol (-78 °C) were used as cooling baths.

2. Analytical methods

Melting points (**M.p.**) were determined using a *Kofler* heating bar designed by *L. Kofler* (*Reichert*) without correction or using a *Büchi* M-510 melting point apparatus, with range quoted to the nearest whole number.

Thin layer chromatography (TLC) was performed on silica coated glass plates (*Merck*, silica 60 F254) with detection by UV-light ($\lambda = 254$ nm) and/or by staining with a potassium permanganate solution [KMnO₄] and/or cerium ammonium molybdate solution [CAM] followed by heat treatment.

 $KMnO_4$ -staining solution: potassium permanganate (3.00 g), potassium carbonate (20.0 g) and 5% aqueous sodium hydroxide solution (5.00 mL) in water (300 mL).

CAM-staining solution: cerium sulfate heptahydrate (1.00 g), ammonium molybdate (25.0 g), sulfuric acid (25.0 mL) in water (250 mL).

Infrared spectra (IR) were recorded on a *Perkin Elmer* Frontier Optica+SP10 spectrometer by ATR technique. The signal intensity is assigned using the following abbreviations: vs (very strong), s (strong), m (medium), w (weak).

Standard nuclear magnetic resonance spectra were recorded at room temperature either on a *Bruker* AVHD-300, AVHD-400, AVHD-500 or an AV-500 cryo. ¹H NMR spectra were calibrated to the residual proton signal of chloroform-d₁ ($\delta = 7.26$ ppm) or dimethylsulfoxide-d₆ ($\delta = 2.50$ ppm). ¹³C NMR spectra were referenced to the ¹³C-D triplet of CDCl₃ ($\delta = 77.16$ ppm) or to the ¹³C-D septet of DMSO-d₆ ($\delta = 39.5$ ppm). Apparent multiplets which occur as a result of coupling constant equality between magnetically non-equivalent protons are marked as virtual (*virt.*). Following abbreviations for single multiplicities were used: *br* – broad, s – singlet, d – doublet, t – triplet, q – quartet, quint – quintet, sept – septet, m – multiplet. Assignment and multiplicity of the 13 C NMR signals were determined by two-dimensional NMR experiments (COSY, HSQC, HMBC, NOESY).

Low-temperature nuclear resonance spectra were recorded at 213 K (-60 °C) on a *Bruker* DRX400 spectrometer using Ptfe500-5-7 NMR-tubes (*Deutero*). ¹H NMR spectra were calibrated to the residual proton signal of methylene chloride-d₂ ($\delta = 5.30$ ppm). ¹³C NMR spectra were referenced to the ¹³C-D quintet of CD₂Cl₂ ($\delta = 54.00$ ppm).

Mass Spectroscopy (MS) and High Resolution Mass Spectroscopy (HRMS) was measured on a *Thermo Scientific* DFS-HRMS spectrometer (EI, 70 eV).

UV/Vis Spectroscopy was measured on a *Perkin Elmer* Lambda 35 UV/Vis spectrometer. Spectra were recorded using a *Hellma* precision cell made of quartz *Suprasil* with a pathway of 1 mm. Solvents and concentrations are given for each spectrum.

Luminescence Measurements were performed on Horiba Scientific FluoroMax-4 instrument (part number J810005 rev. C) to record emission spectra.

3. Experimental procedure

3.1 Photochemical carbonyl addition reactions

Irradiation of 1-Naphthaldehyde (1)

A solution of 1-naphthaldehyde (1, 65.7 mg, 420 μ mol, 1.00 eq.) in 2,3-dimethyl-2-butene (5.00 mL, 3.54 g, 42.1 mmol, 100 eq.) was irradiated at $\lambda = 366$ nm for 20 h. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography (silica, P/EtOAc = 100/1 \rightarrow 75/1 \rightarrow 60/1). 35.1 mg of oxetane **5a** (146 μ mol, 35%) were obtained as a colourless oil besides 13.3 mg of carbonyl addition product **6a** (55.3 μ mol, 13%) as a colourless oil and 15.6 mg of carbonyl addition product **7a** (64.9 μ mol, 15%) as a pale yellow oil.

2,2,3,3-Tetramethyl-4-(naphthalen-1'-yl)oxetane (5a)

TLC: $R_f = 0.69$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 3051 (w, sp²-CH), 2964 (m, sp³-CH), 2923 (m, sp³-CH), 2870 (w, sp³-CH), 1713 (m), 1371 (m, sp³-CH), 1283 (w, C-O-C), 1146 (m, C-O-C), 800 (m, sp²-CH), 781 (m, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 300 K): δ [ppm] = 0.66 (s, 3 H, C-3-CH₃), 1.36 (s, 3 H, C-2-CH₃), 1.52 (s, 3 H, C-3-CH₃), 1.60 (s, 3 H, C-2-CH₃), 6.14 (d, ${}^{4}J$ = 1.1 Hz, 1 H, H-4), 7.45 – 7.49 (m, 2 H, H-6', H-7'), 7.54 (*virt.* t, ${}^{3}J \approx {}^{3}J$ = 7.6 Hz, 1 H, H-3'), 7.67 – 7.71 (m, 1 H, H-8'), 7.76 (d, ${}^{3}J$ = 8.1 Hz, 1 H, H-4'), 7.84 (*virt.* dt, ${}^{3}J$ = 7.1 Hz, ${}^{4}J \approx {}^{4}J$ = 1.2 Hz, 1 H, H-2'), 7.85 – 7.88 (m, 1 H, H-5').

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 19.6 (q, C-3-*C*H₃), 23.8 (q, C-3-*C*H₃), 25.5 (q, C-2-*C*H₃), 25.5 (q, C-2-*C*H₃), 44.0 (s, C-3), 85.0 (d, C-4), 85.4 (s, C-2), 123.1 (d, C-8'), 123.4 (d, C-2'), 125.5 (d, C-3'*), 125.8 (d, C-6'*), 125.8 (d, C-7'*), 127.3 (d, C-4'), 128.9 (d, C-5'), 130.6 (s, C-8'a), 133.3 (s, C-4'a), 137.1 (s, C-1').

* assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 240 (2) [M]⁺, 214 (3), 182 (6), 167 (13), 155 (19), 127 (18) [M - C₇H₁₃O]⁺, 84 (100) [C₆H₁₂]⁺, 69 (42), 42 (9).

HRMS (EI, 70 eV): calcd for $C_{17}H_{20}O[M]^+$: 240.1509; found: 240.1509.

calcd for C₁₆¹³CH₂₀O [M]⁺: 241.1542; found: 241.1541.

2,2,3-Trimethyl-1-(naphthalen-1'-yl)but-3-en-1-ol (6a)

TLC: $R_{\rm f} = 0.56$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 3460 (m, OH), 3051 (w, sp²-CH), 2973 (s, sp³-CH), 2883 (w, sp³-CH), 1632 (w), 1464 (w, sp³-CH), 1376 (m, OH), 1163 (w), 1060 (m), 893 (w), 800 (m, sp²-CH), 780 (s, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.89 (s, 3 H, C-2-CH₃), 1.12 (s, 3 H, C-2-CH₃), 2.01 (dd, ${}^{4}J$ = 1.4 Hz, ${}^{4}J$ = 0.7 Hz, 3 H, C-3-CH₃), 2.18 (*br* s, 1 H, OH), 5.08 – 5.09 (m, 1 H, *H*H-4), 5.10 (*virt.* quint, ${}^{2}J \approx {}^{4}J$ = 1.4 Hz, 1 H, HH-4), 5.67 (s, 1 H, H-1), 7.44 – 7.51 (m, 2 H, H-6', H-7')[#], 7.52 (*virt.* t, ${}^{3}J \approx {}^{3}J$ = 7.7 Hz, 1 H, H-3')[#], 7.74 (dd, ${}^{3}J$ = 7.7 Hz, ${}^{4}J$ = 1.3 Hz, 1 H, H-2'), 7.80 (d, ${}^{3}J$ = 8.1 Hz, 1 H, H-4'), 7.86 (dd, ${}^{3}J$ = 7.9 Hz, ${}^{4}J$ = 1.7 Hz, 1 H, H-5'), 8.18 (dd, ${}^{3}J$ = 8.6 Hz, ${}^{4}J$ = 1.4 Hz, 1 H, H-8').

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 20.3 (q, C-3-*C*H₃), 20.5 (q, C-2-*C*H₃), 25.2 (q, C-2-*C*H₃), 46.0 (s, C-2), 71.8 (d, C-1), 113.5 (t, C-4), 124.0 (d, C-8'), 125.1 (d, C-3'*), 125.2 (d, C-6'*), 125.6 (d, C-7'*), 126.6 (d, C-2'), 128.1 (d, C-4'), 129.0 (d, C-5'), 132.4 (s, C-8a'), 133.6 (s, C-4a'), 136.5 (s, C-1'), 151.2 (s, C-3).

[#] signals are partially overlapped.

* assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 240 (3) [M]⁺, 207 (2), 179 (2), 165 (4), 157 (98) [M - C₆H₁₁]⁺, 129 (100), 84 (94) [C₆H₁₂]⁺, 69 (27), 41 (10).

HRMS (EI, 70 eV): calcd for $C_{17}H_{20}O[M]^+$: 240.1509; found: 240.1512.

calcd for C_{16}^{13} CH₂₀O [M]⁺: 241.1542; found: 241.1543.

3,4-Dimethyl-1-(naphthalen-1'-yl)pent-3-en-1-ol (7a)

TLC: $R_f = 0.44$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): ṽ [cm⁻¹] = 3407 (m, OH), 3050 (w, sp²-CH), 2974 (w, sp³-CH), 2921 (m, sp³-CH),
2859 (w, sp³-CH), 1511 (w), 1443 (w, sp³-CH), 1374 (m, OH), 1165 (m), 1017 (w), 799 (s, sp²-CH), 777 (vs, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 300 K): δ [ppm] = 1.74 (*br* s, 6 H, C-3-CH₃, C-4-CH₃), 1.81 (s, 3 H, C-4-CH₃), 2.18 (d, ${}^{3}J$ = 1.9 Hz, 1 H, OH), 2.50 (dd, ${}^{2}J$ = 13.9 Hz, ${}^{3}J$ = 3.9 Hz, 1 H, *H*H-2), 2.81 (dd, ${}^{2}J$ = 13.9 Hz, ${}^{3}J$ = 9.8 Hz, ${}^{3}J$ = 9.8 Hz, ${}^{3}J$ = 9.8 Hz, ${}^{3}J$ = 9.8 Hz, ${}^{3}J$ = 3.9 Hz, ${}^{3}J$ = 3.9 Hz, ${}^{3}J$ = 1.9 Hz, 1 H, H-1), 7.47 – 7.53 (m, 3 H, H-3', H-6', H-7'), 7.75 (*virt.* dt, ${}^{3}J$ = 7.1 Hz, ${}^{4}J \approx {}^{4}J$ = 1.0 Hz, 1 H, H-2'), 7.78 (d, ${}^{3}J$ = 8.2 Hz, 1 H, H-4'), 7.88 (dd, ${}^{3}J$ = 7.8 Hz, ${}^{4}J$ = 1.9 Hz, 1 H, H-5'), 8.13 (dd, ${}^{3}J$ = 8.7 Hz, ${}^{4}J$ = 1.3 Hz, 1 H, H-8').

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 18.8 (q, C-4-*C*H₃), 20.9 (q, C-3-*C*H₃*), 21.1 (q, C-4-*C*H₃*), 44.1 (t, C-2), 69.4 (d, C-1), 123.0 (d, C-2'), 123.1 (d, C-8'), 124.3 (s, C-3**), 125.5 (d, C-3'***), 125.7 (d, C-6'***), 126.0 (d, C-7'***), 127.9 (d, C-4'), 129.0 (d, C-5'), 129.5 (s, C-4**), 130.5 (s, C-8a'), 133.9 (s, C-4a'), 140.3 (s, C-1').

*, **,*** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 240 (2) [M]⁺, 222 (5), 207 (12), 192 (9), 165 (6), 157 (97) [M - C₆H₁₁]⁺, 129 (100), 84 (93) [C₆H₁₂]⁺, 69 (24), 55 (19).

HRMS (EI, 70 eV): calcd for $C_{17}H_{20}O[M]^+$: 240.1509; found: 240.1510.

calcd for $C_{16}^{13}CH_{20}O[M]^+$: 241.1542; found: 241.1543.

