Sulphide as Leaving Group: Highly Stereoselective Bromination of Alkyl Phenyl Sulphides

Daniele Canestrari,^a Caterina Cioffi,^a Ilaria Biancofiore,^{a,b} Stefano Lancianesi,^a Lorenza Ghisu,^a Manuel Ruether,^c John O'Brien,^c Mauro F. A. Adamo*^a and Hasim Ibrahim*^a

^a Centre for Synthesis and Chemical Biology (CSCB), Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland

^b IRBM Science Park S.p.A., Department of Medicinal Chemistry, Via Pontina, 30.600, 00071 Pomezia RM, Italy

^c Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland

email: madamo@rcsi.ie, hasimibrahim@rcsi.ie

Supporting Information

Table of Contents

1. General remarks	4
2. Materials	4
3. Reaction of sulphide (1a) with Cl ₂ gas	5
4. Deoxybromination of β-hydroxyl esters	5
4.1 Dehydroxybromination of methyl 3-hydroxy-3-phenylpropanoate under Appel	
conditions	5
4.2 Deoxybromination of ethyl 3-(4-chlorophenyl)-3-hydroxypropanoate with PBr ₃	6
5. Preparation of sulphides	8
5.1 General procedure for the reduction of β -sulphido esters (GP1)	8
5.2 General procedure for the preparation of β -sulphido mesylates (GP2)	9
5.3 General procedure for the sulpha-Michael addition to cinnamate esters (GP3)	10
5.4 Synthesis of 3-(4-chlorophenyl)-3-(phenylthio)propanenitrile (1r)	12
6. Bromination of sulphides with Br ₂	13
6.1 General procedure for bromination of sulphides	13
6.2 Bromination followed by solvolysis with 2,2,2-trifluoroethanol	22
6.3 Bromination followed by mesylation of sulphide (1u)	23
6.4 Large scale bromination of β -sulphido ester (1f)	23
7. General procedure for the transesterification of enantiomerically enriched	
hexafluoroisopropyl esters to cinnamate methyl esters (GP4)	24
8. Optically active bromides	25
8.1. Bromination of enantiomerically enriched sulphides	25
8.2. Monitoring the racemisation of bromide (<i>R</i>)-4a	27
9. Synthesis of (–)-(<i>S</i>)-3-azido-3-phenylpropan-1-ol	27
9.1 Two-pot procedure	27
9.2 One-pot procedure	28
10. NMR studies	29
10.1. NMR monitoring of the bromination of (1e)	29
10.2. NMR monitoring of the bromination of sulphide (1eb)	37
11. References	42

12. HPLC traces of optically active compounds	44
13. Copies of ¹ H NMR and ¹³ C NMR spectra	54

1. General remarks

¹H, ¹⁹F and ¹³C NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer. Lowtemperature 1D and 2D NMR spectra were recorded on an Agilent Technologies Ultra High Field (UHF) 800 MHz spectrometer or Agilent 400-MR Long Hold Mag. Res. spectrometer. Chemical shifts (δ) are reported in ppm relative to residual solvent signals for ¹H and ¹³C NMR (¹H NMR: 7.26 ppm for CDCl₃, 1.94 ppm for CD₃CN, 5.32 ppm for CD₂Cl₂; ¹³C NMR: 77.00 ppm for CDCl₃, 1.32 ppm and 118.26 ppm for CD₃CN, 53.84 ppm for CD₂Cl₂). ¹³C NMR spectra were acquired with ¹H broad band decoupled mode. Coupling constants (*J*) are in Hz. Melting points were measured using a Stuart scientific melting point apparatus and are uncorrected. Infrared spectra (IR) were recorded using a Nicolet iS 10 FT-IR spectrometer. Low resolution mass spectra were obtained on a Waters Micromass GCT Premier MS spectrometer or on a Bruker micrOTOF-Q III LC-MS spectrometer (APCI method). Elemental analysis was carried out using an Exeter Analytical CE 440 elemental analyser. Optical rotations were measured on a Perkin-Elmer 343 polarimeter. The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Shimadzu SIL-20AHT HPLC instrument.

2. Materials

Analytical grade solvents and commercially available reagents were used as received. Dry CH₂Cl₂, DCE, toluene, MeCN and Et₂O were purchased from commercial sources. Dry THF was obtained from an Inert Pure Solv Micro drying solvent system. Reactions were monitored by TLC analysis (Merck, aluminum plates, silica gel 60 F_{254}) and/or ¹H NMR spectroscopy. Flash column chromatography was performed using silica gel 60 (0.040-0.063 mm, 230-400 mesh). Cinnamate esters,¹ 1,1,1,3,3,3-hexafluoropropan-2-yl cinnamates and optically active sulphides (*S*)-1aa, (*S*)-1ba, (*S*)-1da and (*S*)-1ea were prepared according to published procedures.² Methyl 3-hydroxy-3-phenylpropanoate and ethyl 3-(4-chlorophenyl)-3-hydroxypropanoate,³ sulphides 1a, 1c, 1d, 1i, 1m, 1s, 1t, 1x, 1za and 1zb,⁴ 1j and 1k,² 1l,⁵ 1n and 1o,⁶ 1p,⁷ 1q⁸ and 1y⁹ were synthesized according to literature procedures.

3. Reaction of sulphide (1a) with Cl₂ gas

Cl₂ gas was bubbled into a stirred solution of **1a** (136 mg, 0.5 mmol) in dry CH₂Cl₂ (3 mL) (ca. 5 bubbles/sec) under N₂ atmosphere. The reaction was stirred for 3 minutes, quenched with styrene (86 μ L, 78 mg, 0.75 mmol, 1.5 equiv) and the solvent removed *in vacuo*. A ¹H NMR spectrum of the residue was recorded to determine the composition of the crude material, which indicated the complete consumption of **1a** and the presence of chloride **2a** and dehydrochlorinated **3a** in a ratio of 70:30.

4. Deoxybromination of β-hydroxyl esters

4.1 Dehydroxybromination of methyl 3-hydroxy-3-phenylpropanoate under Appel conditions

Standard conditions for the Appel reaction were followed.¹⁰ A solution of methyl 3-hydroxy-3-phenylpropanoate (90 mg, 0.5 mmol) and tetrabromomethane (166 mg, 0.5 mmol, 1.0 equiv) in dry CH₂Cl₂ (5.0 mL) was cooled to 0 °C, and triphenylphosphine (131 mg, 0.5 mmol, 1.0 equiv) was added portion-wise. The reaction mixture was allowed to reach rt and stirred for 24 h (TLC analysis), then the reaction mixture was evaporated *in vacuo*. A ¹H NMR spectrum of the residue showed the formation of **4a** and **3a** in a ratio of 82:18.

5. Preparation of sulphides

5.1 General procedure for the reduction of β -sulphido esters (GP1)

To a stirred solution of sulphide (2.0 mmol) in dry THF (4.0 mL) was added dropwise *via* syringe LiAlH₄ (1.0 mL, 1.0 M solution in Et₂O, 1.0 mmol, 0.5 equiv) at 0 °C. The reaction mixture was allowed to reach rt and stirred until consumption of the starting material was observed by TLC analysis, then carefully quenched with sat. aq. soln of NH₄Cl (10 mL) and extracted with Et₂O (3 x 10 mL). The combined organic layers were dried over Na₂SO₄ and the solvent removed *in vacuo* to obtain the corresponding alcohol, which was used without further purification.

3-(Phenylthio)-3-(thiophen-2-yl)propan-1-ol

SPh Prepared according to GP1. The reaction was completed in 2 h. The title compound was obtained as a yellow oil (425 mg, 85% yield). IR (neat, cm⁻¹): v 3331, 3071, 2930, 1473, 1125, 1042, 954. ¹H NMR (400 MHz, CDCl₃): δ 1.79 (br s, 1H), 2.15–2.25 (m, 2H), 3.62–3.68 (m, 1H), 3.80 (dt, J = 11.3, 5.8 Hz, 1H), 4.65 (virt t, J = 7.6 Hz, 1H), 6.75 (d, J = 3.5 Hz, 1H), 6.82 (dd, J = 5.1, 3.5 Hz, 1H), 7.16 (dd, J = 5.1, 0.9 Hz, 1H), 7.19–7.26 (m, 2H), 7.27–7.32 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 39.6, 45.4, 60.1, 124.5, 125.3, 126.3, 127.5, 128.7, 132.8, 134.0, 146.0. HRMS (EI): C₁₃H₁₄OS₂Na [M + Na]⁺ calculated: 273.0384, found: 273.0390.

3-(2,4,5-Trifluorophenyl)-3-(phenylthio)propan-1-ol (1u)

Prepared according to GP1. The reaction was completed in 16 h. The title compound was isolated as a pale yellow oil (528 mg, 89% yield). IR (neat, cm⁻¹): v 3487, 3362, 3100, 2856, 1469, 1123, 978. ¹H NMR (400 MHz, CDCl₃): δ 1.46 (br s, 1H), 2.02–2.10 (m, 1H), 2.16–2.24

(m, 1H), 3.65 (virt dt, J = 11.3, 6.3 Hz, 1H), 3.81 (virt dt, J = 11.5, 5.9 Hz, 1H), 4.69 (virt t, J = 7.6 Hz, 1H), 6.82 (virt dt, J = 9.7, 6.6 Hz, 1H), 7.15 (ddd, J = 10.8, 8.7, 6.9 Hz, 1H), 7.20–7.30 (m, 5H). ¹⁹F NMR (376 MHz, CDCl₃): δ –119.6 (dd, J = 15.2, 3.8 Hz), –134.7 (dd, J = 21.7, 3.8 Hz), –141.9 (dd, J = 21.7, 15.1 Hz). ¹³C NMR (101 MHz, CDCl₃): δ 37.9, 41.8, 60.1,

105.3 (dd, J = 28.8, 20.7 Hz), 116.6 (dd, J = 19.9, 5.2 Hz), 125.7 (dt, J = 16.0, 4.6 Hz), 127.8, 128.9, 132.6, 133.3, 146.9 (ddd, J = 244.9, 12.6, 3.4 Hz), 148.8 (ddd, J = 251.2, 14.5, 12.6 Hz), 155.2 (ddd, J = 245.3, 9.3, 2.7 Hz). HRMS (EI): C₁₅H₁₃F₃OSNa [M + Na]⁺ calculated: 321.0537, found: 321.0525.

5.2 General procedure for the preparation of β -sulphido mesylates (GP2)⁴

To a stirred solution of the sulphido alcohol (2.0 mmol) and methanesulphonyl chloride (260 μ L, 321 mg, 2.8 mmol, 1.4 equiv) in CH₂Cl₂ (5.0 mL) was added dropwise triethylamine (467 μ L, 339 mg, 3.4 mmol, 1.4 equiv) at 0 °C. The reaction mixture was allowed to reach rt and stirred until consumption of the starting material was observed by TLC analysis, then diluted with H₂O (10 mL) and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were washed with H₂O (3 x 10 mL), brine and dried over Na₂SO₄. The solvent was removed *in vacuo* and the crude mixture was purified by flash column chromatography on silica gel to afford the corresponding methanesulphonate.

