Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Enantioselective carbene insertion into N-H bond of benzophenone

imine

Jian Yang, Peiran Ruan, Wei Yang, Xiaoming Feng and Xiaohua Liu*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry,

Sichuan University, Chengdu 610064, P. R. China

E-mail: <u>liuxh@scu.edu.cn</u>

CONTENTS:

1. General remarks	2
2. General procedure for the synthesis of chiral guanidines	2
3. General procedure for the synthesis of the benzophenone imines and α -diazoesters	3
4. Typical procedure for the catalytic asymmetric reactions	4
5. General procedure for the preparation of the racemic products	5
6. Optimization of the asymmetric reaction conditions (α -aryl α -diazoesters)	6
7. Optimization of the asymmetric reaction conditions (α -alkyl α -diazoesters)	. 10
8. Scaled-up version of the asymmetric reaction and further transformations.	. 13
9. The analytical and spectral characterization data of products	. 18
10. X-ray crystal structure of product 7ba and G1	. 44
11. Copies of NMR spectra for the products	. 46
12. References	. 99

1. General remarks

¹H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard (CDCl₃, δ = 7.260). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets), coupling constants (Hz), integration. ¹³C {¹H} NMR data were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, δ = 77.160). Enantiomeric excesses were determined by chiral HPLC analysis on Daicel Chiral IA, IC, IE, and IF at 23 °C with UV detector at 254 nm in comparison with the authentic racemates. Optical rotations were reported as follows: $[\alpha]_D^T$ (*c*: g/100 mL, in CH₂Cl₂). HRMS were recorded on a commercial apparatus (FTMS+c ESI). All the solvents were purified by usual methods before use. Silica gel for Thin-layer chromatography (HG/T2354-92) made in Qingdao Haiyang Chemical Co., Ltd.

2. General procedure for the synthesis of chiral guanidines.

2.4 M *n*-BuLi in *n*-hexane (2.2 equiv, 3.7 mL, 8.8 mmol) was injected into a solution of *L*-ramipril-derived amide A (4.0 mmol) in THF (40 mL) dropwise over 5 minutes under nitrogen atmosphere at -20 °C with well stirring. After additional 10 minutes, a solution of *N*,*N'*-dicyclohexylcarbodiimide (1.2 equiv, 4.8 mmol) in 10 mL of THF was added dropwise within 5 minutes. The reaction was allowed to warm to room temperature and detected by TLC. After 12 h, the mixture was evaporated under reduced pressure to get rid of THF, and the pH value of the mixture was brought into the range of 0–1 by the addition of 2 M HCl. The aqueous phase was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic phase was washed with brine, dried over

anhydrous Na₂SO₄ and evaporated in vacuum and purified through flash chromatograph on silica gel (EtOAc:MeOH = 35:1) to produce **B**. The white foam **B** can be recrystallized in CH₂Cl₂ and petroleum ether to get white crystal. Then, **B** in CH₂Cl₂ (10 mL) was added 4 M NaOH (15 mL) and stirred until the basification was finished (10 minutes). The pH value of the mixture was kept in the range of 11–12. The aqueous phase was extracted with CH₂Cl₂ (3×20 mL). The combined organic phase was washed with 4 M NaOH, dried over anhydrous Na₂SO₄ and evaporated in vacuum. Finally a white solid was obtained. Then it was dissolved in CH₂Cl₂ and filtration through celite to remove the silicone gel, concentrate to get a kind of white foam (71% yield). For other guanidine catalysts, this synthesis method could be applied.¹

3. General procedure for the synthesis of the benzophenone imines

and *a*-diazoesters

To a round flask were added the 4-fluorophenyl Grignard reagent (36 mmol) and 15 mL THF under N₂ atmosphere. Then, the corresponding 4-fluorophenylnitrile (30 mmol) was dissolved in 5 mL THF and added dropwise with well stirring, The mixture was then transferred to an oil bath (85 °C) and detected by TLC. After stirred for 24 h. The reaction mixture was cooled to room temperature and dropwise addition of dry MeOH at 0 °C. The resulting mixture was stirred at room temperature for 30 min, Then filtered through celite and the filter cake washed with THF. The filtrate was concentrated under reduced pressure and purified *via* fractionating vacuum distillation to obtain the title compound **1b** as a colorless oil (66% yield, 0.07 mmHg, 140–145 °C). The other benzophenone imines were prepared by the similar procedure.²

To a solution of ethyl 2-phenylacetate (1.34 g, 10 mmol) and *p*-ABSA (3.12 g, 13 mmol) in dry CH₃CN (20 mL) was added DBU (1.94 mL, 13 mmol) dropwise at 0 °C. Then the mixture was stirred overnight at room temperature. The reaction was then quenched with 10 w% NH₄Cl, followed by extraction with Et₂O (2×20 mL). The combined organic extracts were anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The yellow crude product was purified by silica gel column chromatography (petroleum ether:Et₂O = 30:1) to give the product **2a** as a yellow oil (1.50 g, 93% yield). The other α -aryl α -diazoesters were prepared by the similar procedure.³

To a solution of isopropyl 2-methyl-3-oxobutanoate (1.58 g, 10 mmol) and *p*-ABSA (3.12 g, 13 mmol) in dry CH₃CN (20 mL) was added DBU (1.94 mL, 13 mmol) dropwise at 0 °C. Then the mixture was stirred overnight at room temperature. The reaction was then quenched with 10 w% NH₄Cl, followed by extraction with Et₂O (2×20 mL). The combined organic extracts were anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The yellow crude product was purified by silica gel column chromatography (petroleum ether:Et₂O = 20:1) to give the product **4a** as a yellow oil (1.50 g, 51% yield). The other α -alkyl α -diazoesters were prepared by the similar procedure.⁴

4. Typical procedure for the catalytic asymmetric reactions

Typical Procedure: To an oven-dried reaction tube under nitrogen atmosphere was

added the Rh₂(esp)₂ (0.8 mg, 1 mol%), **G1** (5.3 mg, 10 mol%), 4 Å MS (30 mg), and CHCl₃ (0.5 mL). The reaction mixture was stirred at 30 °C for 30 min. Subsequently, bis(4-fluorophenyl)methanimine **1b** (19.5 μ L, 0.1 mmol) was added, then the reaction mixture was stirred at 0 °C for 10 min, ethyl 2-diazo-2-phenylacetate **2a** (20 μ L, 0.12 mmol) was added and the reaction mixture was stirred at 0 °C for 24 h, then directly purified by flash column chromatography (petroleum ether:Et₂O = 10:1) to afford the desired product **3ba**.

Typical Procedure: To an oven-dried reaction tube under nitrogen atmosphere was added the Rh₂(esp)₂ (0.8 mg, 1 mol%), **G1** (5.3 mg, 10 mol%), 5 Å MS (30 mg), and CHCl₃ (0.5 mL). The reaction mixture was stirred at 30 °C for 30 min. Subsequently, bis(4-fluorophenyl)methanimine **1b** (19.5 μ L, 0.1 mmol) was added, then the reaction mixture was stirred at 50 °C for 10 min, isopropyl 2-diazopropanoate **4a** (30 μ L, 0.2 mmol) was added and the reaction mixture was stirred at 50 °C for 1 min, then directly purified by flash column chromatography (petroleum ether:Et₂O = 10:1) to afford the desired product **5ba**.

5. General procedure for the preparation of the racemic products

The corresponding racemic products were obtained by the no using of chiral guanidine under the same reaction conditions.

6. Optimization of the asymmetric reaction conditions (α -aryl α -diazoesters)

	NH N2 m + Ph CO2Et -	etal source (10 mol%) G1 (10 mol%) CH ₂ Cl ₂ , 30 °C	N_*CO ₂ Et
	la 2a		Ph 3aa
entry	metal source	yield ^{b} (%)	er ^c
1^d	Rh ₂ (OAc) ₄	84	75:25
2	Cu(OTf) ₂	25	70:30
3	$Cu(OTf) \bullet C_6H_6$	N.R.	-
4	CuCl	N.R.	-
5	$Pd(OAc)_2$	N.R.	-
6	$Pd_2(dba)_3$	N.R.	-
7	Fe(ClO ₄) ₂ •H ₂ O	N.R.	-
8 ^e	AgNTf ₂	N.R.	50:50
9	AgOTf	N.R.	-

Table 1. Screening of the metal sources^{*a*}

^{*a*}Unless otherwise noted, all reactions were carried out with metal source (10 mol%), **G1** (10 mol%), **1a** (0.1 mmol), and **2a** (0.12 mmol) in CH₂Cl₂ (0.5 mL) at 30 °C for 5 h. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}Rh₂(OAc)₄ (5 mol %). ^{*e*}Reaction time: 3 days.

Table 2. Screening of chiral guanidines^a

4	G4	89	50:50
5	G5	86	59:41
6	G6	84	59:41
7	G7	78	62:38
8	G8	84	57:43
9	G9	81	50:50

^{*a*}Unless otherwise noted, all reactions were carried out with $Rh_2(OAc)_4$ (5 mol%), **G** (10 mol%), **1a** (0.1 mmol), and **2a** (0.12 mmol) in CH_2Cl_2 (0.5 mL) at 30 °C for 5 h. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis.

Table 3. Screening of the solvents^a

	NH + Ph CO ₂ Et	Rh ₂ (OAc) ₄ (5 mol%) G1 (10 mol%) solvent, 30 °C	+ CO ₂ Et
	1a 2a	32	Ėh na
entry	solvent	yield ^{b} (%)	$\operatorname{er}^{c}(\%)$
1	THF	84	65:35
2	Et ₂ O	25	73:27
3	Toluene	54	70:30
5	AcOEt	75	63:37
6	MeCN	67	60:40
7	CH_2Cl_2	84	75:25
8^d	CH_2Cl_2	96	75:25
9^e	CH_2Cl_2	81	73:27
10^d	CH ₂ ClCH ₂ Cl	93	77:21
11^{d}	CHCl ₃	87	82:18

^{*a*}Unless otherwise noted, all reactions were carried out with $Rh_2(OAc)_4$ (5 mol%), **G1** (10 mol%), **1a** (0.1 mmol), and **2a** (0.12 mmol) in solvent (0.5 mL) at 30 °C for 5 h. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}4 Å MS (30 mg) was added. ^{*e*}MgSO₄ (30 mg) was added.

Table 4. Screening of different Rh(II) salts^a

1	Rh ₂ (OAc) ₄	87	82:18
2	Rh ₂ (oct) ₄	88	74:26
3	Rh ₂ (TFA) ₄	N.R.	-
4	Rh ₂ (TPA) ₄ •CH ₂ Cl ₂	N.R.	-
5^d	$Rh_2(esp)_2$	90	74:26

^{*a*}Unless otherwise noted, all reactions were carried out with Rh(II) salt (5 mol%), **G1** (10 mol%), 4 Å MS (30 mg), **1a** (0.1 mmol), and **2a** (0.12 mmol) in CHCl₃ (0.5 mL) at 30 °C for 5 h. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}Reaction time: 10 min.