Irradiation of 2-Naphthaldehyde (2)

A solution of 2-naphthaldehyde (2, 65.7 mg, 420 μ mol, 1.00 eq.) in 2,3-dimethyl-2-butene (5.00 mL, 3.54 g, 42.1 mmol, 100 eq.) was irradiated at $\lambda = 366$ nm for 20 h. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography (silica, P/Et₂O = 50/1 \rightarrow 40/1 \rightarrow 10/1). 35.3 mg of oxetane **5b** (147 μ mol, 35%) were obtained as a colourless solid besides 23.3 mg of carbonyl addition product **6b** (96.9 μ mol, 23%) as a colourless oil and 21.5 mg of carbonyl addition product **7b** (89.5 μ mol, 21%) as a colourless oil.

2,2,3,3-Tetramethyl-4-(naphthalen-2'-yl)oxetane (5b)

M.p.: 28 °C.

TLC: $R_f = 0.78$ (P/Et₂O = 4/1) [UV, KMnO₄].

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3057 (w, sp²-CH), 2980 (s, sp³-CH), 2924 (m, sp³-CH), 2869 (w, sp³-CH), 1714 (m), 1371 (m, sp³-CH), 1284 (s, C-O-C), 1123 (vs, C-O-C), 779 (s, sp²-CH), 759 (m, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 300 K): δ [ppm] = 0.74 (s, 3 H, C-3-CH₃), 1.32 (s, 3 H, C-3-CH₃), 1.36 (s, 3 H, C-2-CH₃), 1.56 (s, 3 H, C-2-CH₃), 5.58 (s, 1 H, H-4), 7.29 (dd, ${}^{3}J$ = 8.4 Hz,

 ${}^{4}J = 1.6$ Hz, 1 H, H-3'), 7.44 – 7.50 (m, 2 H, H-6', H-7'), 7.80 (d, ${}^{3}J = 8.4$ Hz, 1 H, H-4'), 7.82 (*br* s, 1 H, H-1')[#], 7.82 – 7.87 (m, 2 H, H-5', H-8')[#].

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 20.2 (q, C-3-*C*H₃), 23.6 (q, C-3-*C*H₃), 25.3 (q, C-2-*C*H₃), 25.4 (q, C-2-*C*H₃), 44.0 (s, C-3), 85.7 (s, C-2), 87.0 (d, C-4), 123.7 (d, C-3'), 123.8 (d, C-1'), 125.6 (d, C-6'*), 126.1 (d, C-7'*), 127.6 (d, C-4'), 127.8 (d, C-5'**), 128.1 (d, C-8'**), 132.9 (s, C-4a'), 133.4 (s, C-8a'), 138.3 (s, C-2').

[#] signals are partially overlapped.

*, ** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 240 (3) [M]⁺, 182 (18), 167 (21), 156 (27) [M - C₆H₁₂]⁺, 127 (28) [M - C₇H₁₃O]⁺, 84 (100) [C₆H₁₂]⁺, 69 (38).

HRMS (EI, 70 eV): calcd for $C_{17}H_{20}O[M]^+$: 240.1509; found: 240.1514.

calcd for C₁₆¹³CH₂₀O [M]⁺: 241.1542; found: 241.1545.

2,2,3-Trimethyl-1-(naphthalen-2'-yl)but-3-en-1-ol (6b)

TLC: $R_{\rm f} = 0.61 \, (P/Et_2O = 4/1) \, [UV, KMnO_4].$

IR (ATR): \tilde{v} [cm⁻¹] = 3458 (m, OH), 3057 (w, sp²-CH), 2972 (vs, sp³-CH), 2881 (w, sp³-CH), 1633 (w), 1464 (w, sp³-CH), 1376 (m, OH), 1122 (w), 1051 (m), 817 (s, sp²-CH), 749 (m, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 300 K): δ [ppm] = 1.00 (s, 3 H, C-2-CH₃), 1.05 (s, 3 H, C-2-CH₃), 1.92 (s, 3 H, C-3-CH₃), 2.20 (d, ${}^{3}J$ = 1.7 Hz, 1 H, OH), 4.81 (*br* s, 1 H, H-1), 5.01 (*br* s, 1 H, H-4_{*cis*}), 5.07 (*br* s, 1 H, H-4_{*trans*}), 7.45 – 7.48 (m, 2 H, H-6', H-7'), 7.50 (dd, ${}^{3}J$ = 8.6 Hz,

 ${}^{4}J = 1.8$ Hz, 1 H, H-3'), 7.79 (d, ${}^{3}J = 8.6$ Hz, 1 H, H-4')[#], 7.80 (*br* s, 1 H, H-1')[#], 7.83 – 7.85 (m, 2 H, H-5', H-8').

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 20.0 (q, C-3-*C*H₃), 20.3 (q, C-2-*C*H₃), 24.5 (q, C-2-*C*H₃), 45.0 (s, C-2), 77.6 (d, C-1), 113.6 (t, C-4), 125.8 (d, C-6'*), 126.0 (d, C-7'*), 126.4 (d, C-3'), 127.0 (d, 2 C, C-1', C-4'), 127.7 (d, C-5'**), 128.1 (d, C-8'**), 132.9 (s, C-4a'***), 133.0 (s, C-8a'***), 138.0 (s, C-2'), 150.8 (s, C-3).

[#] signals are partially overlapped.

*, **, *** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 240 (3) [M]⁺, 207 (5), 165 (4), 157 (100) [M - C₆H₁₁]⁺, 129 (89), 127 (50) [M - C₇H₁₃O]⁺, 84 (72) [C₆H₁₂]⁺, 69 (27).

HRMS (EI, 70 eV): calcd for $C_{17}H_{20}O[M]^+$: 240.1509; found: 240.1510.

calcd for C₁₆¹³CH₂₀O [M]⁺: 241.1542; found: 241.1546.

3,4-Dimethyl-1-(naphthalen-2'-yl)pent-3-en-1-ol (7b)

TLC: $R_f = 0.41$ (P/Et₂O = 4/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 3390 (m, OH), 3055 (w, sp²-CH), 2981 (m, sp³-CH), 2919 (s, sp³-CH), 2859 (m, sp³-CH), 1508 (w), 1442 (m, sp³-CH), 1373 (m, OH), 1124 (m), 1020 (w), 818 (s, sp²-CH), 746 (vs, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 1.71 (s, 3 H, CH₃), 1.72 (s, 3 H, CH₃), 1.74 (s, 3 H, CH₃), 2.12 (d, ${}^{3}J$ = 2.0 Hz, 1 H, OH), 2.37 (dd, ${}^{2}J$ = 13.6 Hz, ${}^{3}J$ = 4.6 Hz, 1 H, *H*H-2), 2.75 (dd, ${}^{2}J$ = 13.6 Hz, ${}^{3}J$ = 9.4 Hz, 1 H, HH-2), 4.96 (ddd, ${}^{3}J$ = 9.4 Hz, ${}^{3}J$ = 4.6 Hz,

³*J* = 2.0 Hz, 1 H, H-1), 7.44 – 7.49 (m, 2 H, H-6', H-7'), 7.52 (dd, ³*J* = 8.6 Hz, ⁴*J* = 1.6 Hz, 1 H, H-3'), 7.82 – 7.85 (m, 4 H, H-1', H-4', H-5', H-8').

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 18.8 (q, CH₃), 20.8 (q, CH₃), 21.1 (q, CH₃),
45.1 (t, C-2), 72.7 (d, C-1), 123.9 (s, C-3), 124.2 (d, C-3'), 124.4 (d, C-1'*), 125.8 (d, C-6'**),
126.2 (d, C-7'**), 127.8 (d, C-4'*), 128.1 (d, C-5'*), 128.2 (d, C-8'*), 129.4 (s, C-4), 133.0 (s,
C-4a'***), 133.5 (s, C-8a'***), 142.0 (s, C-2').

*, **, *** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 240 (2) [M]⁺, 222 (9), 207 (20), 192 (16), 156 (87) [M - C₆H₁₂]⁺, 129 (93), 127 (100) [M - C₇H₁₃O]⁺, 84 (79) [C₆H₁₂]⁺, 69 (22), 49 (89).

HRMS (EI, 70 eV): calcd for $C_{17}H_{20}O[M]^+$: 240.1509; found: 240.1509.

calcd for C_{16}^{13} CH₂₀O [M]⁺: 241.1542; found: 241.1544.

3.2 Lewis acid catalysed irradiation experiments of 1-naphthaldehyde

Freshly distilled 1-naphthyldehyde (1, 15.6 mg, 100 μ mol, 1.00 eq.) was dissolved in dichloromethane (5 mL) in a *Schlenk* tube and 2,3-dimethyl-2-butene (360 μ L, 253 mg, 3.00 mmol, 30.0 eq.) was added. The solution was cooled to -78 °C and an aluminium bromide solution (25.0 μ L, 1 M in CH₂Br₂, 25.0 μ mol, 25.0 mol%) was added. The solution was irradiated at $\lambda = 405$ nm for six hours at -78 °C and the reaction was then quenched by the addition of triethylamine (100 μ L). After warming to room temperature the crude product was loaded onto Celite and purified by column chromatography (silica, P/Et₂O = 20/1). 2.88 mg of the cycloaddition product **10** (12.0 μ mol, 12%) were obtained as a colourless oil besides 10.3 mg of the rearrangement product **8** (42.9 mmol, 43%) as a colourless oil.

Other tested conditions are described in the following table.

entry	L.A.	irradiation time	yield 10	yield 8	comment
1	AlBr ₃ (50 mol%)	6 h	14%	14% 27% -	
2	AlBr ₃ (25 mol%)	6 h	12%	43%	
3	AlBr ₃ (10 mol%)	16 h	n.d.	n.d.	complex mixture
4	EtAlCl ₂ (25 mol%)	6 h	7%	37%	
5 ^[a]	AlBr ₃ (50 mol%)	13 h			only sm, no product formation

[a] w/o light; n.d. = not determined.

1,1,2,2-Tetramethyl-2,2a-dihydrocyclobuta[*a*]naphthalene-8b(1*H*)-carbaldehyde (10)

TLC: $R_{\rm f} = 0.62 (P/Et_2O = 10/1) [UV].$

IR (ATR): v [cm⁻¹] = 3026 (w, sp²-CH), 2971 (w, sp³-CH), 2922 (w, sp³-CH), 2869 (w, sp³-CH), 2730 (w), 1709 (m, C=O), 1487 (w), 1370 (w), 1199 (w), 1137 (w), 1039 (w), 873 (w), 791 (m, sp²-CH), 775 (w).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.92 (s, 3 H, C-2-CH₃), 0.94 (s, 3 H, C-1-CH₃), 1.02 (s, 3 H, C-2-CH₃), 1.18 (s, 3 H, C-1-CH₃), 3.62 (d, ${}^{3}J$ = 5.6 Hz, 1 H, H-2a), 5.71 (dd, ${}^{3}J$ = 9.8 Hz, ${}^{3}J$ = 5.6 Hz, 1 H, H-3), 6.33 (d, ${}^{3}J$ = 9.8 Hz, 1 H, H-4), 7.03 (dd, ${}^{3}J$ = 6.9 Hz, ${}^{4}J$ = 2.0 Hz, 1 H, H-8), 7.13 (dd, ${}^{3}J$ = 6.9 Hz, ${}^{4}J$ = 1.9 Hz, 1 H, H-5), 7.19 (dd, ${}^{3}J$ = 7.4 Hz, ${}^{3}J$ = 6.9 Hz, 1 H, H-6), 7.20 (dd, ${}^{3}J$ = 7.4 Hz, ${}^{3}J$ = 6.9 Hz, 1 H, H-6).

¹³C NMR (101 MHz, CDCl₃, 298 K): δ [ppm] = 21.5 (q, C-2-*C*H₃), 22.0 (q, C-1-*C*H₃), 23.4 (q, C-1-*C*H₃), 24.7 (q, C-2-*C*H₃), 40.3 (d, C-2a), 45.0 (s, C-2), 51.8 (s, C-1), 57.3 (s, C-8b), 125.4 (d, C-3), 127.1 (d, C-7), 127.5 (d, C-6), 127.5 (d, C-4), 128.3 (d, C-8), 129.4 (d, C-5), 130.4 (s, C-8a), 134.5 (s, C-4a), 200.8 (d, CHO).

MS (EI, 70 eV): m/z (%) = 240 (2) [M]⁺, 169 (13), 156 (23) [C₁₁H₈O]⁺, 153 (9), 128 (79) [C₁₀H₈]⁺, 84 (100) [C₆H₁₂]⁺, 69 (64) [C₅H₉]⁺.

HRMS (EI, 70 eV): calcd for $C_{17}H_{20}O[M]^+$: 240.1509; found: 240.1511.

calcd for C₁₆¹³CH₂₀O [M]⁺: 241.1542; found: 241.1547.

