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1. Introduction 

1.1 Drug-Target Interaction Prediction 

Starting from the 2000s, developing computational methods to aid the drug discovery process by 

predicting the unknown interactions between drugs / drug candidate compounds and target 

biomolecules (i.e., drug target interaction -DTI- prediction or virtual screening) 1,2 started to become a 
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main-stream research area. Most of the DTI prediction methodologies are based on the idea that 

similar structures have similar activities 3,4 and utilize the experimentally identified drug-target 

interaction information coming from bioassay results for learning. DTI prediction methods usually 

employ supervised machine learning (ML) models to find new compounds (or targets) that possess 

features similar to the known drugs (or targets) 2,5,6. 

1.2 Feature Engineering in DTI Prediction 

One of the essential steps in ML method development is feature engineering, which constitutes 

designing, pre-processing and extracting meaningful features to be used for system training. In ML-

based DTI prediction, feature vectors correspond to fixed-dimensional quantitative 

representations/descriptors of the input samples (i.e., drugs and/or targets), used to characterize the 

molecular properties that play role in the interactions, so that the ML algorithm can learn from these 

features to accurately predict unknown DTIs. In computational drug discovery studies, feature 

engineering is generally performed using computationally intensive third party methods/tools, where 

the main limitation is the constructed features not generalizing well to the whole proteochemical 

space 7, also, they often suffer from the curse of dimensionality 8. Numerous different types of 

compound and protein descriptors have been employed for the generation of feature vectors in DTI 

prediction so far 2,9, though benchmarking studies have indicated that there is no consensus on what 

are the sole best compound and target protein descriptors 10,11. On the compound side, bit-string based 

compound descriptors (fingerprints), binary feature vectors where each dimension represents the 

presence or absence of sub-structures on a compound, are widely used. Extended Connectivity 

Fingerprints - ECFPs 12 are one of the most widely used compound descriptors and represents the 

current state-of-the-art. The main problem related to the employment of fingerprints for DTI 

prediction is that, they represent only a pre-selected set of chemical sub-structures that are known to 

play roles in the interaction with target proteins 13. The rest of the structural aspects are omitted from 

these representations. However, there are less explored parts of the DTI space, where the important 

sub-structures are not clearly known. As a result, it is debated that bit-string based descriptors have 

issues related to generalization, considering their power of representation of drug-target relations, 
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over many different families of proteins and compounds 13,14. To overcome this problem, fingerprints 

with larger bit space were proposed 11,15; however, the ones that represent a large portion of the 

molecular properties of compounds are usually extremely high dimensional and impractical to be used 

in a ML-based predictive method due to the computational burden and the bear risk of falling into the 

"curse of dimensionality". 

With the aim of developing DTI prediction methods, a diverse set of ML techniques are employed 

(together with the feature vectors generated using abovementioned descriptors) such as random forest 

(RF) 16,17, support vectors machines (SVM) 17,18, and logistic regression (LR) 19. 

1.3 Deep Learning Applications in Drug Discovery 

The term "deep learning" (DL) is coined for the novel neural network architectures that perform 

significantly better compared to conventional classifiers especially in the fields of computer vision 

and natural language processing, mainly due to multiple layers of data abstraction 20. Deep neural 

networks (DNN), a sub-group of DL techniques, are artificial neural networks with high complexity, 

composed of multiple hidden layers 21. Lately, DL-based classifiers are also started to be applied for 

DTI prediction. In one of the earliest applications, Ma et al. constructed feed-forward DNN Models 

using molecular compound descriptors to predict diverse interactions in Merck’s QSAR challenge 

data sets, and showed that DNNs perform better compared to conventional ML techniques22. 