	NH 1a	N_2 $Rh(II) = G1 ($ Ph $CO_2Et - 4 \text{ Å MS},$ 2a	salt (5 mol%) <u>10 mol%)</u> CHCl ₃ , x °C Pl 3aa	CO ₂ Et
entry	Rh(II) salt	X	yield ^{b} (%)	$\operatorname{er}^{d}(\%)$
1	Rh ₂ (OAc) ₄	30	87	82:18
2	Rh ₂ (OAc) ₄	0	37	76:24
3^d	Rh ₂ (esp) ₂	30	90	74:26
4^e	Rh ₂ (esp) ₂	0	93	82:18
5^{f}	Rh ₂ (esp) ₂	-10	83	86:14
6^{f}	$Rh_2(esp)_2$	-20	32	70:30

Table 5. Screening of reaction temperature^a

^{*a*}Unless otherwise noted, all reactions were carried out with Rh(II) salt (5 mol%), **G1** (10 mol%), 4 Å MS (30 mg), **1a** (0.1 mmol), and **2a** (0.12 mmol) in CHCl₃ (0.5 mL) at x $^{\circ}$ C for 5 h. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}Reaction time: 10 min. ^{*e*}Reaction time: 8 h. ^{*f*}Reaction time: 24 h.

Table 6. Screening of different benzophenone imines^{*a*}

^{*a*}Unless otherwise noted, all reactions were carried out with $Rh_2(esp)_2$ (5 mol%), **G1** (10 mol%), 4 Å MS (30 mg), **1** (0.1 mmol), and **2a** (0.12 mmol) in CHCl₃ (0.5 mL) at 0 °C for 8 h. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}Determined by chiral HPLC analysis.

Table 7. Screening of ester groups of the α -aryl α -diazoesters^a

entry	R	yield ^{b} (%)	$\operatorname{er}^{c}(\%)$
1	Et	96	90:10
2^d	Et	96	90:10
3	Me	91	75:25
4	^{<i>i</i>} Pr	78	85:15
5	ⁱ Bu	77	77:23
6	^t Bu	83	70:30
7	Bn	76	80:20
8	CH ₂ CF ₃	99	77:23

9	CH_2CCl_3	89	68:32

^{*a*}Unless otherwise noted, all reactions were carried out with $Rh_2(esp)_2$ (5 mol%), **G1** (10 mol%), 4 Å MS (30 mg), **1b** (0.1 mmol), and **2** (0.12 mmol) in CHCl₃ (0.5 mL) at 0 °C for 8 h. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis. ^{*d*} Rh₂(esp)₂ (1 mol %), reaction time: 24 h.

7. Optimization of the asymmetric reaction conditions (α -alkyl

α-diazoesters)

Table 1. Screening of reaction temperature^a

entry	Temp (°C)	yield ^{b} (%)	$\operatorname{er}^{c}(\%)$
1^d	0	48	72:28
2	20	88	69:31
3	30	89	72:28
4	40	94	77:23
5	50	90	79:21
6	60	85	79:21
7	70	92	79:21

^{*a*}Unless otherwise noted, all reactions were carried out with $Rh_2(esp)_2$ (5 mol%), **G1** (10 mol%), 4 Å MS (30 mg), **1b** (0.1 mmol), and **4s** (0.2 mmol) in CHCl₃ (0.5 mL) at x °C for 1 min. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis. ^{*d*} Reaction time: 3 h.

Table 2. Screening of ester groups of the α -alkyl α -diazoesters^a

F	NH F ⁺ Me CO ₂ R	Rh ₂ (esp) ₂ (1 mol%) <u>G1 (10 mol%)</u> 4 Å MS, CHCl ₃ , 50 °C	F N t CO ₂ R Me
	1b 4		5
entry	R	yield ^{b} (%)	$\operatorname{er}^{c}(\%)$
1	Me	97	64:36
2	Et	90	79:21
3	ⁱ Pr	96	93:7
4	^t Bu	85	68:32

	5	Bn	91	72:28
--	---	----	----	-------

^{*a*}Unless otherwise noted, all reactions were carried out with $Rh_2(esp)_2$ (1 mol%), **G1** (10 mol%), 4 Å MS (30 mg), **1b** (0.1 mmol), and **4** (0.2 mmol) in CHCl₃ (0.5 mL) at 50 °C for 1 min. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis.

Table 3. Screening of the additives^{*a*}

F	$\frac{NH}{F} + Me + CO_2/F$ 1b 4a	F、 Rh ₂ (esp) ₂ (1 mol%) G1 (10 mol%) CHCl ₃ , additive, 50 °C	F N * CO ₂ [/] Pr Me 5ba
Entry	additive	yield ^{b} (%)	$\operatorname{er}^{c}(\%)$
1	-	99	92:8
2	3 Å MS (30 mg)	99	93:7
3	4 Å MS (30 mg)	96	93:7
4	5 Å MS (30 mg)	96	94:6

^{*a*}Unless otherwise noted, all reactions were carried out with $Rh_2(esp)_2$ (1 mol%), **G1** (10 mol%), additive (30 mg), **1b** (0.1 mmol), and **4a** (0.2 mmol) in CHCl₃ (0.5 mL) at 50 °C for 1 min. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis.

Table 4. Screening of the solvents^a

F	NH F + Me CO ₂ ⁱ Pr	Rh ₂ (esp) ₂ (1 mol%) <u>G1 (10 mol%)</u> solvent, 5 Å MS, 50 °C	F N * CO ₂ 'Pr Me
	1b 4a		5ba
Entry	solvent	yield ^{b} (%)	$\operatorname{er}^{c}(\%)$
1	CH_2Cl_2	99	93:7
2	CHCl ₃	96	94:6
3	THF	99	93:7
4	Et ₂ O	94	94:6
5	Toluene	83	94:6
6	AcOEt	86	76:24

^{*a*}Unless otherwise noted, all reactions were carried out with $Rh_2(esp)_2$ (1 mol%), **G1** (10 mol%), 5 Å MS (30 mg), **1b** (0.1 mmol), and **4a** (0.2 mmol) in solvent (0.5 mL) at 50 °C for 1 min. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis.

Table 5. Screening of different Rh(II) salts^a

entry	Rh(II) salt	yield ^{b} (%)	$\operatorname{er}^{c}(\%)$
1^d	Rh ₂ (OAc) ₄	57	90:10
2^d	$Rh_2(oct)_4$	91	93:7
3^d	Rh ₂ (TFA) ₄	N.R.	-
4^d	$Rh_2(TPA)_4$ • CH_2Cl_2	93	94:6
5	Rh ₂ (esp) ₂	96	94:6
5^{f}	Rh ₂ (esp) ₂	90	92:8

^{*a*}Unless otherwise noted, all reactions were carried out with Rh(II) salt (1 mol%), **G1** (10 mol%), 5 Å MS (30 mg), **1b** (0.1 mmol), and **4a** (0.2 mmol) in CHCl₃ (0.5 mL) at 50 °C for 1 min. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}Reaction time: 10min. ^{-*f*}**G1** (5 mol%).

Table 6. Full list of the α -diazoesters insertion products

^aUnless otherwise noted, all reactions were carried out with Rh₂(esp)₂ (1 mol%), G1 (10 mol%), 4

Å MS (30 mg), **1b** (0.1 mmol), and **2** (0.12 mmol) in CHCl₃ (0.5 mL) at 0 $^{\circ}$ C for 24 h. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis.

^{*a*}Unless otherwise noted, all reactions were carried out with $Rh_2(esp)_2$ (1 mol%), **G1** (10 mol%), 5 Å MS (30 mg), **1b** (0.1 mmol), and **4** (0.2 mmol) in CHCl₃ (0.5 mL) at 50 °C for 1 min. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}**4p** (0.4 mmol) was added.

8. Scaled-up version of the asymmetric reaction and further

transformations.

To a round flask under nitrogen atmosphere was added the $Rh_2(esp)_2$ (16 mg, 1 mol%), G1 (0.11g, 10 mol%), 4 Å MS (0.60 g), and CHCl₃ (10 mL). The reaction stirred 30 $^{\circ}$ C 30 mixture was at for min. Subsequently, bis(4-fluorophenyl)methanimine 1b (0.39 mL, 2 mmol) was added, then the reaction mixture was stirred at 0 °C for 10 min, ethyl 2-diazo-2-phenylacetate 2a (0.40 mL, 2.4 mmol) was added and the reaction mixture was stirred at 0 $\,^{\circ}$ C for 24 h, then directly purified by flash column chromatography (petroleum ether: $Et_2O = 10:1$) to afford the desired product 3ba.

To a round flask was added the **3ba** (0.62 g), then 1M HCl (5 mL) and Et₂O (10 mL) were added. The reaction mixture was stirred at rt for 5 h. Subsequently, the aqueous phase was separated and was evaporated to afford the desired product α -amino ester **6ba** as a white solid with retained enantiopurity. The **6ba** was recrystallized from mixed solvents of MeOH and Et₂O, which significantly improved enantiopurity. The benzophenone could be recovered in 96% yield from the organic phase. Er was determined by chiral HPLC analysis of the corresponding *N*-Boc protected amines **7ba**.

To a solution of **6ba** (0.27 g, 1.26 mmol) in CH₂Cl₂ (5 mL) was added Et₃N (0.42 mL, 3.02 mmol) dropwise at 0 $^{\circ}$ C, followed by added (Boc)₂O (0.33g, 1.51 mmol) after stirred 10 minutes, Then the mixture was stirred overnight at room temperature. Next, The mixture was washed with 1 M KHSO₄ solution, saturated NaHCO₃ solution, brine, dried over anhydrous Na₂SO₄, concentrated in vacuo to afford desired product **7ba** (99% yield). The absolute configuration of **7ba** was assigned as *R* based on X-ray crystal analysis. Therefore, **3ba** was assigned as

R-isomer.

To a round flask under nitrogen atmosphere was added the $Rh_2(esp)_2$ (16 mg, 1 mol%), G1 (0.11g, 10 mol%), 5 Å MS (0.60 g), and CHCl₃ (10 mL). The reaction mixture stirred 30 C 30 was at for min. Subsequently, bis(4-fluorophenyl)methanimine 1b (0.39 mL, 2 mmol) was added, then the reaction mixture was stirred at 50 °C for 10 min, 4r (1.32 g, 4 mmol) was added and the reaction mixture was stirred at 50 $\,^{\circ}$ C for 1 min, then directly purified by flash column chromatography (petroleum ether: $Et_2O = 5:1$) to afford the desired product **5br**.

To a round flask was added the **5br** (0.60 g), then 1M HCl (5 mL) and Et₂O (10 mL) were added. The reaction mixture was stirred at rt for 5 h. Subsequently, the aqueous phase was separated and was evaporated to afford the desired product α -amino ester **6br** (0.39 g) as a white solid with retained enantiopurity. The benzophenone could be recovered in 99% yield (0.25 g) from the organic phase. Er was determined by chiral HPLC analysis of the corresponding *N*-Boc protected amines **7br**.

