Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Synthesis of γ-Substituted Carbonyl Compounds from DMSO-Mediated Oxidation of Enynamides: Mechanistic Insights and Carbon- and Hetero-Functionalizations

Quynh Huong Nguyen, Nguyen Hoang Nguyen, Hanbyul Kim, and Seunghoon Shin*

Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 (Korea) sshin@hanyang.ac.kr

Table of Contents

1.	General Information	S2
2.	General Procedures	S2
3.	Characterizations of Substrates and Products	S5
4.	Kinetic Study	S23
5.	Synthetic Applications	-S29
6.	Single Crystal X-ray Crystallographic Data on 16ma	-S33
7.	Copies of ¹ H and ¹³ C NMR spectra	S45

1. General Information

All solvents and DMSO were dried and distilled according to standard methods before use.¹ Enynamides² were prepared according to the literature procedures. All other chemicals were purchased from commercial sources and was used as received; HNTf₂ was purchased from Aldrich and was kept in the Ar-atmosphere glove box for storage. TLC (thin-layer chromatography) analysis was carried out on Merck silica gel 60 F254 TLC plates and was visualized with UV lamp and KMnO₄ solution. Flash chromatography was performed on Kieselgel 60 (230-400 mesh). ¹H and ¹³C NMR spectra were recorded on a Bruker (400 MHz) spectrometer with TMS as an internal standard. GC calibration curve were obtained by an Agilent Technologies 7890B GC system with dodecane as an internal standard. High resolution mass spectra (HRMS) were obtained from Korea Basic Science Institute (KBSI, Daegu).

2. General Procedure

2.1. Synthesis of enynamides and dienynamides substrates

Synthesis of **S2**: To a solution of triphenylphosphine (6.47g, 24.7 mmol) in CH_2Cl_2 (50 mL) was added carbon tetrabromide (4.09 g, 12.3 mmol) at 0°C. The reaction mixture was stirred for 10 min before addition of the aldehyde **S1** (1.0 g, 6.17 mmol). The resulting mixture was stirred at 0 °C for 1 hour. The triphenylphosphine oxide was removed by filtration through a celite pad, rinsed with diethyl ether (x3) and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (EtOAc:Hex = 1:10) to afford **S2** (1.84g, 94%) as a white solid.

Synthesis of **S3**: To a stirred solution of **S2** (1.84g, 5.79 mmol) in THF (30 mL) was add NaHMDS (6.94 mL, 6.94 mmol, 1.0 M in THF) slowly at -78° C under Ar atmosphere. The resulting solution was stirred at -78° C for 1 h, before quenching with saturated aq. solution of NH₄Cl. The aqueous layer was separated and extracted with ether (x3). The combined organic layers were dried by MgSO₄, filtered and the residue was purified by

¹ Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals; Elsevier: Oxford, 2009.

² (a) Silvi, M.; Verrier, C. Rey, Y.P.; Buzzetti, L.; Melchiorre, P. *Nature Chem.* **2017**, *9*, 868. (b) Mou, C.; Zhu, T.; Zhang, P.; Yang, S.; Song, B.-A.; Chi, Y.R. *Adv. Synth. Catal.* **2016**, *358*, 707.

chromatography to afford the desired bromoalkyne S3 (1.25 g, 91%) as a yellow solid.

Synthesis of **4b**: To a solution of **S3** (1.25 g, 5.27 mmol) in toluene (10 mL) was added *N*-methylmethanesulfonamide (690.2 mg, 6.32 mmol), potassium carbonate (1.46g, 10.54 mmol), copper(II) sulfate (132.3 mg, 0.53 mmol) and 1,10-phenanthroline (189.9 mg, 1.05 mmol). The reaction mixture was heated to 70 °C for 14 h. The solution was cooled to room temperature, filtered through Celite, and concentrated in vacuo. The residue was purified by flash chromatography (EtOAc:Hex = 1:3) to afford **4b** (1.26 g, 90%) as a white solid.

Synthesis of **S5**: To a solution of triphenylphosphine (3.45 g, 13.16 mmol) in CH₂Cl₂ (30 mL) was added carbon tetrabromide (2.18 g, 6.58 mmol) at 0°C. The reaction mixture was stirred for 10 min before addition of the aldehyde **S4** (620.0 mg, 3.29 mmol).^{2a} The resulting mixture was stirred at 0 °C for 1 hour. The triphenylphosphine oxide was removed by filtration through a celite pad, rinsed with diethyl ether (x3) and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (EtOAc:Hex = 1:10) to afford **S5** (1.02 g, 90%) as a white solid.

Synthesis of **S6**: To a stirred solution of **S5** (1.02 g, 2.96 mmol) in THF (15 mL) was add NaHMDS (3.55 mL, 3.55 mmol, 1.0 M in THF) slowly at -78°C under Ar atmosphere. The resulting solution was stirred at -78°C for 1 h, before quenching with saturated aq. solution of NH₄Cl. The aqueous layer was separated and extracted with ether (x3). The combined organic layers were dried by MgSO₄, filtered and the residue was purified by chromatography to afford the desired bromoalkyne **S6** (685.0 mg, 88%) as a brown solid.

Synthesis of **5a**: To a solution of **S6** (685.0 mg, 2.60 mmol) in toluene (5.2 mL) was added *N*-methyltoluenesulfonamide (577.9 mg, 3.12 mmol), potassium carbonate (718.6 mg, 5.2 mmol), copper(II) sulfate (64.9 mg, 0.26 mmol) and 1,10-phenanthroline (93.7 mg, 0.52 mmol). The reaction mixture was heated to 70 °C for 12 h. The solution was cooled to room temperature, filtered through Celite, and concentrated in vacuo. The residue was purified by flash chromatography (EtOAc:Hex = 1:3) to afford **5a** (773.6 mg, 81%) as a pale yellow solid.

2.2. Representative Procedure

General Procedure A (a representative example for the formation of 8ba, Table 2): Enynamide 4b (53.1 mg, 0.20 mmol), DMSO (18.9 mg, 0.24 mmol) and *N*-Me-indole (31.5 mg, 0.24 mmol) were mixed in CH₂Cl₂ (1.0 mL) in a 4 mL screw-capped vial. A stock of HNTf₂ (100 μ L of 14.0 mg/mL in CH₂Cl₂; 2.5 mol%) which

was prepared inside a glovebox was then added and the resulting mixture was allowed to stir at RT for 3 h. At this point, the crude ¹H NMR spectra of an aliquot showed the ratio of isomeric products to be α : γ =1:10. Solvent was removed under vacuum and the residue was purified by flash column chromatography (EtOAc:*n*Hex = 1:8~1:2) to yield **8ba** (76.1 mg, 97%) as a white foamy solid.

A gram-scale reaction was also conducted for the synthesis of **8ba**: In an oven-dried 50 mL rb flask was added **4b** (1.00 g, 3.77 mmol), DMSO (321.2 μ L, 4.52 mmol, 1.2 equiv.) and *N*-methylindole (564.7 μ L, 4.52 mmol, 1.2 equiv.). The reaction mixture was dissolved in CH₂Cl₂(15 mL) and HNTf₂ (26.5 mg, 0.094 mmol, 2.5 mol%) was added. The resulting mixture was stirred at room temperature. After 3 hours, the TLC indicated that the reaction was complete. The mixture was concentrated and the residue was purified by flask chromatography (EtOAc:*n*Hex = 1:8 ~ 1:2) to afford 1.45 g (93%) of **8ba**. The crude ¹H NMR for the larger scale reactions had the same α/γ ratio (1:10).

General Procedure B (representative reactions of silyl enol ethers for the formation of 11bb, Table 3): Similar procedure to General Procedure A was followed using enynamides 4b (0.2 mmol), except the following: DMSO (31.3 mg, 0.4 mmol, 2.0 equiv.), silyl enol ether 10b (149.1 mg, 0.6 mmol, 3.0 equiv.) and HNTf₂ (200 μ L of 14.0 mg/mL in CH₂Cl₂; 5.0 mol%). The resulting mixture was allowed to stir at 40°C for 40 h. At this point, the crude ¹H NMR spectra of an aliquot showed only a γ isomer with a ratio of diastereomeric products to be 1:1.6. Solvent was removed under vacuum and the residue was purified by flash column chromatography (EtOAc:*n*Hex = 1:10~1:4) to yield 11bb (68.3 mg, 82%) as a pale yellow oil.

General Procedure C (representative example for the formation of 12ba, Table 4): Similar procedure to General Procedure A was followed using enynamides 4b (0.2 mmol), except the following: DMSO (62.5 mg, 0.8 mmol, 4.0 equiv.), benzyl alcohol (64.9 mg, 0.6 mmol, 3.0 equiv.) and HNTf₂ (100 μ L of 14.0 mg/mL in CH₂Cl₂; 2.5 mol%) was added dropwise over 3 minutes. The resulting mixture was allowed to stir at RT for 1 h. The crude ¹H NMR spectra of an aliquot showed only the γ product 12ba. Solvent was removed under vacuum and the residue was purified by flash column chromatography (EtOAc:*n*Hex = 1:10~1:4) to yield 12ba (52.3 mg, 67%) as a colorless oil.

General Procedure C (representative example for the formation of 14ba, Table 5): Similar procedure to General Procedure A was followed using enynamides 4b (0.2 mmol), except the following: 1-propanethiol (18.3 mg, 0.24 mmol, 1.2 equiv.) was used as a nucleophile. The resulting mixture was allowed to stir at RT for 3 h. The crude ¹H NMR spectra of an aliquot showed only the γ product. Solvent was removed under vacuum and the residue was purified by flash column chromatography (EtOAc:*n*Hex = 1:8~1:2) to yield 14ba (49.2 mg, 69%) as a colorless oil.

General Procedure D (representative example for the formation of 16ba, Table 5): Similar procedure to General Procedure A was followed using enynamides 4b (0.2 mmol), except the following: *p*-toluenesulfonyl hydrazide (44.7 mg, 0.24 mmol, 1.2 equiv.) was used as a nucleophile. The resulting mixture was allowed to stir at RT for 6 h. The crude ¹H NMR spectra of an aliquot showed only the γ product. Solvent was removed under

vacuum and the residue was purified by flash column chromatography (EtOAc:nHex = 1:8~1:2) to yield **16ba** (66.5 mg, 71%) as a white solid.

3. Characterization of Substrates and Products

Pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.44 (m, 2H), 7.43-7.34 (m, 4H), 7.24 (td, J = 7.4, 1.7 Hz, 1H), 7.14 (d, J = 16.4 Hz, 1H), 6.91 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 6.31 (d, J = 16.4 Hz, 1H), 4.68(s, 2H), 3.85 (s, 3H), 2.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 156.8, 135.5, 134.7, 129.5, 128.9, 128.8, 128.7, 126.8, 125.3, 120.7, 111.0, 107.8, 83.5, 71.8, 56.0, 55.5, 39.0; LRMS (APCI) Calcd for C₁₉H₂₀NO₃S⁺ [M+H]⁺ 342.1, found 342.0.

White solid: mp = 106-108 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.30 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.9 Hz, 2H), 6.84 (d, J = 16.0 Hz, 1H), 6.09 (d, J = 16.2 Hz, 1H), 3.81 (s, 3H), 3.25 (s, 3H), 3.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 140.2, 129.1, 127.5, 114.2, 104.6, 84.0, 69.2, 55.3, 39.3, 36.7; LRMS (APCI) Calcd for C₁₃H₁₆NO₃S⁺ [M+H]⁺ 266.1, found 266.1.

White solid: mp = 96-98 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.25 (d, *J* = 8.1 Hz, 2H), 7.12 (d, J = 8.0, 2H), 6.86 (d, *J* = 16.2 Hz, 1H), 6.18 (d, *J* = 16.2 Hz, 1H), 3.24 (s, 3H), 3.08 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.3, 138.6, 133.5, 129.4, 126.1, 106.0, 84.6, 69.2, 39.2, 36.7, 21.3; LRMS (APCI) Calcd for C₁₃H₁₆NO₂S⁺ [M+H]⁺ 250.1, found 250.0.

White solid: mp = 95-97 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.28 (m, 5H), 6.91(d, J = 16.2 Hz, 1H), 6.26 (d, J = 16.2 Hz, 1H), 3.31 (s, 3H), 3.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.1, 136.3, 128.7, 128.5, 126.1, 107.1, 85.0, 69.2, 39.2, 36.8; LRMS (APCI) Calcd for C₁₂H₁₄NO₂S⁺ [M+H]⁺ 236.1, found 236.0.

³ Gawade, S. A.; Huple, D. B.; Liu, R.-S. J. Am. Chem. Soc. 2014, 136, 2978.

Pale yellow solid: mp = 89-91 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.28 (m, 4H), 6.81 (d, *J* = 16.2 H, 1H), 6.20 (d, *J* = 16.2 Hz, 1H), 3.25 (s, 3H), 3.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.5, 134.8, 134.1, 128.9, 127.3, 107.9, 85.6, 69.0, 39.2, 36.9; LRMS (APCI) Calcd for C₁₂H₁₂ClNO₂S⁺ [M+H]⁺ 270.1, found 270.2.

Pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.34-7.26 (m, 7H), 6.67 (d, J = 16.2 Hz, 1H), 6.23 (d, J = 16.2 Hz, 1H), 4.55 (s, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.9, 139.8, 137.1, 134.7, 134.4, 129.9, 129.7 (q, J = 32 Hz), 128.8, 128.6, 128.4, 128.2, 127.7, 126.1, 125.6 (q, J = 4Hz), 124.0 (q, J = 270 Hz), 110.4, 86.4, 71.0, 55.7, 21.7; LRMS (APCI) Calcd for C₂₅H₁₉F₃NO₂S⁻ [M-H]⁻ 454.1, found 454.0.

Pale yellow solid; mp = 88-90 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 8.3 Hz, 1H), 7.37 (d, J = 8.0 Hz 2H), 7.30 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 6.79 (d, J = 16.1 Hz, 1H), 6.06 (d, J = 16.1 Hz, 1H), 3.71 (s, 3H), 3.11 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 144.8, 139.7, 133.3, 129.9, 129.2, 127.8, 127.5, 114.2, 105.0, 85.2, 68.8, 55.3, 39.4, 21.7; LRMS (APCI) Calcd for C₁₉H₁₉NO₃S⁺ [M+H]⁺ 342.1, found 342.2.