Lenselink et al. proposed a proteochemometric modelling (PCM) based method for DTI prediction, 

where both compound and target features were employed (i.e., molecular fingerprints for compounds 

and a custom built composite descriptor -mainly including physicochemical properties- for targets as 

described by van Westen et al.10) as 1-D vectors for the training within a multi-layered perceptron 

DNN architecture 23. AtomNet, a structure-based virtual screening method, uses convolutional neural 

networks (CNNs) for DTI prediction. This method incorporates 3-D structural features of known 

compound-target complexes to model DTIs 24. Ragoza et al. proposed convolutional neural network 

based scoring function approaches for ranking and predicting binding affinities and poses in the 

process of structure-based drug design, which outperformed widely used the AutoDock Vina scoring 

function 25. Gonczarek et al. developed a method that uses specific binding pockets of targets along 



 4 

with fingerprints extracted using the 3-D structural features of compounds 26. Altae-tran et al. 

proposed a DL-based method called "iterative refinement long short-term memory" using graph 

convolutions, where the input of the system is the 2-D graph structure of compounds 27. They 

employed one-shot learning methodology, where the aim is to create predictors for the targets having 

low number of training samples. Kearnes et al. employed graph convolutions to learn features using 

graph structures of compounds 13. The field of the DL-based DTI prediction is still in its infancy and 

the studies published so far were mostly focused on the applicability of DL algorithms and 

prototyping 13,22,23,26,28,29. The results of these studies have indicated that DL has a great potential to 

advance the field by identifying unknown DTIs at large-scale 13,23,24,26–30. Apart from the high 

predictive performance, another advantage of employing DL-based DTI predictors is the minimal 

requirement of feature engineering as these algorithms are able to extract complex and meaningful 

features from the raw data, automatically 31. 

2. Results 

2.1 Protein Family-Based Analysis of DEEPScreen Targets 

In order to carry out a global structural and functional analysis on DEEPScreen’s 704 target proteins, 

we extracted statistics in terms of the distribution of the number of structural domains they contain 

(from InterPro 32 and UniProt-DAAC 33), their sequence length/sizes (from UniProtKB 34), total 

number of  family/domain/repeat-motif annotations (from InterPro), number of Gene Ontology based 

functional annotations (from UniProt-GOA), and the number of experimentally identified active 

ligands (from ChEMBL), based on the high level families of these proteins (i.e., enzymes, GPCRs, 

nuclear receptors, ion channels and others). We also examined the existence of 3-D structural 

information (from PDB), active and binding site annotations (from UniProtKB) and disease 

indications (from UniProtKB 34, OMIM 35 and OrphaNet 36) on these target proteins. Figure 3 displays 

the results using percentage-based histogram and bar plots (i.e., the sum of all bars for each protein 

family gives 100%). Figure 3.a shows the histograms for the number distribution along with the 

protein family size pie chart. Figure 3.b displays the bar graphs indicating the difference between 
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existence and non-existence of a particular type of annotation among the members of each target 

protein family. As observed from Figure 3.a, target protein sequence lengths and the number of 

domains they contain are highly variable between protein families. GPCRs are generally shorter and 

contain fewer domains (usually only 1) compared to the remaining of the families. In terms of the 

number of family/domain/repeat-motif and GO-based function annotations, there is no significant 

difference between the target protein families and the majority of all targets are well annotated. 

Considering the number of known interacting compounds (i.e., ligands) from ChEMBL, GPCRs rank 

the first; enzymes, nuclear receptors and others families have similar number of known ligands and 

rank second, whereas ion channels slightly falls behind. It is important to note that, this analysis has 

been done over the 704 target proteins of DEEPScreen, each of which has at least 100 known ligands, 

as a result, the statistics given here does not reflect the whole target protein space. As observed from 

Figure 3.b, 80% of the targets in the enzymes family have at least one 3-D structural entry (in PDB) 

associated to it. This is 100% for nuclear receptors, however only 33% for GPCRs. The rightmost bar 

in each bar plot shows the percentage considering all of the 704 targets. In terms of disease 

indications associated with target proteins, family-based differences are mostly insignificant, with 

nuclear receptors having the highest rate (60%). For binding and active site annotations, enzymes 

ranked first with a significant margin, "others" family came second with 35 and 15 targets (out of 58) 

containing at least one binding and active site annotation, respectively. GPCRs, ion channels and 

nuclear receptors have no active site annotation since this property is mostly associated with 

enzymatic activities. Overall, all of these proteins have high amount of annotations in the biological 

databases, since they are highly studied in the biomedical research field in terms of their high 

potential to be parts of novel treatment options. 