To a solution of **6br** (0.39 g, 1.23 mmol) in CH_2Cl_2 (5 mL) was added Et_3N (0.41 mL, 2.95 mmol) dropwise at 0 °C, followed by added (Boc)₂O (0.32 g, 1.48 mmol) after stirred 10 minutes, Then the mixture was stirred overnight at room

temperature. Next, The mixture was washed with 1 M KHSO₄ solution, saturated NaHCO₃ solution, brine, dried over anhydrous Na_2SO_4 , concentrated in vacuo to afford desired product **7br** (99% yield).

To a round flask was added the **5ba** (0.132 g, 0.40 mmol), then 1M HCl (5 mL) and Et₂O (5 mL) were added. The reaction mixture was stirred at rt for 5 h. Subsequently, the aqueous phase was separated and was evaporated to afford the desired product α -amino ester **8ba** as a colorless oil. The benzophenone could be recovered in 94% yield from the organic phase.

To a solution of **8ba** (0.064 g, 0.383 mmol) in CH₂Cl₂ (5 mL) was added Et₃N (0.13 mL, 0.919 mmol) dropwise at 0 °C, followed by added (Boc)₂O (0.10 g, 0.46 mmol) after stirred 10 minutes. Then the mixture was stirred overnight at room temperature. Next, the mixture was washed with 1 M KHSO₄ solution, saturated NaHCO₃ solution, brine, dried over anhydrous Na₂SO₄, concentrated in vacuo to afford desired product **9ba** (99% yield). The absolute configuration of **9ba** { $[\alpha]_D^{26} = -35.2$ (c = 1.19, in MeOH)} was determined to be *S* by comparison of the optical rotation with that given in literature⁵ { $[\alpha]_D^{20} = -31.0$ (c = 1.0, in MeOH); *S*-isomer}. Therefore, the absolute configuration of **5ba** was assigned *S*-isomer.

To a round flask was added the **5bf** (0.23 g, 5.5 mmol), then 1M HCl (5 mL) and Et_2O (5 mL) were added. The reaction mixture was stirred at rt for 5 h. Subsequently, the aqueous phase was separated and was evaporated to afford the desired product

 α -amino ester **8bf** as a colorless oil. The benzophenone could be recovered in 99% yield from the organic phase.

To a round flask was added the **8bf** (0.1435 g, 5.5 mmol), then 6M HCl (10 mL) and dioxane (0.5 mL) were added. The reaction mixture was stirred at 100 °C for 12 h. The reaction mixture was cooled to rt and washed with Et₂O (3x5 mL). Subsequently, the aqueous phase was separated and was evaporated to afford the desired product amino acid hydrochloride **10bf** as a white solid (0.1271 g, 99% yield). The absolute configuration of **10bf** {[α]_D³⁰ = +26.6 (*c* = 1.35, in 3M HCl)} was determined to be *S* by comparison of the optical rotation with that given in literature⁶ {[α]_D²⁰ = -46.0 (*c* = 1.0, in 3M HCl); *R*-isomer}. Therefore, the absolute configuration of **5bf** was assigned as *S*-isomer.

9. The analytical and spectral characterization data of products

Ethyl (R)-2-((bis(4-fluorophenyl)methylene)amino)-2-phenylacetate (3ba)

F (C₂₃H₁₉F₂NO₂) colorless oil. 96% yield (36.3 mg), 90:10 er, HPLC (Chiral IA cloumn), *i*-PrOH/*n*-Hexane = 10/90, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, *t* (major) = 5.20 min, *t* (minor) = 4.71 min. [α]₄₃₆²³ = +91.3 (*c* = 0.29, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.65 (m, 2H), 7.45 – 7.39 (m, 2H), 7.36 – 7.26 (m, 3H), 7.15 (t, *J* = 8.8 Hz, 2H), 7.11 – 6.98 (m, 4H), 5.06 (s, 1H), 4.20 – 4.07 (m, 2H), 1.18 (t, *J* =

7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.4, 168.1, 164.5 (d, J = 249.7 Hz), 163.0 (d, J = 247.5 Hz), 139.1, 135.7 (d, J = 3.0 Hz), 131.8 (d, J = 3.6 Hz), 131.2 (d, J = 8.6 Hz), 129.8 (d, J = 8.1 Hz), 128.7, 128.0, 116.0 (d, J = 21.5 Hz), 115.2 (d, J = 21.6 Hz), 69.9, 61.4, 14.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.0, -111.5.

HRMS (FTMS+c ESI): Calcd for C₂₃H₂₀F₂NO₂⁺ [M+H⁺] 380.1457, found 380.1454.

	Retention Time	Area	% Area
1	4.713	838319	10.15
2	5.198	7424872	89.85

Ethyl 2-((bis(4-fluorophenyl)methylene)amino)-2-(2-fluorophenyl)acetate (3bb)

F (C₂₃H₁₈F₃NO₂) colorless oil. 99% yield (39.5 mg), 67:33 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, *t* (major) = 5.78 min, *t* (minor) = 6.50 min. [α]₄₃₆²⁴ = +39.9 (*c* = 0.56, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.62 (m, 3H), 7.30 – 7.24 (m, 1H), 7.21 – 7.08 (m, 5H), 7.07 – 6.96 (m, 3H), 5.40 (s, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 1.19 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H}

NMR (100 MHz, CDCl₃) δ 170.6, 169.3, 164.6 (d, J = 249.8 Hz), 163.0 (d, J = 247.6 Hz), 160.1 (d, J = 245.9 Hz), 135.6 (d, J = 3.0 Hz), 131.7 (d, J = 3.6 Hz), 131.2 (d, J = 8.7 Hz), 129.9 (d, J = 3.7 Hz), 129.8 (d, J = 8.1 Hz), 129.5 (d, J = 8.2 Hz), 126.4

(d, J = 13.8 Hz), 124.5 (d, J = 3.4 Hz), 116.0 (d, J = 21.5 Hz), 115.4 (d, J = 21.6 Hz), 115. 2 (d, J = 21.5 Hz), 62.8, 61.6, 14.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -109.8, -111.4, -118.2.

HRMS (FTMS+c ESI): Calcd for $C_{23}H_{19}F_3NO_2^+$ [M+H⁺] 398.1364, found 398.1362.

1	5.775	7139117	67.05
2	6.500	3508604	32.95

Ethyl 2-((bis(4-fluorophenyl)methylene)amino)-2-(3-fluorophenyl)acetate (3bc)

(C₂₃H₁₈F₃NO₂) colorless oil. 99% yield (39.4 mg), 88:12 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, λ = 254 nm, *t* (major) = 5.59 min, *t* (minor) = 6.24 min. [α]₄₃₆²² = +91.9 (*c* = 0.66, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.66 (m, 2H), 7.33 – 7.26 (m, 1H), 7.23 (dt, *J* = 9.8, 2.2 Hz, 1H), 7.20 – 7.13 (m, 3H), 7.11 – 6.95 (m, 5H), 5.05 (s, 1H), 4.24 – 4.05 (m, 2H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.8,

168.7, 164.6 (d, J = 250.1 Hz), 163.0 (d, J = 247.9 Hz), 162.9 (d, J = 244.4 Hz), 141.4 (d, J = 7.3 Hz), 135.5 (d, J = 3.1 Hz), 131.7 (d, J = 3.6 Hz), 131.2 (d, J = 8.7 Hz), 130.1 (d, J = 8.2 Hz), 129.7 (d, J = 8.1 Hz), 123.6 (d, J = 2.8 Hz), 116.0 (d, J = 14.5 Hz), 115.3 (d, J = 21.5 Hz), 115.1 (d, J = 22.1 Hz), 115.0 (d, J = 21.1 Hz), 69.2, 61.6, 14.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -109.7, -111.2, -112.6.

HRMS (FTMS+c ESI): Calcd for C₂₃H₁₉F₃NO₂⁺ [M+H⁺] 398.1364, found 398.1361.

	Retention Time	Area	% Area
1	5.602	5997516	50.13
2	6.268	5965380	49.87

	Retention Time	Area	% Area
1	5.586	8482371	88.09
2	6.242	1147024	11.91

Ethyl 2-((bis(4-fluorophenyl)methylene)amino)-2-(4-fluorophenyl)acetate (3bd)

135.5 (d, J = 2.9 Hz), 134.9 (d, J = 3.1 Hz), 131.8 (d, J = 3.6 Hz), 131.1 (d, J = 8.7 Hz), 129.7 (d, J = 8.1 Hz), 129.6 (d, J = 8.0 Hz), 116.0 (d, J = 21.4 Hz), 115.5 (d, J = 21.4 Hz), 115.3 (d, J = 21.6 Hz), 69.0, 61.5, 14.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -109.8, -111.3, -114.4.

HRMS (FTMS+c ESI): Calcd for $C_{23}H_{19}F_3NO_2^+$ [M+H⁺] 398.1364, found 398.1363.

1631494

15.04

2

7.220

Ethyl 2-((bis(4-fluorophenyl)methylene)amino)-2-(4-chlorophenyl)acetate (3be)

135.5 (d, J = 2.8 Hz), 133.8, 131.7 (d, J = 3.6 Hz), 131.1 (d, J = 8.7 Hz), 129.1 (d, J = 8.1 Hz), 129.4, 128.8, 116.1 (d, J = 21.5 Hz), 115.3 (d, J = 21.6 Hz), 69.1, 61.6, 14.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -109.7, -111.2.

HRMS (FTMS+c ESI): Calcd for $C_{23}H_{19}^{34.9689}ClF_2NO_2^+$ [M+H⁺] 414.1067, found 141.1067. HRMS (FTMS+c ESI): Calcd for $C_{23}H_{19}^{36.9659}ClF_2NO_2^+$ [M+H⁺] 416.1037, found 416.1038.

	Retention Time	Area	% Area
1	6.051	15416937	85.98
2	7.355	2514580	14.02

Ethyl 2-((bis(4-fluorophenyl)methylene)amino)-2-(4-bromophenyl)acetate (3bf)

 $\begin{array}{l} (\mathbf{C}_{23}\mathbf{H}_{18}\mathbf{BrF}_{2}\mathbf{NO}_{2}) \text{ colorless oil. 96\% yield (43.9 mg), 88:12} \\ \text{er, HPLC (Chiral IF cloumn), } i-PrOH/n-Hexane = 5/95, Flow \\ \text{rate: } 1.0 \text{ mL/min, } \lambda = 254 \text{ nm, } t \text{ (major)} = 6.67 \text{ min, } t \text{ (minor)} \\ = 8.19 \text{ min. } [\alpha]_{436}^{24} = +31.4 \ (c = 0.92, \text{ in CH}_{2}\mathbf{Cl}_{2}). \ ^{1}\text{H NMR} \\ (400 \text{ MHz, CDCl}_{3}) \delta 7.72 - 7.63 \ (m, 2\text{H}), 7.50 - 7.43 \ (m, 2\text{H}), 7.35 - 7.29 \ (m, 2\text{H}), 7.16 \ (t, J = 8.6 \text{ Hz, 2H}), 7.11 - \\ 6.96 \ (m, 4\text{H}), 5.01 \ (s, 1\text{H}), 4.24 - 4.04 \ (m, 2\text{H}), 1.19 \ (t, J = \\ 7.2 \text{ Hz, 3H}). \ ^{13}\text{C}\{^{1}\text{H}\} \text{ NMR (100 MHz, CDCl}_{3}) \delta 170.9, \\ 168.6, 164.6 \ (d, J = 250.0 \text{ Hz}), 163.0 \ (d, J = 247.9 \text{ Hz}), 138.1, \end{array}$

135.4 (d, J = 2.9 Hz), 131.8, 131.7 (d, J = 3.6 Hz), 131.1 (d, J = 8.7 Hz), 129.8, 129.7,

122.0, 116.1 (d, J = 21.5 Hz), 115.3 (d, J = 21.6 Hz), 69.14, 61.60, 14.20. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -109.6, -111.2.