(2,4,5-Trifluorophenyl)-3-(phenylthio)propyl methansulphonate (1v)

Prepared according to GP2. The reaction was completed in 16 h. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/EtOAc, 80:20) as a brown oil (568 mg, 91% yield). IR (neat, cm⁻¹): v 3029, 3015, 2659, 1629, 1510, 1353, 1331,

1170, 797, 525. ¹H NMR (400 MHz, CDCl₃): δ 2.21–2.30 (m, 1H), 2.32–2.41 (m, 1H), 2.96 (s, 3H), 4.20 (ddd, J = 10.3, 6.4, 5.7 Hz, 1H), 4.39 (ddd, J = 10.3, 6.7, 5.6 Hz, 1H), 4.58 (virt t, J = 7.6, 1H), 6.86 (virt dt, J = 9.7, 6.6 Hz, 1H), 7.09 (ddd, J = 10.7, 8.6, 6.8 Hz, 1H), 7.21–7.31 (m, 5H). ¹⁹F NMR (376 MHz, CDCl₃): δ –119.1 (dd, J = 15.2, 3.2 Hz), –133.8 (dd, J = 21.6, 2.0 Hz), –141.4 (dd, J = 26.3, 10.5 Hz). ¹³C NMR (101 MHz, CDCl₃): δ 34.4, 37.3, 41.5, 66.7, 105.6 (dd, J = 28.7, 20.8 Hz), 116.5 (dd, J = 20.0, 5.0 Hz), 124.6 (dd, J = 15.8, 4.6 Hz), 128.2, 129.1, 132.4, 133.1, 146.9 (ddd, J = 245.6, 12.6, 3.5 Hz), 149.1 (ddd, J = 252.0, 14.5, 12.6 Hz), 155.2 (ddd, J = 246.0, 9.3, 2.6 Hz). HRMS (EI): C₁₆H₁₅F₃O₃S₂Na [M + Na]⁺ calculated: 399.0312, found: 399.0309.

3-(Phenylthio)-3-(thiophen-2-yl)propyl methanesulphonate (1w)

Prepared according to GP-2. The reaction was completed in 3 h. The title compound was isolated by flash column chromatography (silica gel; CH₂Cl₂) as a yellow oil (636 mg, 97% yield). IR (neat, cm⁻¹): v 3020, 2935, 1566, 1351, 1169, 961. ¹H NMR (400 MHz, CDCl₃): δ 2.28-2.49

(m, 2H), 2.94 (s, 3H), 4.22 (ddd, J = 10.1, 7.3, 5.2 Hz, 1H), 4.40 (virt dt, J = 10.2, 5.8 Hz, 1H), 4.59 (virt t, J = 7.2 Hz, 1H), 6.78 (d, J = 3.2 Hz, 1H), 6.86 (dd, J = 5.1, 3.5 Hz, 1H), 7.21 (dd, J = 5.1, 0.8 Hz, 1H), 7.23–7.28 (m, 3H), 7.28–7.38 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 36.2, 37.2, 44.9, 67.2, 125.0, 125.8, 126.6, 128.1, 128.9, 133.2, 133.3, 144.5. HRMS (EI): C₁₄H₁₆O₃S₃Na [M + Na]⁺ calculated: 351.0156, found: 351.0151.

5.3 General procedure for the sulpha-Michael addition to cinnamate esters (GP3)

Thiophenol (337 μ L, 364 mg, 3.3 mmol, 1.1 equiv) and triethylamine (42 μ L, 30 mg, 0.3 mmol, 0.1 equiv) were added to the cinnamate ester (3.0 mmol) and the reaction mixture was stirred at rt until complete consumption of the starting material was observed by TLC analysis (9-48 h). The reaction mixture was purified directly by flash column chromatography on silica gel to afford the sulpha-Michael adduct.

Methyl 3-(phenylthio)-3-(o-tolyl)propanoate (1b)

Prepared according GP3. The reaction was completed in 16 h. The title compound was isolated by flash chromatography (silica gel; petroleum ether/EtOAc, 95:5) as a pale yellow oil (566 mg, 66% yield). IR (neat, cm^{-1}): *v* 3025, 2925, 2910, 1787, 1599, 1503, 1271, 759, 651. ¹H NMR

(400 MHz, CDCl₃): δ 2.40 (s, 3H), 2.98 (m, 2H), 3.55 (s, 3H), 4.87 (virt t, J = 7.7 Hz, 1H), 7.09-7.18 (m, 4H), 7.22-7.27 (m, 3H), 7.28-7.35 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 19.4, 40.2, 44.6, 51.8, 126.2, 126.3, 127.4, 128.0, 128.8, 130.5, 133.4, 133.9, 136.1, 138.1, 171.4. HRMS (EI): C₁₇H₁₈O₂SNa [M + Na]⁺ calculated: 309.0931, found: 309.0925.

Methyl 3-(phenylthio)-3-[4-(trifluoromethyl)phenyl]propanoate (1e)

Prepared according to GP3. Reaction was completed in 16 h. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/EtOAc, 95:5) as a white solid (989 mg, 97% yield). Mp: 91–93 °C. IR (neat, cm^{-1}): *v* 3019, 2854, 1710,

1564, 1389, 1354, 1015, 758. ¹H NMR (400 MHz, CDCl₃) δ 2.92 (dd, J = 16.0, 8.6 Hz, 1H), 3.00 (dd, J = 16.0, 6.9 Hz, 1H), 3.61 (s, 3H), 4.66 (dd, J = 8.3, 7.2 Hz, 1H), 7.21-7.31 (m, 5H), 7.34 (d, J = 8.1 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ –62.5. ¹³C NMR (101 MHz, CDCl₃): δ 40.3, 48.7, 51.9, 124.02 (q, J = 272.0 Hz), 125.4 (q, J = 3.8 Hz), 128.0, 128.2, 129.0, 129.6 (q, J = 32.4 Hz), 132.7, 133.6, 144.7, 170.8. HRMS (EI): C₁₇H₁₅F₃O₂SNa [M + Na]⁺: calculated: 363.0643, found: 363.0658.

Methyl 3-(4-formylphenyl)-3-(phenylthio)propanoate (1f)

Prepared according to GP3. The reaction was completed in 24 h. The title compound was isolated by flash column chromatography (silica gel; CH_2Cl_2) as a pale yellow oil (792 mg, 88% yield). IR (neat, cm⁻¹): *v* 3019, 2979, 2359, 1730, 1211, 1674, 689. ¹H NMR

(400 MHz, CDCl₃): δ 2.94 (dd, J = 16.0, 8.5 Hz, 1H), 3.02 (dd, J = 16.0, 7.0 Hz, 1H), 3.61 (s, 3H), 4.67 (dd, J = 8.3, 7.2 Hz, 1H), 7.19–7.31 (m, 5H), 7.37 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 9.95 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 40.0, 48.9, 51.9, 128.2, 128.3, 128.9, 129.8, 132.5, 133.8, 135.5, 147.5, 170.7, 191.6. HRMS (EI): C₁₇H₁₆O₃SNa [M + Na]⁺: calculated: 323.0718, found: 323.0720.

Methyl 3-(3-nitrophenyl)-3-(phenylthio)propanoate (1g)

Prepared according to GP3. The reaction was completed in 22 h. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/EtOAc 90:10) as a white solid (718 mg, 84% yield). Mp: 67–69 °C. IR (neat, cm⁻¹): v 3067, 2961, 2924, 1722, 1578, 1470, 1352,

1218, 1147, 987, 753. ¹H NMR (400 MHz, CDCl₃): δ 2.95 (dd, J = 16.2, 8.8 Hz, 1H), 3.04 (dd, J = 16.2, 6.7 Hz, 1H), 3.62 (s, 3H), 4.70 (dd, J = 8.7, 6.8 Hz, 1H), 7.20–7.34 (m, 5H), 7.41–7.45 (m, 1H), 7.54–7.56 (m, 1H), 8.05–8.10 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 40.1, 48.5, 52.0, 122.5, 128.5, 129.1, 129.3, 132.2, 133.9, 133.9, 142.9, 170.6. HRMS (EI): C₁₆H₁₅NO₄SNa [M + Na]⁺ calculated: 340.0612, found: 340.0619.

Ethyl 3-[(3,5-bis(trifluoromethyl)phenyl)]-3-(phenylthio)propanoate (1h)

Prepared according to GP3. Reaction was completed in 48 h. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/CH₂Cl₂, 80:20) as a pale yellow oil (974 mg, 77% yield). IR (neat, cm⁻¹): v 3001, 2983, 1732, 1275, 1168, 1125,

681. ¹H NMR (400 MHz, CDCl₃): δ 1.17 (t, J = 7.1 Hz, 3H), 2.92 (dd, J = 16.0, 8.8 Hz, 1H), 3.04 (dd, J = 16.0, 6.8 Hz, 1H), 4.02–4.13 (m, 2H), 4.68 (dd, J = 8.8, 6.8 Hz, 1H), 7.20–7.34 (m, 5H), 7.57 (s, 2H), 7.71 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ –62.9. ¹³C NMR (101 MHz, CDCl₃): δ 13.9, 40.0, 48.6, 61.1, 121.3 (hept, J = 3.7 Hz), 123.1 (q, J = 272.8 Hz), 127.8 (q, J = 2.8 Hz), 128.8, 129.1, 131.5 (q, J = 33.4 Hz), 131.6, 134.4, 143.4, 169.9. HRMS (EI): C₁₉H₁₆F₆O₂SNa [M + Na]⁺ calculated: 445.0673, found: 445.0670.

Ethyl 3-(phenylthio)-3-(thiophen-2-yl)propanoate

Prepared according to GP3. The reaction was completed in 9 h. The title OEt compound was isolated by flash column chromatography (silica gel; petroleum ether/EtOAc, 95:5) as a yellow oil (900 mg, 56% yield). IR

(neat, cm⁻¹): *v* 3010, 2979, 1730, 1211, 1146, 1024, 689. ¹H NMR (400 MHz, CDCl₃): δ 1.20 (t, *J* = 7.1 Hz, 3H), 2.94 (dd, *J* = 16.2, 8.0 Hz, 1H), 2.98 (dd, *J* = 16.5, 7.6 Hz, 1H), 4.01-4.19 (m, 2H), 4.92 (virt t, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 3.3 Hz, 1H), 6.83–6.85 (m, 1H), 7.18 (dd, *J* = 5.1, 1.0 Hz, 1H), 7.23–7.30 (m, 3H), 7.31–7.39 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 14.1, 42.0, 44.6, 60.9, 124.7, 125.3, 126.4, 128.1, 128.9, 133.1, 133.6, 144.6, 170.4. HRMS (EI): C₁₅H₁₆O₂S₂Na [M + Na]⁺ calculated: 315.0481, found: 315.0489.