2.2 System Robustness Against Input Image Transformations 

One of the critical points in the computer vision tasks is the system robustness concerning the 

differences in the representations of the object of interest, such as the viewing angle or the scale. In 

DEEPScreen, input images are standardized by computationally generating them from SMILES 

representations, this way all images have similar representations in terms of viewing angle (i.e., 
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rotation). However, we investigated the question of how the models would behave if they are 

provided with rotated compound images as the query. For this, we have selected 3 target protein 

models (i.e., BCHE gene - CHEMBL5077, GSK3beta gene - CHEMBL3638364, PTGS1 gene - 

CHEMBL221) and we constructed the rotated compound images of the positive and negative 

performance test dataset compounds of these targets. 7 new samples were generated from each test 

compound image, by rotating the original image by 45 degree angle. We fed these rotated images to 

the original pre-trained predictive models as the query set. Since the original models have never seen 

these rotated images before (during training), the performances were decreased by 29%, 23% and 

32% in terms of the MCC measure and by 22%, 18% and 18% in terms of accuracy for BCHE, 

GSK3beta and PTGS1 models, respectively (compared to the original test performances of these 

models, when there is no rotated images in the query set). It was argued in the literature that the 

application of training data augmentation by generating and adding new samples to the training set by 

rotating the existing images solves this problem 37. To observe if this is the case for DEEPScreen, we 

generated rotated compound images for each and every positive and negative training dataset instance 

(using the same 45 degree rotation approach), and re-trained the same predictive models using the 

enhanced training datasets and performed the hyper-parameter optimization tests with grid-search. 

After that, we measured the performance of these newly trained models by querying them with the 

rotation-added test datasets used in the previous test. Finally, we compared the performance of the 

rotation-trained models with the performance of the original models (i.e., models without any rotated 

images in training or in test datasets). The results showed that, when the rotated images were added to 

the training, the performance remained roughly the same for all 3 selected models (i.e., 0-2% 

performance decrease in both MCC and accuracy for BCHE, GSK3beta and PTGS1), which indicates 

that training with data augmentation by generating rotated data points worked well. However, it was 

not possible to apply this methodology to train all of 704 target protein models of DEEPScreen due to 

significantly increased computational complexity. The application of rotated compound images 

increased the training dataset size of each model 8 times relative to the original training datasets. This 

was a huge burden especially for the complex Inception architecture-based models. Considering the 

fact that whole hyper-parameter optimization by grid search procedure should have been repeated, it 
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was not possible to construct a rotation invariant system for DEEPScreen in the end. Instead, we 

relied on generating canonical images for both the training and query compounds from SMILES as 

the input, which worked well in practice. There are also novel alternative solutions proposed lately in 

the literature such as the approach proposed by Thomas et al.,  where the authors developed a DCNN 

architecture that is equivariant to rotations by using filters from spherical harmonics 38. Similar 

approaches may be applied in the future to modify DEEPScreen to make it completely rotation 

invariant so that the user drawn images can directly be fed to the system as the input (through a web-

interface) instead of SMILES. 

Another important transformation type for computer vision tasks is the scaling. In DEEPScreen, the 

compounds are drawn as images by fully occupying the 200-by-200 pixel frame no matter what their 

actual molecular sizes are. This means that a certain component (i.e., a sub-structure such as a 

benzene ring) in a large (i.e., high molecular weight) compound will occupy fewer number of pixels 

(i.e., appear smaller in the image) compared to the size of the same sub-structure as a part of a smaller 

(i.e., low molecular weight) compound. The predictive system should be invariant to these scaling 

variances, in other words, it should perceive, for example, a benzene ring structure independent from 

its size on the compound images. This is generally achieved by training CNN-based systems by using 

input instances containing the features of interest in different scales 37. In DEEPScreen, this is 

automatically achieved since the training dataset compounds of each target protein contain both 

relatively larger and smaller molecules. In order to examine this issue, we conducted a scaling 

analysis on our case study model: renin. In this analysis, we augmented the test dataset of renin target 

protein model by scaling both the positive and negative test dataset molecules by decreasing the sizes 

by 10%, 20% and 30% (i.e., molecules occupy a smaller area on the 200-by-200 pixel images). In the 

end, we obtained a test dataset 4 times larger compared to the original set (i.e., original + 10% + 20% 