White solid: mp = 64-66 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.44 (m, 2H), 7.43-7.34 (m, 3H), 7.29 (d, *J* = 8.7 Hz, 1H), 6.84 (d, *J* = 8.8 Hz, 1H), 6.79 (d, *J* = 16.2 Hz, 1H), 6.07 (d, *J* = 16.1 Hz, 1H), 4.67 (s, 2H), 3.85 (s, 3H), 3.80 (s, 3H), 2.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 140.1, 134.6, 129.1, 128.9, 128.85, 128.7, 127.4, 114.2, 104.8, 83.1, 71.3, 55.9, 55.3, 39.0; LRMS (APCI) Calcd for C₁₉H₂₀NO₃S⁺ [M+H]⁺ 342.1, found 342.2.

Pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.78 (d, J = 16.1 Hz, 1H), 6.07 (d, J = 16.1 Hz, 1H), 5.75 (tdd, J = 6.3, 10.2, 17.0 Hz, 1H), 5.28 (dd, J = 1.3, 17.0 Hz, 1H), 5.22 (dd, J = 1.2, 10.2 Hz, 1H), 4.01 (dt, J = 6.3, 2.4 Hz, 1H), 3.81 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 144.6, 139.6, 134.7, 131.1, 129.8, 129.3, 127.8, 127.4, 120.0, 114.3, 105.1, 83.5, 70.6, 55.3, 54.4, 21.7; LRMS (APCI) Calcd for C₂₁H₂₂NO₃S⁺ [M+H]⁺ 368.1, found 368.2.

Pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 8.3 Hz, 2H), 7.32-7.27 (m, 7H), 6.86 (d, J = 8.6 Hz, 1H), 6.84 (s, 1H), 6.78 (d, J = 8.6 Hz, 1H), 6.66 (d, J = 16.1 Hz, 1H), 6.01 (d, J = 16.1 Hz, 1H), 4.53 (s, 2H), 3.84 (s, 6H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.5, 149.8, 144.6, 139.6, 134.8, 134.6, 129.8, 129.5, 128.7, 128.5, 128.3, 127.7, 119.7, 111.1, 108.2, 105.4, 84.1, 71.0, 55.9, 55.8, 55.7, 21.7; LRMS (APCI) Calcd for C₂₆H₂₆NO₄S⁺ [M+H]⁺ 448.2, found 448.2.

White solid: mp = 84-86 °C; ¹H NMR (400 MHz, CDCl₃): δ 6.89 (s, 1H) 6.83-6.72 (m, 3H), 6.04 (d, *J* = 16.2 Hz, 1H), 5.96 (s, 2H), 3.25 (s, 3H), 3.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 148.2, 140.1, 130.8, 121.5, 108.5, 105.15, 105.07, 101.3, 84.5, 69.1, 39.2, 36.8; LRMS (APCI) Calcd for C₁₃H₁₄NO₄S⁺ [M+H]⁺ 280.1, found 280.2.

Off-white solid: mp = 72-74 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 8.6 Hz, 2H), 7.38 (d, J = 8.8 Hz, 2H), 7.33 (t, J = 8.3 Hz, 1H), 7.25-7.18 (m, 2H), 6.98 (d, J = 16.2 Hz, 1H), 6.89 (d, J = 8.7 Hz, 2H), 6.58 (d, J = 3.3 Hz, 1H), 6.28 (d, J = 16.2 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 139.7, 138.1, 129.3, 128.9, 127.8, 127.5, 123.5, 121.9, 121.2, 114.2, 111.3, 105.5, 104.8, 82.1, 70.4, 55.4; LRMS (APCI) Calcd for C₁₉H₁₅NO⁺ [M+H]⁺ 274.1, found 274.2.

Yellow solid: mp = 77-79 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.18-7.16 (m, 1H), 7.00-6.96 (m, 2H), 6.92 (d, *J* = 15.8 Hz, 1H), 6.03 (d, *J* = 15.9 Hz, 1H), 3.10 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.9, 141.5, 133.3, 132.8, 129.9, 127.8, 127.7, 126.6, 125.1, 106.7, 86.3, 68.4, 39.3, 21.7; LRMS (APCI) Calcd for C₁₆H₁₆NO₂S₂⁺ [M+H]⁺ 318.1, found 318.0.

White solid: mp = 114-116 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 5.87 (d, J = 1.0 Hz, 1H), 3.81 (s, 3H), 3.28 (s, 3H), 3.11 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 146.8, 133.3, 126.6, 113.8, 103.6, 87.8, 68.5, 55.3, 39.4, 36.6, 18.6; LRMS (APCI) Calcd for C₁₄H₁₈NO₃S⁺ [M+H]⁺ 280.1, found 280.1.

White solid: mp = 110-112 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.3 Hz, 2H), 7.45-7.26 (m, 7H), 5.92

(s, 1H), 3.14 (s, 3H), 2.46 (s, 3H), 2.25 (s, 3H); 13 C NMR (100 MHz, CDCl₃): δ 146.5, 144.8, 140.9, 133.4, 129.8, 128.4, 127.9, 127.8, 125.3, 105.7, 89.3, 68.0, 39.5, 21.7, 18.5; LRMS (APCI) Calcd for C₁₉H₂₀NO₂S⁺ [M+H]⁺ 326.1, found 326.2.

Pale yellow solid: mp = 86-88 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.67 (d, J = 10.6, 24.5 Hz, 1H), 6.63 (dd, J = 10.6, 24.3 Hz, 1H), 6.53 (d, J = 14.9 Hz, 1H), 5.71 (d, J = 14.8 Hz, 1H), 3.81 (s, 3H), 3.10 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 144.8, 140.9, 133.6, 133.3, 129.8, 129.6, 127.9, 127.8, 126.1, 114.2, 109.4, 86.5, 69.1, 55.3, 39.4, 21.7; LRMS (APCI) Calcd for C₂₁H₂₂NO₃S⁺ [M+H]⁺ 368.1, found 368.2.

White solid: mp = 85-87 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, J = 7.2 Hz, 2H), 7.32 (t, J = 6.8 Hz, 2H), 7.24 (t, J = 7.2 Hz, 1H), 6.81 (dd, J = 10.8, 15.5 Hz, 1H), 6.69 (dd, J = 11.0, 15.0 Hz, 1H), 6.59 (d, J = 15.4 Hz, 1H), 3.25 (s, 3H), 3.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.8, 136.7, 134.3, 128.7, 1281, 128.0, 126.6, 110.3, 86.0, 69.5, 39.3, 36.9; LRMS (APCI) Calcd for C₁₄H₁₆NO₂S⁺ [M+H]⁺ 262.1, found 262.1.

Pale yellow solid: mp = 91-93 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.53 (m, 4H), 7.48-7.40 (m, 4H), 7.35 (t, J = 7.4 Hz, 1H), 6.91 (d, J = 16.2 Hz, 1H), 6.23 (d, J = 16.2 Hz, 1H), 3.27 (s, 3H), 3.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.6, 135.2, 131.9, 127.6, 122.3, 108.0, 85.7, 69.0, 39.2, 37.0; LRMS (APCI) Calcd for C₁₈H₁₇NO₂S⁺ [M+H]⁺ 312.1, found 312.1.

Pale yellow solid: mp = 96-98 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.5 Hz, 2H), 6.80 (d, *J* = 16.2 Hz, 1H), 6.27 (d, *J* = 16.2 Hz, 1H), 3.28 (s, 3H), 3.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 141.2, 140.4, 139.6, 135.3, 128.9, 127.5, 127.4, 126.9, 126.6, 107.1, 85.2, 69.3, 39.3, 36.9; LRMS (APCI) Calcd for C₁₂H₁₂BrNO₂S⁺ [M+H]⁺ 313.0, found 313.0.

Yellow oil; (92.7 mg, 95%); (spectra of the γ isomer) ¹H NMR (400 MHz, CDCl₃): δ 7.53 (dd, J = 6.2, 15.0 Hz, H), 7.37-7.28 (m, 2H), 7.30-7.20 (m, 4H), 7.19 (t, J = 7.0 Hz, H), 7.10-7.07 (m, 2H), 7.01 (t, J = 7.0 Hz, H), 6.96 (dd, J = 7.0, 1.7 Hz, H), 6.87 (d, J = 8.2 Hz, H), 6.83 (t, J = 7.5, 1.0 Hz, H), 6.63 (s, H), 6.23 (dd, J = 1.7, 15.0 Hz, H), 5.56 (d, J = 6.1 Hz, H), 4.89 (d of ABq, J = 16.4 Hz, H), 4.81 (d of ABq, J = 16.4 Hz, H), 3.76 (s, 3H), 3.70 (s, 3H), 3.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.1, 156.7, 153.0, 137.4, 136.5, 129.4, 129.1, 128.8, 128.1, 127.7, 127.4, 127.0, 121.8, 121.1, 120.7, 119.5, 119.0, 114.1, 110.6, 109.3, 55.5, 49.0, 42.9, 38.0, 32.8; HRMS (EI) Calcd for C₂₈H₂₈N₂O₄S⁺ 488.1764; found 488.1764.

White foamy solid; (80.1 mg, 97%); (spectra of the γ isomer) ¹H NMR (400 MHz, CDCl₃): δ 7.55 (dd, J = 7.2, 15.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.3 Hz, 1H), 7.23-7.17 (m, 3H), 7.03 (t, J = 8.0 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 6.72 (s, 1H), 6.49 (dd, J = 1.4, 15.0 Hz, 1H), 5.11 (d, J = 7.1 Hz, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.22 (s, 3H), 3.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 158.6, 152.5, 137.4, 133.1, 129.4, 127.5, 126.8, 121.9, 121.0, 119.5, 119.2, 115.0, 114.1, 109.4, 55.3, 44.9, 41.7, 32.8, 32.6; HRMS (EI) Calcd for C₂₂H₂₄N₂O₄S⁺ 412.1451; found 412.1452.

Brown oil; (65.6 mg, 83%); (spectra of the γ isomer) ¹H NMR (400 MHz, CDCl₃): δ 7.55 (dd, J = 7.2, 15.0 Hz, 1H), 7.36 (d, J = 7.9 Hz, 1H), 7.29 (d, J = 9.1 Hz, 1H), 7.20 (td, J = 8.1, 1.1 Hz, 1H), 7.15 (d of ABq, J = 8.2 Hz, 1H), 7.12 (d of ABq, J = 8.1 Hz, 1H), 7.02 (td, J = 7.0, 1.0 Hz, 1H), 6.72 (s, 1H), 6.48 (dd, J = 15.0, 1.4 Hz, 1H), 5.11 (d, J =7.2, 1H), 3.73 (s, 3H), 3.22 (s, 3H), 3.09 (s, 3H), 2.32 (s, 3H); HRMS (EI) Calcd for C₂₂H₂₄N₂O₃S⁺ 396.1502, found 396.1504.

Brown oil; (47.3 mg, 62%); (spectra of the γ isomer) ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 8.0 Hz, 1H), 7.57-7.51 (dd, J = 7.2, 15.0 Hz, 4H), 7.36-7.18 (m, 23H), 7.14 (t, J = 8.0 Hz, 1H), 7.07 (s, 1H), 7.03 (t, J = 8.0 Hz, 2H), 6.73 (s, 1H), 6.63-6.57 (dd, J = 7.5, 15.9 Hz, 1H), 6.51-6.46 (m, 2H), 5.29 (d, J = 7.5 Hz, 1H), 5.15 (d, J = 7.2, 1H), 3.77 (s, 3H), 3.73 (s, 3H), 3.28 (s, 3H), 3.22 (s, 3H), 3.14 (s, 3H), 3.09 (s, 3H); HRMS (EI) Calcd for C₂₁H₂₂N₂O₃S⁺ 382.1346, found 382.1345.

Brown oil; (52.4 mg, 63%); ¹H NMR (400 MHz, CDCl₃): δ (γ-isomer) 7.51 (dd, J = 7.2, 15.0 Hz, H), 7.7.33-7.18 (m, 8 H), 7.04 (t, J = 6.8 Hz, 1H), 6.73 (s, 1H), 6.49 (dd, J = 1.4, 15.0 Hz, 1H), 5.13 (d, J = 7.2 Hz, 1H), 3.74 (s, 3H), 3.23 (s, 3H), 3.10 (s, 3H); (*α*-isomer) 7.64 (d, J = 8.0 Hz, 1H), 7.40-7.20 (m, 6H), 7.15 (t, J = 8.0 Hz, 1H), 7.08 (s, 1H), 6.59 (dd, J = 7.6, 15.9 Hz, 1H), 6.42 (d, J = 15.8 Hz, 1H), 5.30 (d, J = 7.6 Hz, 1H), 3.79 (s, 3H), 3.27 (s, 3H), 3.12 (s, 3H); HRMS (EI) Calcd for C₂₁H₂₁N₂O₃S⁺ 416.0956; found 416.0958.

Brown oil; (92.7 mg, 95%); (spectra of γ-isomer) ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 8.4 Hz, 2H), 7.40 (dd, J = 6.8, 15.0 Hz, 1H), 7.33-7.29 (m, 2H), 7.21 (t, J = 7.0 Hz, 1H), 7.16-7.12 (m, 4H), 7.02 (t, J = 6.9 Hz, 1H), 6.86 (d, J = 8.8 Hz, 2H), 6.72 (s, 1H), 6.64 (dd, J = 1.5, 15.0 Hz, 1H), 5.07 (d, J = 6.8 Hz, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 3.28 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 158.5, 151.2, 144.6, 137.4, 136.4, 133.4, 129.8, 129.5, 127.5, 127.2, 126.9, 122.3, 121.9, 119.6, 119.1, 115.1, 114.0, 109.3, 55.3, 44.7, 33.0, 32.8, 21.6; HRMS (EI) Calcd for C₂₈H₂₈N₂O₄S⁺ 488.1764; found 488.488.1766.