5.4 Synthesis of 3-(4-chlorophenyl)-3-(phenylthio)propanenitrile (1r)

Thiophenol (919 μ L, 990 mg, 9.0 mmol, 3.0 equiv) and DIPEA (52 μ L, 39 mg, 0.3 mmol, 0.1 equiv) were added to 3-(4-chlorophenyl)acrylonitrile (489 mg, 3.0 mmol) and the reaction mixture was stirred at 120 °C until complete consumption of the starting material was observed by TLC analysis (24 h). The reaction mixture was directly purified by flash chromatography (silica gel; petroleum ether/EtOAc 95:5) to afford the title compound as a white solid (779 mg,

95% yield). Mp: 80–81 °C. IR (neat, cm⁻¹): *v* 2979, 1730, 1489, 1211, 1146, 1024, 689. ¹H NMR (400 MHz, CDCl₃) δ 2.84 (dd, *J* = 16.6, 8.1 Hz, 1H), 2.90 (dd, *J* = 16.6, 5.9 Hz, 1H), 4.38 (dd, *J* = 8.1, 5.9 Hz, 1H), 7.24–7.39 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 24.9, 48.6, 116.9, 128.8, 128.9, 129.1, 129.3, 131.9, 133.9, 134.3, 136.8. HRMS (EI): C₁₅H₁₂ClNSNa [M + Na]⁺ calculated: 296.0277, found: 296.0275.

6. Bromination of sulphides with Br₂

6.1 General procedure for bromination of sulphides

To a stirred solution of sulphide **1** (0.5 mmol) in dry CH_2Cl_2 (3.0 mL) was added Br_2 (500 µL, 1.0 M in CH_2Cl_2 , 0.5 mmol, 1.0 equiv) at rt under N₂ atmosphere and the reaction progress was monitored by ¹H NMR analysis using a stock solution of styrene in $CDCl_3$ (0.03 M). After the consumption of the starting material (4 min-48 h), the reaction mixture was quenched by either the addition of styrene (68 µL, 0.6 mmol, 1.2 equiv) or a sat. aq. soln of Na₂S₂O₃, which led to an immediate fading of the red colour. After the evaporation of the solvents or aqueous work up, the residue was purified by flash column chromatography to afford the corresponding bromide.

Products that precipitated from the reaction mixture were purified by either recrystallization or trituration.

An analogous procedure was followed for slow-reacting substrates (sulphides **1g-i**, **1o**) using a 1.0 M Br₂ solution in DCE, DCE as solvent and a reaction temperature of 50 °C.

Methyl 3-bromo-3-phenylpropanoate (4a)

Reaction was quenched with styrene after 25 min. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/EtOAc 95:5) as a yellow oil (115 mg, 95% yield). All analytical data are consistent with those reported in the literature.¹²

Methyl 3-bromo-3-(*o*-tolyl)propanoate (4b)

Reaction was quenched with styrene after 25 min. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/EtOAc, 96:4) as a yellow oil (112 mg, 87% yield). IR (neat, cm⁻¹): v 3011, 2951, 1736, 1435, 1200, 761, 627. ¹H NMR (400 MHz, CDCl₃):

δ 2.45 (s, 3H), 3.26 (dd, J = 16.4, 6.0 Hz, 1H), 3.43 (dd, J = 16.4, 9.0 Hz, 1H), 3.70 (s, 3H), 5.64 (dd, J = 9.0, 6.0 Hz, 1H), 7.13–7.27 (m, 3H), 7.39–7.45 (m, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 19.1, 43.5, 44.3, 52.1, 126.1, 126.7, 128.6, 130.8, 135.7, 138.5, 170.3. HRMS (APCI): C₁₁H₁₄⁷⁹BrO₂ [M + H]⁺ calculated: 257.0177, found: 257.0179. Anal. Calcd for C₁₁H₁₃BrO₂: C, 51.38; H, 5.10. Found: C, 51.31; H, 5.13.

Ethyl 3-bromo-3-(p-tolyl)propanoate (4c)

Reaction was quenched with styrene after 25 min. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/EtOAc, 97:3) as a yellow oil (115 mg, 84% yield). IR (neat, cm^{-1}): *v* 2924, 1734, 1374, 1184, 1018, 734, 515. ¹H NMR (400 MHz,

CDCl₃): δ 1.24 (t, *J* = 7.1 Hz, 3H), 2.34 (s, 3H), 3.19 (dd, *J* = 16.1, 6.2 Hz, 1H), 3.34 (dd, *J* = 16.1, 9.0 Hz, 1H), 4.06–4.25 (m, 2H), 5.41 (dd, *J* = 9.0, 6.2 Hz, 1H), 7.16 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 14.1, 21.1, 44.8, 48.2, 60.1, 127.0, 129.4, 137.8, 138.7, 169.7. HRMS (APCI): C₁₂H₁₆⁷⁹BrO₂ [M + H]⁺ calculated: 271.0334, found: 271.0347. Anal. Calcd for C₁₂H₁₅BrO₂: C, 53.16; H, 5.58. Found: C, 53.11; H, 5.50.

Methyl 3-bromo-3-(4-chlorophenyl)propanoate (4d)

Reaction was quenched with styrene after 25 min. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/EtOAc, 96:4) as a yellow oil (135 mg, 97% yield). All analytical data are consistent with those reported in the

literature.¹³

Methyl 3-bromo-3-(4-(trifluoromethyl)phenyl)propanoate (4e)

The reaction was performed at double concentration (1.5 mL of dry CH_2Cl_2) and quenched with styrene after 48 h. The title compound was isolated by flash chromatography (silica gel; petroleum ether/ CH_2Cl_2 , 60:40) as a yellow oil (148 mg, 95% yield). IR (neat,

cm⁻¹): *v* 2955, 1736, 1320, 1110, 1068, 630. ¹H NMR (400 MHz, CDCl₃): δ 3.22 (dd, *J* = 16.4, 6.7 Hz, 1H), 3.35 (dd, *J* = 16.4, 8.5 Hz, 1H), 3.70 (s, 3H), 5.41 (dd, *J* = 8.5, 6.7 Hz, 1H), 7.55 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 8.3 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -62.6. ¹³C NMR (101 MHz, CDCl₃): δ 44.3, 46.0, 52.1, 123.7 (q, *J* = 272.2 Hz), 125.8 (q, *J* = 3.8 Hz), 127.6, 130.7 (q, *J* = 32.7 Hz), 144.5, 169.7. HRMS (APCI): C₁₁H₁₁⁷⁹BrFO₂ [M + H]⁺ calculated: 310.9883, found: 310.9889.

Methyl 3-bromo-3-(4-formylphenyl)propanoate (4f)

The reaction was performed at double concentration (1.5 mL of dry CH_2Cl_2) and quenched with styrene after 4 h. The title compound was isolated by flash column chromatography (silica gel; CH_2Cl_2) as a yellow oil (123 mg, 90% yield). IR (neat,

cm⁻¹): *v* 2922, 1721, 1690, 1211, 1156, 855, 527. ¹H NMR (400 MHz, CDCl₃): δ 3.25 (dd, *J* = 16.4, 6.7 Hz, 1H), 3.36 (dd, *J* = 16.4, 8.5 Hz, 1H), 3.70 (s, 3H), 5.42 (dd, *J* = 8.3, 6.9 Hz, 1H), 7.60 (d, *J* = 8.2 Hz, 2H), 7.87 (d, *J* = 8.2 Hz, 2H), 10.01 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 44.1, 46.1, 52.1, 127.9, 130.1, 136.3, 146.9, 169.6, 191.3. HRMS (APCI): C₁₁H₁₂⁷⁹BrO₃ [M + H]⁺ calculated: 270.9972, found: 270.9964. Anal. Calcd for C₁₁H₁₁BrO₃: C, 48.73; H, 4.22. Found: C, 48.60; H, 4.05.

Methyl 3-bromo-3-(3-nitrophenyl)propanoate (4g)

The reaction was performed in dry DCE (3.0 mL) at 50 °C, using Br₂ (0.5 mL, 1.0 M in DCE, 0.5 mmol, 1.0 equiv) and quenched with styrene after 2 h. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/CH₂Cl₂, 70:30) as a yellow solid (129 mg, 90%)

yield). Mp: 84-86 °C. IR (neat, cm⁻¹): v 3012, 2953, 1732, 1527, 1347, 1024, 683. ¹H NMR (400 MHz, CDCl₃): δ 3.26 (dd, J = 16.5, 7.0 Hz, 1H), 3.38 (dd, J = 16.5, 8.2 Hz, 1H), 3.71 (s, 3H), 5.43 (dd, J = 8.2, 7.0 Hz, 1H), 7.55 (t, J = 8.0 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 8.10– 8.21 (m, 1H), 8.29 (t, J = 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 44.2, 45.1, 52.3, 122.2, 123.6, 129.9, 133.4, 142.8, 148.3, 169.5. HRMS (APCI): C₁₀H₁₁⁷⁹BrNO₄ [M + H]⁺ calculated: 287.9874, found: 287.9866. Anal. Calcd for C₁₀H₁₀BrNO₄: C, 41.69; H, 3.53; N, 4.86. Found: C, 41.54; H, 3.53; N, 4.53.

Ethyl 3-[3,5-bis(trifluoromethyl)phenyl]-3-bromopropanoate (4h)

The reaction was performed in dry DCE (3.0 mL) at 50 °C, using Br₂ (1.0 mL, 1.0 M in DCE, 1.0 mmol, 2.0 equiv) and quenched with styrene after 2 h. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/CH₂Cl₂ 70:30) as a

colourless oil (175 mg, 89% yield). IR (neat, cm⁻¹): *v* 3011, 2958, 2545, 1734, 1373, 1275, 1066, 727, 591. ¹H NMR (400 MHz, CDCl₃): δ 1.23 (t, *J* = 7.1 Hz, 3H), 3.23 (dd, *J* = 16.4, 7.1 Hz, 1H), 3.36 (dd, *J* = 16.4, 8.2 Hz, 1H), 4.08–4.23 (m, 2H), 5.43 (virt t, *J* = 7.6 Hz, 1H), 7.83 (s, 1H), 7.88 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ –62.9. ¹³C NMR (101 MHz, CDCl₃): δ 14.0, 44.5, 44.7, 61.4, 122.6 (hept, *J* = 3.7 Hz), 122.9 (q, *J* = 272.9 Hz), 127.6, 132.3 (q, *J* = 33.6 Hz), 143.3, 168.8. LRMS (ESI): *m/z* (%) 393 (100) [M]⁺. Anal. Calcd for C₁₃H₁₁BrF₆O₂: C, 39.72; H, 2.82. Found: C, 39.68; H, 2.89.