+ 30% scaled down compounds for all test samples). We fed the newly generated scaled test dataset 

as query to the original pre-trained predictive model of renin target protein. The assumption here was 

that, since the training dataset compounds of renin contained samples in different scales (i.e., same 

sub-structures automatically drawn in different sizes in different images due their presence in both 
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large and small compounds) the system will be robust against the variance in the artificially scaled 

samples in the test dataset. The performance results of this test have indicated that decreasing the 

molecule size by 10% affected the predictive performance by reducing precision, recall, F1-score and 

accuracy by 9%, 7%, 8% and 9%, respectively. A same trend was observed for 20% and 30% size 

reductions (i.e., 8-10% performance reduction compared to the test results of the previous scaling), as 

well, pointing out a linear relation between molecule size scales and the performance. The results 

pointed out that the performance change observed with a 10% scaling is acceptable. 

Nevertheless, it is possible to query a target protein model with a compound that is significantly larger 

or smaller compared to all training dataset samples of the model. In this case, the system may 

misinterpret a feature/sub-structure since it will be scaled very differently compared to the scales it is 

aware of (from the training data). However, a molecule that is significantly larger or smaller 

compared to all known ligands of a target would be less likely to interact with the intended target due 

to its inability to occupy the intended binding region/pocket. In order to test this, we analyzed the size 

distribution of the compounds in the active and inactive training datasets of renin, in terms of 

molecular weights, since the molecular weight can be a good indicator of the scale of the compounds 

on the 2-D images. The molecular weight is only consist of a number (i.e., we can compare different 

molecular weights on a 1 dimensional space), whereas in images, compounds are represented over 2 

dimensions (where there is more space), as a result, 2-D scaling differences are roughly equivalent to 

the square of the molecular weight differences (e.g., a 10% size difference in 2-D images is roughly 

equivalent to 31.5% difference in molecular weight). We also manually checked several compound 

images from the original training datasets of different target proteins and observed that the 

abovementioned relation between the molecular weight change and 2-D scaling change holds true. 

The analysis of the training dataset compounds of an example target protein: "Complement factor D" 

(gene name: CFD, ChEMBL id: CHEMBL2176771), which has 732 active ligands (close to the 

average number of active ligands for all DEEPScreen targets: 728), revealed that the molecular 

weight distribution is normal and the active compounds have a mean of 504 g/mol and a standard 

deviation of 38 g/mol, which indicates a weight change of 26% between +/- two standard deviations 
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from the mean (i.e., 580 to 428 g/mol), translating into roughly 7% (i.e., 0.26^2) scaling difference on 

2-D. It is important to note that two standard deviations from the mean covers nearly 95% of all data 

points in a normal distribution. This places the expected scaling difference between the potential 

ligands of a target within an acceptable zone in terms of model performance reduction (i.e., < 10%). 

3. Discussion 

In DEEPScreen, we selected a considerably loose threshold (i.e., 10 µM) bioactivity value to label 

training instances as active (i.e., interacting), which in turn resulted in high number of predictions. 

Considering an accurate "active" prediction, the true experimental bioactivity measurement can go as 

high as 10 µM (IC50), which may be unacceptably high especially for certain target families (e.g., 

kinases and GPCRs). However, our aim in developing DEEPScreen was to aid experimental 

researchers in drug discovery and repurposing by providing all novel matches that would potentially 

raise an interest. In this sense, we believe that the results of our large-scale DTI production run will be 

useful. 

The selected values for the hyper-parameter optimization tests are given in Table S.1. The 

determination of the hyper-parameter value alternatives was made according to previous literature on 

DL-based method development. It was not possible to carry out an exhaustive hyper-parameter 

optimization methodology, such as a full grid search, during the development of DEEPScreen, due to 

high computational burden (especially for the Inception architecture). Instead, manual selections were 

made to obtain satisfactory results by practically scanning a portion of the whole hyper-parameter 

space. It might be possible to further increase the predictive performances of our target-based models 

by scanning an even more diverse set of hyper-parameters; however, the computational cost was 

already extremely high. As a result, we decided to stop the process after achieving satisfactory results. 