Brown oil; (85.1 mg, 87%); (spectra of γ -isomer) ¹H NMR (400 MHz, CDCl₃): δ 7.55 (dd, J = 6.6, 14.9 Hz, 1H), 7.30-7.24 (m, 6H), 7.11-7.08 (m, 2H), 7.06 (d, J = .7 Hz, 2H), 7.01 (t, J = 7.0 Hz, 1H), 6.82 (d, J = 8.7 Hz, 2H), 6.58 (s, 1H), 6.26 (dd, J = 1.5, 14.9 Hz, 1H), 5.05 (d, J = 6.4 Hz, 1H), 4.90 (d of ABq, J = 16.4 Hz, 1H), 4.82 (d of ABq, J = 16.4 Hz, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 3.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 158.6, 152.9, 137.4, 136.4, 132.9, 129.5, 128.8, 127.8, 127.6, 127.4, 126.8, 121.9, 121.4, 119.4, 119.2, 114.8, 109.4, 55.3, 49.0, 44.7, 43.0, 32.8; HRMS (EI) Calcd for C₂₈H₂₈N₂O4S⁺ 488.1764; found 488.1765.

Brown oil; (90.8 mg, 88%); (spectra of γ -isomer) ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.4 Hz, 2H), 7.41

(dd, J = 6.6, 15.0 Hz, 1H), 7.32-7.26 (m, 2H), 7.20 (t, J = 8.0 Hz, 1H), 7.16 (d, J = 8.6 Hz, 2H) 7.10 (d, J = 8.8 Hz, 2H), 7.00 (t, J = 7.0 Hz, 1H), 6.83 (d, J = 8.7 Hz, 2H), 6.68 (s, 1H), 6.38 (dd, J = 1.6, 15.0 Hz, 1H), 5.82 (ddd, J = 5.6, 10., 17.0 Hz, 1H), 5.15 (d, J = 10.1 Hz, 1H), 5.11 (d, J = 17.3 Hz, 1H), 5.01 (d, J = 6.5 Hz, 1H), 4.49-4.35 (m, 2H), 3.79 (s, 3H), 3.73 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 158.5, 151.8, 144.5, 137.3, 136.8, 133.2, 133.0, 129.6, 129.5, 127.9, 127.5, 126.9, 122.0, 121.9, 119.5, 119.1, 118.2, 115.0, 114.0, 109.3, 55.3, 48.6, 44.7, 32.8, 21.6; HRMS (EI) Calcd for C₃₀H₃₀N₂O₄S⁺ 514.1921; found 514.1925.

Brown oil; (101.2 mg, 85%) (spectra of γ -isomer) ¹H-NMR (400 MHz, CDCl₃): δ 7.40 (dd, J = 6.4, 15.0 Hz, 1H), 7.37 (d, J = 7.6 Hz, 2H), 7.32-7.24 (m, 7H), 7.21 (t, J = 8.1 Hz, 1H), 7.07, (d, J = 8.0 Hz, 2H), 7.00 (dt, J = 1.0, 8.0 Hz, 1H), 6.78 (d, J = 8.7 Hz, 1H), 6.69-6.68 (m, 2H), 6.64 (s, 1H), 6.38 (dd, J = 1.6, 15.0 Hz, 1H), 5.07 (d of ABq, J = 15.8 Hz, 1H), 00 (d of ABq, J = 15.8 Hz, 1H), 4.97 (d, J = 4.6 Hz, 1H), 3.87 (s, 3H), 3.75 (s, 3H), 3.72 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 151.6, 149.0, 147.9, 144.5, 137.3, 136.9, 136.8, 133.6, 129.5, 128.6, 127.9, 127.7, 127.6, 127.5, 126.9, 122.3, 121.9, 120.6, 119.5, 119.1, 114.7, 111.8, 111.1, 109.3, 55.9, 55.8, 49.4, 45.1, 32.8, 21.6; HRMS (EI) Calcd for C₃₅H₃₄N₂O₅S⁺ 594.2183; found 594.2184.

Brown oil; (71.7 mg, 84%) (spectra of the γ isomer) ¹H-NMR (400 MHz, CDCl₃): δ 7.52 (dd, J = 7.2, 15.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 8.3 Hz, 1H), 7.22 (t, J = 7.1 Hz, 1H), 7.04 (t, J = 7.9 Hz, 1H), 6.77-6.73 (m, 4H), 6.49 (dd, J = 1.4, 15.0 Hz, 1H), 5.95-5.91 (m, 2H), 5.10 (d, J = 7.2 Hz, 1H), 3.75 (s, 3H), 3.23 (s, 3H), 3.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 152.1, 147.9, 146.5, 137.4, 134.9, 127.4, 126.7, 122.0, 121.5, 121.0, 119.4, 119.2, 114.7, 109.4, 108.9, 108.3, 101.0, 45.3, 41.7, 32.8, 32.5; HRMS (EI) Calcd for C₂₂H₂₂N₂O₅S⁺ 426.1244; found 426.1243.

Brown oil; (72.6 mg, 91%) (spectra of the γ isomer) ¹H NMR (400 MHz, CDCl₃): δ 8.16 (s, 1H), 7.56 (dd, J = 7.1, 15.0 Hz, 1H), 7.37 (d, J = 8.2 Hz, 2H), 7.19-7.15 (m, 3H), 7.03 (t, J = 7.9 Hz, 1H), 6.86-6.83 (m, 3H), 6.48 (dd, J = 1.5, 15.0 Hz, 1H), 5.12 (d, J = 7.1 Hz, 1H), 3.78 (s, 3H), 3.22 (s, 3H), 3.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 158.6, 152.4, 136.6, 132.9, 129.4, 126.3, 122.8, 122.4, 121.1, 119.7, 119.4, 116.6, 114.1, 111.4, 55.3, 44.9, 41.7, 32.6; HRMS (EI) Calcd for C₂₁H₂₂N₂O₄S⁺ 398.1295; found 398.1294.

Brown oil; (77.8 mg, 94%); (spectra of the γ isomer) ¹H NMR (400 MHz, CDCl₃): δ 7.93 (s, 1H), 7.65 (dd, J = 7.0, 15.0 Hz, 1H), 7.31-7.23 (m, 2H), 7.16 (d, J = 8.5 Hz, 3H), 7.08 (t, J = 7.2 Hz, 1H), 6.97 (t, J = 7.9 Hz, 1H), 6.81 (d, J = 8.6 Hz, 2H), 6.48 (dd, J = 1.6, 15.0 Hz, 1H), 5.12 (d, J = 6.6 Hz, 1H), 3.77 (s, 3H), 3.22 (s, 3H), 3.08 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 158.3, 152.4, 135.3, 133.2, 132.2, 129.1, 127.7, 127.5, 121.2, 121.1, 119.5, 119.0, 113.9, 110.5, 55.3, 44.0, 41.7, 32.6, 12.4; HRMS (EI) Calcd for C₂₂H₂₄N₂O₄S⁺ 412.1451; found 412.1450.

Brown oil; (71.3 mg, 84%); (spectra of γ -isomer) ¹H-NMR (400 MHz, CDCl₃): δ 8.97 (s, 1H), 7.62 (d, J = 8.2 Hz, 1H), 7.50 (dd, J = 7.0, 15.0 Hz, 1H), 7.44 (d, J = 7.4 Hz, 1H), 7.22-7.16 (m, 3H), 7.00 (d, J = 2.4 Hz, 1H), 6.84 (d, J = 8.8 Hz, 2H), 6.44 (dd, J = 1.4, 15.0 Hz, 1H), 5.67 (d, J = 7.0 Hz, 1H), 3.78 (s, 3H), 3.25 (s, 3H), 3.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 158.7, 152.6, 136.7, 132.7, 129.7, 126.7, 126.4, 125.6, 121.9, 121.5, 119.5, 116.7, 116.6, 114.1, 101.8, 55.3, 43.3, 41.7, 32.7; HRMS (EI) Calcd for C₂₂H₂₁N₃O₄S⁺ 423.1247; found 423.1246.

Brown oil; (84.1 mg, 88%); (spectra of the γ isomer) ¹H-NMR (400 MHz, CDCl₃): δ 8.32 (s, 1H), 7.50 (dd, J = 7.0, 15.0 Hz, 2H), 7.47 (s, 1H), 7.28-7.23 (m, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.87-6.83 (m, 3H), 6.48 (dd, J = 15.0, 1.4 Hz, 1H), 5.04 (d, J = 7.0 Hz, 1H), 3.79 (s, 3H), 3.23 (s, 3H), 3.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 158.7, 152.0, 135.3, 132.4, 129.4, 128.1, 125.2, 124.1, 121.8, 121.3, 116.2, 114.2, 113.0, 112.9, 55.3, 44.7, 41.7, 32.6; HRMS (EI) Calcd for C₂₁H₂₁BrN₂O₄S⁺ 476.0400; found 476.0398.

Brown oil; (71.1 mg, 82%) (spectra of the γ isomer) ¹H-NMR (400 MHz, CDCl₃): δ 8.29 (s, 1H), 7.52 (dd, J =

7.2, 15.0 Hz, 1H), 7.34 (d, J = 1.6 Hz, 1H), 7.22 (d, J = 8.5 Hz, 1H), 7.14 (d, J = 8.6 Hz, 2H), 6.99 (dd, J = 1.8, 8.5 Hz, 1H), 6.86-6.83 (m, 3H), 6.47 (dd, J = 1.4, 15.0 Hz, 1H), 5.06 (d, J = 7.2 Hz, 1H), 3.78 (s, 3H), 3.23 (s, 3H), 3.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 158.7, 152.1, 137.0, 132.6, 129.4, 128.2, 127.7, 124.9, 123.5, 121.2, 120.3, 116.6, 114.5, 111.4, 55.3, 44.8, 41.7, 32.6.; HRMS (EI) Calcd for C₂₂H₂₁ClN₂O₄S⁺432.0905; found 432.0905.

Colorless oil; (46.8 mg, 64%); (spectra of γ -isomer) ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.33 (dd, J = 7.2, 15.0 Hz, 1H), 7.13 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.50 (dd, J = 1.5, 15.0 Hz, 1H), 5.92 – 5.8 (m, 2H), 4.81 (d, J = 7.2 Hz, 1H), 3.81 (s, 3H), 3.27 (s, 3H), 3.28 (s, 3H),); ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 158.8, 152.1, 151.9, 149.9, 131.0, 129.3, 121.7, 114.2, 108.8, 106.1, 55.3, 47.1, 41.7, 32.7, 13.5; HRMS (EI) Calcd for C₁₈H₂₁NO₅S⁺ 363.1135; found 363.1136.

Brown oil; (55.7 mg, 66%); ¹H NMR (400 MHz, CDCl₃): δ 8.40 (d, J = 8.4 Hz, 1H), 7.72 (dd, J = 6.6, 15.0 Hz, 1H), 7.53 (d, J = 7.2 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.35-6.99 (m, 5H),7.23 (d, J = 8.7 Hz, 2H), 7.06 (t, J = 7.0 Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 6.76 (s, 1H), 6.57 (d, J = 3.8 Hz, 1H), 6.56 (dd, J = 1.6, 15.0 Hz, 1H), 5.20 (d, J = 6.5 Hz, 1H) 3.80 (s, 3H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 158.6, 152.3, 137.4, 135.8, 133.2, 130.6, 129.6, 127.5, 126.9, 124.9, 124.8, 123.7, 122.0, 121.5, 120.8, 119.6, 119.3, 116.7, 115.2, 114.1, 109.4, 108.9, 55.3, 45.0, 32.8; HRMS (EI) Calcd for C₂₈H₂₄N₂O₂+420.1832; found 420.1836.

Brown oil; (86.3 mg, 93%); (spectra of γ-isomer) ¹H-NMR (400MHz, CDCl₃): δ 7.51 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.0 Hz, 1H), 7.35 (dd, J = 7.0, 15.0 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 7.26-7.23 (m, 1H), 7.20 (dd, J = 1.2, 5.2 Hz, 1H), 7.15 (d, J = 8.0 Hz, 2H), 7.06 (t, J = 8.0 Hz, 1H), 6.97 (dd, J = 3.5, 5.1 Hz, 1H), 6.88-6.87 (m, 2H), 6.80 (dd, J = 1.4, 15.0 Hz, 1H), 5.36 (d, J = 6.8 Hz, 1H), 3.75 (s, 3H), 3.27 (s, 3H), 2.38 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 166.2, 149.9, 145.2, 144.7, 137.3, 136.3, 129.9, 129.5, 127.5, 127.4, 126.9, 126.6, 125.4, 122.3, 122.0, 119.4, 119.3, 114.5, 109.5, 40.5, 33.0, 32.9, 21.6; HRMS (EI) Calcd for C₂₅H₂₄N₂O₃S₂⁺ 464.1223; found 464.1222.

Brown oil; (82.0 mg, 96%) (spectra of γ -isomer) ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 15.2 Hz, 1H), 7.28 (d, J = 8.2 Hz, 1H), 7.20 (d, J = 8.9 Hz, 2H), 7.16 (d, J = 8.1 Hz, 1H), 7.08 (d, J = 8.0 Hz, 1H), 6.91 (t, J = 8.0 Hz, 1H), 6.81 (d, J = 8.0 Hz, 2H), 6.80 (s, 1H), 6.39 (d, J = 15.2 Hz, 1H), 3.77 (s, 3H), 3.75 (s, 3H), 3.19 (s, 3H), 3.05 (s, 3H), 1.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 158.2, 157.3, 137.8, 137.5, 128.4, 127.2, 126.0, 121.6, 121.4, 119.6, 118.9, 118.6, 113.7, 109.5, 55.2, 45.4, 41.7, 32.8, 32.6, 27.6; HRMS (EI) Calcd for C₂₃H₂₆N₂O₄S⁺ 426.1608; found 426.1609.

Brown oil; (71.1 mg, 75%); (spectra of γ -isomer) ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, J = 15.3 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.35+-7.12 (m, 5H), 7.17 (t, J = 8.0 Hz, 1H), 6.97 (d, J = 8.0 Hz, 1H), 6.88 (t, J = 7.0 Hz, 1H), 6.82 (s, 1H), 6.62 (d, J = 15.2 Hz, 1H), 3.75 (s, 3H), 3.27 (s, 3H), 2.38 (s, 3H), 1.90 (s, 3H); HRMS (EI) Calcd for C₂₈H₂₈N₂O₃S⁺472.1815; found 472.1817.