2,2,3-Trimethyl-3-(naphthalen-2'-yl)butanal (8)

TLC: $R_f = 0.53 (P/Et_2O = 10/1) [UV].$

IR (ATR): \tilde{v} [cm⁻¹] = 3058 (w, sp²-CH), 2975 [m, sp³-CH], 2926 (w, sp³-CH), 2877 [w, sp³-CH], 2717 (w), 1715 (m, C=O), 1631 (w), 1463 (m), 1200 (w), 1131 (m), 949 (m), 853 (m), 748 (m, sp²-CH), 668 (m).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 1.05 (s, 6 H, C-2-CH₃), 1.53 (s, 6 H, C-3-CH₃), 7.44 – 7.51 (m, 3 H, H-3'*, H-6'*, H-7'*), 7.76 (d, ${}^{4}J$ = 2.1 Hz, 1 H, H-1'), 7.79 (d, ${}^{3}J$ = 8.7 Hz, 1 H, H-4'), 7.82 (dd, ${}^{3}J$ = 7.4 Hz, ${}^{4}J$ = 2.1 Hz, 1 H, H-8'*), 7.83 (dd, ${}^{3}J$ = 7.2 Hz, ${}^{4}J$ = 2.1 Hz, 1 H, H-5'*), 9.60 (s, 1 H, H-1).

¹³C NMR (126 MHz, CDCl₃, 298 K): δ [ppm] = 18.8 (q, 2 C, C-2-CH₃), 24.8 (q, 2 C, C-3-CH₃), 42.4 (s, C-3), 50.9 (s, C-2), 126.0 (d, C-7'*), 126.2 (d, C-6'*), 126.4 (d, C-3'*), 126.7 (d, C-1'), 127.1 (d, C-4'), 127.4 (d, C-8'*), 128.3 (d, C-5'*), 131.9 (s, C-4a'**), 132.9 (s, C-8a'**), 142.8 (s, C-2'), 207.6 (d, C-1).

*, ** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 240 (1) [M]⁺, 169 (100) [C₁₃H₁₃]⁺, 153 (17), 141 (29), 128 (16) [C₁₀H₈]⁺.

HRMS (EI, 70 eV): calcd for $C_{17}H_{20}O[M]^+$: 240.1509; found: 240.1508.

calcd for C₁₆¹³CH₂₀O [M]⁺: 241.1542; found: 241.1547.

Synthesis of deuterated 1-naphthaldehyde

To a solution of 1-naphthoylchloride (500 mg, 2.62 mmol, 1.00 eq.) in dichloromethane (11 mL) was added diisopropylamine (1.06 g, 10.5 mmol, 4.00 eq.) at 0 °C. After stirring at 0 °C for 90 minutes the solution was washed with 1 M aqueous HCl (2×20 mL) and brine (20 mL), dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was recrystallized from cyclohexane/ethyl acetate (10/1, 20 mL) and 670 mg of amide **S1** (2.62 mmol, *quant*.) were obtained as a colourless solid.

TLC: $R_f = 0.37$ (P/Et₂O = 1/1) [UV].

¹**H** NMR (300 MHz, CDCl₃, 298 K): δ [ppm] = 1.04 [d, ${}^{3}J$ = 6.7 Hz, 3 H, N(CHCH₃CH₃)^{*i*}Pr], 1.08 [d, ${}^{3}J$ = 6.7 Hz, 3 H, N(CHCH₃CH₃)^{*i*}Pr], 1.66 [d, ${}^{3}J$ = 6.8 Hz, 3 H, N^{*i*}Pr(CHCH₃CH₃)], 1.73 [d, ${}^{3}J$ = 6.8 Hz, 3 H, N^{*i*}Pr(CHCH₃CH₃)], 3.60 [*virt.* sept, ${}^{3}J \approx {}^{3}J$ = 6.8 Hz, 1 H, N^{*i*}Pr(CHMe₂)], 3.63 [*virt.* sept, ${}^{3}J \approx {}^{3}J$ = 6.7 Hz, 1 H, N(CHMe₂)^{*i*}Pr], 7.32 (dd, ${}^{3}J$ = 7.0 Hz, ⁴J = 1.1 Hz, 1 H, H-2), 7.46 (dd, ${}^{3}J$ = 8.5 Hz, ${}^{3}J$ = 7.0 Hz, 1 H, H-3), 7.47 – 7.53 (m, 2 H, H-6*, H-7*), 7.83 (d, ${}^{3}J$ = 8.5 Hz, 1 H, H-4), 7.79 – 7.90 (m, 2 H, H-5*, H-8*).

¹³C NMR (75 MHz, CDCl₃, 298 K): δ [ppm] = 20.8 [q, N(CHCH₃CH₃)^{*i*}Pr], 20.8 [q, N^{*i*}Pr(CHCH₃CH₃)], 20.9 [q, N^{*i*}Pr(CHCH₃CH₃)], 21.0 [q, N(CHCH₃CH₃)^{*i*}Pr], 46.1 [d, N^{*i*}Pr(CHMe₂)], 51.2 [d, N(CHMe₂)^{*i*}Pr], 122.2 (d, C-2), 125.1 (d, C-6*), 125.4 (d, C-3), 126.4 (d, C-5*), 126.8 (d, C-8*), 128.3 (d, C-4*), 128.4 (d, C-7*), 129.7 (s, C-8a), 133.7 (s, C-4a**), 136.9 (s, C-1**), 170.2 (s, CON^{*i*}Pr₂).

*, ** assignment is interconvertible.

The analytical data obtained matched those reported in the literature.²

N,*N*-Diisopropyl-1-naphthamide-2-*d* (S2)

A solution of amide **S1** (50.0 mg, 196 μ mol, 1.00 eq.) in tetrahydrofuran (1 mL) was added dropwise to a solution of *sec*-butyllithium (300 μ L, 1.3 M in cyclohexane/hexane 92/8, 390 μ mol, 2.00 eq.) and TMEDA (60.0 μ L, 45.5 mg, 390 μ mol, 2.00 eq.) in tetrahydrofuran (2 mL) at -78 °C. After stirring at this temperature for 15 minutes D₂O (300 μ L, 333 mg, 16.6 mmol, 85.0 eq.) was added. The solution was warmed to room temperature followed by the addition of 1 M HCl (2 mL). The layers were separated and the aqueous layer was extracted with diethyl ether (3 × 10 mL). The combined organic layers were washed with 1 M aqueous HCl (20 mL), water (20 mL) and brine (20 mL). After drying the combined organic layers over Na₂SO₄ and filtration, the solvent was removed under reduced pressure. Purification of the crude product by column chromatography (silica, P/Et₂O = 3/2) gave 44.5 mg of the deuterated amide **S2** (174 μ mol, 89%, >98% D) as a colourless solid.

M.p.: 183 °C.

TLC: $R_{\rm f} = 0.37 \, (\text{P/Et}_2\text{O} = 1/1) \, [\text{UV}].$

IR (ATR): \tilde{v} [cm⁻¹] = 2962 (w, sp³-CH), 2925 (w, sp³-CH), 1619 (s, C=O), 1505 (w), 1370 [m, >C(CH₃)₂], 1321 (m, CH-N), 1208 (m), 1124 (m), 878 (m), 842 (m), 756 (m, sp²-CH), 710 (m), 661 (w).

¹**H** NMR (300 MHz, CDCl₃, 298 K): δ [ppm] = 1.04 [d, ${}^{3}J$ = 6.7 Hz, 3 H, N(CHCH₃CH₃)^{*i*}Pr], 1.08 [d, ${}^{3}J$ = 6.7 Hz, 3 H, N(CHCH₃CH₃)^{*i*}Pr], 1.66 [d, ${}^{3}J$ = 6.8 Hz, 3 H, N^{*i*}Pr(CHCH₃CH₃)], 1.73 [d, ${}^{3}J$ = 6.8 Hz, 3 H, N^{*i*}Pr(CHCH₃CH₃)], 3.60 [*virt.* sept, ${}^{3}J \approx {}^{3}J$ = 6.8 Hz, 1 H, N^{*i*}Pr(CHMe₂)], 3.63 [*virt.* sept, ${}^{3}J \approx {}^{3}J$ = 6.7 Hz, 1 H, N(CHMe₂)^{*i*}Pr], 7.44 – 7.48 (m, 1 H, H-3), 7.47 – 7.53 (m, 2 H, H-6*, H-7*), 7.83 (d, ³*J* = 8.5 Hz, 1 H, H-4), 7.79 – 7.90 (m, 2 H, H-5*, H-8*).

¹³C NMR (75 MHz, CDCl₃, 298 K): δ [ppm] = 20.8 [q, N(CHCH₃CH₃)^{*i*}Pr], 20.8 [q, N^{*i*}Pr(CHCH₃CH₃)], 20.9 [q, N^{*i*}Pr(CHCH₃CH₃)], 21.0 [q, N(CHCH₃CH₃)^{*i*}Pr], 46.2 [d, N^{*i*}Pr(CHMe₂)], 51.2 [d, N(CHMe₂)^{*i*}Pr], 122.0 (t, ¹*J* = 24.6 Hz, C-2), 125.0 (d, C-6*), 125.3 (d, C-3), 126.5 (d, C-5*), 126.8 (d, C-8*), 128.3 (d, C-4*), 128.4 (d, C-7*), 129.7 (s, C-8a), 133.7 (s, C-4a**), 136.7 (s, C-1**), 170.3 (s, CON^{*i*}Pr₂).

*, ** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 256 (20) [M]⁺, 213 (16) [M – C₃H₈]⁺, 156 (100) [M – NⁱPr₂]⁺, 128 (36) [C₁₀H₆D]⁺, 84 (7), 49 (8).

HRMS (EI, 70 eV): calcd for $C_{17}H_{20}DNO[M]^+$: 256.1680; found: 256.1677.

calcd for C_{16}^{13} CH₂₀DNO [M]⁺: 257.1714; found: 257.1713.

1-Naphthaldehyde-2-d (S3)

Ethyl trifluoromethanesulfonate (249 mg, 1.40 mmol, 1.50 eq.) was added to a solution of amide **S2** (239 mg, 930 µmol, 1.00 eq.) and 2,6-di-*tert*-butyl-4-methylpyridine (574 mg, 2.80 mmol, 3.00 eq.) in dichloromethane (6.5 mL). After stirring under reflux for three hours tetrahydrofuran (13 mL) was added, the solution was cooled to -78 °C and lithium tri-*tert*-butoxyaluminium hydride (1.70 mL, 1.1 M in THF, 1.86 mmol, 2.00 eq.) was added dropwise. Stirring was continued at this temperature for four hours followed by addition of saturated aqueous sodium potassium tartrate solution (6 mL). The mixture was allowed to warm to room temperature and the layers were separated. The aqueous layer was extracted with diethyl ether (3 × 20 mL) and the combined organic layers were washed with water (2 × 50 mL) and brine (2 × 50 mL), dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. Purification of the crude product by column chromatography (silica, P/Et₂O = 20/1) gave 118 mg of aldehyde **S3** (750 µmol, 81%, >98% D) as a pale yellow oil.

TLC: $R_{\rm f} = 0.32$ (P/Et₂O = 10/1) [UV].

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3054 (w, sp²-CH), 2841 (w, sp³-CH), 2723 (m, sp³-CH), 1683 (s, C=O), 1620 (m), 1581 (m), 1505 (m), 1264 (w), 1111 (m), 957 (w), 752 (s, sp²-CH), 711 (m), 695 (m).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 7.60 (ddd, ³*J* = 8.2 Hz, ³*J* = 6.9 Hz, ⁴*J* = 1.2 Hz, 1 H, H-6), 7.64 (d, ³*J* = 8.3 Hz, 1 H, H-3), 7.70 (ddd, ³*J* = 8.5 Hz, ³*J* = 6.9 Hz, ⁴*J* = 1.5 Hz, 1 H, H-7), 7.93 (dd, ³*J* = 8.2 Hz, ⁴*J* = 1.5 Hz, 1 H, H-5), 8.11 (d, ³*J* = 8.3 Hz, 1 H, H-4), 9.26 (d, ³*J* = 8.5 Hz, 1 H, H-8), 10.41 (s, 1 H, CHO).

¹³C NMR (126 MHz, CDCl₃, 298 K): δ [ppm] = 124.9 (d, C-8), 125.0 (d, C-3), 127.1 (d, C-6),
128.6 (d, C-5), 129.2 (d, C-7), 130.6 (s, C-8a), 131.5 (s, C-1), 133.8 (s, C-4a), 135.5 (d, C-4),
136.5 (t, ¹J = 24.2 Hz, C-2), 193.7 (d, CHO).

MS (EI, 70 eV): m/z (%) = 157 (100) [M]⁺, 128 (83) [M – CHO]⁺, 116 (4), 102 (8), 78 (9).