HRMS (FTMS+c ESI): Calcd for $C_{23}H_{19}^{78.9183}BrF_2NO_2^+$ [M+H⁺] 458.0562, found 458.0553. HRMS (FTMS+c ESI): Calcd for $C_{23}H_{19}^{80.9167}BrF_2NO_2^+$ [M+H⁺] 460.0541, found 460.0532.

	Retention Time	Area	% Area
1	6.665	6527720	87.97
2	8.188	892695	12.03

Ethyl 2-((bis(4-fluorophenyl)methylene)amino)-2-(4-iodophenyl)acetate (3bg)

($C_{23}H_{18}IF_2NO_2$) colorless oil. 99% yield (50.3 mg), 90:10 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, λ = 254 nm, *t* (major) = 6.57 min, *t* (minor) = 7.93 min. [α]₄₀₅²³ = +16.8 (*c* = 0.85, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.63 (m, 4H), 7.22 – 7.12 (m, 4H), 7.10 – 6.97 (m, 4H), 4.99 (s, 1H), 4.22 – 4.05 (m, 2H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.8, 168.6, 164.6 (d, *J* = 250.0 Hz), 163.0 (d, *J* = 247.9 Hz), 138.8, 137.7, 135.4 (d, *J* = 3.0 Hz), 131.7 (d, *J* = 3.7 Hz).

131.1 (d, J = 8.7 Hz). 129.9, 129.7 (d, J = 8.1 Hz), 116.1 (d, J = 21.5 Hz), 115.3 (d, J = 21.6 Hz), 93.8, 69.3, 61.6, 14.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -109.6, -111.1. HRMS (FTMS+c ESI): Calcd for C₂₃H₁₉IF₂NO₂⁺ [M+H⁺] 506.0423, found 506.0429.

	Retention Time	Area	% Area
1	6.599	4789878	50.16
2	7.980	4759944	49.84

	Retention Time	Area	% Area
1	6.568	9994407	90.17
2	7.926	1089400	9.83

Ethyl 2-((bis(4-fluorophenyl)methylene)amino)-2-(m-tolyl)acetate (3bh)

138.3, 135.7 (d, J = 3.1 Hz), 131.9 (d, J = 3.7 Hz), 131.1 (d, J = 8.5 Hz), 129.8 (d, J = 8.1 Hz), 128.8, 128.6, 128.5, 125.0, 115.9 (d, J = 21.4 Hz),115.2 (d, J = 21.6 Hz), 69.9, 61.4, 21.6, 14.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.1, -111.5.

HRMS (FTMS+c ESI): Calcd for C₂₄H₂₂F₂NO₂⁺ [M+H⁺] 394.1613, found 394.1601.

	Retention Time	Area	% Area
1	5.956	10390692	88.44
2	6.863	1358311	11.56

Ethyl 2-((bis(4-fluorophenyl)methylene)amino)-2-(p-tolyl)acetate(3bi)

(C24H21F2NO2) colorless oil. 99% yield (39.1 mg), 88:12 er, HPLC (Chiral IF cloumn), i-PrOH/n-Hexane = 5/95, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.25 min, t (minor) = 8.17 min. $[\alpha]_{436}^{22}$ = +52.5 (c = 0.71, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.62 (m, 2H), 7.33 – 7.27 (m, 2H), 7.19 – 7.11 (m, 4H), 7.10 – 7.04 (m, 2H), 7.04 – 6.97 (m, 2H), 5.03 (s, 1H), 4.21 – 4.05 (m, 2H), 2.33 (s, 3H), 1.19 (t, J

= 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.6, 167.9, 164.5 (d, J = 249.6 Hz), 163.0 (d, J = 247.5 Hz), 137.7, 136.2, 135.7 (d, J = 3.0 Hz), 131.9 (d, J = 3.6 Hz), 131.1 (d, J = 8.6 Hz), 129.8 (d, J = 8.1 Hz), 129.4, 127.8, 115.9 (d, J = 21.4 Hz), 115.2 (d, J = 21.4 Hz), 69.6, 61.4, 21.3, 14.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.2, -111.5.

HRMS (FTMS+c ESI): Calcd for $C_{24}H_{22}F_2NO_2^+$ [M+H⁺] 394.1613, found 394.1600.

	Retention Time	Area	% Area
1	7.247	12306375	88.03
2	8.169	1673982	11.97

Ethyl 2-((bis(4-fluorophenyl)methylene)amino)-2-(4-methoxyphenyl)acetate (3bj)

F (C₂₄H₂₁F₂NO₃) colorless oil. 98% yield (40.3 mg), 84:16 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, λ = 254 nm, *t* (major) = 10.26 min, *t* (minor) = 11.66 min. [α]₄₃₆²³ = +43.2 (*c* = 0.62, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.63 (m, 2H), 7.33 (d, *J* = 8.8 Hz, 2H), 7.15 (t, *J* = 8.8 Hz, 2H), 7.10 – 6.97 (m, 4H), 6.90 – 6.83 (m, 2H), 5.01 (s, 1H), 4.20 – 40.6 (m, 2H), 3.79 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.7, 167.8, 164.5 (d, *J* = 249.6 Hz), 162.9 (d, *J* = 247.5 Hz),

159.3, 135.7 (d, J = 3.1 Hz), 131.9 (d, J = 3.6 Hz), 131.4, 131.1 (d, J = 8.7 Hz), 129.8 (d, J = 8.1 Hz), 129.1, 115.9 (d, J = 21.5 Hz), 115.2 (d, J = 21.5 Hz), 114.0, 69.2, 61.3, 55.4, 14.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.1, -111.5.

HRMS (FTMS+c ESI): Calcd for $C_{24}H_{22}F_2NO_3^+$ [M+H⁺] 410.1562, found 410.1553.

	Retention Time	Area	% Area
1	10.270	4882935	50.02
2	11.656	4879511	49.98

	Retention Time	Area	% Area
1	10.260	7115027	83.93
2	11.663	1362436	16.07

Ethyl 2-((bis(4-fluorophenyl)methylene)amino)-2-(naphthalen-2-yl)acetate (3bk)

(d, J = 247.6 Hz), 136.6, 135.7 (d, J = 3.0 Hz), 133.4, 133.2, 131.9 (d, J = 3.7 Hz), 131.2 (d, J = 8.1 Hz), 129.9 (d, J = 8.2 Hz), 128.4, 128.2, 127.8, 126.9, 126.2, 126.2, 125.9, 116.0 (d, J = 21.5 Hz), 115.2 (d, J = 21.6 Hz), 70.0 (d, J = 2.0 Hz), 61.5, 14.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -109.9, -111.1.

HRMS (FTMS+c ESI): Calcd for $C_{27}H_{22}F_2NO_2^+$ [M+H⁺] 430.1613, found 430.1615.

Ethyl

2

9.089

 $\label{eq:constraint} 2-((bis (4-fluor ophenyl) methylene) amino) - 2-(2, 3-dihydr obenzofur an -6-yl) acetate$

1343887

10.47

(**3bl**)

NMR (100 MHz, CDCl₃) δ 171.8, 167.7, 164.5 (d, *J* = 249.6 Hz), 162.9 (d, *J* = 247.5 Hz), 159.9, 135.7 (d, *J* = 2.9 Hz), 131.9 (d, *J* = 3.7 Hz), 131.2, 131.1 (d, *J* = 8.6 Hz), 129.8 (d, *J* = 8.0 Hz), 127.8, 127.5, 124.6, 115.9 (d, *J* = 21.5 Hz), 115.2 (d, *J* = 21.5 Hz), 109.2, 71.5, 69.5, 61.3, 29.8, 14.3. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.2, -111.6.

HRMS (FTMS+c ESI): Calcd for $C_{25}H_{22}F_2NO_3^+$ [M+H⁺] 422.1562, found 422.1555.

	Retention Time	Area	% Area
1	7.245	10990061	78.67
2	8.683	2980055	21.33

Ethyl

2-(benzo[d][1,3]dioxol-5-yl)-2-((bis(4-fluorophenyl)methylene)amino)acetate

(**3bm**)

2

(C₂₄H₁₉F₂NO₄) colorless oil. 93% yield (39.4 mg), 84.5:15.5 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, λ = 254 nm, *t* (major) = 7.62 min, *t* (minor) = 8.47 min. [α]₄₃₆²⁶ = +30.8 (*c* = 0.62, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.62 (m, 2H), 7.16 (t, *J* = 8.6 Hz, 2H), 7.13 – 6.96 (m, 5H), 6.83 – 6.70 (m, 2H), 5.95 (s, 2H), 4.97 (s, 1H), 4.24 – 4.04 (m, 2H), 1.20 (t, *J* = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.4, 168.0, 164.5 (d, *J* = 249.7 Hz), 163.0 (d, *J* = 247.6 Hz), 147.9, 147.4, 135.6 (d,

J = 3.0 Hz), 132.9, 131.8 (d, J = 3.5 Hz), 131.1 (d, J = 8.6 Hz), 129.8 (d, J = 8.1 Hz), 121.3, 115.9 (d, J = 21.5 Hz), 115.2 (d, J = 21.5 Hz), 108.5, 108.3, 101.2, 69.4, 61.4, 14.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.0, -111.4.

Ethyl 2-((bis(4-fluorophenyl)methylene)amino)-4-phenylbut-2-enoate (3bn)

8.468

1664211

15.54

3.5 Hz), 131.7 (d, J = 8.6 Hz), 130.3 (d, J = 8.3 Hz), 128.7, 128.9, 126.4, 124.6, 115.4 (d, J = 21.5 Hz), 115.4 (d, J = 21.7 Hz), 61.1, 33.7, 14.3. ¹⁹F{¹H} NMR (376 MHz,

CDCl₃) δ -109.0, -110.8.