Yellow oil; (74.1 mg, 72%); (spectra of the ε -isomer); ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 8.4 Hz, 2H), 7.41-7.34 (m, 2H), 7.30-7.28 (m, 3H), 7.23-7.16 (m, 3H), 7.03 (t, J = 8.0 Hz, 1H), 6.85 (d, J = 8.8 Hz, 2H), 6.75 (d, J = 14.8 Hz, 1H), 6.67 (s, 1H), 6.63 (dd, J = 7.2, 15.1 Hz, 1H), 6.21 (ddd, J = 0.6, 11.2, 15.1 Hz, 1H), 5.02 (d, J = 7.1 Hz, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 3.25 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 158.4, 147.2, 146.2, 144.7, 137.4, 136.2, 134.3, 129.9, 129.4, 128.8, 127.3, 127.0, 121.8, 120.3, 119.7, 119.0, 116.1, 114.0, 109.3, 55.3, 45.3, 33.0, 32.8, 21.6; HRMS (EI) Calcd for C₃₀H₃₀N₂O₄S⁺ 514.1921; found 514.1925.

Colorless oil; (42.8 mg, 53%); ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 7.1 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.9, 2H), 7.20 (dd, J = 7.4, 15.1, 1H), 7.18 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.58 (dd, J = 1.3, 15.1 Hz, 1H), 4.33 (ddd, J = 6.6, 7.3, 13.9 Hz, 1H), 3.79 (s, 3H), 3.50 (8.1, 17.3 Hz, 1H), 3.42 (dd, J = 5.9, 17.3 Hz, 1H), 3.25 (s, 3H), 3.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.3, 166.4, 158.8, 152.5, 133.7, 133.4, 132.9, 128.8, 128.7, 128.0, 120.7, 114.4, 55.3, 43.7, 42.7, 41.6, 32.5; HRMS (EI) Calcd for C₂₁H₂₃NO₅S⁺401.1291;

found 401.1292.

Pale yellow oil; (68.3mg, 82%); (major diastereomer) ¹H NMR (400 MHz, C₆D₆): δ 8.0 (d, J = 8.2 Hz, 2H), 7.60 (t, J = 7.3 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 7.18 (d, J = 8.7 Hz, 2H), 7.11 (dd, J = 7.6, 15.1 Hz, 1H), 6.90 (d, J = 8.7 Hz, 2H), 6.49 (dd, J = 1.1, 15.2 Hz, 1H), 4.03-3.86 (m, 2H), 3.81 (s, 3H), 3.14 (s, 3H), 2.99 (s, 3H), 1.01 (d, J = 6.7 Hz, 3H); (minor diastereomer) δ 7.80 (d, J = 7.8 Hz, 2H), 7.52 (t, J = 7.3 Hz, 1H), 7.40 (t, J = 7.9 Hz, 2H), 7.27 (dd, J = 9.4, 14.9 Hz, 1H), 7.13 (d, J = 8.7 Hz, 2H), 6.74 (d, J = 8.7 Hz, 2H), 6.61 (d, J = 14.9 Hz, 1H), 4.08-3.89 (m, 2H), 3.70 (s, 3H), 3.30 (s, 3H), 3.19 (s, 3H), 1.26 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆): (major) δ 202.7, 166.1, 158.9, 151.8, 136.3, 133.5, 131.2, 129.5, 128.9, 128.3, 120.7, 114.4, 55.3, 50.4, 44.9, 41.5, 32.4, 17.2; HRMS (EI) Calcd for C₂₂H₂₅NO₅S⁺415.1453; found 415.1451.

Pale yellow oil; (61.8 mg, 72%); (for a mixture of diastereomers) ¹H NMR (400 MHz, CDCl₃): δ 8.00-7.94 (m, 2H), 7.50-7.44 (m, 2H), 7.38-7.20 (m, 5H), 7.20 (d, *J* = 8.6. Hz, 2H), 7.18 (d, *J* = 8.7 Hz, 2H), 6.89 (d, *J* = 7.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 6.68 (dd, *J* = 1.0, 15.0 Hz, 1H), 6.59 (dd, *J* = 1.2, 15.1 Hz, 1H), 4.52 (dd, *J* = 4.5, 8.8 Hz, 1H), 4.15 (t, *J* = 7.8 Hz, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 3.27 (s, 6H), 3.21 (s, 3H), 3.20 (s, 3H), 3.05-2.90 (m, 6 H), 2.25-2.18 (m, 1H), 2.17-1.98 (m, 2H), 1.82-1.71 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 198.2, 197.6, 166.5, 166.3, 158.7, 158.6, 152.5, 149.8, 143.7, 143.5, 133.6, 132.6, 132.4, 131.1, 129.7, 129.2, 128.8, 128.7, 127.5, 126.8, 122.8, 120.7, 114.3, 114.2, 55.3, 53.7, 52.0, 46.7, 46.2, 41.8, 41.7, 32.6, 32.5, 29.0, 27.8, 26.0, 24.8; HRMS (EI) Calcd for C₂₃H₂₅NO₅S⁺427.1448; found 427.1448.

Colorless oil; (46.4 mg, 54%); ¹H NMR (400 MHz, CDCl₃): δ 7.46 (dd, J = 9.6, 14.9 Hz, 1H), 7.44-7.40 (m, 1H), 7.38-7.29 (m, 4H), 7.13 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.55 (dd, J = 0.9, 14.9 Hz, 1H), 4.21 (d, J = 9.6 Hz, 1H), 3.79 (s, 3H), 3.25 (s, 3H), 3.14 (s, 3H), 1.32 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 209.6, 166.2, 158.8, 149.7, 139.6, 133.4, 130.7, 130.6, 130.4, 128.1, 126.9, 122.8, 113.8, 55.2, 54.6, 52.0, 41.7, 32.5, 24.5, 23.8; HRMS (EI) Calcd for C₂₃H₂₇NO₅S⁺429.1604; found 429.1607.

Pale yellow oil; (52.3 mg, 67%); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.29 (m, 5H), 7.25 (d, J = 8.7 Hz, 2H), 7.11 (dd, J = 4.8, 15.1 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.88 (dd, J = 1.6, 15.1 Hz, 1H), 4.99 (dd, J = 1.6, 4.8 Hz, 1H), 4.55 (d opf ABq, J = 12.1 Hz, 1H), 4.42 (d of ABq, J = 12.1 Hz, 1H), 3.82 (s, 3H), 3.32 (s, 3H), 3.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 159.8, 149.8, 137.9, 130.4, 128.7, 128.5, 127.8, 127.6, 119.4, 114.3, 79.2, 70.2, 55.4, 41.7, 32.7; HRMS (EI) Calcd for C₂₀H₂₃NO₅S⁺ 389.1291; found 389.1292.

Colorless oil; (39.4 mg, 63%); ¹H NMR (400 MHz, CDCl₃): δ 7.21 (d, J = 8.6 Hz, 2H), 7.06 (dd, J = 4.8, 15.0 Hz, 1H), 6.89 (d, J = 8.8 Hz, 2H), 6.79 (dd, J = 1.7, 15.1 Hz, 1H), 4.79 (dd, J = 1.6, 4.8 Hz, 1H), 3.81 (s, 3H), 3.33 (s, 3H), 3.30 (s, 3H), 3.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 159.8, 149.7, 130.3, 128.6, 119.1, 114.2, 82.0, 56.5, 55.3, 41.7, 32.7; HRMS (EI) Calcd for C₁₄H₁₉NO₅S⁺ 313.0978; found 313.0978.

Colorless oil; (40.1 mg, 61%); ¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, J = 8.7 Hz, 2H), 7.09 (dd, J = 5.0, 15.0 Hz, 1H), 6.89 (d, J = 8.8 Hz, 2H), 6.82 (dd, J = 1.6, 15.1 Hz, 1H), 4.91 (dd, J = 1.5, 5.0 Hz, 1H), 3.80 (s, 3H), 3.46 (q, J = 7.0 Hz, 2H), 3.33 (s, 3H), 3.22 (s, 3H), 1.22 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 159.6, 150.2, 131.0, 128.4, 119.1, 114.2, 80.2, 64.3, 55.3, 41.7, 32.7, 15.2; HRMS (EI) Calcd for C₁₅H₂₁NO₅S⁺ 327.1135; found 327.1135.

Pale yellow oil; (62.2 mg, 77%); ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.24 (m, 2H), 7.23-7.17 (m, 3H), 7.14 (d, *J* = 8.6 Hz, 2H), 7.03 (dd, *J* = 4.6, 15.0 Hz, 1H), 6.85 (d, *J* = 8.8 Hz, 2H), 6.75 (dd, *J* = 1.7, 15.0 Hz, 1H), 4.89 (dd, *J* = 1.6, 4.6 Hz, 1H), 3.79 (s, 3H), 3.60 (t, *J* = 6.8Hz, 2H), 3.26 (s, 3H), 3.18 (s, 3H), 2.96-2.82 (m, 2H) 4-6); ¹³C NMR (100 MHz, CDCl₃): 166.4, 159.7, 149.9, 139.0, 130.6, 129.1, 128.5, 128.3, 126.3, 118.9, 114.2, 80.4, 69.6, 55.3, 41.7, 36.4, 32.6, 30.1; HRMS (EI) Calcd for C₂₁H₂₅NO₅S⁺403.1448; found 403.1449.

Pale yellow oil; (31.0 mg, 41%); ¹H NMR (400 MHz, CDCl₃): δ 7.41 (dd, J = 0.8, 1.8 Hz, 1H), 7.24 (d, J = 8.6 Hz, 2H), 7.08 (dd, J = 4.9, 15.0 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 6.82 (dd, J = 1.6, 15.0 Hz, 1H), 6.35 (dd, J = 1.8, 3.2 Hz, 1H), 6.30 (d, J = 3.1 Hz, 1H), 5.01 (dd, J = 1.6, 4.9 Hz, 1H), 4.48 (d of ABq, J = 12.9 Hz, 1H), 4.38 (d of ABq, J = 12.9 Hz, 1H), 3.81 (s, 3H), 3.32 (s, 3H), 3.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 159.8, 151.3, 149.5, 142.9, 130.1, 128.8, 119.5, 114.3, 110.3, 109.7, 78.9, 62.2, 55.33, 41.7, 32.7; HRMS (EI) Calcd for C₁₈H₂₁NO₆S⁺ 379.1084; found 379.1085.

Colorless oil; (50.3 mg, 74%); ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, J = 8.6 Hz, 2H), 7.08 (dd, J = 4.8, 15.1 Hz, 1H), 6.89 (d, J = 8.8Hz, 2H), 6.84 (dd, J = 1.6, 15.1 Hz, 1H), 5.95-5.85 (m, 1H), 5.28 (qd, J = 1.7, 17.2 Hz, 1H), 5.20 (qd, J = 1.6, 10.4 Hz, 1H), 4.98 (dd, J = 1.6, 4.8 Hz, 1H), 3.99 (tdd, J = 1.6, 5.2, 13.0 Hz, 1H), 3.91 (tdd, J = 1.4, 5.8, 13.0 Hz, 1H), 3.81 (s, 3H), 3.32 (s, 3H), 3.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 159.7, 149.9, 134.3, 130.5, 128.6, 119.2, 117.2, 114.2, 79.3, 69.3, 55.3, 41.7, 32.7; HRMS (EI) Calcd for C₁₆H₂₁NO₅S⁺ 339.1135; found 339.1136.

Colorless oil; (41.7 mg, 62%); ¹H NMR (400 MHz, CDCl₃): δ 7.24 (d, *J* = 8.6 Hz, 2H), 7.08 (dd, *J* = 4.8, 15.1 Hz, 1H), 6.91 (d, *J* = 8.8Hz, 2H), 6.84 (dd, *J* = 1.7, 15.1 Hz, 1H), 5.23 (dd, *J* = 1.6, 4.8 Hz, 1H), 4.20 (dd, *J* = 2.4, 15.9 Hz, 1H), 4.00 (dd, *J* = 2.4, 15.9 Hz, 1H), 3.81 (s, 3H), 3.34 (s, 3H), 3.23 (s, 3H), 2.46 (t, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 160.0, 149.0, 129.2, 129.0, 119.7, 114.3, 79.2, 78.4, 75.0, 55.3, 55.3, 41.8, 32.7; HRMS (EI) Calcd for C₁₆H₁₉NO₅S⁺ 337.0978; found 337.0981.

Pale yellow oil; (69.9 mg, 84%); ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.24 (m, 7H), 7.11 (dd, J = 4.9, 15.1 Hz,

1H), 6.91 (d, J = 8.7 Hz, 2H), 6.88 (dd, J = 1.6, 15.1 Hz, 1H), 6.59 (d, J = 15.9 Hz, 1H), 6.27 (td, J = 6.0, 15.9 Hz, 1H), 5.04 (dd, J = 1.3, 4.8 Hz, 1H), 4.17 (ddd, J = 1.4, 5.6, 12.8 Hz, 1H), 4.18 (ddd, J = 1.2, 6.3, 12.8 Hz, 1H), 3.81 (s, 3H), 3.32 (s, 3H), 3.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 159.8, 149.8, 136.6, 132.7, 130.5, 128.7, 128.6, 127.8, 126.5, 125.6, 119.3, 114.3, 79.4, 69.0, 55.4, 41.7, 32.7; HRMS (EI) Calcd for C₂₂H₂₅NO₅S⁺415.1448; found 415.1447.

Pale yellow oil; (37.0 mg, 54%); ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, J = 8.7 Hz, 2H), 7.09 (dd, J = 4.9, 15.0Hz, 1H), 6.88 (d, J = 8.7 Hz, 2H), 6.80 (dd, J = 1.4, 15.1 Hz, 1H), 5.03 (dd, J = 1.3, 4.8 Hz, 1H), 3.80 (s, 3H), 3.63 (septet, J = 6.0 Hz, 1H), 3.32 (s, 3H), 3.21 (s, 3H), 1.20 (d, 6.0 Hz, 3H), 1.15 (d, 6.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 159.5, 151.0, 131.6, 128.3, 119.0, 114.2, 69.5, 55.3, 41.7, 32.7, 22.7, 21.8; HRMS (EI) Calcd for C₁₆H₂₃NO₅S⁺ 341.1291; found 341.1288.

Pale yellow oil; (39.8 mg, 52%); ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, J = 8.7 Hz, 2H), 7.10 (dd, J = 4.8, 15.0 Hz, 1H), 6.89 (d, J = 8.7 Hz, 2H), 6.84 (dd, J = 1.6, 15.0 Hz, 1H), 5.09 (dd, J = 1.5, 4.8 Hz, 1H), 3.80 (s, 3H), 3.35-3.27 (m, 1H), 3.32 (s, 3H), 3.21 (s, 3H), 1.91-1.87 (m, 1H), 1.75-1.70 (m, 2H), 1.50-1.21 (m, 7H); ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 159.5, 151.2, 131.7, 128.3, 118.9, 114.1, 75.2, 55.3, 41.7, 32.8, 32.6, 31.9, 25.7, 24.0, 23.9; HRMS (EI) Calcd for C₁₉H₂₇NO₅S⁺ 381.1604; found 381.1605.