HRMS (EI, 70 eV): calcd for $C_{11}H_7DO [M]^+$: 157.0632; found: 157.0636.

calcd for C_{10}^{13} CH₇DO [M]⁺: 158.0666; found: 158.0670.

Naphthalen-1-ylmethan-d₂-ol (S4)

A solution of 1-naphthoic acid (200 mg, 1.16 mmol, 1.00 eq.) in tetrahydrofuran (2 mL) was added to a suspension of lithium aluminium deuteride (48.8 mg, 1.16 mmol, 1.00 eq.) in tetrahydrofuran (2 mL) at 0 °C. The mixture was warmed to room temperature, stirred for 17 hours and then diluted with diethyl ether (5 mL). When no further gas evolution was observed, water (50 μ L), 3 M aqueous NaOH solution (50 μ L), again water (150 μ L) and MgSO₄ were added. The mixture was filtered and the filtrate was washed with water (3 × 10 mL) and brine (10 mL). The organic layer was dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. 183 mg of the deuterated alcohol **S4** (1.14 mmol, 98%, >99% D) were obtained as a colourless solid.

M.p.: 62 °C.

TLC: $R_f = 0.81$ (P/Et₂O = 2/3) [UV].

IR (ATR): \tilde{v} [cm⁻¹] = 3376 (w, OH), 3306 (w, OH), 2962 (w, sp³-CH), 1594 (w), 1508 (w), 1383 (w), 1260 (w, C-OH), 1057 (w), 868 (w), 797 (m), 765 (m, sp²-CH), 698 (w).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 1.78 (s, 1 H, OH), 7.45 (dd, ${}^{3}J = 8.2$ Hz, ${}^{3}J = 7.0$ Hz, 1 H, H-3), 7.48 – 7.56 (m, 2 H, H-2, H-6), 7.56 (ddd, ${}^{3}J = 8.4$ Hz, ${}^{3}J = 6.8$ Hz, ${}^{4}J = 1.6$ Hz, 1 H, H-7), 7.83 (d, ${}^{3}J = 8.2$ Hz, 1 H, H-4), 7.89 (dd, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.6$ Hz, 1 H, H-5), 8.13 (d, ${}^{3}J = 8.4$ Hz, 1 H, H-8).

¹³C NMR (126 MHz, CDCl₃, 298 K): δ [ppm] = 63.2 (quint, ¹J = 21.9 Hz, CD₂OH), 123.8 (d, C-8), 125.5 (d, C-3), 125.5 (d, C-2), 126.0 (d, C-6), 126.5 (d, C-7), 128.7 (d, C-4), 128.8 (d, C-5), 131.4 (s, C-4a), 133.9 (s, C-8a), 136.3 (s, C-1).

MS (EI, 70 eV): m/z (%) = 160 (82) [M]⁺, 143 (29) [M – OH]⁺, 130 (100) [C₁₀H₆D₂]⁺, 117 (11), 77 (5).

HRMS (EI, 70 eV): calcd for $C_{11}H_8D_2O[M]^+$: 160.0852; found: 160.0845.

calcd for $C_{10}^{13}CH_8D_2O[M]^+$: 161.0885; found: 161.0879.

1-Naphthaldehyde-α-*d* (S5)

To a solution of alcohol S4 (50.0 mg, 310 μ mol, 1.00 eq.) in dichloromethane (4 mL) was added manganese dioxide (543 mg, 6.24 mmol, 20.0 eq.) and the suspension was stirred for six days at room temperature. The mixture was filtered over Celite and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (silica, P/Et₂O = 10/1) and 35.4 mg of deuterated aldehyde S5 (225 μ mol, 72%, >99% D) were obtained as a pale yellow oil.

TLC: $R_{\rm f} = 0.32$ (P/Et₂O = 10/1) [UV].

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 7.60 (ddd, ³*J* = 8.2 Hz, ³*J* = 6.9 Hz, ⁴*J* = 1.2 Hz, 1 H, H-6), 7.64 (dd, ³*J* = 8.3 Hz, ³*J* = 7.1 Hz, 1 H, H-3), 7.70 (ddd, ³*J* = 8.5 Hz, ³*J* = 6.9 Hz, ⁴*J* = 1.5 Hz, 1 H, H-7), 7.93 (dd, ³*J* = 8.2 Hz, ⁴*J* = 1.5 Hz, 1 H, H-5), 8.00 (dd, ³*J* = 7.1 Hz, ⁴*J* = 1.4 Hz, 1 H, H-2), 8.11 (d, ³*J* = 8.3 Hz, 1 H, H-4), 9.26 (d, ³*J* = 8.5 Hz, 1 H, H-8).

¹³C NMR (126 MHz, CDCl₃, 298 K): δ [ppm] = 125.0 (d, C-8), 125.0 (d, C-3), 127.1 (d, C-6), 128.6 (d, C-5), 129.2 (d, C-7), 130.7 (s, C-8a), 131.4 (t, ${}^{2}J$ = 3.7 Hz, C-1), 133.8 (s, C-4a), 135.5 (d, C-4), 136.8 (d, C-2), 193.4 (t, ${}^{1}J$ = 26.7 Hz, CDO).

The analytical data obtained matched those reported in the literature.³

Irradiation of deuterated compounds

2,2,3-Trimethyl-3-(naphthalen-2-yl-1-d)butanal (S6)

Deuterated aldehyde **S3** (15.7 mg, 100 μ mol, 1.00 eq.) was dissolved in dichloromethane (5 mL) in a *Schlenk* tube and 2,3-dimethyl-2-butene (360 μ L, 253 mg, 3.00 mmol, 30.0 eq.) was added. The solution was cooled to -78 °C and an aluminium bromide solution (25.0 μ L, 1 M in CH₂Br₂, 25.0 mol%) was added. The solution was irradiated at $\lambda = 405$ nm for six hours at -78 °C followed by addition of triethylamine (100 μ L). After warming to room temperature the crude product was loaded onto Celite and purified by column chromatography (silica, P/Et₂O = 20/1). 4.70 mg of the rearrangement product **S6** (19.4 μ mol, 19%, >99% D) were obtained as a colourless oil.

TLC: $R_f = 0.53$ (P/Et₂O = 10/1) [UV].

IR (ATR): \tilde{v} [cm⁻¹] = 3055 (w, sp²-CH), 2976 (m, sp³-CH), 2875 (w, sp³-CH), 2847 (w), 1715 (m, C=O), 1504 (w), 1262 (w), 1018 (w), 886 (w), 753 (m, sp²-CH), 707 (w).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 1.04 (s, 6 H, C-2-CH₃), 1.53 (s, 6 H, C-3-CH₃), 7.44 – 7.50 (m, 3 H, H-3'*, H-6'*, H-7'*), 7.78 (d, ${}^{3}J$ = 8.7 Hz, 1 H, H-4'), 7.82 (dd, ${}^{3}J$ = 7.6 Hz, ${}^{4}J$ = 2.1 Hz, 1 H, H-8'*), 7.83 (dd, ${}^{3}J$ = 7.5 Hz, ${}^{4}J$ = 2.1 Hz, 1 H, H-5'*), 9.60 (s, 1 H, H-1).

¹³**C NMR** (126 MHz, CDCl₃, 298 K): δ [ppm] = 18.8 (q, 2 C, C-2-*C*H₃), 24.8 (q, 2 C, C-3-*C*H₃), 42.4 (s, C-3), 50.9 (s, C-2), 126.0 (d, C-7'*), 126.2 (d, C-6'*), 126.4 (d, C-3'*), 126.7 (t, ¹*J* = 8.1 Hz, C-1'), 127.1 (d, C-4'), 127.4 (d, C-8'*), 128.2 (s, C-5'*), 131.9 (s, C-4a'**), 132.9 (s, C-8a'**), 142.7 (s, C-2'), 207.6 (d, C-1).

^{*, **} assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 241 (1) [M]⁺, 211 (4) [C₁₆H₁₈D]⁺, 170 (100) [C₁₃H₁₂D]⁺, 154 (20) [C₁₂H₈D]⁺, 142 (26) [C₁₁H₈D]⁺, 129 (18) [C₁₀H₇D]⁺.

HRMS (EI, 70 eV): calcd for $C_{17}H_{19}DO[M]^+$: 241.1571; found: 241.1571.

calcd for C_{16}^{13} CH₁₉DO [M]⁺: 242.1605; found: 242.1606.

2,2,3-Trimethyl-3-(naphthalen-2'-yl)butanal-1-d (S7)

Deuterated aldehyde **S5** (15.7 mg, 100 μ mol, 1.00 eq.) was dissolved in dichloromethane (5 mL) in a *Schlenk* tube and 2,3-dimethyl-2-butene (360 μ L, 253 mg, 3.00 mmol, 30.0 eq.) was added. The solution was cooled to -78 °C and an aluminium bromide solution (25.0 μ L, 1 M in CH₂Br₂, 25.0 mol%) was added. The solution was irradiated at $\lambda = 405$ nm for six hours at -78 °C followed by addition of triethylamine (100 μ L). After warming to room temperature the crude product was loaded onto Celite and purified by column chromatography (silica, P/Et₂O = 20/1). 9.70 mg of the rearrangement product **S7** (40.2 μ mol, 40%, >99% D) were obtained as a colourless oil.

TLC: $R_{\rm f} = 0.53$ (P/Et₂O = 10/1) [UV].

IR (ATR): \tilde{v} [cm⁻¹] = 3058 (w, sp²-CH), 2975 (m, sp³-CH), 2917 (m, sp³-CH), 2875 (w), 2061 (w), 1709 (m, C=O), 1461 (m), 1083 (w), 894 (w), 730 (m, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 1.05 (s, 6 H, C-2-CH₃), 1.53 (s, 6 H, C-3-CH₃), 7.44 – 7.51 (m, 3 H, H-3'*, H-6'*, H-7'*), 7.76 (d, ${}^{4}J$ = 2.0 Hz, 1 H, H-1'), 7.79 (d, ${}^{3}J$ = 8.7 Hz, 1 H, H-4'), 7.82 (dd, ${}^{3}J$ = 7.4 Hz, ${}^{4}J$ = 2.2 Hz, 1 H, H-8'*), 7.83 (dd, ${}^{3}J$ = 7.6 Hz, ${}^{4}J$ = 2.1 Hz, 1 H, H-5'*).

¹³**C NMR** (126 MHz, CDCl₃, 298 K): δ [ppm] = 18.8 (q, 2 C, C-2-*C*H₃), 24.8 (q, 2 C, C-3-*C*H₃), 42.4 (s, C-3), 50.8 (t, C-2), 126.0 (d, C-7'*), 126.2 (d, C-6'*), 126.3 (d, C-3'*), 126.7 (d, C-1'), 127.1 (d, C-4'), 127.4 (d, C-8'*), 128.3 (d, C-5'*), 131.9 (s, C-4a'**), 132.9 (s, C-8a'**), 142.8 (s, C-2'), 207.2 (t, ¹*J* = 26.3 Hz, C-1).

*, ** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 241 (1) [M]⁺, 169 (100) [C₁₃H₁₃]⁺, 153 (21) [C₁₂H₉]⁺, 141 (30) [C₁₁H₉]⁺, 129 (23) [C₁₀H₇D]⁺.

HRMS (EI, 70 eV): calcd for $C_{17}H_{19}DO[M]^+$: 241.1571; found: 241.1568.

calcd for C_{16}^{13} CH₁₉DO [M]⁺: 242.1605; found: 242.1603.

Reduction of rearrangement product 8

2,2,3-Trimethyl-3-(naphthalen-2'-yl)butan-1-ol (9)

A solution of aldehyde **8** (43.0 mg, 179 μ mol, 1.00 eq.) in tetrahydrofuran (15 mL) was added dropwise to a suspension of lithium aluminium hydride (20.4 mg, 53.7 μ mol, 3.00 eq.) in tetrahydrofuran (10 mL) at 0 °C. After one hour the mixture was diluted with diethyl ether (10 mL) at 0 °C to quench the excess of lithium aluminium hydride. When no further gas evolution was observed, water (100 μ L), 10% aqueous NaOH solution (100 μ L) and again water (300 μ L) was added. After warming the mixture to room temperature it was vigorously stirred at this temperature for 15 minutes and then MgSO₄ was added. After filtration over Celite and washing with diethyl ether (20 mL) the solvent was removed under reduced pressure. Purification by column chromatography (silica, P/EtOAc = 20/1) gave 39.4 mg of alcohol **9** (163 μ mol, 91%) as a colourless solid.

Single crystals were obtained by vapour diffusion using diethyl ether (solvent) and pentane (anti-solvent).

M.p.: 105 °C.

TLC: $R_f = 0.21$ (P/EtOAc = 10/1) [UV, KMnO₄,].