Ethyl 3-bromo-3-(2,4,5-trifluorophenyl)propanoate (4i)

The reaction was performed in dry DCE (3.0 mL) at 50 °C, using Br₂ (0.6 mL, 1.0 M in DCE, 0.6 mmol, 1.2 equiv), stirred for 16 h and then quenched with styrene. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/CH₂Cl₂ 70:30) as

a pale yellow oil (578 mg, 93% yield). IR (neat, cm⁻¹): *v* 2921, 2852, 1734, 1514, 1336, 1110, 887, 527. ¹H NMR (400 MHz, CDCl₃): δ 1.24 (t, *J* = 7.1 Hz, 3H), 3.19 (dd, *J* = 16.4, 7.0 Hz, 1 H), 3.31 (dd, *J* = 16.4, 8.3 Hz, 1H), 4.10-4.23 (m, 2H), 5.56 (virt t, *J* = 7.7 Hz, 1H), 6.94 (virt dt, *J* = 9.7, 6.5 Hz, 1H), 7.29 (ddd, *J* = 10.3, 8.4, 6.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ -117.1 (dd, *J* = 15.1, 4.8 Hz), -131.8 (dd, *J* = 21.4, 4.8 Hz), -140.9 (dd, *J* = 21.4, 15.1 Hz). ¹³C NMR (101 MHz, CDCl₃): δ 14.0, 38.1 (d, *J* = 2.9 Hz), 43.6, 61.3, 106.1 (dd, *J* = 28.0, 20.9 Hz), 116.6 (ddd, *J* = 20.2, 4.4, 1.5 Hz), 124.6 (ddd, *J* = 15.2, 7.1, 2.5 Hz), 146.9 (ddd, *J* = 246.3, 12.8, 3.6 Hz), 150.1 (ddd, *J* = 253.9, 14.3, 12.5 Hz), 154.6 (ddd, *J* = 249.2, 9.4, 2.7 Hz), 169.0. LRMS (ESI): *m*/*z* (%) 311 (50) [M]⁺. Anal. Calcd for C₁₁H₁₀BrF₃O₂: C, 42.47; H, 3.24. Found: C, 42.39; H, 3.20.

1,1,1,3,3,3-Hexafluoropropan-2-yl 3-bromo-3-phenylpropanoate (4j)

Reaction was quenched with styrene after 90 min. The title compound was isolated as an inseparable mixture with 1,1,1,3,3,3-hexafluoropropan-2-yl cinnamate (8%) by flash column chromatography (silica gel; petroleum ether/CH₂Cl₂ 90:10) as a pale

yellow oil (174 mg, 90%). ¹H NMR (400 MHz, CDCl₃): δ 3.44 (dd, *J* = 16.5, 6.3 Hz, 1H), 3.56 (dd, *J* = 16.5, 9.0 Hz, 1H), 5.38 (dd, *J* = 9.0, 6.3 Hz, 1H), 5.74 (hept, *J* = 6.0 Hz, 1H), 7.31–7.39 (m, 3H), 7.40–7.46 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ –73.2. ¹³C NMR (101 MHz, CDCl₃): δ 43.9, 45.9, 66.7 (hept, *J* = 34.9 Hz), 120.2 (q, *J* = 281.9 Hz), 127.0, 129.0, 129.2, 139.7, 166.5.

N-Benzyl-3-bromo-3-phenylpropanamide (4k)

Reaction was quenched with styrene after 30 min. The title compound NHBn was isolated by flash column chromatography (silica gel; CH₂Cl₂/EtOAc, 90:10) as a white solid (130 mg, 81% yield). Mp: 127-129 °C. IR (neat, cm⁻¹): v 3263, 3089, 2965, 1635, 1567, 691, 582. ¹H

NMR (400 MHz, CDCl₃): δ 3.07 (dd, J = 14.7, 5.9 Hz, 1H), 3.16 (dd, J = 14.7, 8.9 Hz, 1H), 4.43 (d, J = 5.7 Hz, 2H), 5.52 (dd, J = 8.9, 5.9 Hz, 1H), 5.81 (br s, 1H), 7.12–7.19 (m, 2H), 7.29–7.38 (m, 6H), 7.39–7.47 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 43.7, 47.4, 49.4, 127.2, 127.6, 127.7, 128.7, 128.9, 129.0, 137.7, 141.0, 168.7. HRMS (APCI): C₁₆H₁₇⁷⁹BrNO [M + H]⁺ calculated: 318.0483, found: 318.0488. Anal. Calcd for C₁₆H₁₆BrNO: C, 60.39; H, 5.07; N, 4.40. Found: C, 60.41; H, 5.00; N, 4.38.

3-Bromo-3-phenyl-1-(pyrrolidin-1-yl)propan-1-one (4l)

Br

4k

Ω

Reaction was quenched with styrene after 30 min. The title compound was isolated by flash column chromatography (silica gel; CH₂Cl₂/EtOAc, 80:20) as a white solid (129 mg, 91% yield). Mp: 93-

⁴¹ 95 °C. IR (neat, cm⁻¹): *v* 2989, 2870, 1626, 1440, 713, 605, 529. ¹H NMR (400 MHz, CDCl₃): δ 1.78–2.02 (m, 4H), 3.08 (dd, J = 15.7, 5.6 Hz, 1H), 3.36 (dd, J = 15.5, 8.8 Hz, 2H), 3.33–3.46 (m, 3H), 3.47–3.56 (m, 1H), 3.58 (dt, J = 9.9, 6.8 Hz, 1H), 5.58 (dd, J = 8.7, 5.6 Hz, 1H), 7.24–7.31 (m, 1H), 7.32–7.36 (m, 2H), 7.46 (d, J = 7.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 24.3, 26.0, 44.9, 45.8, 46.7, 49.7, 127.3, 128.4, 128.7, 141.6, 167.4. HRMS (APCI): C₁₃H₁₇⁷⁹BrNO [M + H]⁺ calculated: 282.0493, found: 282.0488.

S-Phenyl 3-bromo-3-phenylpropanethioate (4m)

Reaction was quenched with styrene after 40 min. The title compound was isolated by flash chromatography column (silica gel; petroleum ether/CH₂Cl₂ 70:30) as a colourless oil (100 mg, 61% yield). IR (neat, cm⁻¹): v 3189, 1856, 1667, 1485, 1423, 1148, 978, 699, 587. ¹H NMR

(400 MHz, CDCl₃): δ 3.49 (dd, J = 15.9, 6.4 Hz, 1H), 3.66 (dd, J = 15.9, 8.6 Hz, 1H), 5.44 (dd, J = 8.5, 6.4 Hz, 1H), 7.28–7.46 (m, 10H). ¹³C (101 MHz, CDCl₃) δ 47.3, 52.6, 126.8, 127.3, 128.9, 128.9, 129.3, 129.7, 134.4, 140.3, 193.7. LRMS (ESI): m/z (%) 263 (15) [M + Na - Br]⁺. Anal. Calcd for C₁₅H₁₃BrOS: C, 56.09; H, 4.08. Found: C, 56.01; H, 4.05.

3-Bromo-3-phenylpropanoic acid (4n)

Reaction was quenched with styrene after 1 h. The title compound was obtained by trituration with cold *n*-hexane ($2 \ge 5 \text{ mL}$) as an off-white solid (101 mg, 88% yield). All analytical data are consistent with those reported in the literature.¹⁴

3-Bromo-3-(4-nitrophenyl)propanoic acid (40)

The reaction was performed in dry DCE (3.0 mL) at 50 °C, using Br_2 (1.0 mL, 1.0 M in DCE, 1.0 mmol, 2.0 equiv) and stirred for 7 h. Then the solvent was removed *in vacuo*. The title compound was obtained by trituration with *n*-hexane (2 x 5 mL) as an off-white

solid (110 mg, 64% yield). Compound has been previously described in the literature without NMR data. Mp: 167-169 °C; lit.¹⁵: 169-171 °C. ¹H NMR (400 MHz, CD₃CN): δ 3.27–3.43 (m, 2H), 5.50 (virt t, *J* = 7.4 Hz, 1H), 7.71 (d, *J* = 8.5 Hz, 2H), 8.20 (d, *J* = 8.4 Hz, 2H), 9.42 (s, 1H). ¹³C NMR (101 MHz, CD₃CN): δ 43.8, 46.9, 124.8, 129.4, 148.6, 149.1, 170.9.

3-Bromo-1,3-diphenyl-1-propanone (4p)

Reaction was quenched with sat. aq. soln of $Na_2S_2O_3$ (ca. 4 mL) after 4 min and stirred for a further 5 min. The aqueous layer was extracted with CH_2Cl_2 (3 x 10 mL) and the combined organic phases were washed with H_2O , brine, dried over Na_2SO_4 and the solvent removed

in vacuo. The title compound was obtained by recrystallization from Et_2O (ca. 6 mL) as a white solid (96 mg, 67% yield). All analytical data are consistent with those reported in the literature.¹⁶

3-Bromo-3-phenylpropanenitrile (4q)

The reaction was performed at double concentration (1.5 mL in dry CH_2Cl_2), using Br₂ (0.6 mL, 1.0 M in CH_2Cl_2 , 0.6 mmol, 1.2 equiv), quenched with sat. aq. soln of Na₂S₂O₃ (ca. 4 mL) after 9 h and stirred for a further 5 min. The aqueous layer was extracted with CH_2Cl_2 (3 x 10 mL) and the combined

organic phases were washed with H₂O, brine, dried over Na₂SO₄ and the solvent removed *in vacuo*. The residue was purified by flash column chromatography (silica gel; petroleum ether/EtOAc 95:5) to give the title compound as a pale yellow oil (60 mg, 57% yield). IR (neat, cm⁻¹): *v* 3011, 2984, 2564, 1495, 1410, 1157, 942, 525. ¹H NMR (400 MHz, CDCl₃): δ 3.24 (dd, *J* = 16.7, 6.6, 1H), 3.30 (dd, *J* = 16.7, 7.0, 1H), 5.15 (virt t, *J* = 7.1, 1H), 7.32-7.49 (m, 5H). ¹³C NMR (101 MHz, CDCl₃): δ 29.4, 45.3, 116.5, 127.0, 129.1, 129.5, 138.7. HRMS (APCI): C₉H₉⁷⁹BrN [M + H]⁺ calculated: 209.9912, found: 209.9913. Anal. Calcd for C₉H₈BrN: C, 51.46; H, 3.86; N, 6.67. Found: C, 51.46; H, 3.84; N, 6.67.