Colorless oil; (49.4 mg, 66%); ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.25 (m, 5H), 7.257.15 (m, 4H), 7.09 (dd, *J* = 4.8, 15.0 Hz, 1H), 6.88 (dd, *J* = 1.6, 15.0 Hz, 1H), 4.99 (dd, *J* = 1.5, 4.8 Hz, 1H), 4.56 (d of ABq, J = 12.1 Hz, 1H), 4.43 (d of ABq, J = 12.0 Hz, 1H), 3.31 (s, 3H), 3.20 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 149.8, 138.4, 137.9, 135.4, 129.6, 128.5, 127.8, 127.6, 127.3, 119.4, 79.6, 70.3, 41.7, 32.7, 21.2; HRMS (EI) Calcd for C₂₀H₂₃NO₄S⁺ 373.1342; found 373.1344.

Pale yellow oil; (36.5 mg, 61%); ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.27 (m, 5H), 7.09 (dd, J = 5.0, 15.0 Hz, 1H), 6.83 (dd, J = 1.6, 15.1 Hz, 1H), 4.96 (dd, J = 1.5, 5.0 Hz, 1H), 3.49 (q, J = 7.0 Hz, 2H), 3.32 (s, 3H), 3.21 (s,

3H), 1.23 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 150.0, 139.0, 128.8, 128.3, 127.1, 119.4, 80.7, 64.6, 41.7, 32.7, 15.2; HRMS (EI) Calcd for C₁₄H₁₉NO₄S⁺297.1029; found 297.1031.

Pale yellow oil; (31.3 mg, 62%); ¹H NMR (400 MHz, CDCl₃): δ 7.4-7.28 (m, 5H), 7.10 (dd, J = 4.8, 15.0 Hz, 1H), 6.84 (dd, J = 1.6, 15.0 Hz, 1H), 5.13 (dd, J = 1.5, 4.7 Hz, 1H), 3.40-3.30 (m, 1H), 3.32 (s, 3H), 3.20 (s, 3H), 1.99-1.85 (br, 1H), 1.85-1.65 (m, 2H), 1.55-1.14 (m, 7H); ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 151.0, 139.8, 128.7, 128.1, 126.9, 119.2, 77.6, 75.6, 41.7, 32.7, 32.6, 31.9, 25.7, 24.0, 23.9; HRMS (EI) Calcd for C₁₈H₂₅NO₄S⁺ 351.1499; found 351.1500.

Pale yellow oil; (53.1 mg, 70%); ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 8.4 Hz, 2H), 7.34-7.27 (m, 3H), 7.08 (dd, J = 1.4, 15.1 Hz, 1H), 7.01-6.92 (m, 2H), 6.95 (dd, J = 5.2, 15.0 Hz, 1H), 5.18 (dd, J = 0.7, 5.2 Hz, 1H), 3.60-3.47 (m, 2H), 3.31 (s, 3H), 2.43 (s, 3H), 1.24 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.9, 147.4, 144.9, 142.8, 136.2, 129.9, 127.4, 126.8, 126.0, 125.7, 121.7, 76.2, 64.7, 33.0, 21.6, 15.2; HRMS (EI) Calcd for C₁₈H₂₁NO₄S₂⁺ 379.0907; found 379.0907.

Pale yellow oil; (38.7 mg, 59%); ¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, J = 9.0 Hz, 2H), 7.10 (d, J = 15.0 Hz, 1H), 6.89 (d, J = 8.9 Hz, 2H), 6.80 (d, J = 15.0 Hz, 1H), 3.81 (s, 3H), 3.34 (s, 3H), 3.23 (s, 3H), 3.11 (s, 3H), 1.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 159.2, 154.8, 133.1, 128.0, 117.5, 113.9, 78.5, 55.3, 50.8, 41.8, 32.7, 22.7; HRMS (EI) Calcd for C₁₅H₂₁NO₅S⁺ 327.1135; found 327.1134.

Colorless oil; (58.1 mg, 61%); ¹H-NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.4 Hz, 2H), 7.42-7.20 (m, 12 H), 7.10 (d, J = 150.1 Hz, 1H), 6.98 (d, J = 15.1 Hz, 1H), 6.69 (d, J = 15.9 Hz, 1H), 6.29 (td, J = 5.4, 15.9 Hz, 1H), 3.99 (ddd, J = 1.6, 5.5, 12.7Hz, 1H), 3.89 (ddd, J = 1.6, 5.4, 12.6 Hz, 1H), 3.33 (s, 3H), 2.37 (s, 3H), 1.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 152.7, 144.8, 142.0, 137.0, 136.5, 131.2, 129.9, 128.6, 128.5, 127.8, 127.6, 127.4, 126.6, 126.5, 119.8, 79.0, 64.0, 33.0, 23.8, 21.6; HRMS (EI) Calcd for C₂₈H₂₉NO4S⁺ 475.1812; found 475.1813.

Colorless oil; (62.3 mg, 77%); ¹H-NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.28 (dd, J = 11.2, 14.8 Hz, 1H), 7.23 (d, J = 8.6 Hz, 2H), 6.91 (d, J = 15.0 Hz, 1H), 6.90 (d, J = 8.6 Hz, 2H), 6.43 (td, J = 0.6, 11.2, 15.2 Hz, 1H), 6.20 (dd, J = 6.0, 15.3 Hz, 1H), 4.71 (d, J = 5.9 Hz, 1H), 3.81 (s, 3H), 3.29 (s, 3H), 3.26 (s, 3H), 2.42 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 166.3, 159.5, 145.1, 144.8, 143.8, 136.2, 131.7, 129.9, 128.4, 128.2, 127.3, 121.8, 114.1, 82.8, 56.4, 55.3, 33.0, 21.6.; HRMS (EI) Calcd for C₂₂H₂₅NO₅S⁺ 415.1448; found 415.1450.

Pale yellow oil; (54.1 mg, 70%); ¹H-NMR (400 MHz, CDCl₃): δ 7.47-7.22 (m, 11H), 6.67 (d, J = 14.8 Hz, 1H), 6.49 (dd, J = 11.2, 15.2 Hz, 1H), 6.31 (dd, J = 5.6, 15.2 Hz, 1H), 4.98 (d, J = 5.6 Hz, 1H), 4.53 (d of ABq, J = 11.8 Hz, 1H), 4.46 (d of ABq, J = 11.8 Hz, 1H), 3.31 (s, 3H), 3.19 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 166.5, 146.1, 144.5, 139.7, 138.0, 128.8, 128.5, 128.3, 128.0, 127.8, 127.2, 120.6, 80.5, 70.4, 41.6, 32.6; HRMS (EI) Calcd for C₂₁H₂₃NO₄S⁺ 385.1342; found 385.1339.

Colorless oil; (49.2 mg, 69%); ¹H-NMR (400 MHz, CDCl₃): δ 7.27 (d, *J* = 8.6 Hz, 2H), 7.20 (dd, *J* = 8.8, 14.9 Hz, 1H), 6.87 (d, *J* = 8.8 Hz, 2H), 6.63 (dd, *J* = 1.0, 14.8 Hz, 1H), 4.53 (d, *J* = 8.8 Hz, 1H), 3.80 (s, 3H), 3.31 (s, 3H), 3.20 (s, 3H), 2.49-2.35 (m, 2H), 1.68-1.51 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 166.1, 159.2, 149.1, 130.4, 129.0, 120.2, 114.3, 55.3, 50.2, 41.7, 33.8, 32.7, 22.6, 13.5; HRMS (EI) Calcd for C₁₆H₂₃NO₄S₂⁺ 357.1063; found 357.1066.

Colorless oil; (58.8 mg, 70%); ¹H-NMR (400 MHz, CDCl₃): δ 7.29 (t, J = 6.9 Hz, 2H), 7.23-7.14 (m, 6H), 6.87 (d, J = 8.8 Hz, 2H), 6.60 (dd, J = 1.0, 14.9 Hz, 1H), 4.40 (d, J = 8.8 Hz, 1H), 3.79 (s, 3H), 3.28 (s, 3H), 3.16 (s, 3H), 2.90-2.80 (m, 2H), 2.68 (t, J = 7.5 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 166.0, 159.3, 148.7, 140.2, 130.2, 129.0, 128.7, 128.5, 126.5, 120.5, 114.3, 55.4, 50.4, 41.7, 36.2, 33.1, 32.7; HRMS (EI) Calcd for C₂₁H₂₅NO₄S₂⁺419.1220; found. 419.1217.

Pale yellow oil; (64.7 mg, 81%); ¹H NMR (400 MHz, CDCl₃): δ 7.26 (d, J = 8.7 Hz, 2H), 7.21 (dd, J = 8.7, 14.9 Hz, 1H), 6.87 (d, J = 8.8 Hz, 2H), 6.63 (dd, J = 0.9, 14.8 Hz, 1H), 4.64 (d, J = 8.7 Hz, 1H), 3.79 (s, 3H), 3.30 (s, 3H), 3.19 (s, 3H), 2.62-2.50 (m, 1H), 1.99-1.85 (m, 2H), 1.80-1.68 (m, 2H), 1.62-1.55 (m, 1H), 1.42-1.22 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 159.2, 149.6, 130.7, 129.0, 119.9, 114.3, 55.3, 48.7, 43.4, 41.7, 33.4 (d, 31Hz), 32.7, 25.9, 25.7; HRMS (EI) Calcd for C₁₉H₂₇NO₄S₂⁺ 397.1376; found 397.1375.

Colorless oil; (77.3 mg, 74%); ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.4 Hz, 2H), 7.32-7.20 (m, 6H), 7.22 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 6.8 Hz, 2H), 6.90 (d, J = 15.0 Hz, 1H), 6.88 (d, J = 8.8 Hz, 2H), 6.31-6.18 (m, 2H), 4.41 (d, J = 7.7 Hz, 1H), 3.80 (s, 3H), 3.25 (s, 3H), 2.87-2.83 (m, 2H), 2.68-2.64 (m, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 159.1, 144.9, 144.8, 143.1, 140.3, 136.1, 131.3, 130.0, 128.9, 128.8, 128.6, 128.5, 127.2, 126.5, 121.7, 114.2, 55.3, 51.3, 36.2, 33.2, 33.0, 21.6; HRMS (EI) Calcd for C₂₉H₃₁NO₄S₂⁺ 521.1689; found 521.1690.

White solid; (66.5 mg, 71%); mp = 124-126 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.7 Hz, 2H), 6.91 (dd, *J* = 6.4, 15.2 Hz, 1H), 6.83 (d, *J* = 8.8 Hz, 2H), 6.76 (dd, *J* = 1.2, 15.2 Hz, 1H), 6.14 (s, 1H), 4.56 (d, *J* = 6.2 Hz, 1H), 3.84 (s br, 1H), 3.78 (s, 3H), 3.29 (s, 3H), 3.22 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 159.8, 147.8, 144.4, 134.9, 129.8, 129.3, 129.1, 128.1, 122.3, 114.4, 64.8, 55.3, 41.7, 32.7, 21.6; HRMS (EI) Calcd for C₂₀H₂₅N₃O₆S₂⁺467.1179; found. 467.1179.

White foamy solid; (68.2 mg, 75%); ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 8.6 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.9 Hz, 2H), 7.10 (d, *J* = 8.7 Hz, 2H), 6.94 (dd, *J* = 6.6, 15.2 Hz, 1H), 6.83 (d, *J* = 8.7 Hz, 2H), 6.74 (dd, *J* = 1.1, 15.2 Hz, 1H), 6.15 (s, 1H), 4.55 (t, *J* = 4.9 Hz, 1H), 3.87 (s br, 1H), 3.78 (s, 3H), 3.29 (s, 3H),

3.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 159.9, 147.8, 138.0, 133.4, 129.2, 129.14, 129.1, 128.1, 122.4, 114.5, 64.9, 55.3, 41.7, 32.7; HRMS (EI) Calcd for C₁₉H₂₃N₃O₆S₂⁺453.1023; found 453.1025.

White foamy solid; (49.8 mg, 55%); ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 7.9 Hz, 2H), 7.06 (d, J = 8.1 Hz, 2H), 6.93 (dd, J = 6.4, 15.2 Hz, 1H), 6.77 (dd, J = 1.2, 15.2 Hz, 1H), 5.91 (d, J = 2.0 Hz, 1H), 4.58 (t, J = 5.6 Hz, 1H), 3.83 (dd, J = 2.1, 5.4 Hz, 1H), 3.30 (s, 3H), 3.22 (s, 3H), 2.44 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 147.7, 144.4, 138.7, 134.9, 134.3, 129.8, 129.76, 128.1, 127.8, 122.4, 65.1, 41.7, 32.7, 21.6, 21.2; HRMS (EI) Calcd for C₂₀H₂₅N₃O₅S₂⁺451.1230; found 451.1228.

White solid; (60.1 mg, 63%); mp = 97-98 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.45 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.3 Hz, 2H), 7.57 (d, J = 7.4 Hz, 1H), 7.51 (d, J = 3.8 Hz, 1H), 7.35 (t, J = 8.2 Hz, 1H), 7.29 (d, J = 7.7 Hz, 3H), 7.15 (d, J = 8.7 Hz, 2H), 7.07 (dd, J = 6.2, 15.2 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 6.81 (dd, J = 1.2, 15.2 Hz, 1H), 6.65 (d, J = 3.8 Hz, 1H), 5.94 (s, 1H), 4.65 (d, J = 6.2 Hz, 1H), 3.80 (s, 1H), 3.79 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 160.0, 147.6, 144.5, 135.8, 135.1, 130.7, 129.8, 129.3, 129.2, 128.1, 125.0, 124.9, 123.9, 122.3, 120.9, 116.8, 114.5, 109.3, 64.9, 55.4, 21.6; HRMS (EI) Calcd for C₂₆H₂₅N₃O₄S⁺ 475.1560; found 475.1560.