IR (ATR): \tilde{v} [cm⁻¹] = 3367 (s, OH), 3057 (w, sp²-CH), 2974 (vs, sp³-CH), 1598 (w), 1505 (w), 1376 (m, OH), 1277 (w), 1132 (w), 1028 (s), 819 (s, sp²-CH), 748 (s, sp²-CH).

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ [ppm] = 0.94 (s, 6 H, C-2-CH₃), 1.50 (s, 6 H, C-3-CH₃), 3.45 (*br* s, 2 H, H-1), 7.40 – 7.49 (m, 2 H, H-6', H-7'), 7.58 (dd, ³*J* = 8.8 Hz,

⁴*J* = 2.0 Hz, 1 H, H-3'), 7.76 (d, ³*J* = 8.8 Hz, 1 H, H-4'), 7.78 – 7.83 (m, 3 H, H-1', H-5', H-8').

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 20.9 (q, 2 C, C-2-*C*H₃), 25.1 (q, 2 C, C-3-*C*H₃), 40.9 (s, C-2), 42.6 (s, C-3), 69.7 (t, C-1), 125.7 (d, C-6'*), 125.9 (d, C-7'*), 126.7 (d, 2 C, C-1'**, C-4'), 127.0 (d, C-3'), 127.3 (d, C-5'**), 128.2 (d, C-8'**), 131.7 (s, C-4a'), 132.9 (s, C-8a'), 145.0 (s, C-2').

*, ** assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 242 (2) $[M]^+$, 211 (2) $[M - CH_2OH]^+$, 195 (3), 169 (100) $[M - C(CH_3)_2CH_2OH]^+$, 155 (9), 141 (24), 129 (11), 55 (3).

HRMS (EI, 70 eV): calcd for $C_{17}H_{22}O[M]^+$: 242.1665; found: 242.1671.

calcd for C_{16}^{13} CH₂₂O [M]⁺: 243.1699; found: 243.1704.

Independent synthesis of ortho photocycloaddition product 10

Irradiation of 1-naphthonitrile⁴ and in situ reduction

2,3-Dimethyl-2-butene (3.04 mL, 2.16 g, 24.0 mmol, 30.0 eq.) was added to a solution of 1naphthonitrile (120 mg, 800 μ mol, 1.00 eq.) in benzene (40 mL). The solution was irradiated at $\lambda = 300$ nm for five hours followed by removal of the solvent under reduced pressure. The residue was dissolved in toluene (40 mL), the solution was cooled to -78 °C and a DIBAL-H solution (880 μ L, 1 M in CH₂Cl₂, 880 μ mol, 1.10 eq.) was added dropwise. The solution was stirred at this temperature for 75 minutes and the reaction was quenched by the addition of saturated aqueous NH₄Cl solution (20 mL). After warming to room temperature the mixture was filtered over Celite followed by washing the residue with diethyl ether (3 × 20 mL). The layers were separated and the aqueous layer was extracted with diethyl ether (3 × 20 mL). The combined organic layers were washed with water (4 × 100 mL) and brine (2 × 100 mL), dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. Purification of the crude product by column chromatography (silica, P/Et₂O = 25/1) gave 55.8 mg of cyclobutane **10** (232 µmol, 29%) as a colourless oil.

Lewis acid catalysed rearrangement of ortho photocycloaddition product 10

An aluminium bromide solution (25.0 μ L, 1 M in CH₂Br₂, 25.0 mol%) was added to a solution of *ortho* photocycloaddition product **10** (22.8 mg, 94.9 μ mol, 1.00 eq.) in dichloromethane (5 mL) at -78 °C. The mixture was stirred at this temperature for three hours and then poured into saturated NaHCO₃ solution (50 mL). The solution was extracted with dichloromethane (3× 30 mL) followed by washing the combined organic layers with water (50 mL) and brine (50 mL). The solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica, P/Et₂O = 20/1). 14.6 mg of rearrangement product **8** (60.7 μ mol, 64%) and 1.03 mg of 1-naphthaldehyde (**1**, 6.6 μ mol, <10%) were obtained as colourless oils.

3.3 Lewis acid catalysed irradiation experiments of 2-naphthaldehyde

General Procedure 1: ortho photocycloaddition reaction on 2-naphthaldehyde (2)

2-Naphthaldehyde (**2**, 15.6 mg, 100 μ mol, 1.00 eq.) was dissolved in the corresponding solvent (5 mL) in a *Schlenk* tube and the corresponding olefin (3.00 mmol, 30.0 eq.) was added. The solution was cooled to -78 °C (or -40 °C) followed by addition of Lewis acid (10.0 μ mol, 10.0 mol% or 5.00 μ mol, 5.00 mol%). The solution was irradiated at $\lambda = 457$ nm for the indicated irradiation time and the reaction was quenched by the addition of triethylamine (50 μ L). After warming to room temperature the solvent was removed under reduced pressure and the crude product was purified by column chromatography.

Optimization of *ortho* photocycloaddition reaction between 2-naphthaldehyde (2) and 2,3-dimethyl-2-butene

Described for entry 8: According to the General Procedure 1, a solution of 2-naphthaldehyde (2, 15.6 mg, 100 µmol, 1.00 eq.), 2,3-dimethyl-2-butene (360 µL, 253 mg, 3.00 mmol, 30.0 eq.) and aluminium bromide solution (50.0 µL, 100 mM in CH₂Br₂/CH₂Cl₂, 5.0 µmol, 5.0 mol%) in dichloromethane (5 mL) was irradiated at $\lambda = 457$ nm (LED045) for twelve hours. After removal of the solvent, the crude product was purified by column chromatography (silica, P/Et₂O = 100/1 \rightarrow 75/1 \rightarrow 25/1 \rightarrow 5/1). 13.4 mg of *ortho* photocycloaddition product **13** (55.8 µmol, 56%) were obtained as a colourless solid besides 7.20 mg of secondary alcohol **14** (30.0 µmol, 30%) as a colourless oil.

entry	L.A.	solvent	irradiation time	yield 13	rsm	comment
1 ^[a]	AlBr ₃ (10 mol%)	CH ₂ Cl ₂	12 h	51%	21%	+ product 14
2 ^[a,b]	AlBr ₃ (10 mol%)	MeCN	12 h		n.d.	crude ¹ H-NMR: no product formation
3 ^[a]	AlBr ₃ (10 mol%)	n- hexane	12 h		n.d.	crude ¹ H-NMR: no product formation
4 ^[a]	AlCl ₃ (10 mol%)	CH ₂ Cl ₂	12 h		n.d.	crude ¹ H-NMR: no product formation
5 ^[a]	EtAlCl ₂ (10 mol%)	CH ₂ Cl ₂	24 h	49%	21%	+ product 14
6 ^[a]	BF ₃ *OEt ₂ (10 mol%)	CH ₂ Cl ₂	12 h	n.d.	n.d.	crude ¹ H-NMR: traces of 13
7 ^[c]	Sc(OTf) ₃ (10 mol%)	CH ₂ Cl ₂	12 h		n.d.	crude ¹ H-NMR: no product formation
8 ^[c]	AlBr ₃ (5 mol%)	CH ₂ Cl ₂	12 h	56%	traces	+ product 14 (30%)
9 ^[c]	EtAlCl ₂ (5 mol%)	CH ₂ Cl ₂	24 h	46%	16%	+ product 14 (23%)
10 ^[d]	AlBr ₃ (10 mol%)	CH ₂ Cl ₂	24 h		94%	crude ¹ H-NMR: no product formation

Other tested conditions are described in the following table.

[a] $\lambda = 457$ nm, LED005; [b] temperature -40 °C, [c] $\lambda = 457$ nm, LED045; [d] w/o light; n.d. = not determined.

Optimized conditions for the generation of secondary alcohol 14 as the exclusive product

According to the General Procedure 1, a solution of 2-naphthaldehyde (2, 15.6 mg, 100 μ mol, 1.00 eq.), 2,3-dimethyl-2-butene (360 μ L, 253 mg, 3.00 mmol, 30.0 eq.) and aluminium bromide solution (50.0 μ L, 100 mM in CH₂Br₂/CH₂Cl₂, 5.0 μ mol, 5.0 mol%) in dichloromethane (5 mL) was irradiated at $\lambda = 457$ nm (LED045) for twelve hours. After warming to 0 °C the mixture was stirred for further twelve hours without irradiation at this temperature. The reaction was quenched by the addition of triethylamine (50 μ L) followed by removal of the solvent under reduced pressure. Purification of the crude product by column chromatography (silica, P/Et₂O = 15/1 \rightarrow 5/1) gave 17.8 mg of secondary alcohol 14 (74.1 μ mol, 74%) as a colourless oil.
(2aSR,8bSR)-1,1,2,2-Tetramethyl-1,8b-dihydrocyclobuta[a]naphthalene-2a(2H)-

carbaldehyde (13)

M.p.: 92 °C.

TLC: $R_f = 0.55$ (P/Et₂O = 10/1) [UV, KMnO₄, CAM].

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3018 (w, sp²-CH), 2956 (s, sp³-CH), 2926 (m, sp³-CH), 2867 (w, sp³-CH), 2805 (w, sp³-CH), 1714 (vs, C=O), 1451 (m), 1370 (s), 1140 (w), 792 (vs, sp²-CH), 767 (m, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.83 (s, 3 H, C-1-CH₃), 1.03 (s, 3 H, C-1-CH₃), 1.18 (s, 6 H, C-2-CH₃), 3.93 (s, 1 H, H-8b), 5.94 (dd, ${}^{3}J$ = 9.8 Hz, ${}^{4}J$ = 1.1 Hz, 1 H, H-3), 6.55 (d, ${}^{3}J$ = 9.8 Hz, 1 H, H-4), 6.93 (d, ${}^{3}J$ = 7.3 Hz, 1 H, H-8), 7.00 (dd, ${}^{3}J$ = 7.3 Hz, ${}^{4}J$ = 1.6 Hz, 1 H, H-5), 7.12 (*virt.* td, ${}^{3}J \approx {}^{3}J$ = 7.4 Hz, ${}^{4}J$ = 1.6 Hz, 1 H, H-6), 7.16 (*virt.* td, ${}^{3}J \approx {}^{3}J \approx {}^{3}J$ = 7.3 Hz, ${}^{4}J$ = 1.6 Hz, 1 H, H-7), 9.50 (s, 1 H, CHO).

¹³**C NMR** (101 MHz, CDCl₃, 298 K): δ [ppm] = 20.0 (q, C-2-*C*H₃), 22.0 (q, C-1-*C*H₃), 23.3 (q, C-2-*C*H₃), 25.2 (q, C-1-*C*H₃), 42.5 (d, C-8b), 45.1 (s, C-1), 51.6 (s, C-2), 56.7 (s, C-2a), 124.1 (d, C-3), 127.0 (d, C-6), 127.6 (d, C-5), 128.3 (d, C-8), 128.6 (d, C-7), 131.3 (d, C-4), 131.4 (s, C-8a), 132.0 (s, C-4a), 199.8 (d, CHO).

MS (EI, 70 eV): m/z (%) = 240 (3) [M]⁺, 211 (18) [M – CHO]⁺, 195 (8) [M – C₃H₉]⁺, 155 (25), 128 (58), 84 (100) [C₆H₁₂]⁺, 69 (52) [C₅H₉]⁺, 41 (14).

HRMS (EI, 70 eV): calcd for $C_{17}H_{20}O[M]^+$: 240.1509; found: 240.1506.

calcd for C₁₆¹³CH₂₀O [M]⁺: 241.1542; found: 241.1545.

1,1,2,2-Tetramethyl-2,3-dihydro-1*H*-cyclopenta[*a*]naphthalen-3-ol (14)

TLC: *R*_f = 0.08 (P/Et₂O = 10/1) [UV, KMnO₄, CAM].

IR (ATR): $\tilde{\nu}$ [cm⁻¹] = 3382 (m, OH), 3052 (w, sp²-CH), 2968 (vs, sp³-CH), 2871 (w, sp³-CH), 1517 (w), 1464 (w, sp³-CH), 1376 (m, OH), 1236 (w), 1077 (s), 814 (m, sp²-CH), 764 (vs, sp²-CH).