Deep neural networks have long been criticised about being black-boxes, where it is not possible to 

observe why a system behaves the way it does. This has been especially valid in the field of ML 

applications to biological data. On the other hand, there has been a recent focus in the DL literature on 

dissecting the trained models to understand what piece of information has been extracted/learnt at 
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each block of the model. This also gave birth the idea of re-using the relevant blocks inside different 

models, for relevant predictive modelling purposes. In this context, it would be interesting to observe 

the extracted features (i.e., patterns) from the compound images as it is highly probable that most of 

these features are important to the task at hand (i.e., physical interactions with proteins). For example, 

they may correspond to the binding regions of compounds. An analysis in this sense can reveal 

information about the unknown binding properties, which in turn can be used in de novo drug design. 

4. Conclusions 

In this work, we have shown that deep convolutional neural networks can be utilized to successfully 

predict the drug-target interactions, using only the 2-D structural images of drugs and drug candidate 

compounds. The proposed method, DEEPScreen, has been tested on various benchmarking datasets 

and compared with both the state-of-the-art and with highly novel DTI prediction methodologies to 

reveal that it performs well. The large-scale DTI prediction run that virtually scanned more than 1 

million compounds against the modelled target proteins has produced 21.2 million completely novel 

data points, which can be utilized by the experimental and computational researchers to aid their work 

on drug design and repurposing, as an early selection of candidate compounds or scaffolds. We 

investigated several examples in the manuscript regarding the relevance of the prediction results to be 

used towards drug repurposing. We also constructed DEEPScreen as a collection of ready to use 

predictive models so that a newly synthesized (or in silico) molecule can easily be tested against 704 

target proteins that DEEPScreen has predictive models for. 
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Supplementary Figures 
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Figure S.1 Protein family-based annotation analysis of DEEPScreen targets. (a) Target protein family 

size pie chart and the histograms for the distributions of the protein lengths, number of structural 

domains, number of family/domain/repeat annotations, number of GO-based functional annotations 

and the number of known small molecule ligands. (b) Bar graphs depicting the number of proteins 

that possess 3-D structure, binding-active site and disease indication annotations. 

 
 
 
 
 
 
 

 

 
Figure S.2 Target-based (x-axis) average pairwise compound similarity (y-axis) curves for intra-

group (among inactives) and inter-group (actives to inactives) similarities with error bands for 704 

DEEPScreen targets. 
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Figure S.3 3-D structural representation of the molecular docking (best pose) of tretinoin – retinoic 

acid receptor RXRBeta pair. Molecular docking was employed since tretinoin – RXRBeta complex 

have not been structurally characterized, although the interaction is part of an approved medication. 

However, the X-ray crystal structure of Tretinoin - RAR RXR-gamma complex (another DTI from 

the same approved medication, where the target has an equivalent 3-D structure to RXRbeta) is found 

in PDB (id: 2LBD). The known binding site of RXRbeta are shown in gold color, and was extracted 

from PDBid: 1UHL. Tretinoin is displayed in magenta and the hydrogen bonds as light blue lines. 

The resulting binding free energy ΔG = -11.4 kj/mol (Kd ≈ 4.1 nM) at the best pose, together with the 

median experimental screening assay activity Ki = 54 nM obtained from the ChMEBL database, 

indicates high potency for tretinoin against RXRbeta. 
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Supplementary Tables 

Table S.1: Hyper-parameter types and the tested values during the training of DEEPScreen. 