White solid; (77.1 mg, 74%); mp = 103-104 °C ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 8.3 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 4H), 7.28 (dd, *J* = 1.2, 5.1 Hz, 1H), 6.99-6.95 (m, 2H), 6.86 (d, *J* = 3.2 Hz, 1H), 6.75 (dd, *J* = 6.6, 15.2 Hz, 1H), 6.05 (d, *J* = 2.0 Hz, 1H), 4.79 (t, *J* = 6.7 Hz, 1H), 3.85 (dd, *J* = 2.1, 6.8 Hz, 1H), 3.27 (s, 3H), 2.44 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 145.2, 145.1, 144.4, 140.5, 135.9, 134.9, 130.1, 129.8, 128.2, 127.4, 127.1, 126.3, 126.2, 124.4, 60.9, 33.0, 21.7; HRMS (EI) Calcd for C₂₃H₂₅N₃O₅S₃⁺ 519.0951; found 519.0952.

White foamy solid; (73.3 mg, 76%); ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.9 Hz, 2H), 7.01 (d, J = 15.4 Hz, 1H), 6.82 (d, J = 8.9 Hz, 2H), 6.79 (d, J = 15.4 Hz, 1H), 5.98 (s, 1H), 3.77 (s, 3H), 3.33 (s, 3H), 3.25 (s, 3H), 2.42 (s, 3H), 1.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.8 159.2, 152.4, 144.1, 134.7, 134.0, 129.6, 128.3, 127.5, 121.1, 114.0, 62.7, 55.3, 41.7, 32.8, 23.8, 21.6; HRMS (EI) Calcd for C₂₁H₂₇N₃O₆S₂⁺481.1336; found 481.1336.

White solid; (90.2 mg, 79%); mp = 118-119 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 8.3 Hz, 2H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.34-7.32 (m, 4H), 7.14 (dd, *J* = 11.2, 14.8 Hz, 1H), 7.06 (d, *J* = 8.7 Hz, 2H), 6.87-6.83 (m, 3H), 6.18 (dd, *J* = 11.0, 15.4 Hz, 1H), 5.94 (dd, *J* = 7.0, 13.3 Hz, 1H), 5.79 (s, 1H), 4.37 (d, *J* = 7.0 Hz, 1H), 3.90 (s br, 1H), 3.79 (s, 3H), 3.25 (s, 3H), 2.45 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 159.6, 145.0, 144.7, 144.3, 142.1, 136.0, 135.4, 130.3, 130.0, 129.7, 128.9, 128.2, 127.2, 122.1, 114.4, 65.3, 55.3, 33.0, 21.6; (EI) HRMS Calcd for C₂₈H₃₁N₃O₆S₂+569.1649; found 569.1650.

4. Kinetic Study

4.1. General

The reaction mixture was prepared in an NMR tube by adding: enynamides 4 (0.05 mmol), DMSO (0.50 mmol), *N*-Me-indole (0.50 mmol) and 1,2-diethylphthalate (internal reference) in CD₂Cl₂ (1.0 mL). To this mixture was added a stock solution of HNTf₂ (2.5 mol%; 50 μ L of a stock made of 35.0 mg of HNTf₂ in 5.00 mL CDCl₃) and the progress of the reaction was monitored by ¹H NMR spectrometer (probe temperature at 298 K). For volumetric measurements, Finnpipette F1 from Thermo Scientific was used.

4.2. Hammett plot

A set of enynamides, **4b** (4-OMe), **4c** (4-Me), **4d** (4-H), **4e** (4-Cl), **4p** (4-Ph), and **4q** (4-Br) was chosen for a Hammett study to probe the electronic influence of the aryl substituent at C4 of enynamides (Table S1). Firstly, the k_{obs} 's of the reaction of enynamides **4** with *N*-Me-indole were measured at 298 K under the general conditions in 4.1 (Eq. S1). Similarly, the rates of the reactions of enynamides **4b-e**, **4p-q** with Ph(CH₂)₂OH and 2-methylfuran were obtained (Eq. S2 and S3, respectively). A plot of log(k_R/k_H) thus obtained was linearly proportional to the σ^+ values, with a slope of $\rho = -1.32$, -3.73, and -0.80 for the reactions with *N*-Me-indole, Ph(CH₂)₂OH, and 2-Mefuran, respectively. The negative ρ value (-1.3) with *N*-Me-indole indicated positive charge is developing in the transition state. The ρ value depended on the type of nucleophiles: from the highest negative ρ value (-3.7) with Ph(CH₂)₂OH, the corresponding turnover-limiting transition state has the most developed cationic charge. In contrast, less negative ρ value (-0.8) with 2-methylfuran indicated less buildup of positive charge in the transition state.

R	σ_p	σ^+	σ	$k_{\rm R}({\rm s}^{-1})$	$\log(k_{\rm R}/k_{\rm H})$	$k_{\rm R}$ (s ⁻¹)	$\log(k_{\rm R}/k_{\rm H})$	$k_{\rm R}$ (s ⁻¹)	$\log(k_{\rm R}/k_{\rm H})$
	-			for rxn (a)	for rxn (a)	for rxn (b)	lor rxn (b)	for rxn (c)	for rxn (c)
p-OMe	-0.27	-0.78	-0.26	1.33 x 10 ⁻³	0.996747	3.25 x 10 ⁻ 3	2.937852	8.00 x 10 ⁻⁴	0.552842
<i>p</i> -Me	0.14	-0.31	0.17	4.04 x 10 ⁻⁴	0.479277	1.39 x 10 ⁻ 4	1.568984	4.15 x 10 ⁻⁴	0.267800
<i>p</i> -Ph	0.01	-0.18	0.02	2.53 x 10 ⁻⁴	0.276016	4.53 x 10 ⁻ 5	1.082067	3.82 x 10 ⁻⁴	0.231815
<i>р-</i> Н	0	0	0	1.34 x 10 ⁻⁴	0.000000	3.75 x 10 ⁻ 6	0.000000	2.24 x 10 ⁻⁴	0.000000
p-Cl	0.24	0.11	0.19	9.88 x 10 ⁻⁵	-0.132348	2.08 x 10 ⁻ 6	-0.255968	1.38 x 10 ⁻⁴	-0.210369
<i>p</i> -Br	0.23	0.15	0.25	7.67 x 10 ⁻⁵	-0.242309	1.32 x 10 ⁻ 6	-0.453457		

Table S	1. Hammett a	analysis
---------	--------------	----------

Figure S1. Hammett Plot

4.3. Asymmetric Induction Experiment

The reaction of enynamides **4b** was repeated with an enantiomerically enriched N,N'-dioxide^{4a} as reported in our previous paper.⁴ As shown in Eq. S4, a low level of asymmetric induction was observed (14%ee for **8ba**, and 29%ee for **12ba**) was obtained (For comparison, a similar reaction with ynamide gave 83 %ee of asymmetric induction).^{4b}

4.4. Eyring analysis

The first-order rate constant was measured at each 298, 308, 318 and 328 K with a catalyst loading (5 mol%). The kinetic data and the corresponding plots of $\ln[4b]$ vs. time are given in Table S2 and Figure S2, respectively. These obtained first-order rate constants (k_{obs}) were plotted according to Eyring equation (Eq. S5) as in Figure S3.

where k_{obs} (observed rate constant), T (temperature, K), k_B (Boltzmann const.), h (Planck const.), R (molar gas constant)

From the slope and the y-intercept, activation enthalpy and entropy was measured to be $\Delta H^{\ddagger} = 83.5 \text{ kJmol}^{-1}$ and $\Delta S^{\ddagger} = -37.6 \text{ JK}^{-1}\text{mol}^{-1}$, respectively (Figure S3).

298 K		308 K		318 K		328 K	
Time (s)	ln[4b]	Time (s)	ln[4b]	Time (s)	[4b]	Time (s)	[4]
185	-3.024	230	-3.075	184	-3.182	184	-3.491
435	-3.055	390	-3.157	245	-3.254	245	-3.713
915	-3.123	570	-3.245	305	-3.337	305	-3.967
1515	-3.210	765	-3.307	365	-3.435	365	-4.177
2115	-3.291	1095	-3.464	425	-3.476	425	-4.397
3015	-3.447	1455	-3.628	545	-3.691	485	-4.623
3915	-3.581	1815	-3.808	725	-3.905	548	-4.888
5115	-3.787	2175	-3.990	905	-3.181	605	-5.010
6315	-4.957	2535	-4.141	1085	-3.383		
7515	-4.168	3015	-4.362	1325	-4.804		
$k_{\rm obs}$	1.56 x 10 ⁻⁴	$k_{ m obs}$	4.63 x 10 ⁻⁴	$k_{ m obs}$	1.40 x 10 ⁻³	$k_{ m obs}$	3.69 x 10 ⁻³

Table S2. Kinetic data for temperature dependence study.

⁴ (a) Nakajima, M.; Saito, M.; Shiro, S. M.; Hashimoto, S.-I. J. Am. Chem. Soc. **1998**, 120, 6419. (b) Patil, D. V.; Kim, S. W.; Nguyen, Q. H.; Kim, H.; Wang, S.; Hoang, T.; Shin, S. Angew. Chem. Int. Ed. **2017**, 56, 3670.

Figure S2. A plot of ln[4b] vs. time at (a) 298 K, (b) 308 K, (c) 318 K, and (d) 328 K.

Figure S3. Eyring Plot: The reactions of enynamides 4b with N-Me-indole

4.5. Reaction order

The dependence of k_{obs} on the concentration of DMSO and nucleophile (*N*-Me-indole) was studied under the following conditions: (**Figure S4**) for the reaction order in DMSO, **4b** (0.05 mmol), *N*-Me-indole (0.105 mmol), DMSO (0.06~0.12 mmol) and HNTf₂ (1.25 mol%) in CD₂Cl₂ (1.0 mL) at 298 K; (**Figure S5**) for the reaction order in *N*-Me-indole, **4b** (0.05 mmol), *N*-Me-indole (0.054-0.109 mmol), DMSO (0.06 mmol) and HNTf₂ (1.25 mol%) in CD₂Cl₂ at 298 K; (**Figure S6**) for the reaction order in Ph(CH₂)₂OH, **4b** (0.05 mmol), DMSO (0.20 mmol), HNTf₂ (1.25 mol%) and Ph(CH₂)₂OH (0.15-0.30 mmol) in CD₂Cl₂ (2.0 mL) at 298 K. The results of these analysis are shown in Figure S4-6, respectively.

DMSO	[DMSO]	$k_{\rm obs}({\rm s}^{-1})$
(equiv.)	(M)	
1.2	0.060	1.94 x 10 ⁻⁴
1.6	0.080	2.68 x 10 ⁻⁴
2.0	0.100	2.36 x 10 ⁻⁴
2.4	0.120	2.00 x 10 ⁻⁴

Figure S4. Reaction order with respect to DMSO

[N-Me-indole]	$k_{\rm obs}({\rm s}^{-1})$
(M)	
0.0545	3.93 x 10 ⁻⁴
0.0681	3.45 x 10 ⁻⁴
00818	2.59 x 10 ⁻⁴
00954	1.94 x 10 ⁻⁴
0.1091	1.54 x 10 ⁻⁴

Figure S5. Reaction order with respect to N-Me-indole

[Ph(CH ₂) ₂ OH]	$k_{\rm obs}({ m s}^{-1})$
(M)	
0.075	2.90 x 10 ⁻³
0.100	3.73 x 10 ⁻³
0.125	2.97 x 10 ⁻³
0.150	3.48 x 10 ⁻³

Figure S6. Reaction order with respect to Ph(CH₂)₂OH

[HNTf ₂]	$k_{\rm obs}({ m s}^{-1})$
(mol%)	
1.25	1.29 x 10 ⁻⁴
1.75	2.44 x 10 ⁻⁴
2.25	5.09 x 10 ⁻⁴
2.75	7.60 x 10 ⁻⁴
3.25	8.67 x 10 ⁻⁴

Figure S7. Reaction order with respect to HNTf₂

4.7. Test of other Brønsted acids

Considering the strong acidity of HNTf₂ in CH₂Cl₂ and there a number of potential Brønsted bases in the reaction mixture, including nucleophiles, oxidants, byproducts of oxidants and the products derived from the nucleophiles, it was of interest whether the corresponding conjugate acids (for example, protonated *N*-Me-indole or an oxonium ion from 2-phenylethanol) can catalyze the reaction. To elucidate this aspect, we conducted screening of Brønsted acids of varying pKa's and compared the outcome through crude ¹H NMR analysis. It turned out that Brønsted acids weaker than *p*-NO₂-C₆H₄SO₃H (pKa = 6.4 in CH₃CN^{5a}) do not catalyze the reaction of **4a** effectively and affords the **8aa** in only trace amount. Assuming that the conjugate acids of *N*-Me-indole (pKa = -2.30 in HClO₄^{5b}) is a weaker acid than *p*-NO₂-C₆H₄SO₃H, the conjugate acid of *N*-Me-indole is not likely to be a true catalyst.

Table S3. Comparison of Brønsted acids cayalyst.^a

Ms _N Bn 4a	MeO MeO MeO MEO MEO MEO MEO MEO MEO MEO ME	$\begin{array}{c} (2 \text{ equiv.}) \\ \text{equiv.}) \\ \text{mol%} \\ \text{I}_2 \\ \end{array} \qquad \begin{array}{c} \text{Ms} \\ \text{N} \\ \text{Bn} \\ \alpha \textbf{-8aa} \\ \text{Ar} \end{array}$	+ Ms N Bn Ar γ-8aa	Me
Entry	HX	Conditions	Yield	α:γ
1	HNTf ₂	RT, 5 min	95%	1:5.6
2	TfOH	RT, 30 min	90%	1:5.0
3	p-NO ₂ C ₆ H ₄ SO ₃ H	RT, 1 h	36%	1:5.0
4	<i>p</i> -ClC ₆ H₄SO ₃ H	RT, 1 h	<35%	1:4.9
5	TsOH [·] H ₂ O	40 °C, 24 h	<30%	1:4.9
6	(S)-CSA	40 °C, 24 h	<30%	1:5.9
7	MsOH	40 °C, 24 h	<30%	1:4.3
8	p-NO ₂ C ₆ H ₄ CO ₂ H	80 °C, 12 h	NR	-

^aThe yield and the regioisomeric ratio (α/γ) was determined from the crude ¹H NMR with 1,2-diethylphthalate as an internal standard.

⁵ (a) Kütt, A.; Rodima, T.; Saame, J.; Raamat, E.; Mäemets, V.; Kaljurand, I.; Koppel, I. A.; Garlyauskayte, R.