¹**H** NMR (500 MHz, CDCl₃, 298 K): δ [ppm] = 0.91 (s, 3 H, C-2-CH₃), 1.11 (s, 3 H, C-2-CH₃), 1.36 (s, 3 H, C-1-CH₃), 1.57 (s, 3 H, C-1-CH₃), 1.71 (d, ${}^{3}J$ = 7.7 Hz, 1 H, OH), 4.90 (d, ${}^{3}J$ = 7.7 Hz, 1 H, H-3), 7.43 (ddd, ${}^{3}J$ = 8.1 Hz, ${}^{3}J$ = 6.8 Hz, ${}^{4}J$ = 1.4 Hz, 1 H, H-7), 7.47 (ddd, ${}^{3}J$ = 8.4 Hz, ${}^{3}J$ = 6.8 Hz, ${}^{4}J$ = 1.7 Hz, 1 H, H-8), 7.52 (d, ${}^{3}J$ = 8.2 Hz, 1 H, H-4), 7.76 (d, ${}^{3}J$ = 8.2 Hz, 1 H, H-5), 7.89 (d, ${}^{3}J$ = 8.1 Hz, 1 H, H-6), 8.22 (d, ${}^{3}J$ = 8.4 Hz, 1 H, H-9).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 17.6 (q, C-2-*C*H₃), 21.3 (q, C-2-*C*H₃), 24.9 (q, C-1-*C*H₃), 25.7 (q, C-1-*C*H₃), 48.6 (s, C-2*), 50.5 (s, C-1*), 82.7 (d, C-3), 122.1 (d, C-4), 124.3 (d, C-9), 125.0 (d, C-7), 125.8 (d, C-8), 128.1 (d, C-5), 129.6 (d, C-6), 130.4 (s, C-9a), 134.9 (s, C-5a), 140.1 (s, C-3a), 144.7 (s, C-9b).

* assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 240 (34) [M]⁺, 225 (100) [M – CH₃]⁺, 207 (25), 192 (14), 165 (16), 141 (13), 128 (4) [M – C₇H₁₂O], 115 (4), 57 (3).

HRMS (EI, 70 eV): calcd for $C_{17}H_{20}O[M]^+$: 240.1509; found: 240.1507.

calcd for C₁₆¹³CH₂₀O [M]⁺: 241.1542; found: 241.1542.

(7aRS,10aSR)-8,9,10,10a-Tetrahydropentaleno[1,2-a]naphthalen-7(7aH)-one (15)

According to the General Procedure 1, a solution of 2-naphthaldehyde (**2**, 15.6 mg, 100 µmol, 1.00 eq.), cyclopentene (275 µL, 204 mg, 3.00 mmol, 30.0 eq.) and aluminium bromide solution (50.0 µL, 100 mM in CH₂Br₂/CH₂Cl₂, 5.0 µmol, 5.0 mol%) in dichloromethane (5 mL) was irradiated at $\lambda = 457$ nm (LED045) for twelve hours. After addition of triethylamine (50 µL) the mixture was warmed to 0°C. A solution of *Dess-Martin* periodinane (42.4 mg, 100 µmol, 1.00 eq.) in dichloromethane (2 mL) was added and stirring was continued at 0 °C without irradiation for further six hours. The reaction was quenched by the addition of a saturated aqueous Na₂S₂O₃ solution (3 mL) and saturated aqueous Na₄CO₃ solution (3 mL). The mixture was stirred for ten minutes followed by separation of the layers and extraction of the aqueous layer with diethyl ether (3 × 10 mL). The combined organic layers were washed with brine (30 mL), dried over MgSO₄, filtered and the solvent was removed under reduced pressure. Purification of the crude product by column chromatography (silica, P/Et₂O = 75/1 \rightarrow 50/1 \rightarrow 25/1) gave 9.20 mg of ketone **15** (41.4 µmol, 41%) as a colourless solid.

M.p.: 83 °C.

TLC: $R_{\rm f} = 0.40$ (P/EtOAc = 10/1) [UV, KMnO₄].

IR (ATR): \tilde{v} [cm⁻¹] = 3058 (w, sp²-CH), 2952 (m, sp³-CH), 2865 (m, sp³-CH), 1696 (vs, C=O), 1623 (m), 1244 (m), 826 (m, sp²-CH), 752 (s, sp²-CH).

¹**H NMR** (500 MHz, CDCl₃, 298 K): δ [ppm] = 1.20 – 1.29 (m, 1 H, *H*H-9), 1.66 – 1.71 (m, 1 H, *HH*-9), 1.88 – 2.00 (m, 2 H, *H*H-8, *H*H-10), 2.12 – 2.22 (m, 2 H, *HH*-8, *HH*-10), 3.23 S39

(ddd, ${}^{3}J = 9.5$ Hz, ${}^{3}J = 6.6$ Hz, ${}^{3}J = 2.4$ Hz, 1 H, H-7a), 4.21 (ddd, ${}^{3}J = 9.5$ Hz, ${}^{3}J = 6.6$ Hz, ${}^{3}J = 2.7$ Hz, 1 H, H-10a), 7.63 – 7.69 (m, 2 H, H-2, H-3)[#], 7.69 (d, ${}^{3}J = 8.6$ Hz, 1 H, H-6)[#], 7.80 (d, ${}^{3}J = 8.6$ Hz, 1 H, H-5), 7.96 (d, ${}^{3}J = 7.9$ Hz, 1 H, H-4), 8.16 (d, ${}^{3}J = 7.9$ Hz, 1 H, H-1). **1**³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 25.5 (t, C-9), 30.1 (t, C-8), 32.2 (t, C-10), 42.7 (d, C-10a), 53.2 (d, C-7a), 119.3 (d, C-6), 125.4 (d, C-1), 127.0 (d, C-2^{*}), 128.9 (d, C-5), 129.1 (d, C-3^{*}), 129.3 (d, C-4^{*}), 130.1 (s, C-10c), 135.1 (s, C-6a), 137.4 (s, C-4a), 159.3 (s, C-10b), 210.1 (s, CO).

[#] signals are partially overlapped.

* assignment is interconvertible.

MS (EI, 70 eV): *m/z* (%) = 222 (100) [M]⁺, 194 (61) [M – CO]⁺, 179 (14), 165 (49), 152 (14), 127 (11), 95 (4), 57 (10).

HRMS (EI, 70 eV): calcd for $C_{16}H_{14}O[M]^+$: 222.1039; found: 222.1041.

calcd for C₁₅¹³CH₁₄O [M]⁺: 223.1073; found: 223.1077.

(1SR,2SR,2aRS,8bSR)-1,2-Diethyl-1,8b-dihydrocyclobuta[a]naphthalene-2a(2H)-

carbaldehyde (18)

Using (E)-3-hexene as olefin:

According to the General Procedure 1, a solution of 2-naphthaldehyde (**2**, 15.6 mg, 100 μ mol, 1.00 eq.), (*E*)-3-hexene (373 μ L, 352 mg, 3.00 mmol, 30.0 eq.) and aluminium bromide solution (50.0 μ L, 100 mM in CH₂Br₂/CH₂Cl₂, 5.0 μ mol, 5.0 mol%) in dichloromethane (5 mL) was irradiated at $\lambda = 457$ nm (LED045) for twelve hours. After removal of the solvent, the crude product was purified by column chromatography (silica, P/Et₂O = 75/1 \rightarrow 50/1). 15.0 mg of *ortho* photocycloaddition product **18** (62.4 μ mol, 62%, 78% brsm, d.r. > 95/5) were obtained as a colourless oil besides 3.10 mg of recovered starting material **2** (19.8 μ mol, 20%).

Using (Z)-3-hexene as olefin:

According to the General Procedure 1, a solution of 2-naphthaldehyde (**2**, 15.6 mg, 100 μ mol, 1.00 eq.), (*Z*)-3-hexene (373 μ L, 352 mg, 3.00 mmol, 30.0 eq.) and aluminium bromide solution (50.0 μ L, 100 mM in CH₂Br₂/CH₂Cl₂, 5.0 μ mol, 5.0 mol%) in dichloromethane (5 mL) was irradiated at $\lambda = 457$ nm (LED045) for twelve hours. After removal of the solvent, the crude product was purified by column chromatography (silica, P/Et₂O = 75/1 \rightarrow 50/1). 9.30 mg of *ortho* photocycloaddition product **18** (38.7 μ mol, 39%, 63% brsm, d.r. \approx 90/10) were obtained as a colourless oil besides 5.90 mg of recovered starting material **2** (37.8 μ mol, 38%).

TLC: $R_f = 0.62$ (P/Et₂O = 10/1) [UV, KMnO₄, CAM].

IR (ATR): \tilde{v} [cm⁻¹] = 3021 (w, sp²-CH), 2961 (s, sp³-CH), 2924 (m, sp³-CH), 2875 (w, sp³-CH), 1715 (vs, C=O), 1459 (m), 1380 (w), 792 (s, sp²-CH), 753 (w).

¹**H NMR** (500 MHz, CDCl₃, 300 K): δ [ppm] = 0.88 (td, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 4.2$ Hz, 6 H, CH₃), 1.47 – 1.65 (m, 4 H, CH₂), 2.11 (*virt.* tt, ${}^{3}J \approx {}^{3}J = 9.2$ Hz, ${}^{3}J \approx {}^{3}J = 6.8$ Hz, 1 H, H-1), 2.42 (*virt.* td, ${}^{3}J \approx {}^{3}J = 9.5$ Hz, ${}^{3}J = 5.6$ Hz, 1 H, H-2), 3.36 (dd, ${}^{3}J = 9.2$ Hz, ${}^{4}J = 1.1$ Hz, 1 H, H-8b), 5.87 (dd, ${}^{3}J = 10.0$ Hz, ${}^{4}J = 1.1$ Hz, 1 H, H-3), 6.71 (d, ${}^{3}J = 10.0$ Hz, 1 H, H-4), 6.98 – 7.01 (m, 1 H, H-8), 7.06 (dd, ${}^{3}J = 5.5$ Hz, ${}^{4}J = 3.4$ Hz, 1 H, H-5), 7.12 – 7.16 (m, 2 H, H-6, H-7), 9.58 (s, 1 H, CHO).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 11.8 (q, CH₃), 13.1 (q, CH₃), 23.4 (t, CH₂),
27.9 (t, CH₂), 40.8 (d, C-8b), 49.0 (d, C-1), 53.9 (d, C-2), 54.1 (s, C-2a), 122.3 (d, C-3), 127.1 (d, C-8), 127.3 (d, C-6*), 127.8 (d, C-5), 128.4 (d, C-7*), 131.2 (s, C-4a), 131.7 (d, C-4),
134.6 (s, C-8a), 200.9 (d, CHO).

* assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 240 (4) [M]⁺, 210 (9), 181 (24), 156 (100) [M - C₆H₁₂]⁺, 127 (31) [M - C₆H₁₂ - CHO], 77 (4), 55 (5).

HRMS (EI, 70 eV): calcd for $C_{17}H_{20}O[M]^+$: 240.1509; found: 240.1509.

calcd for C₁₆¹³CH₂₀O [M]⁺: 241.1542; found: 241.1538.

[(1SR,2SR,2aRS,8bSR)-1,2-Diethyl-1,8b-dihydrocyclobuta[a]naphthalen-2a(2H)-

yl]methanol (S8)

A solution of aldehyde **18** (15.4 mg, 64.1 μ mol, 1.00 eq.) in tetrahydrofuran (10 mL) was added dropwise to a suspension of lithium aluminium hydride (7.30 mg, 192 μ mol, 3.00 eq.) in tetrahydrofuran (5 mL) at 0 °C. After 45 minutes the mixture was diluted with diethyl ether (10 mL) at 0 °C to quench the excess of lithium aluminium hydride. When no further gas evolution was observed, water (50 μ L), 10% aqueous NaOH solution (50 μ L) and water (150 μ L) was added. After warming to room temperature the mixture was vigorously stirred at this temperature for 15 minutes and then MgSO₄ was added. After filtration of the suspension over Celite followed by washing the residue with diethyl ether (15 mL) the solvent was removed under reduced pressure. Purification by column chromatography (silica, P/EtOAc = 20/1) gave 13.6 mg of alcohol **S8** (56.1 μ mol, 88%) as a colourless oil.

TLC: $R_{\rm f} = 0.31$ (P/EtOAc = 10/1) [UV, CAM].

IR (ATR): \tilde{v} [cm⁻¹] = 3365 (s, OH), 3018 (m, sp²-CH), 2959 (vs, sp³-CH), 2921 (vs, sp³-CH), 2874 (s, sp³-CH), 2855 (s, sp³-CH), 1458 (m), 1378 (w), 1260 (w), 1038 (m), 791 (s, sp²-CH), 747 (m).