HRMS (FTMS+c ESI): Calcd for $C_{25}H_{22}F_2NO_2^+$ [M+H⁺] 406.1613, found 406.1604. Isopropyl (*S*)-2-((bis(4-fluorophenyl)methylene)amino)propanoate (5ba)

6.8 Hz, 1H), 1.43 (d, J = 6.8 Hz, 3H), 1.23 (dd, J = 6.4, 5.6 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.2, 167.5, 164.3 (d, J = 249.3 Hz), 162.8 (d, J = 247.2 Hz), 135.8 (d, J = 3.0 Hz), 132.0 (d, J = 3.6 Hz), 130.8 (d, J = 8.6 Hz), 129.8 (d, J = 8.1 Hz), 115.9 (d, J = 21.5 Hz), 115.1 (d, J = 21.5 Hz), 68.4, 60.8, 21.8, 19.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.4, -111.9.

HRMS (FTMS+c ESI): Calcd for $C_{19}H_{20}F_2NO_2^+$ [M+H⁺] 332.1457, found 332.1458.

	Retention Time	Area	% Area
1	4.374	759759	6.55
2	4.773	10841719	93.45

Isopropyl 2-((bis(4-fluorophenyl)methylene)amino)butanoate (5bb)

F (C₂₀H₂₁F₂NO₂) colorless oil. 64% yield (22.2 mg), 95:5 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, λ = 254 nm, *t* (minor) = 4.47 min, *t* (major) = 4.91 min. [α]₄₃₆²² = -268.1 (*c* = 0.37, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.57 (m, 2H), 7.15 (d, *J* = 6.8 Hz, 4H), 7.06 – 6.96 (m, 2H), 5.10 – 4.96 (m, 2H), 3.87 (dd, *J* =

8.0 Hz, J = 5.2 Hz, 1H), 2.02 – 1.81 (m, 2H), 1.23 (dd, J = 7.3, 6.4 Hz, 6H), 0.86 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.7, 168.2, 164.4 (d, J = 249.2 Hz), 162.8 (d, J = 247.1 Hz), 135.9 (d, J = 3.1 Hz), 132.3 (d, J = 3.6 Hz), 130.9 (d, J = 8.5 Hz), 129.9 (d, J = 8.0 Hz), 115.9 (d, J = 21.4 Hz), 115.2 (d, J = 21.5 Hz), 68.3, 67.1, 27.0, 22.0, 21.9, 10.7. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.5, -112.0.

		,	-	_	
0.40 ₹ 0.23 0.00 0.20 0.40 0.60 0	.80 1.00 1.2) 300 320 340 360 380 4 Mmues	100 420 4.40 460 5.00	520 840 880 880 800 820
		Retention Time	Area	% Area	
	1	4.434	3441688	50.08	
	2	4.875	3430118	49.92	
0.40 ₹ 0.20 0.10 0.00 	1.00 1.20 1.40	1.60 1.60 2.60 2.20 2.40 2.60 2.80 3.00 3.20 3.4	10 360 430 420 440 460 41	a con	20 6.40 6.80 7.00 7.20 7.40 7.60
		Retention Time	Area	% Area	
	1	4.467	172171	5.16	

HRMS (FTMS+c ESI): Calcd for $C_{20}H_{22}F_2NO_2^+$ [M+H⁺] 346.1613, found 346.1612.

Isopropyl 2-((bis(4-fluorophenyl)methylene)amino)pentanoate (5bc)

4.907

F N * CO₂/Pr

2

(C₂₁H₂₃F₂NO₂) colorless oil. 85% yield (30.5 mg), 95.5:4.5 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, λ = 254 nm, *t* (minor) = 4.40 min, *t* (major) = 4.82 min. [α]₄₃₆²² = -272.7 (*c* = 0.46, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.58 (m, 2H), 7.15 (d, *J* = 7.2 Hz, 4H), 7.05 – 6.94 (m, 2H), 5.09 – 4.97 (m, 1H), 3.93 (t, *J* =

94.84

3165284

6.6 Hz, 1H), 1.95 – 1.81 (m, 2H), 1.37 – 1.15 (m, 8H), 0.84 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.9, 168.1, 164.4 (d, J = 249.2 Hz), 162.8 (d, J = 247.1 Hz), 135.9 (d, J = 3.1 Hz), 132.3 (d, J = 3.8 Hz), 130.9 (d, J = 8.6 Hz), 129.9 (d, J = 8.0 Hz), 115.8 (d, J = 21.4 Hz), 115.2 (d, J = 21.5 Hz), 68.3, 65.6, 35.9, 21.9, 21.9, 19.4, 14.0. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.5, -112.0.

HRMS (FTMS+c ESI): Calcd for C₂₁H₂₄F₂NO₂⁺ [M+H⁺] 360.1770, found 360.1768.

	Retention Time	Area	% Area
1	4.404	175745	4.59
2	4.821	3651203	95.41

Isopropyl 2-((bis(4-fluorophenyl)methylene)amino)-5-methylhexanoate (5bd)

(C₂₃H₂₇NO₂) colorless oil. 36% yield (14.1 mg), 93:7 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 4.13 min, t (major) = 4.56 min. $\left[\alpha\right]_{436}^{22}$ = -364.6 (c = 0.34, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.56 (m, 2H), 7.15 (d, J = 7.2 Hz, 4H), 7.06 - 6.97 (m, 2H), 5.01 - 4.97 (m, 1H), 3.90 (dd, J = 7.6, 5.2 Hz, 1H), 1.99 - 1.78 (m, 2H), 1.54 -

1.41 (m, 1H), 1.23 (dd, J = 7.2, 6.8 Hz, 6H), 1.18 – 1.02 (m, 2H), 0.85 (dd, J = 6.6, 3.0 Hz, 6H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 171.9, 168.0, 164.4 (d, J = 249.2 Hz), 162.8 (d, J = 247.1 Hz), 135.9 (d, J = 3.0 Hz), 132.3 (d, J = 3.6 Hz), 130.9 (d, J = 8.6 Hz), 129.9 (d, J = 7.6 Hz), 115.9 (d, J = 21.5 Hz), 115.2 (d, J = 21.5 Hz), 68.3, 66.1, 35.3, 31.7, 28.0, 22.7, 22.6, 22.0, 21.9. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.5, -112.0.

HRMS (FTMS+c ESI): Calcd for C₂₃H₂₈F₂NO₂⁺ [M+H⁺] 388.2080, found 388.2067.

220 2.40 2.80 3.00 3.20 3.40 3.80 3.80 4.00 4.20 4.40 4.80 5.00 5.20 5.40 0.20 0.40 0.60 0.80

	Retention Time	Area	% Area
1	4.125	241535	7.02
2	4.556	3200742	92.98

Isopropyl 2-((bis(4-fluorophenyl)methylene)amino)octanoate (5be)

CO₂ⁱPr Ν ₽)5

(C24H29F2NO2) colorless oil. 30% yield (12.2 mg), 94:6 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 4.20 min, t (major) = 4.63 min. $[\alpha]_{436}^{22}$ = -224.1 (c = 0.21, in CH₂Cl₂). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.68 - 7.56 \text{ (m, 2H)}, 7.15 \text{ (d, } J = 6.8 \text{ Hz},$ 4H), 7.06 - 6.95 (m, 2H), 5.08 - 4.98 (m, 1H), 3.92 (dd, J =

7.6, 5.6 Hz, 1H), 1.97 - 1.80 (m, 2H), 1.31 - 1.14 (m, 14H), 0.89 - 0.79 (m, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.9, 168.1, 164.4 (d, J = 249.2 Hz), 162.8 (d, J= 247.1 Hz), 135.9 (d, J = 3.1 Hz), 132.3 (d, J = 3.7 Hz), 130.9 (d, J = 8.6 Hz), 129.9 (d, J = 8.0 Hz), 115.9 (d, J = 21.3 Hz), 115.2 (d, J = 21.5 Hz), 68.3, 65.8, 33.8, 31.8,29.2, 26.1, 22.7, 22.0, 21.9, 14.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.5, -112.0. HRMS (FTMS+c ESI): Calcd for $C_{24}H_{30}F_2NO_2^+$ [M+H⁺] 402.2239, found 402.2237.

	Retention Time	Area	% Area
1	4.204	112994	5.92
2	4.627	1795259	94.08

Isopropyl (S)-2-((bis(4-fluorophenyl)methylene)amino)-4-phenylbutanoate (5bf)

F $N_{i,j}$ $CO_2^{j}Pr$ Ph^{j_2}

F ($C_{26}H_{25}F_2NO_2$) colorless oil. 90% yield (37.9 mg), 94.5:5.5 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, *t* (minor) = 4.97 min, *t* (major) er = 5.75 min. [α]₄₃₆²¹ = -229.8 (*c* = 0.57, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.59 (m, 2H), 7.26 – 7.22 (m, 2H), 7.20 – 7.15 (m, 1H), 7.14 – 7.05 (m, 6H), 7.05 – 6.99

(m, 2H), 5.10 - 4.98 (m, J = 6.3 Hz, 1H), 3.98 (dd, J = 8.0, 5.2 Hz, 1H), 2.71 - 2.51 (m, 2H), 2.34 - 2.13 (m, 2H), 1.23 (dd, J = 9.2, 6.2 Hz, 6H). $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) δ 171.6, 168.6, 164.4 (d, J = 249.4 Hz), 162.8 (d, J = 247.2 Hz), 141.5, 135.8 (d, J = 3.0 Hz), 132.1 (d, J = 3.6 Hz), 130.9 (d, J = 8.6 Hz), 129.8 (d, J = 8.0 Hz), 128.5, 128.5, 126.0, 115.8 (d, J = 21.4 Hz), 115.2 (d, J = 21.5 Hz), 68.5, 65.1, 35.3, 32.4, 22.0, 21.9. $^{19}F{^{1}H}$ NMR (376 MHz, CDCl₃) δ -110.3, -111.9.

HRMS (FTMS+c ESI): Calcd for $C_{26}H_{26}F_2NO_2^+$ [M+H⁺] 422.1926, found 422.1924.

	Retention Time	Area	% Area
1	4.962	1234934	50.09
2	5.770	1230411	49.91

	Retention Time	Area	% Area
1	4.967	231184	5.60
2	5.750	3895120	94.40

Isopropyl

2-((bis(4-fluorophenyl)methylene)amino)-5,5,5-trifluoropentanoate(5bg)

F ($C_{21}H_{20}F_5NO_2$) colorless oil. 99% yield (40.9 mg), 93:7 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, *t* (minor) = 3.75 min, *t* (major) = 4.03 min. [α]₄₃₆²¹ = -179.3 (*c* = 0.70, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.58 (m, 2H), 7.17 (d, *J* = 7.6 Hz, 4H), 7.07 – 6.98 (m, 2H), 5.09 – 4.97 (m, 1H), 4.07 – 3.95

(m, 1H), 2.23 – 2.07 (m, 4H), 1.23 (dd, J = 11.0, 6.4 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.6, 169.5, 164.6 (d, J = 250.1 Hz), 163.0 (d, J = 247.8 Hz), 135.4 (d, J = 3.0 Hz), 131.8 (d, J = 3.6 Hz), 131.0 (d, J = 8.6 Hz), 129.8 (d, J = 8.0 Hz), 127.2 (q, J = 274.5 Hz), 116.1 (d, J = 21.5 Hz), 115.3 (d, J = 21.6 Hz), 69.0, 63.7, 30.4 (q, J = 29.0 Hz), 26.1, 21.9, 21.8. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -66.3, -109.7, -111.4.