3-Bromo-3-(4-chlorophenyl)propanenitrile (4r)

The reaction was performed at double concentration (1.5 mL in dry CH_2Cl_2), using Br_2 (0.6 mL, 1.0 M in CH_2Cl_2 , 0.6 mmol, 1.2 equiv), quenched with sat. aq. soln of $Na_2S_2O_3$ (ca. 4 mL) after 18 h and stirred for a further 5 min. The aqueous layer was extracted with CH_2Cl_2 (3 x

10 mL) and the combined organic phases were washed with H₂O, brine, dried over Na₂SO₄ and the solvent removed *in vacuo*. The residue was purified by flash column chromatography (silica gel; petroleum ether/EtOAc 90:10) to give the title compound as a brown oil (101 mg, 80% yield). IR (neat, cm⁻¹): *v* 3001, 2974, 2442, 1589, 1321, 1010, 950, 501. ¹H NMR (400 MHz, CDCl₃): δ 3.22 (dd, *J* = 16.3, 6.5 Hz, 1H), 3.28 (dd, *J* = 16.3, 6.4 Hz, 1H), 5.11 (virt t, *J* = 7.1 Hz, 1H), 7.33–7.44 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 29.4, 44.1, 116.2, 128.3, 129.4, 135.5, 137.2. LRMS (ESI): *m/z* (%) 279 (20) [M + Cl]⁺. Anal. Calcd for C₉H₇BrClN: C, 44.21; H, 2.89; N 5.73. Found: C, 44.18; H, 2.91; N, 2.80.

(1-Bromo-3-chloropropyl)benzene (4s)

Reaction was quenched with sat. aq. soln of $Na_2S_2O_3$ (ca. 4 mL) after 5 min and stirred for a further 5 min. The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic phases were washed with H₂O, brine, dried over Na_2SO_4 and the solvent removed *in vacuo*. The

title compound was isolated by flash column chromatography (silica gel; petroleum ether) as

a colourless oil (63 mg, 54% yield). All analytical data are consistent with those reported in the literature.¹⁷

3-Bromo-3-phenylpropan-1-ol (4t)

Reaction was stirred for 5 min and then directly evaporated *in vacuo*. The residue was purified by flash column chromatography (silica gel; petroleum ether/EtOAc 80:20) to afford the title compound as a colourless oil (91 mg, 85% yield). All analytical data are consistent with those

reported in the literature.¹⁸ The title compound was stored at -20 °C as it was prone to degradation.

3-Bromo-3-(2,4,5-trifluorophenyl)propan-1-ol (4u)

Reaction was quenched with styrene after 90 min. The title compound was isolated by flash chromatography (silica gel; *n*-hexane/Et₂O 70:30) as a colourless oil (63 mg, 48% yield). The title compound was stored at -20 °C as it was prone to degradation. IR (neat, cm⁻¹): *v* 3015,

2824, 1789, 1535, 1125, 1115, 984, 568. ¹H NMR (400 MHz, CDCl₃): δ 1.55 (br s, 1H), 2.22– 2.32 (m, 1H), 2.44 (virt ddt, *J* = 14.5, 9.7, 4.9 Hz, 1H), 3.79 (virt dt, *J* = 10.8, 5.3 Hz, 1H), 3.87 (ddd, *J* = 11.0, 8.0, 4.6 Hz, 1H), 5.43 (dd, *J* = 9.5, 5.4 Hz, 1H), 6.93 (virt dt, *J* = 9.7, 6.5 Hz, 1H), 7.31 (ddd, *J* = 10.5, 8.5, 6.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ –117.9 (dd, *J* = 15.1, 4.6 Hz), –132.5 (dd, *J* = 21.6, 4.6 Hz), –141.1 (dd, *J* = 21.5, 15.1 Hz). ¹³C NMR (101 MHz, CDCl₃): δ 40.9, 41.7 (d, *J* = 2.9 Hz), 60.1, 105.9 (dd, *J* = 28.2, 20.9 Hz), 116.8 (ddd, *J* = 20.1, 4.5, 1.4 Hz), 125.6 (ddd, *J* = 15.4, 5.1, 4.5 Hz), 147.0 (ddd, *J* = 245.9, 12.8, 3.6 Hz), 149.9 (ddd, *J* = 253.4, 14.5, 12.5 Hz), 154.5 (ddd, *J* = 248.3, 9.4, 2.7 Hz). LRMS (ESI): *m*/*z* (%) 535 (61) [2 M]⁺. Anal. Calcd for C₉H₈BrF₃O: C, 40.18; H, 3.00. Found: C, 40.14; H, 2.97.

3-Bromo-3-(2,4,5-trifluorophenyl)propyl methanesulphonate (4v)

Reaction was quenched with sat. aq. soln of $Na_2S_2O_3$ (ca. 4 mL) after 1 h and stirred for a further 5 min. The aqueous layer was extracted with CH_2Cl_2 (3 x 10 mL) and the combined organic phases were washed with H_2O , brine, dried over Na_2SO_4 and the solvent removed

in vacuo. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/EtOAc 80:20) as a pale yellow oil (169 mg, 97% yield). IR (neat, cm⁻¹): v 2921, 1513, 1353, 1134, 1170, 992, 575. ¹H NMR (400 MHz, CDCl₃): δ 2.44–2.55 (m, 1H),

2.61 (virt ddt, J = 14.6, 9.6, 4.7 Hz, 1H), 3.06 (s, 3H), 4.32–4.49 (m, 2H), 5.31 (dd, 8.9, 5.0 Hz, 1H), 6.97 (virt dt, J = 9.7, 6.5 Hz, 1H), 7.30 (ddd, J = 10.3, 8.4, 6.9 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): $\delta -117.4$ (dd, J = 15.1, 4.8 Hz), -131.4 (dd, J = 21.5, 4.9 Hz), -140.5 (dd, J = 21.6, 15.1 Hz). ¹³C NMR (101 MHz, CDCl₃): $\delta 37.4, 37.9, 40.3$ (d, J = 2.8 Hz), 66.9, 106.2 (dd, J = 28.1, 21.0 Hz), 116.7 (ddd, J = 20.2, 4.3, 1.4 Hz), 124.5 (ddd, J = 15.1, 4.8, 4.4 Hz), 147.0 (ddd, J = 246.6, 12.8, 3.6 Hz), 150.2 (ddd, J = 254.3, 14.4, 12.5 Hz), 154.6 (ddd, J = 248.9, 9.5, 2.7 Hz). HMRS (APCI): C₁₀H₁₀BrF₃O₃S [M + H]⁺ calculated: 345.9502, found: 345.9492.

1-Bromoadamantane (4y)

Reaction was quenched with sat. aq. soln of $Na_2S_2O_3$ (ca. 4 mL) after 1 h and stirred for further 5 min. The aqueous layer was extracted with CH_2Cl_2 (3 x 10 mL) and the combined organic phases were washed with H_2O , brine, dried over Na_2SO_4 and

4y the solvent removed *in vacuo*. The title compound was obtained by flash column chromatography (silica gel; petroleum ether) as a white solid (76 mg, 68% yield). All analytical data are consistent with those reported in the literature.¹⁹

(3-Bromo-3-methylbutyl)benzene (4za)

Reaction was stirred for 30 min and then directly evaporated *in vacuo*. The ¹H NMR yield (51%) was determined by adding dibromomethane (35 μ L, 87 mg, 0.5 mmol, 1.0 equiv) as internal standard to the crude product redissolved in CDCl₃. All analytical data are consistent with those reported in

the literature.²⁰

3-Bromo-3-methylbutyl 4-methylbenzenesulfonate (4zb)

Reaction was quenched with styrene after 24 h. The title compound was isolated as an inseparable 3:1 mixture with 3,4-dibromo-3-methylbutyl

420 4-methylbenzenesulfonate by flash column chromatography (silica gel; petroleum ether 100%) as a colourless oil (48 mg, 30% yield). All analytical data are consistent with those reported in the literature.²¹

6.2 Bromination followed by solvolysis with 2,2,2-trifluoroethanol

3-(Thiophen-2-yl)-**3-**(2,2,2-trifluoroethoxy)propyl methanesulphonate (4wa)

To a stirred solution of the sulphide (0.5 mmol) in dry CH_2Cl_2 (3.0 mL) was added Br_2 (0.5 mL, 1.0 M solution in CH_2Cl_2 , 0.5 mmol, 1.0 equiv) under N_2 atmosphere. The reaction was stirred at rt for 25 min and then quenched by the addition of sat. aq. soln of $Na_2S_2O_3$ (ca. 4 mL) and stirred

for a further 5 min. The aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL) and the combined organic phases were washed with H₂O, brine, dried over Na₂SO₄ and the solvent removed *in vacuo*. The residue was re-dissolved in TFE (5.0 mL) and 2,6-lutidine (175 µL, 161 mg, 3.0 equiv) was added at 0 °C. The mixture was stirred for 2 h, then 1.0 M HCl (5 mL) and petroleum ether (20 mL) were added. The aqueous layer was extracted with petroleum ether (2 x 20 mL) and the combined organic layers were washed with 1.0 M HCl (2 x 5 mL), brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (silica gel; petroleum ether/CH₂Cl₂, 70:30 \rightarrow 0:100) to afford the title compound as a yellow oil (80 mg, 50% yield). IR (neat, cm⁻¹): *v* 2938, 1353, 1274, 1158, 964, 526. ¹H NMR (400 MHz, CDCl₃): δ 2.22 (ddd, *J* = 19.6, 9.3, 5.0 Hz, 1H), 2.36 (ddd, *J* = 19.1, 9.4, 4.8 Hz, 1H), 3.02 (s, 3H), 3.64–3.82 (m, 2H), 4.29 (virt dt, *J* = 10.2, 5.2 Hz, 1H), 4.45 (ddd, *J* = 9.8, 8.8, 4.5 Hz, 1H), 4.91 (dd, *J* = 9.1, 4.6 Hz, 1H), 7.01 (dd, *J* = 5.0, 3.5 Hz, 1H), 7.06 (d, *J* = 2.8 Hz, 1H), 7.36 (d, *J* = 4.7 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ –77.2. ¹³C NMR (101 MHz, CDCl₃): δ 37.1, 37.8, 65.4 (q, *J* = 34.3 Hz), 66.3, 74.6, 122.5, 125.3, 126.5, 126.9, 142.3. HMRS (EI): C₁₀H₁₃F₃O₄S₂Na [M + Na]⁺ calculated: 341.0105, found: 341.0089.