Hyper-parameter Name Test values 

Input Normalization 
Yes 

No 

Learning rate 

0.0005 

0.0001 

0.005 

0.001 

0.01 

Filter size 
3 

5 

Stride 1 

Padding "same" 

Number of convolutional layers * 

Number of filters in each convolutional layer ** 

Number of neurons in each fully-connected layer *** 

Optimizer 

Adam (default) 

Momentum (default) 

RMSprop (default) 

Mini-batch size 
32 

64 

Drop-out rate 

0.5 

0.6 

0.8 

Batch Normalization Yes 

* Values between 3 and 8 were tested for the in-house DCNN architecture. For AlexNET and Inception, the default 

architectures were directly used without any change. 

** Numerous "# of filter" value combinations were tested between 16 and 256. 

*** For the two fully-connected layers (just before the output layer) in AlexNET, the number of neurons that were tested: 

(128,16), (256,128), (512,32), (1024,32) and (2048,2048). For the in-house DCNN, there were one fully connected-layer 

(before the output layer) and # of neurons tested were: 16, 32, 128, 256 and 512. 
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Table S.2: The performance results and the computational requirements (in training) of 3 target 

protein models in the input image size analysis. 

  Input Image Size 

Test performance results of the best model 
(average of 3 target protein models): 100x100 200x200 400x400 

MCC 0.59 0.69 0.65 

F1-score 0.79 0.84 0.83 

Accuracy 0.79 0.84 0.83 

Precision 0.83 0.87 0.84 

Recall 0.76 0.83 0.83 

Computational requirements for in-house 
DCNN and Inception model training 
(average of 3 target protein models): 

      

CNNModel run time (min) 8 46 192 

Inception run time (min) 75 470 - 

CNNModel memory (Gb) 0.7 2.6 7.9 

Inception memory (Gb) 3.3 7.3 - 

 

 

Table S.3: Cytotoxicity of Cladribine on HCC cell lines. 

 Cancer Cells 24 hrs 48 hrs 72hrs 

IC50 R2* IC50 R2* IC50 R2* 

Huh7 >40 µM NA >40 µM 0,92 3 µM 0,97 

HepG2 >40 µM NA 7 µM 0,92 0.1 µM 0,84 

Mahlavu 21 µM 0,9 3 µM 0,92 0.4 µM 0,93 

* Experiments are done in triplicates. 
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Table S.4: DEEPScreen target predictions for Cladribine. 

Target ChEMBL 
ID 

Target 
UniProt Acc. 

Target 
Entry Name 

Target Gene 
Name 

Target 
Organism 

Drug ChEMBL 
ID 

Drug 
Name 

CAS 
Number 

Model 
Score 

CHEMBL6115 P10619 PPGB CTSA HUMAN CHEMBL1619 Cladribine 4291-63-8 0.9 

CHEMBL4979 P13866 SC5A1 SLC5A1 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.75 

CHEMBL4803 P29474 NOS3 NOS3 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.56 

CHEMBL4701 P31390 HRH1 HRH1 RAT CHEMBL1619 Cladribine 4291-63-8 0.78 

CHEMBL4588 P22894 MMP8 MMP8 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.64 

CHEMBL4523 Q9P1W9 PIM2 PIM2 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.8 

CHEMBL4481 P35228 NOS2 NOS2 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.59 

CHEMBL4079 P25098 ARBK1 GRK2 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.85 

CHEMBL3884 P31639 SC5A2 SLC5A2 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.84 

CHEMBL3863 Q15139 KPCD1 PRKD1 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.75 