<sup>Y.; Yagupolskii, Y. L.; Yagupolskii, L. M.; Bernhardt, E.; Willner, H.; Leito, I. J. Org. Chem. 2011, 76, 391-395.
(b) Hinman, R. L.; Lang, J. J. Am. Chem. Soc. 1964, 86, 3796-3806.</sup>

4.8. Mass analysis

To probe whether we can detect the dienolonium carbocation in the reaction mixture, we prepared a solution composed of enynamide **4b**, DMSO and HNTf₂ at -78 °C and subject it to ESI-MS analysis. The sample was prepared in the following manner: In a 4 mL vial was added enynamide **4b** (0.025 mmol, 6.6 mg) and DMSO (0.03 mmol, 2.3 mg) in 1 mL dichloromethane. A stock solution of HNTf₂ was made using HNTf₂ (0.025 mmol, 7.0 mg) in 1 mL CH₂Cl₂. Both solutions were cooled to -78 °C, followed by rapid addition of stock solution of HNTf₂ to the reaction mixture. LCMS sample was made by diluting 0.1 mL of reaction solution with 0.9 mL of pre-cooled (at -78°C) acetonitrile followed by injection to LCMS. A peak at m/z 282.2 was assigned as the dienolonium carbocation species.

5. Synthetic Applications

In a 4-mL vial, **13ba** (or **16ba**) (0.05 mmol) was dissolved in a mixture of methanol and 1,2-dichloroethane (1:3), followed by the addition of NaOMe (4.1 mg, 0.075 mmol). The reaction mixture was stirred at room temperature for 15 minutes and purified by flash column chromatography.

23 (86 %); Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.23 (m, 11H), 6.41 (dd, J = 11.1, 15.3 Hz, 1H), 6.21 (dd, J = 6.0, 15.3 Hz, 1H), 5.90 (d, J = 15.4 Hz, 1H), 4.94 (d, J = 6.0 Hz, 1H), 4.49 (dd, J = 12.0, 21.5 Hz, 2H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 167.3, 144.0, 142.6, 140.0, 138.1, 128.8, 128.5, 128.3, 128.2, 127.8, 127.2, 121.5, 80.6, 70.3, 51.6; LRMS (ESI) Calcd for C₂₀H₂₀O₃Na⁺ [M+Na]⁺ 331.1; found 331.3.

24 (71 %); Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 6.85-6.80 (m, 3H), 5.82 (dd, J = 1.4, 15.8 Hz, 1H), 5.76 (s, 1H), 4.44 (d, J = 6.0 Hz, 1H), 3.79 (s, 3H), 3.71 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 159.8, 146.2, 144.4, 135.3, 129.8, 129.4, 129.0, 128.2, 122.6, 114.4, 64.4, 55.3, 51.7, 21.7; LRMS (ESI) Calcd for C₁₉H₂₂N₂O₅SNa⁺ [M+Na]⁺ 413.1; found 413.2.

In a flame-dried rb flask, *N*,*O*-dimethylhydroxylamine hydrochloride (7.3mg, 0.075 mmol) was dissolved in THF (2.4 ml), the solution was cooled to -20 °C before addition of isopropylmagnesium chloride (2.0 M in THF, 75 μ L, 0.150 mmol). The mixture was stirred at -20 °C for 15 minutes and then at -40 °C, which generated a solution of (MeO)MeNMgCl. In another rb flask, substrate **8ba** (25.0 mg, 0.060 mmol) was dissolved in THF (1.8 ml) and the rb flask was placed in an ice-bath, before addition of (MeO)MeNMgCl solution above. The reaction mixture was stirred at 0°C until completion was indicated by TLC. The reaction mixture was quenched with saturated aq. ammonium chloride (3.0 mL) and extracted with ethyl acetate (3 x 3 mL). The combined organic layers were dried over magnesium sulfate and concentrated. The residue purified by flash column chromatography (EtOAc:*n*Hex = 1:2~1:1) to afford 14.7 mg (67%) of **25** as pale-yellow oil.

25 (67 %); Pale-yellow oil.; ¹H NMR (400 MHz, CDCl₃): δ 7.42 (dd, J = 15.3, 7.4 Hz, 1H), 7.35 (d, J = 7.9 Hz, 1H), 7.28 (d, J = 8.2 Hz, 1H), 7.20 (m, 3H), 7.00 (t, J = 8.0 Hz, 1H), 6.83 (d, J = 8.8 Hz, 2H), 6.75 (s, 1H), 6.37 (d, J = 15.4 Hz, 1H), 5.08 (d, J = 7.4 Hz, 1H), 3.78 (s, 3H), 3.73 (s, 3H), 3.55 (s, 3H), 3.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 167.0, 158.3, 148.8, 137.4, 134.1, 129.4, 127.3, 127.0, 121.7, 119.7, 119.1, 118.9, 115.9, 113.9,

109.2, 61.7, 55.3, 44.8, 32.7; LRMS (APCI) Calcd for $C_{22}H_{24}N_2O_3$ [M+H]⁺ 364.2, found. 365.2.

In a flame-dried 4 mL vial was dissolved **13ba** (20 mg, 0.052 mmol) in toluene, followed by addition of Nmethylmaleimide (28.9 mg, 0.26 mmol). Reaction mixture was heated to 110 °C for 24 h and purified by flash column chromatography (EtOAc:*n*Hex = 1:5~1:1).

26 (39%); Colorless oil; (only spectra of major product) ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.26 (m, 10H), 6.16 (dt, *J* = 2.9, 9.7 Hz, 1H), 5.62 (dt, *J* = 9.6, 3.2 Hz, 1H), 5.22 (d, *J* = 10.9 Hz, 1H), 4.52 (d, J = 10.4 Hz, 1H), 4.33 (d, J = 10.4 Hz, 1H), 3.92 (dd, *J* = 5.5, 8.3 Hz, 1H), 3.84-3.73 (m, 2H), 3.35 (s, 3H), 3.26 (s, 3H), 2.93 (s, 3H), 2.71-2.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): 177.3, 176.5, 171.5, 140.2, 138.4, 129.3, 128.8, 128.5, 128.4, 128.2, 127.9, 127.7, 126.6, 80.7, 71.0, 43.7, 42.9, 42.2, 41.1, 40.6, 33.2, 24.9; LRMS (APCI) Calcd for C₂₆H₂₉N₂O₆S⁺ [M+H]⁺ 497.2, found. 497.2.

27 (81 %, dr 2:1)

Hydrazide **16ba** (150.0 mg, 0.32 mmol) and benzenethiol (42.0 mg, 0.38 mmol) was dissolved in dichloromethane, followed by K_2CO_2 (88.4 mg, 0.64mmol). The reaction mixture was stirred at room temperature for 4 hours (monitored by TLC). After completion, the reaction mixture was filtered, and the filtrate was concentrated and purified by column chromatography (EtOAc:*n*Hex = 1:3~1:2) to afford 150.3 mg (81%) of **27** as white solid.

27 (81 %) White solid; (dr 2:1) ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 8.3 Hz, 1H), 7.68 (d, J = 8.3 Hz, 2H), 7.31-7.18 (m, 10H), 7.11 (d, J = 8.6 Hz, 1H), 7.05 (d, J = 8.7 Hz, 2H), 6.83-6.79 (m, 3H), 5.65 (d, J = 1.7 Hz, 0.5H), 5.45 (d, J = 1.0 Hz, 1H), 4.49 (dd, J = 1.8, 6.6 Hz, 0.5H), 4.21 (t, J = 6 Hz, 0.5H), 4.06 (dd, J = 1.2, 8.7 Hz, 1H), 3.95-3.90 (m, 1H), 3.89-3.78 (m, 1.5H), 3.79 (s, 3H), 3.78 (s, 1.5H), 3.20 (s, 3H), 3.18 (s, 1.5H), 3.15 (s, 1.5H), 3.11 (s, 3H) 3.09-3.03 (m, 1.5H), 2.90-2.78 (m, 1.5H), 2.45 (s, 1.5H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 172.4, 171.7, 159.8, 159.6, 144.2, 135.7, 135.4, 134.1, 133.8, 132.2, 131.6, 129.8, 129.5, 129.1, 129.0, 128.9, 128.1, 127.9, 127.6, 127.4, 114.3, 114.1, 67.1, 66.2, 55.3, 50.1, 48.2, 41.4, 41.3, 39.8, 39.7, 32.4, 21.6; LRMS (APCI) Calcd for C₂₆H₃₁N₃O₆S₃ [M+H]⁺ 577.1, found. 578.0.

In a flame-dried 4 mL vial was dissolved **27** (10 mg, 0.017 mmol) in MeOH (2ml). followed by addition of SmI_2 (0.1 M in THF, 0.35 mL, 0.0346 mmol). The reaction mixture was stirred at 35°C for 12 hours. The reaction mixture was concentrated and purified by column chromatography (EtOAc:*n*Hex = 1:5~1:1) to afford 4.7 mg (58%) of **28** as white solid.

28 (58 %); White solid (single dr) ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 8.3 Hz, 2H), 7.52-7.50 (m, 2H), 7.41-7.36 (m, 3H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.85 (s, 1H), 6.82 (d, *J* = 8.8 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 5.09 (d, *J* = 1.9 Hz, 1H), 3.78 (s, 3H), 3.64 (dt, *J* = 2.6, 8.1 Hz, 1H), 2.83 (dd, *J* = 8.5, 18.3 Hz, 1H) 2.46 (s, 3H), 2.28 (dt, *J* = 2.8, 18.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 170.2, 160.0, 145.2, 133.9, 133.5, 133.0, 129.8, 129.6, 129.4, 129.0, 128.6, 127.7, 114.7, 68.4, 55.5, 45.8, 33.7, 22.0; LRMS (APCI) Calcd for C₂₄H₂₄N₂O₄S₂ [M+H]⁺ 468.1, found. 469.1.

In a flame-dried 4 mL vial **28** (4.7 mg, 0.01 mmol) and Cs_2CO_3 (8.2 mg, 0.025 mmol) was dissolved in acetonitrile (0.2 ml), followed by addition of diethyl bromomalonate (3.4 µL, 0.02 mmol). The reaction mixture was stirred at 35°C for 36 hours. The reaction mixture was quenched with saturated aq. ammonium chloride (0.4 mL) and extracted with ethyl acetate (3 x 0.5 mL). The combined organic layers were dried over magnesium sulfate and concentrated. The residue purified by flash column chromatography (EtOAc:*n*Hex = 1:5~1:1) to afford 1.0 mg (86%) of **29** as colorless oil.

29 (86 %); Colorless oil; (Single dr) ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.34 (m, 2H), 7.30-7.27 (m, 3H), 7.12 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 5.66 (s, 1H), 4.57 (d, J = 5.2 Hz, 1H), 3.80 (s, 3H), 3.65 (ddd, J = 8.4, 6.6, 5.2 Hz, 1H), 2.90 (dd, J = 17.5, 8.4 Hz, 1H), 2.46 (dd, J = 17.5, 6.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 175.1, 159.7, 133.1, 132.7, 132.0, 129.2, 127.9, 127.2, 114.3, 63.5, 55.4, 50.8, 37.2; LRMS (APCI) Calcd for C₁₇H₁₇NO₂S [M+H]⁺ 299.1, found. 300.2.

In a 4-mL vial, **16ba** (5.0 mg, 0.01 mmol) was dissolved in dichloromethane(0.4ml), followed by the addition of Triethylamine (3.0 μ L, 0.02 mmol). The reaction mixture was stirred at room temperature for 36 hours. The reaction mixture was concentrated and purified by column chromatography (EtOAc:*n*Hex = 1:1) to afford 3.3 mg (95%) of **30** as white solid.

30 (95 %); white solid; ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 9.0 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 6.94 (d, J = 9.0 Hz, 2H), 3.85 (s, 3H), 2.94 (t, J = 7.4 Hz, 2H), 2.58 (t, J = 7.3 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 166.5, 161.8, 154.3, 145.2, 134.8, 129.5, 129.0, 128.2, 126.9, 114.1, 55.5, 29.4, 22.4, 21.7; LRMS (APCI) Calcd for C₁₈H₁₈N₂O4S [M+H]⁺ 358.1, found. 359.0.

5. Single Crystal X-ray Crystallographic Data on 16ma

Figure S8. ORTEP Drawing of 16ma

5			
Identification code	NHQ-IX-58		
Empirical formula	C23 H25 N3 O5 S3		
Formula weight	519.64		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 7.7689(3) Å	α= 84.839(3)°.	
	b = 12.7180(6) Å	$\beta = 81.171(2)^{\circ}$.	
	c = 12.8936(6) Å	$\gamma = 79.286(3)^{\circ}.$	
Volume	1234.43(10) Å ³		
Z	2		
Density (calculated)	1.398 Mg/m ³		
Absorption coefficient	0.340 mm ⁻¹		
F(000)	544		
Crystal size	$0.274 \text{ x} 0.132 \text{ x} 0.067 \text{ mm}^3$		
Theta range for data collection	1.602 to 28.239°.		
Index ranges	-10<=h<=9, -16<=k<=16, -174	<=l<=17	
Reflections collected	21026		
Independent reflections	6081 [R(int) = 0.0412]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Multi-scan SADABS		
Max. and min. transmission	0.7457 and 0.7097		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	6081 / 0 / 307		
Goodness-of-fit on F ²	1.069		
Final R indices [I>2sigma(I)]	R1 = 0.0543, $wR2 = 0.1408$		
R indices (all data)	R1 = 0.0741, wR2 = 0.1535		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.712 and -0.652 e.Å $^{\text{-3}}$		