1-Bromo-4-[phenyl(2,2,2-trifluoroethoxy)methyl]benzene (4xa)

The procedure was similar to **4wa**. The reaction was stirred at rt for 1 h and concentrated *in vacuo* without any quench before solvolysis step. The title compound was obtained by flash column chromatography (silica gel; petroleum ether/EtOAc 98:2) as a pale yellow oil (134 mg,

78% yield). All analytical data are consistent with those reported in the literature.⁴

6.3 Bromination followed by mesylation with sulphide (1u)

To a stirred solution of sulphide **1u** (144 mg, 0.5 mmol) in dry CH₂Cl₂ (3.0 mL) was added Br₂ (500 μ L, 1.0 M in CH₂Cl₂, 0.5 mmol, 1.0 equiv) at rt under N₂ atmosphere and stirred for 90 min. The reaction mixture was quenched by the addition of styrene (68 μ L, 62 mg, 0.6 mmol, 1.2 equiv). To the resulting colourless solution were added dropwise methanesulphonyl chloride (54 μ L, 79 mg, 0.7 mmol, 1.4 equiv) and triethylamine (97 μ L, 70 mg, 0.7 mmol, 1.4 equiv) at 0 °C. The reaction mixture was allowed to reach rt and stirred for 16 h, then diluted with H₂O (10 mL) and extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were washed with H₂O, brine and dried over Na₂SO₄. The solvent was removed *in vacuo* and the crude mixture was purified by flash column chromatography (silica gel; petroleum ether/EtOAc, 90:10) to afford bromide **4v** as a brown oil (65 mg, 45% yield).

6.4 Large scale bromination of β -sulphido ester (1f)

To a stirred solution of sulphide **1f** (1.50 g, 5.0 mmol) in dry CH_2Cl_2 (15.0 mL) was added *via* syringe Br₂ (5.0 mL, 1.0 M in CH_2Cl_2 , 5.0 mmol, 1.0 equiv) under N₂ atmosphere. The reaction was stirred at rt for 8 h, then quenched by the addition of styrene (743 µL, 676 mg, 6.5 mmol, 1.3 equiv). The mixture was concentrated *in vacuo* and the residue was purified by flash column chromatography (silica gel; CH_2Cl_2 /petroleum ether 90:10) to afford the corresponding bromide (1.29 g, 95% yield).

7. General procedure for the transesterification of enantiomerically enriched hexafluoroisopropyl esters to cinnamate methyl esters (GP4)

To a solution of (S)-1,1,1,3,3,3-hexafluoropropan-2-yl 3-aryl-3-(phenylthio)propanoate (1.0 mmol) in methanol (7.0 mL) was added a few drops of concentrated HCl and the resulting mixture was stirred under reflux for 120 h. After the completion of the reaction, as judged by TLC analysis, the solvent was removed in vacuo and the residue was purified by flash column chromatography on silica gel to give the corresponding (S)-methyl 3-aryl-3-(phenylthio)propanoate.

(-)-(S)-Methyl-3-phenyl-3-(phenylthio)propanoate (-)-(S)-1a

Prepared according to GP4. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/EtOAc, 95:5) as a colourless oil (253 mg, 93% yield). Enantiomeric excess was determined by HPLC analysis (CHIRALPAK IB-H, n-hexane/i-PrOH, 99:1, 1.0 mL/min, 210 nm): t_r (minor) = 8.6 min; t_r (major) = 11.3 min: 97% ee. $[\alpha]_D^{20} = -150.2$ (c 1.27, CHCl₃). Enantioenriched (-)-(S)-1a has previously been described.²

(-)-(S)-Methyl-3-(phenylthio)-3-(o-tolyl)propanoate (-)-(S)-1b

Prepared according to GP4. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/EtOAc, 95:5) as a colourless oil (255 mg, 89% yield). Enantiomeric excess was determined by HPLC analysis (CHIRALPAK OD-H, n-hexane/i-PrOH, 95:5, 1.0

mL/min, 210 nm): t_r (minor) = 6.0 min; t_r (major) = 10.4 min: 78% ee. $[\alpha]_D^{20} = -62.3$ (c 1.41, CHCl₃).

(-)-(S)-Methyl-3-(4-chlorophenyl)-3-(phenylthio)propanoate (-)-(S)-1d

Prepared according to GP4. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/EtOAc, 95:5) as a yellow oil (288 mg, 94% yield). Enantiomeric excess was determined by HPLC analysis (CHIRALPAK OD-H, *n*-hexane/*i*-

PrOH, 95:5, 0.5 mL/min, 210 nm): t_r (major) = 10.9 min; t_r (minor) = 14.0 min: 99% ee. $[\alpha]_D^{20}$ = -169.0 (*c* 1.18, CHCl₃).

(-)-(S)-Methyl-3-(phenylthio)-3-(4-(trifluoromethyl)phenyl)propanoate (-)-(S)-1e

Prepared according to GP4. The title compound was isolated by flash column chromatography (silica gel; petroleum ether/EtOAc, 95:5) as a white solid (316 mg, 93% yield). Mp: 91–93 °C. Enantiomeric excess was determined by HPLC analysis

(CHIRALPAK OD-H, *n*-hexane/*i*-PrOH, 95:5, 0.5 mL/min, 210 nm): t_r (major) = 10.2 min; t_r (minor) = 13.0 min: 98% ee. $[\alpha]_D^{20} = -139.0$ (*c* 1.51, CHCl₃).

8. Optically active bromides

8.1. Bromination of enantiomerically enriched sulphides

(+)-(*R*)-Methyl 3-bromo-3-phenylpropanoate (+)-(*R*)-4a

To an oven-dried 10 mL Schlenk tube containing a stirred solution of sulphide (–)-(*S*)-**1a** (68 mg, 0.25 mmol, 97% *ee*) in dry CH₂Cl₂ (1.5 mL) cooled to -40 °C was added *via* syringe Br₂ (250 µL, 1M in CH₂Cl₂, 0.25 mmol, 1.0 equiv) under N₂ atmosphere. The reaction mixture was

quenched *via* syringe with styrene (34 μ L, 31 mg, 0.3 mmol, 1.3 equiv) after 15 h, which led to an immediate fading of the red colour. Evaporation of the solvent *in vacuo* and purification by flash column chromatography (silica gel; petroleum ether/EtOAc, 95:5) gave the title compound as a yellow oil (54 mg, 89% yield). Enantiomeric excess was determined by HPLC

analysis (CHIRALPAK IB-H, *n*-hexane/*i*-PrOH, 95:5, 0.75 mL/min, 210 nm): t_r (major) = 7.3 min; t_r (minor) = 9.3 min: 93% ee. [α]_D²⁰ = +114.9 (*c* 1.01, CHCl₃).

(-)-(R)-Methyl 3-bromo-3-(o-tolyl)propanoate (-)-(R)-4b

To an oven-dried 10 mL Schlenk tube containing a stirred solution of sulphide (–)-(*S*)-**1b** (72 mg, 0.25 mmol, 78% *ee*) in dry CH₂Cl₂ (1.5 mL) cooled to -40 °C was added *via* syringe Br₂ (250 µL, 1M in CH₂Cl₂, 0.25 mmol, 1 equiv) under N₂ atmosphere. The reaction mixture was

quenched *via* syringe with styrene (34 μ L, 31 mg, 0.3 mmol, 1.3 equiv) after 15 h, which led to an immediate fading of the red colour. Evaporation of the solvent *in vacuo* and purification by flash column chromatography (silica gel; petroleum ether/EtOAc, 97:3) gave the title compound as a yellow oil (64 mg, 99% yield). Enantiomeric excess was determined by HPLC analysis (CHIRALPAK IB-H, *n*-hexane/*i*-PrOH, 95:5, 0.75 mL/min, 210 nm): t_r (major) = 6.9 min; t_r (minor) = 10.5 min: 66% ee. [α]_D²⁰ = -13.6 (*c* 1.03, CHCl₃).

(+)-(R)-Methyl 3-bromo-3-(4-chlorophenyl)propanoate (+)-(R)-4d

reaction mixture was quenched *via* syringe with styrene (34 µL, 31 mg, 0.3 mmol, 1.3 equiv) after 24 h, which led to an immediate fading of the red colour. Evaporation of the solvent *in vacuo* and purification by flash column chromatography (silica gel; petroleum ether/EtOAc, 95:5) gave the title compound as a yellow oil (67 mg, 97% yield). Enantiomeric excess was determined by HPLC analysis (CHIRALPAK IB-H, *n*-hexane/*i*-PrOH, 98:2, 0.5 mL/min, 210 nm): t_r (major) = 14.8 min; t_r (minor) = 15.6 min: 93% ee. [α] p^{20} = +85.2 (*c* 1.09, CHCl₃).

(+)-(R)-Methyl 3-bromo-3-(4-(trifluoromethyl)phenyl)propanoate (+)-(R)-4e

To an oven-dried 10 mL Schlenk tube containing a stirred solution of sulphide (–)-(*S*)-**1e** (85 mg, 0.25 mmol, 98% *ee*) in dry CH₂Cl₂ (750 μ L) was added *via* syringe Br₂ (275 μ L, 1M in CH₂Cl₂, 0.275

mmol, 1.1 equiv) at rt under N2 atmosphere. The reaction mixture

was quenched *via* syringe with styrene (34 μ L, 31 mg, 0.3 mmol, 1.3 equiv) after 48 h at rt, which led to an immediate fading of the red colour. Evaporation of the solvent *in vacuo* and

purification by flash column chromatography (silica gel; petroleum ether/CH₂Cl₂, 70:30) gave the title compound as a yellow oil (74 mg, 95% yield). Enantiomeric excess was determined by HPLC analysis (CHIRALPAK IB-H, *n*-hexane/*i*-PrOH, 98:2, 0.5 mL/min, 210 nm): t_r (major) = 14.3 min; t_r (minor) = 15.3 min: 86% ee. $[\alpha]_D^{20} = +73.9$ (*c* 1.68, CHCl₃).

8.2. Monitoring the racemisation of bromide (*R*)-4a

Enantiomeric excess of β -bromo ester (*R*)-4a (93% ee), stored at -20 °C or rt, was measured over a 14-week period.