HRMS (FTMS+c ESI): Calcd for $C_{21}H_{21}F_5NO_2^+$ [M+H⁺] 414.1487, found 414.1485.

Isopropyl 2-((bis(4-fluorophenyl)methylene)amino)-5-fluoropentanoate (5bh)

F ($C_{21}H_{22}F_3NO_2$) colorless oil. 99% yield (37.5 mg), 94:6 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 10/90, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, *t* (minor) = 4.97 min, *t* (major) = 5.88 min. [α]₄₃₆²¹ = -229.5 (*c* = 0.70, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.56 (m, 2H), 7.16 (d, *J* = 6.8 Hz, 4H), 7.07 – 6.94 (m, 2H), 5.09 – 4.98 (m, 1H), 4.47 (t, *J* =

6.4 Hz, 1H), 4.35 (t, J = 6.4 Hz, 1H), 3.98 (t, J = 6.4 Hz, 1H), 2.09 – 1.96 (m, 2H), 1.75 – 1.62 (m, 2H), 1.23 (dd, J = 8.6, 6.2 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.3, 168.7, 164.5 (d, J = 249.4 Hz), 162.9 (d, J = 247.5 Hz), 135.7 (d, J = 2.9 Hz), 132.1 (d, J = 3.7 Hz), 130.9 (d, J = 8.6 Hz), 129.9 (d, J = 8.0 Hz), 116.0 (d, J = 21.4 Hz), 115.2 (d, J = 21.5 Hz), 83.8 (d, J = 164.2 Hz), 68.6, 65.4, 29.4 (d, J = 5.3 Hz), 27.1 (d, J = 19.8 Hz), 21.9, 21.9. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.2, -111.7, 218.2.

HRMS (FTMS+c ESI): Calcd for $C_{21}H_{23}F_3NO_2^+$ [M+H⁺] 378.1675, found 378.1665.

	Retention Time	Area	% Area
1	4.965	302202	6.47
2	5.882	4368050	93.53

Isopropyl 2-((bis(4-fluorophenyl)methylene)amino)-5-chloropentanoate (5bi)

F (C₂₁H₂₂ClF₂NO₂) colorless oil. 79% yield (31.1 mg), 95:5 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, *t* (minor) = 4.89, *t* (major) = 5.87 min. [α]₄₃₆²¹ = -140.8 (*c* = 0.41, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.57 (m, 2H), 7.16 (d, *J* = 7.2 Hz, 4H), 7.07 – 6.96 (m, 2H), 5.08 – 4.98 (m, 1H), 3.96 (t, *J* =

6.4 Hz, 1H), 3.55 - 3.44 (m, 2H), 2.08 - 1.98 (m, 2H), 1.87 - 1.68 (m, 2H), 1.23 (dd, J = 8.8, 6.4 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.3, 168.7, 164.5 (d, J = 249.8 Hz), 162.9 (d, J = 247.4 Hz), 135.6 (d, J = 2.9 Hz), 132.1 (d, J = 3.6 Hz), 130.9 (d, J = 8.6 Hz), 129.8 (d, J = 8.1 Hz), 116.0 (d, J = 21.5 Hz), 115.3 (d, J = 21.5 Hz), 68.7, 64.9, 44.8, 31.0, 29.3, 21.9, 21.9. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.1,

-111.6.

HRMS (FTMS+c ESI): Calcd for $C_{21}H_{23}^{34.9689}ClF_2NO_2^+$ [M+H⁺] 394.1380, found 394.1381. HRMS (FTMS+c ESI): Calcd for $C_{21}H_{23}^{36.9659}ClF_2NO_2^+$ [M+H⁺] 396.1350, found 396.1349.

	Retention Time	Area	% Area
1	4.888	578065	5.03
2	5.869	10917634	94.97

Isopropyl 2-((bis(4-fluorophenyl)methylene)amino)-5-cyanopentanoate (5bj)

 $(C_{22}H_{22}F_2N_2O_2) \text{ colorless oil. 91\% yield (43.9 mg), 94:6 er,} HPLC (Chiral IF cloumn),$ *i*-PrOH/*n* $-Hexane = 10/90, Flow rate: 1.0 mL/min, <math>\lambda = 254$ nm, *t* (minor) = 10.04 min, *t* (major) = 14.81 min. [α]₄₃₆²² = -221.8 (*c* = 0.61, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.58 (m, 2H), 7.22 – 7.13 (m, 4H), 7.07 – 6.98 (m, 2H), 5.10 – 4.95 (m, 1H), 3.98 (dd, *J* =

7.2, 5.2 Hz, 1H), 2.41 – 2.27 (m, 2H), 2.12 – 1.95 (m, 2H), 1.76 – 1.66 (m, 2H), 1.23 (dd, J = 9.6, 6.4 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.9, 169.0, 164.5 (d, J = 249.8 Hz), 162.9 (d, J = 247.7 Hz), 135.4 (d, J = 2.9 Hz), 131.9 (d, J = 3.6 Hz), 130.9 (d, J = 8.7 Hz), 129.8 (d, J = 8.1 Hz), 119.5, 116.1 (d, J = 21.4 Hz), 115.3 (d, J = 21.6 Hz), 68.9, 64.6, 32.5, 22.3, 21.9, 21.9, 17.3. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -109.7, -111.4.

HRMS (FTMS+c ESI): Calcd for C₂₂H₂₃F₂N₂O₂⁺ [M+H⁺] 385.1722, found 385.1721.

1	10.044	523332	6.54
2	14.813	7477973	93.46

Isopropyl 2-((bis(4-fluorophenyl)methylene)amino)hex-5-enoate (5bk)

F (C₂₂H₂₃F₂NO₂). colorless oil. 99% yield (37.4 mg), 95:5 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, *t* (minor) = 4.67 min, *t* (major) = 4.99 min. $[\alpha]_{436}^{21} = -117.6$ (*c* = 0.62, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.59 (m, 2H), 7.15 (d, *J* = 6.8 Hz, 4H), 7.06 – 6.96 (m, 2H), 5.79 – 5.65 (m, 1H), 5.10 – 5.00 (m, 1H), 5.00 – 4.88 (m, 2H), 4.02 – 3.87 (m, 1H), 2.12

-1.93 (m, 4H), 1.23 (dd, J = 8.4, 6.2 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.7, 168.5, 164.4 (d, J = 249.4 Hz), 162.9 (d, J = 247.3 Hz), 137.8, 135.8 (d, J = 2.9 Hz), 132.2 (d, J = 3.6 Hz), 130.9 (d, J = 8.6 Hz), 129.9 (d, J = 8.0 Hz), 115.8 (d, J = 21.4 Hz), 115.2 (d, J = 21.5 Hz), 115.2, 68.5, 65.1, 33.0, 30.3, 21.9, 21.8. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.4, -111.9.

HRMS (FTMS+c ESI): Calcd for C₂₂H₂₄F₂NO₂⁺ [M+H⁺] 372.1770, found 372.1765.

1	4.470	2559033	50.07	
2	4.985	2551859	49.93	
 			A	

0.20 0.40 0.60 0.50 1.00 1.20 1.40 1.60 1.50 2.00 2.20 2.40 2.60 2.50 3.00 3.20 3.40 3.60 3.50 4.00 4.20 4.40 4.60 4.50 5.00 5.20 5.40 5.60 5.50 6.00 6.20 6.40 6.60 6.50 7.00 7.20 7.40 7.60

	Retention Time	Area	% Area
1	4.465	180868	5.51
2	4.985	3102669	94.49

Isopropyl 2-((bis(4-fluorophenyl)methylene)amino)pent-4-ynoate (5bl)

F N * CO₂[/]Pr

₹ 02

(C₂₁H₁₉F₂NO₂) colorless oil. 73% yield (28.5 mg), 85:15 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, *t* (minor) = 4.55 min, *t* (major) = 4.92 min. [α]₄₃₆²² = -218.3 (*c* = 0.33, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.56 (m, 2H), 7.26 – 7.22 (m, 2H), 7.20 – 7.12 (m, 2H), 7.07 – 6.98 (m, 2H), 5.09 – 4.97 (m, 1H), 4.18 (dd, *J* = 8.2, 5.2 Hz, 1H), 2.92 – 2.70 (m, 2H), 1.95

(t, J = 2.6 Hz, 1H), 1.24 (t, J = 6.0 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.9, 169.8, 164.5 (d, J = 249.7 Hz), 163.0 (d, J = 247.7 Hz), 135.7 (d, J = 2.9 Hz), 131.8 (d, J = 3.6 Hz), 131.2 (d, J = 8.6 Hz), 131.4 (d, J = 8.0 Hz), 115.8 (d, J = 21.4 Hz), 115.2 (d, J = 21.6 Hz), 81.1, 70.4, 69.1, 64.3, 23.4, 21.9, 21.8. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.1, -111.7.

HRMS (FTMS+c ESI): Calcd for $C_{21}H_{20}F_2NO_2^+$ [M+H⁺] 356.1457, found 356.1450.

	Retention Time	Area	% Area
1	4.546	900599	14.91
2	4.917	5140247	85.09

1-isopropyl 4-methyl 2-((bis(4-fluorophenyl)methylene)amino)succinate (5bm)

 $(C_{22}H_{23}F_2NO_4)$ colorless oil. 93% yield (37.3 mg), 95:5 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 10/90, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, *t* (minor) = 5.59 min, *t* (major) = 7.03 min. $[\alpha]_{436}^{22} = -251.2$ (*c* = 0.67, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.57 (m, 2H), 7.23 – 7.11 (m, 4H), 7.06 – 6.96 (m, 2H), 5.08 – 4.96 (m, 1H), 3.99 (t, *J* = 6.2 Hz, 1H), 3.59 (s, 3H), 2.44 – 2.30 (m, 2H), 2.28 – 2.20 (m,

2H), 1.23 (dd, J = 10.4, 6.4 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.5, 171.0, 169.0, 164.5 (d, J = 249.7 Hz), 162.9 (d, J = 247.4 Hz), 135.6 (d, J = 3.0 Hz), 132.0 (d, J = 3.6 Hz), 131.0 (d, J = 8.6 Hz), 129.9 (d, J = 8.1 Hz), 115.9 (d, J = 21.4 Hz), 115.2 (d, J = 21.5 Hz), 68.7, 64.4, 51.7, 30.5, 28.6, 21.9, 21.9. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.1, -111.7.

HRMS (FTMS+c ESI): Calcd for $C_{22}H_{24}F_2NO_4^+$ [M+H⁺] 404.1668, found 404.1668.