Table S4. Crystal data and structure refinement for NHQ-IX-58 (16ma).
	Х	У	Z	U(eq)
S(1)	6834(1)	7956(1)	1402(1)	29(1)
S(2A)	2904(1)	10308(1)	4027(1)	32(1)
C(10A)	2488(2)	8968(2)	5865(2)	62(1)
S(2B)	2488(2)	8968(2)	5865(2)	62(1)
C(10B)	2904(1)	10308(1)	4027(1)	32(1)
S(3)	2712(1)	4147(1)	3853(1)	40(1)
O(1)	5175(2)	8346(2)	1030(2)	40(1)
O(2)	7992(2)	7051(1)	949(2)	38(1)
O(3)	-69(2)	6881(2)	3268(2)	40(1)
O(4)	3611(3)	4422(2)	4642(2)	49(1)
O(5)	1926(3)	3207(2)	4019(2)	61(1)
N(1)	6454(3)	7590(2)	2662(2)	28(1)
N(2)	5493(3)	8453(2)	3264(2)	29(1)
N(3)	1041(3)	5159(2)	3667(2)	35(1)
C(1)	8002(3)	9029(2)	1330(2)	27(1)
C(2)	9826(3)	8803(2)	1309(2)	29(1)
C(3)	10753(3)	9629(2)	1336(2)	33(1)
C(4)	9861(4)	10680(2)	1402(2)	35(1)
C(5)	8041(4)	10886(2)	1409(2)	39(1)
C(6)	7099(4)	10076(2)	1371(2)	34(1)
C(7)	10856(5)	11571(2)	1491(2)	51(1)
C(8)	4242(3)	8098(2)	4123(2)	26(1)
C(9)	3288(3)	9071(2)	4684(2)	26(1)
C(11)	1554(3)	10176(2)	5952(2)	33(1)
C(12)	1714(4)	10856(2)	5094(2)	36(1)
C(13)	2924(3)	7585(2)	3699(2)	26(1)
C(14)	2529(3)	6638(2)	4052(2)	28(1)
C(15)	1104(3)	6256(2)	3638(2)	28(1)
C(16)	-410(4)	4897(3)	3164(3)	52(1)
C(17)	4114(4)	4089(2)	2648(2)	36(1)
C(18)	5373(4)	4751(2)	2415(2)	40(1)
C(19)	6436(4)	4700(2)	1460(3)	45(1)

Table S5. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å ^{2}x 10³) for NHQ-IX-58. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S37

C(20)	6278(4)	3998(2)	719(2)	46(1)
C(21)	4995(4)	3356(2)	969(3)	52(1)
C(22)	3924(4)	3388(2)	1924(3)	47(1)
C(23)	7466(5)	3936(3)	-318(3)	67(1)

S(1)-O(1)	1.4302(18)
S(1)-O(2)	1.4320(18)
S(1)-N(1)	1.647(2)
S(1)-C(1)	1.762(2)
S(2A)-C(12)	1.665(3)
S(2A)-C(9)	1.716(2)
C(10A)-C(9)	1.557(3)
C(10A)-C(11)	1.578(3)
C(10A)-H(10A)	0.9500
S(2B)-C(9)	1.557(3)
S(2B)-C(11)	1.578(3)
C(10B)-C(12)	1.665(3)
C(10B)-C(9)	1.716(2)
C(10B)-H(10B)	0.9500
S(3)-O(4)	1.421(2)
S(3)-O(5)	1.426(2)
S(3)-N(3)	1.678(2)
S(3)-C(17)	1.754(3)
O(3)-C(15)	1.218(3)
N(1)-N(2)	1.427(3)
N(1)-H(1A)	0.8800
N(2)-C(8)	1.455(3)
N(2)-H(2A)	0.8800
N(3)-C(15)	1.403(3)
N(3)-C(16)	1.484(3)
C(1)-C(6)	1.387(3)
C(1)-C(2)	1.389(3)
C(2)-C(3)	1.385(3)
C(2)-H(2B)	0.9500
C(3)-C(4)	1.390(4)
C(3)-H(3A)	0.9500
C(4)-C(5)	1.388(4)
C(4)-C(7)	1.506(4)
C(5)-C(6)	1.378(4)
C(5)-H(5A)	0.9500

	ō.
Table S6.	Bond lengths [Å] and angles [°] for NHQ-IX-58.

C(6)-H(6A)	0.9500
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(8)-C(9)	1.503(3)
C(8)-C(13)	1.503(3)
C(8)-H(8A)	1.0000
C(11)-C(12)	1.347(4)
С(11)-Н(11)	0.9500
C(12)-H(12)	0.9500
C(13)-C(14)	1.322(3)
C(13)-H(13A)	0.9500
C(14)-C(15)	1.474(3)
C(14)-H(14A)	0.9500
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-C(18)	1.387(4)
C(17)-C(22)	1.389(4)
C(18)-C(19)	1.372(4)
C(18)-H(18A)	0.9500
C(19)-C(20)	1.399(4)
C(19)-H(19A)	0.9500
C(20)-C(21)	1.385(5)
C(20)-C(23)	1.503(5)
C(21)-C(22)	1.375(5)
C(21)-H(21A)	0.9500
C(22)-H(22A)	0.9500
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
O(1)-S(1)-O(2)	119.80(11)
O(1)-S(1)-N(1)	108.60(11)
O(2)-S(1)-N(1)	104.38(11)
O(1)-S(1)-C(1)	108.62(12)
O(2)-S(1)-C(1)	109.05(11)

N(1)-S(1)-C(1)	105.45(11)
C(12)-S(2A)-C(9)	91.94(13)
C(9)-C(10A)-C(11)	96.81(18)
C(9)-C(10A)-H(10A)	131.6
С(11)-С(10А)-Н(10А)	131.6
C(9)-S(2B)-C(11)	96.81(18)
C(12)-C(10B)-C(9)	91.94(13)
C(12)-C(10B)-H(10B)	134.0
C(9)-C(10B)-H(10B)	134.0
O(4)-S(3)-O(5)	119.46(13)
O(4)-S(3)-N(3)	107.99(12)
O(5)-S(3)-N(3)	105.08(13)
O(4)-S(3)-C(17)	109.63(14)
O(5)-S(3)-C(17)	108.59(14)
N(3)-S(3)-C(17)	105.10(12)
N(2)-N(1)-S(1)	112.07(15)
N(2)-N(1)-H(1A)	124.0
S(1)-N(1)-H(1A)	124.0
N(1)-N(2)-C(8)	112.36(18)
N(1)-N(2)-H(2A)	123.8
C(8)-N(2)-H(2A)	123.8
C(15)-N(3)-C(16)	114.6(2)
C(15)-N(3)-S(3)	126.10(17)
C(16)-N(3)-S(3)	116.34(18)
C(6)-C(1)-C(2)	120.6(2)
C(6)-C(1)-S(1)	120.35(19)
C(2)-C(1)-S(1)	118.90(18)
C(3)-C(2)-C(1)	119.9(2)
C(3)-C(2)-H(2B)	120.1
C(1)-C(2)-H(2B)	120.1
C(2)-C(3)-C(4)	120.2(2)
C(2)-C(3)-H(3A)	119.9
C(4)-C(3)-H(3A)	119.9
C(5)-C(4)-C(3)	118.8(2)
C(5)-C(4)-C(7)	121.0(3)
C(3)-C(4)-C(7)	120.3(3)
C(6)-C(5)-C(4)	121.8(2)

C(6)-C(5)-H(5A)	119.1
C(4)-C(5)-H(5A)	119.1
C(5)-C(6)-C(1)	118.7(2)
C(5)-C(6)-H(6A)	120.6
C(1)-C(6)-H(6A)	120.6
C(4)-C(7)-H(7A)	109.5
C(4)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(4)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
N(2)-C(8)-C(9)	107.63(19)
N(2)-C(8)-C(13)	110.17(19)
C(9)-C(8)-C(13)	109.29(19)
N(2)-C(8)-H(8A)	109.9
C(9)-C(8)-H(8A)	109.9
C(13)-C(8)-H(8A)	109.9
C(8)-C(9)-S(2B)	120.69(19)
C(8)-C(9)-C(10A)	120.69(19)
C(8)-C(9)-S(2A)	121.32(17)
C(10A)-C(9)-S(2A)	117.82(16)
C(8)-C(9)-C(10B)	121.32(17)
S(2B)-C(9)-C(10B)	117.82(16)
C(12)-C(11)-C(10A)	118.4(2)
C(12)-C(11)-S(2B)	118.4(2)
C(12)-C(11)-H(11)	120.8
C(10A)-C(11)-H(11)	120.8
C(11)-C(12)-S(2A)	115.0(2)
C(11)-C(12)-C(10B)	115.0(2)
C(11)-C(12)-H(12)	122.5
S(2A)-C(12)-H(12)	122.5
C(14)-C(13)-C(8)	123.8(2)
C(14)-C(13)-H(13A)	118.1
C(8)-C(13)-H(13A)	118.1
C(13)-C(14)-C(15)	118.9(2)
C(13)-C(14)-H(14A)	120.5
C(15)-C(14)-H(14A)	120.5

O(3)-C(15)-N(3)	117.7(2)
O(3)-C(15)-C(14)	121.3(2)
N(3)-C(15)-C(14)	121.0(2)
N(3)-C(16)-H(16A)	109.5
N(3)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
N(3)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(18)-C(17)-C(22)	120.5(3)
C(18)-C(17)-S(3)	120.3(2)
C(22)-C(17)-S(3)	119.2(2)
C(19)-C(18)-C(17)	119.1(3)
C(19)-C(18)-H(18A)	120.4
C(17)-C(18)-H(18A)	120.4
C(18)-C(19)-C(20)	121.5(3)
C(18)-C(19)-H(19A)	119.2
C(20)-C(19)-H(19A)	119.2
C(21)-C(20)-C(19)	118.0(3)
C(21)-C(20)-C(23)	120.8(3)
C(19)-C(20)-C(23)	121.2(3)
C(22)-C(21)-C(20)	121.4(3)
C(22)-C(21)-H(21A)	119.3
C(20)-C(21)-H(21A)	119.3
C(21)-C(22)-C(17)	119.4(3)
C(21)-C(22)-H(22A)	120.3
C(17)-C(22)-H(22A)	120.3
C(20)-C(23)-H(23A)	109.5
C(20)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
C(20)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	24(1)	30(1)	34(1)	-10(1)	-3(1)	-6(1)
S(2A)	33(1)	31(1)	31(1)	-4(1)	-1(1)	-7(1)
C(10A)	42(1)	74(1)	74(1)	-38(1)	-1(1)	-11(1)
S(2B)	42(1)	74(1)	74(1)	-38(1)	-1(1)	-11(1)
C(10B)	33(1)	31(1)	31(1)	-4(1)	-1(1)	-7(1)
S(3)	49(1)	25(1)	51(1)	7(1)	-18(1)	-10(1)
O(1)	31(1)	48(1)	45(1)	-10(1)	-14(1)	-7(1)
O(2)	36(1)	34(1)	46(1)	-18(1)	4(1)	-9(1)
O(3)	30(1)	38(1)	56(1)	4(1)	-18(1)	-7(1)
O(4)	63(1)	37(1)	51(1)	7(1)	-30(1)	-4(1)
O(5)	75(2)	31(1)	80(2)	14(1)	-15(1)	-24(1)
N(1)	24(1)	24(1)	36(1)	-4(1)	-1(1)	-4(1)
N(2)	26(1)	26(1)	36(1)	-8(1)	4(1)	-9(1)
N(3)	32(1)	29(1)	48(1)	2(1)	-13(1)	-14(1)
C(1)	29(1)	27(1)	26(1)	-4(1)	-2(1)	-6(1)
C(2)	28(1)	31(1)	29(1)	-5(1)	0(1)	-4(1)
C(3)	30(1)	43(1)	28(1)	-2(1)	-2(1)	-14(1)
C(4)	48(2)	36(1)	25(1)	4(1)	-8(1)	-21(1)
C(5)	53(2)	27(1)	37(2)	1(1)	-10(1)	-5(1)
C(6)	32(1)	30(1)	39(1)	0(1)	-6(1)	-2(1)
C(7)	75(2)	44(2)	44(2)	6(1)	-15(2)	-33(2)
C(8)	24(1)	28(1)	28(1)	0(1)	-5(1)	-6(1)
C(9)	23(1)	29(1)	29(1)	-4(1)	-4(1)	-8(1)
C(11)	32(1)	39(1)	30(1)	-9(1)	0(1)	-14(1)
C(12)	38(2)	36(1)	39(1)	-5(1)	-7(1)	-12(1)
C(13)	23(1)	29(1)	26(1)	-2(1)	-2(1)	-6(1)
C(14)	25(1)	27(1)	34(1)	1(1)	-6(1)	-5(1)
C(15)	26(1)	28(1)	30(1)	2(1)	-5(1)	-8(1)
C(16)	45(2)	45(2)	74(2)	-8(2)	-22(2)	-20(1)
C(17)	36(1)	22(1)	54(2)	-4(1)	-19(1)	-3(1)
C(18)	35(2)	31(1)	58(2)	-12(1)	-14(1)	-5(1)
C(19)	33(2)	36(2)	66(2)	-9(1)	-10(1)	-1(1)
				N 1 1		

Table S7. Anisotropic displacement parameters (Å $^2x 10^3$) for NHQ-IX-58. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

S44

C(20)	40(2)	39(2)	56(2)	-8(1)	-14(1)	13(1)
C(21)	51(2)	38(2)	71(2)	-24(2)	-29(2)	7(1)
C(22)	45(2)	32(1)	71(2)	-14(1)	-24(2)	-7(1)
C(23)	55(2)	65(2)	68(2)	-11(2)	-10(2)	26(2)

	Х	У	Z	U(eq)
H(10A)	2545	8373	6368	74
H(10B)	3239	10576	3328	38
H(1A)	6802	6939	2932	34
H(2A)	5641	9124	3132	35
H(2B)	10436	8084	1277	35
H(3A)	12003	9476	1308	39
H(5A)	7429	11605	1440	47
H(6A)	5854	10233	1374	40
H(7A)	12119	11276	1472	77
H(7B)	10689	12106	902	77
H(7C)	10408	11909	2156	77
H(8A)	4887	7576	4619	32
H(11)	893	10418	6596	40
H(12)	1188	11592	5096	44
H(13A)	2341	7962	3145	31
H(14A)	3152	6210	4564	34
H(16A)	-360	4119	3218	77
H(16B)	-1551	5247	3521	77
H(16C)	-275	5154	2422	77
H(18A)	5498	5232	2910	48
H(19A)	7299	5152	1299	54
H(21A)	4852	2884	470	62
H(22A)	3063	2935	2087	57
H(23A)	8285	4443	-357	100
H(23B)	8140	3207	-380	100
H(23C)	6748	4117	-892	100

Table S8. Hydrogen coordinates ($x \ 10^4$) and isotropicdisplacement parameters (Å $^2x \ 10^3$)for NHQ-IX-58.

6. Copy of ¹H and ¹³C NMR Spectra

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

4.0 f1 (ppm)

4.5

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

S129