9. Synthesis of (-)-(S)-3-azido-3-phenylpropan-1-ol

9.1 Two-pot procedure

To a stirred solution of (+)-(*R*)-4a (61 mg, 0.25 mmol) in dry CH_2Cl_2 (2.0 mL) was added *via* syringe DIBAL-H (0.4 mL, 1.0 M in CH_2Cl_2 , 0.4 mmol, 2.0 equiv) at 0 °C under N₂ atmosphere. After stirring for 30 min (TLC analysis), the mixture was carefully quenched with H₂O, filtered over a Celite pad, which was washed with CH_2Cl_2 (3 x 10 mL). The combined

organic layers were washed with H₂O, brine, dried over Na₂SO₄ and concentrated *in vacuo* to give the corresponding alcohol (*R*)-4t as a brown oil (50 mg, 93% yield). Enantiomeric excess was determined by HPLC analysis (CHIRALPAK IB-H, *n*-hexane/*i*-PrOH, 90:10, 0.75 mL/min, 210 nm): t_r (major) = 9.3 min; t_r (minor) = 10.3 min: 83% *ee*. All analytical data are consistent with those reported in the literature.²²

Alcohol (*R*)-4t was dissolved in DMF (1.0 mL) and sodium azide (23 mg, 0.35 mmol, 1.5 equiv) was added at 0 °C under N₂ atmosphere. The reaction was allowed to reach rt and stirred overnight. H₂O (3 mL) was added and the aqueous layer was extracted with Et₂O (3 x 10 mL) and the combined organic layers were washed with H₂O, brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (silica gel; petroleum ether/EtOAc, 80:20) to afford the azido alcohol (–)-(*S*)-5 as a colourless oil (35 mg, 86% yield). Enantiomeric excess was determined by HPLC analysis (CHIRALPAK IB-H, *n*-hexane/*i*-PrOH, 90:10, 0.75 mL/min, 210 nm): t_r (minor) = 8.6 min; t_r (major) = 9.4 min: 83% ee. The enantiomerically enriched (+)-(*R*)-5 enantiomer has been previously described.²³

9.2 One-pot procedure

$$\begin{array}{c} \underset{(+)-(R)-\textbf{4a}}{\overset{Br}{=}} & \overbrace{(+)-(R)-\textbf{4a}}^{1) \text{ DIBAL-H (2.0 equiv)}} & \overbrace{(+)-(R)-\textbf{4a}}^{1) \text{ DIBAL-H (2.0 equiv)}} & \overbrace{(+)-(R)-\textbf{4a}}^{N_3} & \overbrace{(-)-(R)-\textbf{4a}}^{N_3} & \overbrace{(-)-(S)-\textbf{5}}^{N_3} & \overbrace{(-)-(S)-\textbf{5}}^$$

To a stirred solution of (+)-(*R*)-**4a** (61 mg, 0.25 mmol) in dry CH₂Cl₂ (2.0 mL) was added *via* syringe DIBAL-H (0.4 mL, 1.0 M in CH₂Cl₂, 0.4 mmol, 2.0 equiv) at 0 °C under N₂ atmosphere. After stirring for 30 min (TLC analysis), dry DMF (2.0 mL) was added, followed by sodium azide (25 mg, 0.38 mmol, 1.5 equiv) and the reaction was allowed to reach rt and stirred overnight. The mixture was carefully quenched with H₂O and filtered over a Celite pad, which was washed with CH₂Cl₂ (3 x 10 mL). The combined organic layers were washed with H₂O, brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography (silica gel; petroleum ether/EtOAc, 80:20) to afford the title compound as a colourless oil (27 mg, 62% yield). Enantiomeric excess was determined by HPLC analysis (CHIRALPAK IB-H, *n*-hexane/*i*-PrOH, 90:10, 0.75 mL/min, 210 nm): t_r (minor) = 8.6 min; t_r (major) = 9.4 min: 90% ee. [α]_D²⁰ = -186.9 (*c* 1.0, CHCl₃); lit.²³: (+)-(*R*)-**5**: [α]_D²⁰ = +192.7 (*c* 0.95, CHCl₃). No literature ee value was disclosed, however, an ee of >90% is deduced based on the synthetic sequence.

10. NMR studies

10.1. NMR monitoring of the bromination of (1e)

10.1.1. Low-temperature NMR spectroscopic characterization of adduct (1e·Br₂)

A solution of sulphide **1e** (34 mg, 0.1 mmol) in CD₂Cl₂ (0.6 mL), containing 1,1,2,2tetrachloroethane (11 μ L,17 mg, 0.1 mmol, 1.0 equiv) as internal standard, was prepared under N₂ atmosphere. The solution was transferred *via* syringe to a 5 mm NMR tube placed in a subaseal capped Schlenk tube. The NMR tube was sealed with a precision seal rubber septum, which was covered with parafilm. The NMR tube was allowed to equilibrate to -20 °C in the NMR spectrometer, before a Br₂ solution (100 μ L, 1.0 M in CD₂Cl₂, 0.1 mmol, 1.0 equiv), precooled to ca -20 °C in a freezer, was added *via* syringe. The NMR tube was placed immediately back into the NMR spectrometer and a series of 1D and 2D NMR experiments were recorded.

¹H NMR (800 MHz, CD₂Cl₂, -20 °C): δ 3.05 (dd, *J* = 16.5, 10.1 Hz, 1H, H7), 3.14 (dd, *J* = 16.6, 4.8 Hz, 1H, H7), 3.55 (s, 3H, H9), 4.82 (dd, *J* = 9.8, 5.0 Hz, 1H, H6), 7.33-7.35 (m, 4H, H4, H12), 7.40 (t, *J* = 7.2 Hz, 1H, H13), 7.43 (d, *J* = 7.5 Hz, 2H, H11), 7.53 (d, *J* = 7.8 Hz, 2H, H3).

¹⁹F NMR (376 MHz, CD₂Cl₂, 20 °C): δ –62.9.

¹³C NMR (201 MHz, CD₂Cl₂, -20 °C): δ 38.4 (C7), 52.4 (C9), 52.9 (br s, C6), 124.0 (q, *J* = 272.3 Hz, C1), 125.7 (q, *J* = 3.5 Hz, C3), 128.7 (C4), 129.0 (br s, C10), 129.8 (C12), 130.1 (q, *J* = 32.4 Hz, C2), 130.6 (C13), 133.1 (C11), 141.2 (br s, C5), 169.9 (C8).

¹H NMR (800 MHz, CD₂Cl₂, -20 °C) of **1e** vs **1e**·Br₂ (2 min after Br₂ addition)

 1H NMR monitoring of the conversion of $(1e\cdot Br_2)$ to bromide (4e) after raising the temperature to 20 $^\circ C$

¹H NMR spectra (Fig. 4 in the manuscript) were recorded at 15 min intervals over a period of 14.5 h. The first ¹H NMR spectrum was recorded after monitoring the reaction at -20 °C for 4 h. The conditioning of the NMR spectrometer to reach 20 °C took around 30 min.

10.1.2. ¹H NMR monitoring (400 MHz) of the bromination of (1e) at -20 °C

¹H NMR spectra were recorded at 5 min intervals over a period of 650 min. The reaction was performed in an NMR tube as described in section 10.1.1.

10.1.3. Monitoring the bromination of (1e) by quantitative ¹H NMR at 20 °C

Dibromomethane (17 mg, 0.1 mmol, 1.0 equiv) as internal standard was added as a stock solution (0.6 mL, 0.17 M in CD₂Cl₂) to sulphide **1e** (34 mg, 0.1 mmol) under N₂ atmophere. The solution was transferred *via* syringe to a 5 mm NMR tube placed in a suba-seal capped Schlenk tube. The NMR tube was sealed with a precision seal rubber septum, which was covered with parafilm. A Br₂ solution (100 μ L, 1.0 M in CD₂Cl₂, 0.1 mmol, 1.0 equiv) was added *via* syringe and a series of 1D NMR spectra (400 MHz, 20 °C) were recorded over a period of 60 hours.

Acquisition parameters for the NMR experiment were as follows: pulse sequence = zg, D1 = 60 sec, AQ = 8.17 sec, TD = 131072, SW = 20 ppm, DS = 0, NS = 16, RG = 64.

^{4.5 4.4 4.3 4.2 4.1 4.0 3.9} f1 (ppm) 5.7 2.7 2.6 2.5 2.4 5.6 5.5 5.4 5.2 5.1 5.0 4.9 4.8 4.7 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 5.3 4.6
10.2. NMR monitoring of the bromination of sulphide (1eb)

10.2.1. Preparation of sulphide (1eb)

4-Bromothiophenol (1.70 g, 9.0 mmol, 3.0 equiv) and triethylamine (125 µL, 91 mg, 0.9 mmol, 0.3 equiv) were added to methyl 3-(4-(trifluoromethyl)phenyl)cinnamate (690 mg, 3.0 mmol) and the reaction mixture was stirred at 50 °C for 4 h. The reaction mixture was directly purified by flash column chromatography (silica gel; petroleum ether/CH₂Cl₂, 70:30 \rightarrow 0:100) to afford the title compound as a yellow solid (1.19 g, 95% yield). Mp: 99–100 °C. IR (neat, cm⁻¹): *v* 3129, 3084, 2761, 1623, 1572, 1251, 1289, 1020, 764. Full assignments were made based on HMBC and HSQC experiments. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.83 (dd, *J* = 16.2, 8.7 Hz, 1H, H7), 2.89 (dd, *J* = 16.2, 7.3 Hz, 1H, H7), 3.50 (s, 3H, H9), 4.57 (virt t, *J* = 8.0 Hz, 1H, H6), 7.06 (d, *J* = 8.4 Hz, 2H, H11), 7.27–7.31 (m, 4H, H4, H12), 7.45 (d, *J* = 8.2 Hz, 2H, H3). ¹⁹F NMR (376 MHz, CD₂Cl₂) δ -62.8. ¹³C NMR (101 MHz, CD₂Cl₂): δ 40.4 (C7), 49.1 (C6), 52.2 (C9), 122.8 (C13), 124.5 (q, *J* = 272.3 Hz, C1), 125.7 (q, *J* = 3.8, C3), 128.4 (C4), 129.8 (q, *J* = 32.4 Hz, C2), 132.4 (C12), 132.4 (C10), 135.4 (C11), 145.1 (C5), 170.8 (C8). HRMS (EI): C₁₇H₁₄F₃O₂S [M – Br]⁺ calculated: 339.0667, found: 339.0666.

10.2.2. Monitoring the bromination of sulphide (1eb) by NMR and characterisation of adduct (1eb·Br₂)

Dibromomethane solution (0.6 mL, 0.17 M in CD₂Cl₂, 0.1 mmol, 1.0 equiv), as internal standard, was added to a sulphide **1eb** (42 mg, 0.1 mmol) under N₂ atmophere. The solution was transferred *via* syringe in a 5 mm NMR tube placed in a suba-seal capped Schlenk tube. The NMR tube was sealed with a precision seal rubber septum and covered with parafilm. A Br₂ solution (100 μ L, 1.0 M in CD₂Cl₂, 0.1 mmol, 1.0 equiv) was added *via* syringe and a series of 1D NMR (400 MHz, 20 °C) spectra were recorded over a period of 60 hours. Full NMR spectroscopic characterization of adduct **1eb**·Br₂ was achieved within the first hour.

¹H NMR (400 MHz, CD₂Cl₂): δ 2.96 (dd, *J* = 16.2, 8.7 Hz, 1H, H7), 3.03 (dd, *J* = 16.2, 6.7 Hz, 1H, H7), 3.59 (s, 3H, H9), 4.70 (virt t, *J* = 7.6 Hz, 1H, H6), 7.20 (d, *J* = 8.3 Hz, 2H, H11), 7.36 (d, *J* = 8.1 Hz, 2H, H4), 7.42 (d, *J* = 8.3 Hz, 2H, H12), 7.55 (d, *J* = 8.1 Hz, 2H, H3).