CHEMBL3571 P20272 CNR1 CNR1 RAT CHEMBL1619 Cladribine 4291-63-8 0.85 

CHEMBL3535 O76083 PDE9A PDE9A HUMAN CHEMBL1619 Cladribine 4291-63-8 0.84 

CHEMBL3529 Q14164 IKKE IKBKE HUMAN CHEMBL1619 Cladribine 4291-63-8 0.74 

CHEMBL3478 Q28156 PDE5A PDE5A BOVIN CHEMBL1619 Cladribine 4291-63-8 0.71 

CHEMBL3474 P14555 PA2GA PLA2G2A HUMAN CHEMBL1619 Cladribine 4291-63-8 0.72 

CHEMBL3426 P47898 5HT5A HTR5A HUMAN CHEMBL1619 Cladribine 4291-63-8 0.65 

CHEMBL3374 P25104 AGTR1 AGTR1 BOVIN CHEMBL1619 Cladribine 4291-63-8 0.84 

CHEMBL330 P35439 NMDZ1 GRIN1 RAT CHEMBL1619 Cladribine 4291-63-8 0.74 

CHEMBL3286 P00749 UROK PLAU HUMAN CHEMBL1619 Cladribine 4291-63-8 0.59 

CHEMBL3268 Q9UBF8 PI4KB PI4KB HUMAN CHEMBL1619 Cladribine 4291-63-8 0.43 

CHEMBL3142 P78527 PRKDC PRKDC HUMAN CHEMBL1619 Cladribine 4291-63-8 0.62 

CHEMBL3138 P19020 DRD3 DRD3 RAT CHEMBL1619 Cladribine 4291-63-8 0.85 

CHEMBL3045 P05771 KPCB PRKCB HUMAN CHEMBL1619 Cladribine 4291-63-8 0.83 

CHEMBL2996 Q05655 KPCD PRKCD HUMAN CHEMBL1619 Cladribine 4291-63-8 0.83 

CHEMBL2971 O60674 JAK2 JAK2 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.74 

CHEMBL2835 P23458 JAK1 JAK1 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.81 

CHEMBL280 P45452 MMP13 MMP13 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.65 

CHEMBL275 Q07343 PDE4B PDE4B HUMAN CHEMBL1619 Cladribine 4291-63-8 0.56 

CHEMBL2664 P23526 SAHH AHCY HUMAN CHEMBL1619 Cladribine 4291-63-8 1 

CHEMBL263 P29089 AGTRB AGTR1B RAT CHEMBL1619 Cladribine 4291-63-8 0.93 

CHEMBL262 P49841 GSK3B GSK3B HUMAN CHEMBL1619 Cladribine 4291-63-8 0.55 

CHEMBL2335 P42785 PCP PRCP HUMAN CHEMBL1619 Cladribine 4291-63-8 0.88 

CHEMBL2334 P42574 CASP3 CASP3 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.58 

CHEMBL2276 P45983 MK08 MAPK8 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.62 

CHEMBL2216739 Q92523 CPT1B CPT1B HUMAN CHEMBL1619 Cladribine 4291-63-8 0.68 

CHEMBL2148 P52333 JAK3 JAK3 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.72 

CHEMBL2107 P61073 CXCR4 CXCR4 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.95 

CHEMBL209 P07477 TRY1 PRSS1 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.6 

CHEMBL2014 P41146 OPRX OPRL1 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.85 

CHEMBL1991 O14920 IKKB IKBKB HUMAN CHEMBL1619 Cladribine 4291-63-8 0.66 

CHEMBL1981 P06213 INSR INSR HUMAN CHEMBL1619 Cladribine 4291-63-8 0.69 

CHEMBL1899 P46098 5HT3A HTR3A HUMAN CHEMBL1619 Cladribine 4291-63-8 0.64 

CHEMBL1875 Q13639 5HT4R HTR4 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.79 

CHEMBL1865 Q9UBN7 HDAC6 HDAC6 HUMAN CHEMBL1619 Cladribine 4291-63-8 0.5 
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Table S.5: Pairwise all-against-all Spearman rank correlation matrix comparing model performance 

(MCC) ranks of DEEPScreen, LR-ECFP, RF-ECFP, SVM-ECFP, LR-Image, RF-Image and SVM-

Image. 

 DEEPScreen LR-ECFP RF-ECFP SVM-ECFP LR-Image RF-Image SVM-Image 

DEEPScreen  0.241 0.252 0.512 0.685 0.645 0.330 

LR-ECFP 0.241  0.968 0.604 0.213 0.202 0.136 

RF-ECFP 0.252 0.968  0.636 0.231 0.222 0.173 

SVM-ECFP 0.512 0.604 0.636  0.521 0.521 0.321 

LR-Image 0.685 0.213 0.231 0.521  0.802 0.245 

RF-Image 0.645 0.202 0.222 0.521 0.802  0.333 

SVM-Image 0.330 0.136 0.173 0.321 0.245 0.333  

 

 