¹**H** NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 0.82 (t, ³*J* = 7.4 Hz, 3 H, C-1-CH₃), 0.86 (t, ³*J* = 7.5 Hz, 3 H, C-2-CH₃), 1.35 – 1.54 (m, 4H, CH₂), 1.72 (*virt.* tt, ³*J* \approx ³*J* = 8.8 Hz, ³*J* \approx ³*J* = 6.5 Hz, 1 H, H-1), 2.17 (*virt.* td, ³*J* \approx ³*J* = 8.8 Hz, ³*J* = 6.5 Hz, 1 H, H-2), 2.92 (d, ³*J* = 8.8 Hz, 1 H, H-8b), 3.19 (dd, ²*J* = 11.0 Hz, ³*J* = 5.5 Hz, 1 H, C-2a-C*H*H), 3.26 (dd,

 ${}^{2}J = 11.0$ Hz, ${}^{3}J = 5.6$ Hz, 1 H, C-2a-CH*H*), 4.64 (*virt.* t, ${}^{3}J \approx {}^{3}J = 5.6$ Hz, 1 H, OH), 5.65 (d, ${}^{3}J = 9.9$ Hz, 1 H, H-3), 6.51 (d, ${}^{3}J = 9.9$ Hz, 1 H, H-4), 6.95 (dd, ${}^{3}J = 5.4$ Hz, ${}^{4}J = 3.3$ Hz, 1 H, H-8), 7.02 (dd, ${}^{3}J = 5.5$ Hz, ${}^{4}J = 3.4$ Hz, 1 H, H-5), 7.06 – 7.09 (m, 2 H, H-6, H-7).

¹³**C NMR** (126 MHz, CDCl₃, 300 K): δ [ppm] = 11.9 (q, C-1-*C*H₃), 13.1 (q, C-2-*C*H₃), 23.2 (t, CH₂), 27.7 (t, CH₂), 41.8 (d, C-8b), 45.4 (s, C-2a), 48.5 (d, C-1), 50.1 (d, C-2), 66.8 (t, C-2a-*C*H₂), 126.3 (d, C-6*), 126.8 (d, C-5*), 127.2 (d, C-8*), 127.5 (d, C-7*), 128.2 (d, C-4), 129.4 (d, C-3), 131.7 (s, C-4a), 135.8 (s, C-8a).

* assignment is interconvertible.

MS (EI, 70 eV): m/z (%) = 242 (2) $[M]^+$, 220 (4), 195 (3), 181 (7), 158 (100) $[M - C_6H_{12}]^+$, 144 (54), 129 (45), 115 (10).

HRMS (EI, 70 eV): calcd for $C_{17}H_{22}O[M]^+$: 242.1665; found: 242.1666.

calcd for C₁₆¹³CH₂₂O [M]⁺: 243.1699; found: 243.1699.

4. NMR spectra of new compounds

2,2,3,3-Tetramethyl-4-(naphthalen-1'-yl)oxetane (5a)

2,2,3-Trimethyl-1-(naphthalen-1'-yl)but-3-en-1-ol (6a)

220 210 200 190

30

180 170 160 150 140 130 120 110 100 90 80 70 f1 (ppm) 60 50

30 20 10 0

40

3,4-Dimethyl-1-(naphthalen-1'-yl)pent-3-en-1-ol (7a)

7a

¹³C NMR (126 MHz, CDCl₃, 300 K):

2,2,3,3-Tetramethyl-4-(naphthalen-2'-yl)oxetane (5b)

150 140 130 120 110 100 f1 (ppm) -1

2,2,3-Trimethyl-1-(naphthalen-2'-yl)but-3-en-1-ol (6b)

6b

3,4-Dimethyl-1-(naphthalen-2'-yl)pent-3-en-1-ol (7b)

7a

¹³C NMR (126 MHz, CDCl₃, 300 K):

1,1,2,2-Tetramethyl-2,2a-dihydrocyclobuta[*a*]naphthalene-8b(1*H*)-carbaldehyde (10)

2,2,3-Trimethyl-3-(naphthalen-2'-yl)butanal (8)

N,N-Diisopropyl-1-naphthamide-2-d (S2)

1-Naphthaldehyde-2-d (S3)

Naphthalen-1-ylmethan-*d*₂-ol (S4)

2,2,3-Trimethyl-3-(naphthalen-2-yl-1-*d*)butanal (S6)

2,2,3-Trimethyl-3-(naphthalen-2-yl)butanal-1-d (S7)

2,2,3-Trimethyl-3-(naphthalen-2'-yl)butan-1-ol (9)

(2aSR,8bSR)-1,1,2,2-Tetramethyl-1,8b-dihydrocyclobuta[a]naphthalene-2a(2H)-

carbaldehyde (13)

1,1,2,2-Tetramethyl-2,3-dihydro-1*H*-cyclopenta[*a*]naphthalen-3-ol (14)

(7aRS,10aSR)-8,9,10,10a-Tetrahydropentaleno[1,2-a]naphthalen-7(7aH)-one (15)

¹³C NMR (126 MHz, CDCl₃, 300 K):

(1SR,2SR,2aRS,8bSR)-1,2-Diethyl-1,8b-dihydrocyclobuta[a]naphthalene-2a(2H)-

carbaldehyde (18)

¹H NMR (500 MHz, CDCl₃, 300 K):

2000 7,726 CL 7,715 CL 7,7 $\begin{array}{c} 3.37\\ 3.37\\ 3.35\\$ - 5.88 LI. Н6 Ŧ 1.00-1 <u>166</u> 1.0 0.8 9.5 8.5 9.0 8.0 7.5 f1 (ppm) 3.0 2.8 1.2
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 J
 ¹³C NMR (126 MHz, CDCl₃, 300 K): - 200.87 134.56 131.67 131.67 131.20 131.20 131.20 131.20 131.20 127.38 127.38 127.38 127.38 127.38 54.10 13.10 27.92 134.56 131.67 131.20 131.20 128.42 127.33 127.38 127.32 / 13.10 54.10 - 23.37 48.98 180 175 170 165 160 155 150 145 140 135 130 125 120 fl (ppm) 35 30 f1 (ppm) 200 195 55 50 45 40 25 20 15 10 190 185

20 10 ò 30 220 120 110 100 f1 (ppm) 30 210 140 130 80 70 60 50 40 200 190 180 170 160 150 90

[(1SR,2SR,2aRS,8bSR)-1,2-Diethyl-1,8b-dihydrocyclobuta[a]naphthalen-2a(2H)-

yl]methanol (S8)

Datasheets of fluorescent light sources

366 nm reactor

Lehrstuhl OC	1 - TUM 250 nm 300 nm	1350 nm 1400 nm	1450 nm	1600 nm	lööü nm	1600 nm	lii:0 nm		
Datashee	t FLT015				RP	R-Set1	-UV-A		
Basic Inform	ation								
Туре		Fluorescent	light tube						
Description		Set1 (UV-A)	Set1 (UV-A)						
Manufacturer /	Supplier	n/a / Rayone	n/a / Rayonet						
Order number /	Date of purch.	n/a / n/a	n/a / n/a						
Internal lot / ser	rial number	Set1 / FLT01	Set1 / FLT015						
Specification	Manufacturer								
Type / size		T5 tube, G5	socket						
Mechanical spe	cification	16 mm diam	eter, 288 m	m length					
Electrical specifi	cation	8 W							
Wavelength (ra	nge, typ.)	350 nm							
Spectral width (FWHM)	~ 30 nm							
Datasheet									
Characteriza	tion								
Description of m	reasurement	Measured w	ith Ocean-o	ptics USB40	00 spectro	ometer usi	ng a		
		calibrated se	tup (cosine	corrector/f	ibre).				
	The cosine o	The cosine corrector was placed at 20 mm distance from a							
		single fluore	single fluorescent tube at half height.						
Measured domi	nant wavelength /	Int. 365 nm	365 nm 104 μW/mm²nm						
Measured spect	ral width (FWHM)	18 nm							
Integral Reference intensity / range		e <u>2194 μW/cn</u>	2194 μW/cm² 300-450 nm						
Spectrum									
120,0 -									
		R.							
100,0 -		h –							
_ 80.0 -									
		1							
5 60,0 -		1							
<u> </u>									
40,0									
20,0 -							1		
20,0 -		V							

λ[nm]

405 nm LED (LED037)

0,00E+00

Lehrstuhl OC 1 - TUM 200 nm 290 nm 1300 nm	- 1390 nm - 1400 nm - 1450 nm - 1600 nm - 1660 nm - 1600 nm - 1680 nm - 1						
Datasheet LED037	405 / 10 W						
Basic Information	Ultra-High-Power Violet (405)						
Туре	High-Power-LED						
Description	-						
Manufacturer / Supplier	LED-Engine Mouser						
Order number / Date of purch.	LZ4-40UA00-00U7 / 03/2016						
Internal lot / serial number	2016-03 / LED037						
Specification Manufacture	r						
Type / size	quattro emitter / not spec.						
Mechanical specification							
Electrical specification	700 mA @15 V						
Wavelength (range, typ.)							
Spectral width (FWHM)							
Datasheet	LZ4-00UA-series.pdf						
Characterization							
Description of measurement	Measured with Ocean-optics USB4000 spectrometer using a						
	calibrated setup (cosine corrector/fibre).						
	The distance between the emitting surface and the surface of						
	the cosine corrector was 20 mm. The LED was operated at						
	500 mA on a passive heat-sink at approx. 20 °C						
Measured wavelength	405 nm						
Measured spectral width	18 nm						
Integral Reference intensity	247500 μW/cm ² (360-480 nm @ 20 mm distance, 4 mmcosine corr.)						
Spectrum							
1,40E+04							
1,20E+04	A						
1.005+04	<u>/\</u>						
E							
5 8,00E+03							
6,00E+03	— <u> </u>						
- 4,00E+03							
2,00±+03							

λ [nm]

457 nm LED (LED005)

Lehrstuhl OC 1 - TUM 200 nm 250 nm 1300 nm	1350 nm 1400 nm 1450 nm 1500 nm 1550 nm 1600 nm 1660 nm							
Datasheet LED005	H2A3-H470							
Basic Information								
Туре	High-Power-LED							
Description	H2A3-H470							
Manufacturer / Supplier	n/a / Roithner-Lasertechnik, Wien							
Order number / Date of purch.	H2A3-H470 / 12/2011							
Internal lot / serial number	Internal lot / serial number 2011-12 / LED005							
Specification Manufacture	Specification Manufacturer							
Type / size	single emitter / <1 x <1 mm							
Mechanical specification								
Electrical specification	specification 700 mA, UF~3.8 V							
Wavelength (range, typ.)	Wavelength (range, typ.) not spec., typ. 470 nm							
Spectral width (FWHM)	Spectral width (FWHM) 25 nm							
Datasheet	neet H2A3H470.pdf (n. b datasheet is for H2A3H530!)							
Characterization								
Description of measurement	Description of measurement Measured with Ocean-optics USB4000 spectrometer using a							
	calibrated setup (cosine corrector/fibre).							
	The distance between the emitting surface and the surface of							
	the cosine corrector was 20 mm. The LED was operated at							
	700 mA on a passive heat-sink at approx. 20 °C							
Measured wavelength	457 nm							
Measured spectral width	21 nm							
Integral Reference intensity 56580 µW/cm² (400-550 nm @ 20 mm distance, 4 mmcosine corr.)								
Spectrum								

457 nm LED (LED045)

Lehrstuhl OC 1 - TUM 200 nm 250 nm 1300 nm	1350 nm	l 400 nm	1450 nm	leoo nm	laso nm	1600 nm	1650 nm
Datasheet LED045						Av-4	55-5W
Basic Information							
Туре	High-Pov	wer-LED					
Description	Avonec 455-460 nm / 5 W						
Manufacturer / Supplier	n/a / Avonec						
Order number / Date of purch.	n/a / 07/2016						
Internal lot / serial number	2016-07 / LED045						
Specification Manufacture							
Type / size	dual emitter / 2 x ca. 1 x 1 mm						
Mechanical specification							
Electrical specification	ication 700 mA, UF 6.8 V						
Wavelength (range, typ.)	455-460 nm, typ. n/a						
Spectral width (FWHM) n/a							
Datasheet n/a							
Characterization							
Description of measurement	Measured with Ocean-optics USB4000 spectrometer using a						
	calibrated setup (cosine corrector/fibre).						
	The distance between the emitting surface and the surface of						
	the cosine corrector was 20 mm. The LED was operated at						
	700 mA on a passive heat-sink at approx. 20 °C						
Measured wavelength	red wavelength 457 nm						
Measured spectral width	22 nm						
Integral Reference intensity	99250 µ	W/cm² (40	0-550 nm (⊇ 20 mm d	istance, 4 r	mmcosine (corr.)
Spectrum							

5. UV/Vis spectra

UV/Vis spectrum of 1-naphthaldehyde (1) in the absence of a Lewis acid (black line) and in the presence of variable equivalents of $EtAlCl_2$ (0.5 eq. – 20.0 eq.) in dichloromethane [c = 1 mM].