¹⁹F NMR (376 MHz, CD₂Cl₂) δ –62.9.

¹³C NMR (101 MHz, CD₂Cl₂): δ 39.9 (C7), 50.2 (C6), 52.3 (C9), 123.6 (br s, C13), 124.1 (q, J = 271.6 Hz, C1), 125.8 (q, J = 3.8, C3), 128.6 (C4), 130.4 (q, J = 32.4 Hz, C2), 131.3 (br s, C10), 132.6 (C12), 135.3 (C11), 143.3 (br s, C5), 170.5 (C8).

11. References

- B. List, A. Doehring, M. T. H. Fonseca, K. Wobser, H. van Thienen, R. R. Torres and P. L. Galilea, *Adv. Synth. Catal.*, 2005, 347, 1558–1560.
- 2. X. Fang, J. Li and C.-J.Wang, Org. Lett., 2013, 15, 3448–3451.
- 3. K. Tanaka, S. Kishigami and F. Toda, J.Org. Chem., 1991, 56, 4333–4334.
- D. Canestrari, S. Lancianesi, E. Badiola, C. Strinna, H. Ibrahim and M.F.A. Adamo, *Org. Lett.*, 2017, 19, 918–921.
- 5. J. Mirek, E. Chojnacka-Wojcik, E. Tatarzynska and B. Wiczynska, *Farmaco, Ed. Sci*, 1985, **9**, 701–708.
- S. Gao, T. Tzeng, M. N. V. Sastry, C.-M. Chu, Ju-T. Liu, C. Lin and C.-Fa Yao, *Tetrahedron Lett.*, 2006, 47, 1889–1893.
- 7. M. Hans, L. Delaude, J. Rodriguez and Y. Coquerel, J. Org. Chem., 2014, 79, 2758–2764.
- 8. F. Fleming and J. Pak, J. Org. Chem., 1995, 60, 4299–4301.
- 9. B. Movassagh and M.Soleiman-Beigi, *Monatsh Chem*, 2009, 140, 409–411.
- 10. B. Janza and A. Studer, Org. Lett., 2006, 8, 1875–1878.
- V. V. Thakur, M. D. Nikallje and A. Sudalai, *Tetrahedron: Asymmetry*, 2003, 14, 581–586.
- Ch. H. Dusseau, S. E. Schaafsma and Th. J. de Boer, *Recl. Trav. Chim. Pays-Bas*, 1970, 89, 535–544.
- V. L. Vitalij, A. A. Zemtsov, I. S. Marina and A. D. Dilman, *Org. Lett.*, 2013, 15, 917–919.
- O. Brücher, U. Bergsträßer, H. Kelm, J. Hartung, M. Greb, I. Svoboda and H Fuess, *Tetrahedron*, 2012, 68, 6968–6980.
- 15. T. Imai and S. Nishida, J. Org. Chem, 1980, 45, 2354-2359.
- R. F. Klima, A. V. Jadhav, P. N. D. Singh, M. Chang, C. Vanos, J. Sankaranarayanan, M. Vu, N. Ibrahim, E. Ross, S. McCloskey, R. S. Murthy, J. A. Krause, B. S. Ault and A. D. Gudmundsdóttir, *J. Org Chem.*, 2007, **72**, 6372–6381.
- J. Andersen, N. Stuhr-Hansen, L. Gr. Zachariassen, H. Koldsø, B. Schiott, K. Strømgaard and A. S. Kristensen, *Molecular Pharmacology*, 2014, 85, 703–714.
- 18. A. Isleyen, C. Tanyeli and O. Dogan, Tetrahedron: asymmetry, 2006, 17, 1561–1567.
- 19. X. Tan, T. Song, Z. Wang, H. Chen, L. Cui and C. Li, Org. Lett., 2017, 19, 1634–1637.
- 20. J. Chen, J.-H. Lin and J.-C. Xiao, Org. Lett., 2018, 20, 3061-3064.

- 21. X. Lu, Y. Wang, B. Zhang, J.-J. Pi, X.-X. Wang, T.-J. Gong, B. Xiao and Y. Fu, *J. Am. Chem. Soc.*, 2017, **139**, 12632–12637.
- 22. A. Isleyen, C. Tanyeli and O. Dogan, Tetrahedron: asymmetry, 2006, 17, 1561–1567.
- 23. K. Sahasrabudhe, V. Gracias, K. Fumess, B. T. Smith, C. E. Katz, D. S. Reddy and J. Aubé, *J. Am. Chem. Soc.*, 2003, **125**, 7914–7922.

12. HPLC traces of optically active compounds

12.1 HPLC traces of (±)-1a and (–)-(S)-1a

CHIRALPAK IB-H, n-hexane/i-PrOH, 99:1, 1 mL/min, 210 nm

mAU

<Peak Table>

Detect	Detector A Channel 2 210nm						
Peak#	Ret. Time	Area	Height	Conc.			
1	8.223	7291578	431520	50.042			
2	10.497	7279464	355532	49.958			
Total		14571042	787052				

Detector A Channel 2 210nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	8.558	469447	23451	1.328		
2	11.319	34878064	1354444	98.672		
Total		35347510	1377894			

12.2 HPLC traces of (±)-1b and (–)-(S)-1b

CHIRALPAK OD-H, n-hexane/i-PrOH, 95:5, 1.0 mL/min, 210 nm

mAU

<Peak Table>

Detector A Channel 2 210nm

Peak#	Ret. Time	Area	Height	Conc.
1	6.034	4526863	323139	0.000
2	10.401	37284492	1365360	0.000
Total		41811355	1688500	

12.3 HPLC traces of (\pm) -1d and (-)-(S)-1d

CHIRALPAK OD-H, n-hexane/i-PrOH, 95:5, 0.5 mL/min, 210 nm

<Peak Table>

Detector A Channel 2 210nm							
Peak#	Ret. Time	Area	Height	Conc.			
1	11.335	42177480	1629115	0.000			
2	14.425	42089734	1285541	0.000			
Total		84267214	2914656				

mAU

Detector A Channel 2 210nm					
Peak#	Ret. Time	Area	Height	Conc.	
1	10.928	42627957	1846094	0.000	
2	13.987	309380	10727	0.000	
Total		42937337	1856821		

12.4 HPLC traces of (±)-1e and (–)-(*S***)-1e**

CHIRALPAK OD-H, n-hexane/i-PrOH, 95:5, 0.5 mL/min, 210 nm

<Peak Table>

Detector A Channel 2 210nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	10.532	34026823	1380212	0.000		
2	13.359	34095662	1098885	0.000		
Tota		68122485	2479097			

mAU

D	Detector A Channel 2 210nm						
P	eak#	Ret. Time	Area	Height	Conc.		
	1	10.195	26687256	1218413	0.000		
	2	12.951	244744	8939	0.000		
	Total		26931999	1227352			

12.5 HPLC traces of (±)-4a and (+)-(R)-4a

CHIRALPAK IB-H, n-hexane/i-PrOH, 95:5, 0.75 mL/min, 210 nm

<Peak Table>

Detect	Detector A Channel 2 210nm						
Peak#	Ret. Time	Area	Height	Conc.			
1	7.230	9306586	1015608	49.794			
2	9.047	9383654	840673	50.206			
Total		18690240	1856280				

mAU

<Peak Table>

Detector A Channel 2 210nm					
Peak#	Ret. Time	Area	Height	Conc.	
1	7.270	17884055	1838325	96.529	
2	9.304	643017	56761	3.471	
Total		18527072	1895086		

12.6 HPLC traces of (\pm) -4b and (-)-(R)-4b

CHIRALPAK IB-H, n-hexane/i-PrOH, 95:5, 0.75 mL/min, 210 nm

<Peak Table>

Dete	Detector A Channel 2 210nm						
Peak	(#	Ret. Time	Area	Height	Conc.		
	1	6.904	7030763	775636	49.657		
	2	10.498	7127861	554224	50.343		
Tot	al		14158625	1329860			

mAU

Dete	Detector A Channel 2 210nm					
Peak	(#	Ret. Time	Area	Height	Conc.	
	1	6.894	11550607	1239283	82.770	
	2	10.544	2404512	184018	17.230	
Tot	al		13955118	1423301		

12.7 HPLC traces of (\pm) -4d and (+)-(R)-4d

CHIRALPAK IB-H, n-hexane/i-PrOH, 98:2, 0.5 mL/min, 210 nm

<Peak Table>

Detector A Channel 2 210nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	14.717	27839185	1412659	49.706		
2	15.502	28168814	1338193	50.294		
Total		56007999	2750852			

mAU

Detector A Channel 2 210nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	14.753	12145607	640981	96.720		
2	15.581	411886	22092	3.280		
Total		12557493	663074			

12.8 HPLC traces of (±)-4e and (+)-(*R***)-4e**

CHIRALPAK IB-H, n-hexane/i-PrOH, 98:2, 0.5 mL/min, 210 nm

mAU

<Peak Table>

Detector A Channel 2 210nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	14.332	13384115	749288	49.602		
2	15.346	13599052	697604	50.398		
Total		26983167	1446891			

mAU

Detector A Channel 2 210nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	14.297	6260040	349040	92.918		
2	15.347	477103	26438	7.082		
Total		6737143	375478			

12.9 HPLC traces of (±)-5 and (–)-(S)-5

CHIRALPAK IB-H, n-hexane/i-PrOH, 90:10, 0.75 mL/min, 210 nm

mAU

<Peak Table>

Detector A Channel 2 210nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	8.510	12246093	981130	0.000		
2	9.179	10237590	857978	0.000		
Total		22483682	1839108			

mAU

Detect	Detector A Channel 2 210nm						
Peak#	Ret. Time	Area	Height	Conc.			
1	8.642	546143	45350	0.000			
2	9.410	9861414	758303	0.000			
Total		10407557	803653				

12.10 HPLC traces of (\pm) -4t and (R)-4t

CHIRALPAK IB-H, n-hexane/i-PrOH, 90:10, 0.75 mL/min, 210 nm

<Peak Table>

Detector	A Channe	el 2 210nm	

Peak#	Ret. Time	Area	Height	Conc.
1	9.104	5939848	466259	0.000
2	10.005	6077480	446977	0.000
Total		12017328	913236	

mAU

mAU

Detector A Channel 2 210nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	9.295	4249275	336103	91.436		
2	10.281	398004	20510	8.564		
Total		4647279	356613			

13. Copies of ¹H NMR and ¹³C NMR spectra

Construction Construction<

62

 $\underbrace{}_{1.15}^{1.18}$