	Retention Time	Area	% Area
1	5.584	4029886	50.23
2	7.018	3993570	49.77

	Retention Time	Area	% Area
1	5.594	541383	5.11
2	7.028	10056359	94.89

Isopropyl 3-acetoxy-2-((bis(4-fluorophenyl)methylene)amino)propanoate (5bn)

= $(C_{23}H_{25}F_2NO_4)$ colorless oil. 83% yield (34.6 mg), 94:6 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 10/90, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, *t* (minor) = 7.37 min, *t* (major) = 10.33 min. $[\alpha]_{436}^{21} = -219.2$ (*c* = 0.43, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.57 (m, 2H), 7.16 (d, *J* = 7.2 Hz, 4H), 7.07 – 6.98 (m, 2H), 5.09 – 4.96 (m, 1H), 4.02 (t, *J* = 6.4 Hz, 2H), 3.96 (t, *J* = 6.4 Hz, 1H), 2.02 (s, 3H), 2.00 – 1.92 (m, 2H), 1.68 – 1.49 (m, 2H), 1.23 (dd, *J* = 8.0, 6.4 Hz, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.3, 171.2, 168.7, 164.5 (d, J = 249.6 Hz), 162.9 (d, J = 247.5 Hz), 135.6 (d, J = 2.9 Hz), 132.1 (d, J = 3.7 Hz), 130.9 (d, J = 8.6 Hz), 129.9 (d, J = 8.0 Hz), 116.0 (d, J = 21.4 Hz), 115.2 (d, J = 21.6 Hz), 68.6, 65.2, 64.3, 30.2, 25.4, 21.9, 21.9, 21.1. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.2, -111.7. HRMS (FTMS+c ESI): Calcd for C₂₃H₂₆F₂NO₄⁺ [M+H⁺] 418.1824, found 418.1825.

ſ		_
0.10-	Ř	
-	n Alexandre	
0.05		
0.00		
0.00T	0.50 1.50 1.50 2.50 2.50 3.50 4.00 4.50 5.50 6.50 6.50 6.50 7.50 7.50 8.50 8.50 9.50 9.50 10.50 11.50 12.50 12.50	;=

	Retention Time	Area	% Area
1	7.364	1273872	49.70
2	10.341	1289070	50.30

0.40																					A					
0.30																					<u>A</u>					
ब 0.20																					Γ\ –					
0.10															2.36					/						
0.00															$ \land$					2		2				_
	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50 Minutes	7.00	7.50	8.00	8.50	9.00	9.50	10.00	10.50	11.00	11.50	12.00	12.50	13.0

	Retention Time	Area	% Area
1	7.369	360239	5.88
2	10.334	5764025	94.12

Isopropyl

2-((bis(4-fluorophenyl)methylene)amino)-5-((tert-butyldimethylsilyl)oxy)pentano ate (5bo)

8.4, 4.8 Hz, 1H), 3.62 – 3.47 (m, 2H), 2.05 – 1.83 (m, 2H), 1.56 – 1.36 (m, 2H), 1.21 (dd, J = 7.6, 6.0 Hz, 6H), 0.86 (s, 9H), 0.00 (d, J = 2.4 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.7, 168.2, 164.4 (d, J = 249.4 Hz), 162.9 (d, J = 247.4 Hz), 135.8 (d, J = 3.0 Hz), 132.3 (d, J = 3.6 Hz), 130.9 (d, J = 8.6 Hz), 129.9 (d, J = 8.0 Hz), 115.9 (d, J = 21.4 Hz), 115.2 (d, J = 21.6 Hz), 68.4, 65.5, 62.9, 30.2, 29.4, 26.1, 21.9, 21.9, 18.5, -5.2. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.4, -111.9.

HRMS (FTMS+c ESI): Calcd for $C_{27}H_{38}F_2NO_3Si^+$ [M+H⁺] 490.2584, found 490.2566.

	Retention Time	Area	% Area
1	3.805	264637	5.03
2	4.190	4995431	94.97

F (C₂₁H₂₃F₂NO₃) colorless oil. 36% yield (13.3 mg), 93:7 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 95/5, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, *t* (minor) = 5.34 min, *t* (major) = 6.83 min. [α]₄₃₆²² = -205.2 (*c* = 0.25, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.59 (m, 2H), 7.20 – 7.10 (m, 4H), 7.05 – 6.97 (m, 2H), 5.07 – 4.95 (m, 1H), 4.12 (dd, *J* = 8.6, 4.4 Hz, 1H), 3.46 – 3.29 (m, 2H), 3.23 (s, 3H), 2.29 –

2.10 (m, 2H), 1.22 (dd, J = 8.4, 6.4 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ

171.5, 169.0, 164.4 (d, J = 249.5 Hz), 162.9 (d, J = 247.1 Hz), 135.9 (d, J = 3.0 Hz), 132.1 (d, J = 3.7 Hz), 130.9 (d, J = 8.6 Hz), 129.9 (d, J = 8.1 Hz), 115.7 (d, J = 21.6 Hz), 115.2 (d, J = 21.5 Hz), 69.0, 68.5, 62.5, 58.6, 33.4, 21.9, 21.9. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.4, -112.0.

HRMS (FTMS+c ESI): Calcd for $C_{21}H_{24}F_2NO_3^+$ [M+H⁺] 376.1719, found 376.1720.

	Retention Time	Area	% Area
1	5.359	242059	6.67
2	6.832	3384613	93.33

Isopropyl

2-((bis(4-fluorophenyl)methylene)amino)-5-(2-oxospiro[indoline-3,2'-[1,3]dioxola n]-1-yl)pentanoate (5bq)

2.05 – 1.86 (m, 2H), 1.74 – 1.62 (m, 2H), 1.19 (dd, J = 6.0, 1.2 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.3, 171.3, 168.7, 164.4 (d, J = 249.5 Hz), 162.8 (d, J = 247.4 Hz), 144.1, 135.6 (d, J = 3.0 Hz), 132.0 (d, J = 3.7 Hz), 131.7, 130.9 (d, J = 8.6 Hz), 129.8 (d, J = 8.1 Hz), 125.0, 124.2, 123.2, 115.9 (d, J = 21.4 Hz), 115.2 (d, J = 21.5 Hz), 109.0, 102.2, 68.6, 65.9, 65.0, 39.2, 31.0, 23.7, 21.8. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.2, -111.7.

HRMS (FTMS+c ESI): Calcd for C₃₁H₃₁F₂N₂O₅⁺ [M+H⁺] 549.2196, found 549.2195.

	Retention Time	Area	% Area
1	16.495	151519	4.52
2	26.221	3200624	95.48

Isopropyl

2-((bis(4-fluorophenyl)methylene)amino)-5-(3,3-dimethyl-2-oxoindolin-1-yl)pent anoate (5br)

(C₃₁H₃₂F₂N₂O₃) colorless oil. 99% yield (51.5 mg), 95:5 er, HPLC (Chiral IF cloumn), *i*-PrOH/*n*-Hexane = 10/90, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, *t* (minor) = 9.82 min, *t* (major) = 19.55 min. [α]₄₃₆²¹ = -166.1 (*c* = 0.94, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.53 (m, 2H), 7.23 – 7.18 (m, 2H), 7.12 (d, *J* = 6.8 Hz, 4H), 7.06 – 6.95 (m, 3H), 6.85 – 6.80 (m, 1H), 5.06 – 4.92 (m, 1H), 3.96 (dd, *J* = 7.2, 5.2 Hz, 1H), 3.76 – 3.63 (m, 2H), 2.03 – 1.86 (m, 2H), 1.77 – 1.66 (m, 2H), 1.35 (d, *J* = 3.2 Hz, 6H), 1.17 (d, *J* = 6.0 Hz, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 181.3, 171.3, 168.7, 164.4 (d, J = 249.5 Hz), 162.9 (d, J = 247.4 Hz), 141.9, 136.1, 135.7 (d, J = 2.9 Hz), 132.0 (d, J = 3.7 Hz), 130.9 (d, J = 8.6 Hz), 129.9 (d, J = 8.1 Hz), 127.7, 122.6, 122.4, 115.9 (d, J = 21.5 Hz), 115.2 (d, J = 21.6 Hz), 108.4, 68.6, 65.9, 44.2, 39.6, 31.0, 24.6, 24.6, 23.9, 21.8. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.2, -111.7.

HRMS (FTMS+c ESI): Calcd for $C_{31}H_{33}F_2N_2O_3^+$ [M+H⁺] 519.2454, found 519.2455.

	Retention Time	Area	% Area
1	9.821	423996	5.02
2	19.552	8023546	94.98

Ethyl (*R*)-2-((tert-butoxycarbonyl)amino)-2-phenylacetate (7ba)

CO₂Et

(C₁₅H₂₁NO₄) white solid. Melting point: 45–47 °C. 90:10 er (recrystallized 97:3 er), HPLC (Chiral IC cloumn), *i*-PrOH/*n*-Hexane = 5/95, Flow rate: 1.0 mL/min, λ = 254 nm, *t* (major) = 10.41 min, *t* (minor) = 13.79 min. $[\alpha]_{436}^{19}$ = -196.6 (*c* =

1.58, in CH₂Cl₂).(recrystallized $[\alpha]_{436}^{22} = -227.4$ (c = 0.79, in CH₂Cl₂)) ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 5H), 5.59 (d, J = 7.6 Hz, 1H), 5.30 (d, J = 7.6 Hz, 1H), 4.27 – 4.02 (m, 2H), 1.43 (s, 9H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.2, 154.9, 128.9, 137.2, 128.9, 128.4, 127.2, 80.1, 61.8, 57.8, 28.4, 14.1. HRMS (FTMS+c ESI): Calcd for C₁₅H₂₂NO₄⁺ [M+Na⁺] 302.1363, found 302.1353.

24856

3.00

2

13.703

Isopropyl (tert-butoxycarbonyl)-(S)-alaninate (9ba)

 $\underbrace{\mathsf{NHBoc}}_{\mathsf{Me} \subset \mathsf{CO}_2^{i}\mathsf{Pr}} \quad \begin{array}{l} (\mathbf{C_{11}H_{21}NO_4}) \text{ colorless oil. } [\alpha]_{\mathsf{D}}^{26} = -35.2 \ (c = 1.19, \text{ in MeOH}). \ ^1\mathsf{H} \\ \mathsf{NMR} \ (400 \ \mathsf{MHz}, \mathsf{CDCl}_3) \ \delta \ 5.21 - 4.76 \ (m, \ 2\mathsf{H}), \ 4.36 - 4.03 \ (m, \ 1\mathsf{H}), \\ 1.45 \ (s, \ 9\mathsf{H}), \ 1.37 \ (d, \ J = 7.2 \ \mathsf{Hz}, \ 3\mathsf{H}), \ 1.26 \ (t, \ J = 6.8 \ \mathsf{Hz}, \ 6\mathsf{H}). \ ^{13}\mathsf{C}\{^1\mathsf{H}\} \\ \mathsf{NMR} \ (100 \ \mathsf{MHz}, \ \mathsf{CDCl}_3) \ \delta \ 173.0, \ 155.2, \ 79.8, \ 68.9, \ 49.5, \ 28.4, \ 21.8, \ 21.8, \ 18.8. \\ \mathsf{HRMS} \ (\mathsf{FTMS+c} \ \mathsf{ESI}): \ \mathsf{Calcd} \ \mathrm{for} \ \mathsf{C}_{11}\mathsf{H}_{21}\mathsf{NO_4}^+ \ [\mathsf{M+Na^+}] \ 254.1360, \ \mathsf{found} \ 254.1363. \\ \{[\alpha]_{\mathsf{D}}^{20} = -31.0 \ (c = 1.0, \ \mathsf{in} \ \mathsf{MeOH}); \ S\text{-isomer}\}^5 \\ \end{array}$