UV/Vis spectrum of 2-naphthaldehyde (2)

UV/Vis spectrum of 2-naphthaldehyde (2) in the absence of a Lewis acid (black line) and in the presence of variable equivalents of EtAlCl₂ (0.5 eq. – 20.0 eq.) in dichloromethane [c = 1 mM]. There are two isosbestic points at λ = 278 nm and λ = 298 nm (between 0 eq. – 3.0 eq. L.A.).

6. Luminescence measurements

The emission spectrum of 1-naphthaldehyde (1, $100 \,\mu\text{M}$ in CH₂Cl₂) was measured at 77 K with a flash delay of 0.3 ms. We used 350 nm as the excitation wavelength and observed the emission spectrum from 375 – 675 nm. Both excitation and emission bandwidth was set to 5 nm.

The emission spectrum of complex 1-naphthaldehyde·AlEtCl₂ (1·AlEtCl₂, 100 µM of 1 in CH₂Cl₂) was measured at RT in the presence of an excess of EtAlCl₂ (3.0 eq.). We used 400 nm as the excitation wavelength and observed the emission spectrum from 410 – 700 nm. Both excitation and emission bandwidth was set to 2 nm.

The emission spectrum of complex 1-naphthaldehyde·AlEtCl₂ (1·AlEtCl₂, 100 µM of 1 in CH₂Cl₂) was measured at 77 K with a flash delay of 0.8 ms in the presence of an excess of EtAlCl₂ (3.0 eq.). We used 400 nm as the excitation wavelength and observed the emission spectrum from 410 – 700 nm. Both excitation and emission bandwidth was set to 3 nm.

The emission spectrum of complex 1-naphthaldehyde·AlEtCl₂ (1·AlEtCl₂, 100 µM of 1 in CH₂Cl₂, blue line) was measured at RT in the presence of an excess of EtAlCl₂ (3.0 eq.). We used 400 nm as the excitation wavelength and observed the emission spectrum from 410 – 700 nm. Both excitation and emission bandwidth was set to 2 nm. The quenching experiment was performed by addition of 2,3-dimethyl-2-butene (ca. 1000 eq., green line) to the solution of 1 (100 µM of 1 in CH₂Cl₂) in the presence of an excess of EtAlCl₂ (3.0 eq.).

The emission spectrum of 2-naphthaldehyde (2, $100 \,\mu\text{M}$ in CH₂Cl₂) was measured at 77 K with a flash delay of 0.3 ms. We used 350 nm as the excitation wavelength and observed the emission spectrum from 375 – 675 nm. Both excitation and emission bandwidth was set to 3 nm.

The emission spectrum of complex 2-naphthaldehyde·AlEtCl₂ (2·AlEtCl₂, 100 μ M of 2 in CH₂Cl₂) was measured at RT in the presence of an excess of EtAlCl₂ (3.0 eq.). We used 390 nm as the excitation wavelength and observed the emission spectrum from 400 – 700 nm. Both excitation and emission bandwidth was set to 2 nm.

The emission spectrum of complex 2-naphthaldehyde·AlEtCl₂ (2·AlEtCl₂, 100 µM of 2 in CH₂Cl₂) was measured at 77 K with a flash delay of 0.8 ms in the presence of an excess of EtAlCl₂ (3.0 eq.). We used 390 nm as the excitation wavelength and observed the emission spectrum from 400 – 700 nm. Both excitation and emission bandwidth was set to 3 nm.

The emission spectrum of complex 2-naphthaldehyde·AlEtCl₂ (2·AlEtCl₂, 100 µM of 2 in CH₂Cl₂, blue line) was measured at RT in the presence of an excess of EtAlCl₂ (3.0 eq.). We used 390 nm as the excitation wavelength and observed the emission spectrum from 400 – 700 nm. Both excitation and emission bandwidth was set to 2 nm. The quenching experiment was performed by addition of 2,3-dimethyl-2-butene (ca. 1000 eq., green line) to the solution of 2 (100 µM of 2 in CH₂Cl₂) in the presence of an excess of EtAlCl₂ (3.0 eq.).

7. Stereoconvergent reaction of 2-naphthaldehyde and 3-hexene

Photoreactions of aldehyde 2 and 3-hexene (17) were not stereospecific while both isomers [(E)-17, (Z)-17] delivered mainly a single product 18 (compare ¹H-NMR spectra b, c, d) besides starting material (compare ¹H-NMR spectra a, b, c,)

¹H-NMR (300 MHz, CDCl₃, 300 K):

a) 2-naphthaldehyde; b) crude product: photoreaction of 2-naphthaldehyde (2) with (*E*)-3-hexene [(*E*)-17] as olefin (experimental details see S41); c) crude product: photoreaction of 2-naphthaldehyde (2) with (*Z*)-3-hexene [(*Z*)-17] as olefin (experimental details see S41); d) purified photoproduct 18

NOESY experiment of *ortho* photocycloaddition product **18** [500 MHz (f2), 500 MHz (f1), CDCl₃, 299 K]:

Important NOE-contacts are marked.

Relative configuration on C-1 not clear from this experiment.

NOESY experiment of alcohol **S8** [500 MHz (f2), 500 MHz (f1), DMSO-*d*₆, 298 K]:

Important NOE-contacts are marked.

With this experiment the relative configuration could be solved.

8. Low-temperature NMR experiments

For low-temperature NMR experiments of 2-naphthaldehyde in presence of ethyl aluminium dichloride deuterated dichloromethane (CD₂Cl₂) was filtered over activated basic aluminium oxide and stored for 48 hours over 4 Å activated molecular sieves prior to use. A pre-heated Ptfe500-5-7 NMR-tube (from *Deutero*) was loaded with a 2-naphthaldehyde solution (**2**, 400 μ L, 125 mM in CD₂Cl₂, 50 μ mol, 1.00 eq.) under an argon counterflow and cooled to -78 °C. A pre-cooled ethyl aluminium dichloride solution (110 μ L, 500 mM in *n*-hexane/CD₂Cl₂, 55 μ mol, 1.10 eq.) was added. After careful shaking, an intense yellow solution is formed. ¹H- and ¹³C-NMR spectra were recorded at 213 K (-60 °C) on a *Bruker* DRX400 spectrometer.

¹**H NMR** (400 MHz, CD₂Cl₂, 213 K):

a) 2-naphthaldehyde [98 mM] in presence of 1.1 eq. of EtAlCl₂ b) 2-naphthaldehyde [100 mM] in CD₂Cl₂; Assigned protons are marked.

¹³C NMR (101 MHz, CD₂Cl₂, 213 K):

a) 2-naphthaldehyde [98 mM] in presence of 1.1 eq. of EtAlCl₂ b) 2-naphthaldehyde [100 mM] in CD₂Cl₂;
 Assigned carbons are marked.

9. X-ray crystallographic details

Data were collected on a single crystal x-ray diffractometer equipped with a CMOS detector (Bruker APEX III, κ -CMOS), an IMS microsource with MoK_a radiation ($\lambda = 0.71073$ Å) and a Helios optic using the APEX3 software package.⁶ The measurement was performed on a single crystal coated with perfluorinated ether. The crystal was fixed on top of a kapton micro sampler and frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were corrected for Lorentz and polarisation effects, scan speed, and background using SAINT.⁷ Absorption correction, including odd and even ordered spherical harmonics was performed using SADABS.⁸ Space group assignment was based upon systematic absences, E statistics, and successful refinement of the structure. The structure was solved using SHELXT with the aid of successive difference Fourier maps, and was refined against all data using SHELXL-2014 in conjunction with SHELXLE.9-11 Hydrogen atoms were calculated in ideal positions as follows: Methyl hydrogen atoms were refined as part of rigid rotating groups, with a C–H distance of 0.98 Å and $U_{iso(H)} = 1.5 \cdot U_{eq(C)}$. Other H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic C-H distances of 0.99 Å and 0.95 Å, respectively, other C-H distances of 1.00 Å, all with $U_{iso(H)} = 1.2 \cdot U_{eq(C)}$. Non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w (F_0^2 - F_c^2)^2$ with the SHELXL weighting scheme.⁹ Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography.¹² The H atom on C13 is disordered over two positions, which were constrained at 50% occupancy each as required by the symmetry of the crystal. Images of the crystal structure were generated with PLATON.¹³ CCDC 1937926 contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Compound 9 (CCDC 1937926)

Diffractometer operator J. Jolliffe scanspeed 5 s per frame dx 34 mm 2882 frames measured in 9 data sets phi-scans with delta_phi = 0.5 omega-scans with delta_omega = 0.5 shutterless mode

Crystal data

 $\underline{C_{17}H_{22}O}$

$M_r = 242.35$	$D_{\rm x} = 1.163 {\rm Mg \ m^{-3}}$
Orthorhombic, Pbcn	Melting point: ? K
Hall symbol: <u>-P 2n 2ab</u>	<u>Cu $K\alpha$</u> radiation, $\lambda = 1.54178$ Å
$a = \underline{31.0922(6)}$ Å	Cell parameters from 9953 reflections
b = 11.7199(2) Å	$\theta = \underline{4.0} - \underline{70.1}^{\circ}$
c = 7.5960(1) Å	$\mu = 0.53 \text{ mm}^{-1}$
V = 2767.96 (8) Å ³	$T = \underline{100} \text{ K}$
$Z = \underline{8}$	Block, colourless
F(000) = 1056	$0.30 \times 0.30 \times 0.11$ mm

Data collection

Bruker Photon CMOS diffractometer	2622 independent reflections
Radiation source: IMS microsource	<u>2269</u> reflections with $I > 2\sigma(I)$
Helios optic monochromator	$R_{\rm int} = 0.041$
Detector resolution: <u>16</u> pixels mm^{-1}	$\theta_{\text{max}} = \underline{70.1}^{\circ}, \ \theta_{\text{min}} = \underline{4.0}^{\circ}$
phi– and ω –rotation scans	h = -37 37
Absorption correction: <u>multi-scan</u> <u>SADABS 2016/2, Bruker</u>	k = -14 14
$T_{\min} = 0.709, T_{\max} = 0.753$	$l = \underline{-9} \underline{9}$
27664 measured reflections	

Refinement

Refinement on $\underline{F^2}$	Secondary atom site location: <u>difference</u> Fourier map
Least-squares matrix: <u>full</u>	Hydrogen site location: <u>inferred from</u> <u>neighbouring sites</u>
$R[F^2 > 2\sigma(F^2)] = \underline{0.041}$	H-atom parameters constrained
$wR(F^2) = \underline{0.119}$	$\frac{W = 1/[\Sigma^2(FO^2) + (0.0747P)^2 + 0.8403P]}{WHERE P = (FO^2 + 2FC^2)/3}$
S = 1.02	$(\Delta/\sigma)_{\rm max} = \underline{0.001}$
<u>2622</u> reflections	$\Delta \rho_{\text{max}} = \underline{0.25} \text{ e } \text{\AA}^{-3}$
<u>168</u> parameters	$\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$
<u>0</u> restraints	Extinction correction: none
2 constraints	Extinction coefficient: -

Primary atom site location: intrinsic phasing

10. References

- 1 M. Schuster, M. Knollmueller and P. Gaertner, *Tetrahedron: Asymmetry*, 2006, **17**, 2430.
- Z.-W. Yang, Q. Zhang, Y.-Y. Jiang, L. Li, B. Xiao and Y. Fu, *Chem. Commun.*, 2016, 52, 6709.
- 3 M. Y. S. Ibrahim and S. E. Denmark, *Angew. Chem. Int. Ed.*, 2018, **57**, 10362.
- 4 J. J. McCullough, R. C. Miller and W.-S. Wu, *Can. J. Chem.*, 1977, **55**, 2909.
- 5 K. Sudheendran, C. C. Malakar, J. Conrad and U. Beifuss, *J. Org. Chem.*, 2012, **77**, 10194.
- *APEX suite of crystallographic software*, APEX 3, Version 2015-5.2, Bruker AXS Inc.,
 Madison, Wisconsin, USA, 2015.
- 7 SAINT, Version 8.38A, Bruker AXS Inc., Madison, Wisconsin, USA, 2017.
- 8 SADABS, Version 2016/2, Bruker AXS Inc., Madison, Wisconsin, USA, 2016.
- 9 G. M. Sheldrick, Acta Crystallogr. Sect. A, 2015, 71, 3.
- 10 G. M. Sheldrick, Acta Crystallogr. Sect. C, 2015, 71, 3.
- 11 C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst., 2011, 44, 1281.
- *International Tables for Crystallography, Vol. C* (Ed.: A. J. Wilson), Kluwer Academic
 Publishers, Dordrecht, The Netherlands, 1992, Tables 6.1.1.4 (pp. 500–502), 4.2.6.8 (pp. 219–222), and 4.2.4.2 (pp. 193–199).
- 13 A. L. Spek, Acta Crystallogr. Sect. D, 2009, 65, 148.