Isopropyl (S)-2-amino-4-phenylbutanoate hydrochloride (10bf)

NH₂•HCl Ph CO_2^{i} Pr CO_2^{i} Pr

HRMS (FTMS+c ESI): Calcd for $C_{13}H_{20}NO_2^+$ [M+H⁺] 180.1020, found 180.1019. { $[\alpha]_D^{20} = -46.0 \ (c = 1.0, \text{ in 3M HCl}); R\text{-isomer}$ }⁶

Isopropyl

2-((tert-butoxycarbonyl)amino)-5-(3,3-dimethyl-2-oxoindolin-1-yl)pentanoate

(7br)

(C₂₃H₃₄N₂O₅) colorless oil. 94:6 er, HPLC (Chiral IE cloumn), *i*-PrOH/*n*-Hexane = 20/80, Flow rate: 1.0 mL/min, $\lambda = 254$ nm, *t* (major) = 19.73 min, *t* (minor) = 27.89 min. $[\alpha]_{436}^{27} =+19.8$ (*c* = 2.00, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.16 (m, 2H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.86

(d, J = 7.8 Hz, 1H), 5.11 (d, J = 8.0 Hz, 1H), 5.05 – 4.95 (m, 1H), 4.37 – 4.18 (m, 1H), 3.74 (t, J = 6.8 Hz, 2H), 1.91 – 1.63 (m, 4H), 1.43 (s, 9H), 1.36 (s, 6H), 1.22 (d, J = 6.4 Hz, 3H), 1.17 (d, J = 6.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 181.4, 172.0, 155.5, 141.8, 136.0, 127.7, 122.5, 122.5, 108.4, 79.9, 69.2, 53.3, 44.2, 39.3, 30.3, 28.4, 24.6, 24.5, 23.5, 21.8, 21.8.

HRMS (FTMS+c ESI): Calcd for $C_{23}H_{34}N_2O_5Na^+$ [M+Na⁺] 441.2360, found 441.2359

1	19.734	33471956	94.17
2	27.894	2071544	5.83

10. X-ray crystal structure of product 7ba and G1

Identification code cu_20190514_YJ_01_0m_a Empirical formula $C_{15}H_{21}NO_4$ Formula weight 279.33 Temperature/K 300(2) Crystal system orthorhombic Space group $P2_{1}2_{1}2_{1}$ a/Å 5.3689(3) b/Å 10.4011(6) c/Å 27.4980(15) α/° 90 β/° 90 γ/° 90 Volume/Å³ 1535.56(15) Ζ 4 $\rho_{calc}g/cm^3$ 1.208 μ/mm^{-1} 0.717 F(000) 600.0 Crystal size/mm³ $0.200 \times 0.140 \times 0.130$ Radiation CuK α (λ = 1.54178) 20 range for data collection/° 6.428 to 129.956 Index ranges $-6 \le h \le 6, -10 \le k \le 12, -32 \le l \le 32$ Reflections collected 8783 2611 [$R_{int} = 0.0302, R_{sigma} = 0.0280$] Independent reflections Data/restraints/parameters 2611/0/189 Goodness-of-fit on F² 1.087 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0342, wR_2 = 0.0860$ Final R indexes [all data] $R_1 = 0.0352, wR_2 = 0.0868$ Largest diff. peak/hole / e Å⁻³ 0.11/-0.18 Flack parameter 0.08(6)

Single crystal of ($C_{15}H_{21}NO_2$) **7ba** was recrystallized from mixed solvents of CH_2Cl_2 and *n*-hexane. The absolute configuration of the product **7ba** was determined to be (*R*)

Identification code	cu_20190617_YJ_01_0m_a
Empirical formula	$C_{34}H_{46}N_4O$
Formula weight	526.75
Temperature/K	300(2)
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	11.3578(2)
b/Å	16.0040(2)
c/Å	16.8541(2)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	3063.57(8)
Z	4
$\rho_{calc}g/cm^3$	1.142
μ/mm^{-1}	0.533
F(000)	1144.0
Crystal size/mm ³	$0.240 \times 0.150 \times 0.080$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	7.618 to 130.286
Index ranges	$-13 \le h \le 11, -18 \le k \le 18, -19 \le l \le 19$
Reflections collected	17635
Independent reflections	5169 [$R_{int} = 0.0300, R_{sigma} = 0.0262$]
Data/restraints/parameters	5169/0/356
Goodness-of-fit on F ²	1.058
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0418, wR_2 = 0.1071$
Final R indexes [all data]	$R_1 = 0.0433, wR_2 = 0.1101$
Largest diff. peak/hole / e Å ⁻³	0.16/-0.35
Flack parameter	-0.02(9)

Single crystal of ($C_{34}H_{46}N_4O$) **G1** was recrystallized from mixed solvents of CH_2Cl_2 and petroleum ether. (CCDC 1935053)

11. Copies of NMR spectra for the products

 $\begin{array}{c} 7.7.2\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.6\\ 7.7.5\\ 7.$

-95 -100 -105 -110 -115 -120 -125 f1 (ppm) -175 -1 -70 -75 -90 -165 -170 -65 -80 -85 -130 -135 -140 -145 -150 -155 -160

$\begin{array}{c} 7.7.7\\ 7.715\\ 7.716\\ 7.775\\ 7.687\\ 7.768\\ 7.768\\ 7.768\\ 7.768\\ 7.688\\ 7.768\\ 7.688\\ 7.768\\ 7.768\\ 7.7286\\ 7.7286\\ 7.7296\\ 7.7296\\ 7.7296\\ 7.7296\\ 7.7296\\ 7.7296\\ 7.7296\\ 7.7208\\ 7.720$

-65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -170 -175 -17 (rpm)

 $\begin{array}{c} 7.711\\ 7.769\\ 7.680\\ 7.768\\ 7.680\\ 7.768\\ 7.686\\ 7.768\\ 7.668\\ 7.768\\ 7.668\\ 7.768\\ 7.738\\ 7.738\\ 7.7336\\ 7.7326\\ 7.732$

-95 -100 -105 -110 -115 -120 f1 (ppm) -60 -65 -70 -85 -90 -170 -175 -1 -75 -80 -125 -130 -140 -145 -150 -155 -160 -165 -135

7.704 7.769 7.669 7.669 7.669 7.668 7.668 7.668 7.668 7.668 7.668 7.668 7.668 7.668 7.668 7.668 7.668 7.668 7.668 7.668 7.103 7.10

-60 -105 -110 -115 -120 -125 f1 (ppm) -135 -140 -145 -150 -155 -160 -165 -170 -175 -1; -65 -70 -75 -80 -90 -95 -100 -130 -85 7.771 7.7689 7.689 7.689 7.689 7.689 7.689 7.689 7.768 7.768 7.728 7.728 7.728 7.729 7.7217 7.7217 7.72

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180

4.5

3.5

1.5

2.0

2.5

3.0

0.5

1.0

0.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -110 -145 -150 -155 -180 -165 -170 -175 -180

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -1: r1 (ppm)

-70 -95 -100 -105 -110 -115 -120 -125 fl (ppm) -175 -18 -65 -75 -80 -85 -90 -130 -135 -160 -165 -170 -140 -145 -150 -155

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 f1 (ppm)

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 fl (ppa)

7,557 7,557 7,568 7,568 7,568 7,568 7,568 7,568 7,568 7,568 7,568 7,568 7,758 7,729 7,728 7,729

-50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 fl (pps)

 $\begin{array}{c} 7,645\\ 7,7645\\ 7,7645\\ 7,7645\\ 7,7663\\ 7,7663\\ 7,7663\\ 7,7663\\ 7,7663\\ 7,7016\\$

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -1: f1 (span)

7,647 7,7618 7,7618 7,7618 7,7618 7,7618 7,7618 7,7618 7,7618 7,7608 7,718 7,718 7,71024 7,71024 7,71024 7,71025 2,5015 3,3978 3,3988

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 fl (ppm)

7,561 7,564 7,564 7,564 7,564 7,564 7,564 7,564 7,564 7,564 7,564 7,564 7,564 7,564 7,564 7,564 7,564 7,564 7,564 7,564 7,566 8,5666 8,5666 8,5666 8,5666 8,56666 8,5666 8,5666 8,5666 8,5666 8,56666

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -1: f1 (spen)

2.06-

3.5

3.0

2.5

1.02 H

4.0 fl (ppm)

4.5

1.00H

5.0

5.5

2.01J

7.5

8.0

8.5

4.03H 2.03H

7.0

6.5

6.0

FEI.6

0.5

6.04_f

0.0

2.08 6.03 1⁻²

2.07

2.0

-80 -85 -90 -95 -100 -105 -110 -115 -120 -128 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -11 FI (pun)

 $\begin{array}{c} 7,643\\ 7,7612\\ 7,7612\\ 7,7612\\ 7,7612\\ 7,612$

60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -146 -150 -155 -160 -165 -170 -175 -18 fl (ppm)

7.5600 7.5578 7.5578 7.5578 7.5578 7.5578 7.5578 7.5201 7.221 7.221 7.2227 7.222 7.222 7.222 7.222 7.222 7.222 7.222 7.222 7.222 7.2

12. References

(1). Z. P. Yu, X. H. Liu, L. Zhou, L. L. Lin and X. M. Feng, *Angew. Chem., Int. Ed.,* 2009, **48**, 5195.

(2). (a) R. He, Z.-T. Huang, Q.-Y. Zheng and C.-Y. Wang, *Angew. Chem., Int. Ed.,*2014, **53**, 4950; (b) D. J. Power, K. D. Jones, Sven. S. Kampmann, G. R. Flematti and
S. G. Stewart, *Asian J. Org. Chem.* 2017, **6**, 1794.

(3). (a) M. Y. Hu, J. Rong, W. J. Miao, C. F. Ni, Y. X. Han and J. B. Hu, *Org. Lett.*, 2014, 16, 2030; (b) J.-X. Guo, T. Zhou, B. Xu,; S.-F. Zhu and Q.-L. Zhou, *Chem. Sci.*, 2016, 7, 1104.

(4). (a) W. Li, X. H. Liu, F. Tan, X. Y. Hao J. F. Zheng, L. L. Lin and X. M. Feng, *Angew. Chem., Int. Ed.*, 2013, **52**, 10883; (b) F. Tan, X. H. Liu, Y. Wang, S. X. Dong, H. Yu and X. M. Feng, *Angew. Chem., Int. Ed.*, 2018, **57**, 16176.

(5). F. Ulatowski and J. Jurczak, J. Org. Chem., 2015, 80, 4235.

(6). P. A. Evans, J. E. Robinson and J. D. Nelson, *J. Am. Chem. Soc.* 1999, **121**, 6761.