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S1 Key Hyperparameters setting of Transformer 

architecture 
 

hparams.hidden_size = 512 

hparams.batch_size = 4096 

hparams.max_length = 256 

hparams.clip_grad_norm = 0 

hparams.optimizer_adam_epsilon = 1e-9 

hparams.learning_rate_schedule = "legacy" 

hparams.learning_rate_decay_scheme = "noam" 

hparams.learning_rate = 0.1 

hparams.learning_rate_warmup_steps = 4000 

hparams.initializer_gain = 1.0 

hparams.num_hidden_layers = 6 

hparams.initializer = "uniform_unit_scaling" 

hparams.weight_decay = 0.0 

hparams.optimizer_adam_beta1 = 0.9 

hparams.optimizer_adam_beta2 = 0.98 

hparams.num_sampled_classes = 0 

hparams.label_smoothing = 0.1 

hparams.shared_embedding_and_softmax_weights = True 

hparams.symbol_modality_num_shards = 16 

hparams.add_hparam("filter_size", 2048) 

hparams.add_hparam("num_encoder_layers", 0) 

hparams.add_hparam("num_decoder_layers", 0) 

hparams.add_hparam("num_heads", 8) 

hparams.add_hparam("attention_key_channels", 0) 

hparams.add_hparam("attention_value_channels", 0) 

hparams.add_hparam("ffn_layer", "dense_relu_dense") 

hparams.add_hparam("parameter_attention_key_channels", 0) 

hparams.add_hparam("parameter_attention_value_channels", 0) 

hparams.add_hparam("attention_dropout", 0.0) 

hparams.add_hparam("attention_dropout_broadcast_dims", "") 

hparams.add_hparam("relu_dropout", 0.0) 

hparams.add_hparam("relu_dropout_broadcast_dims", "") 

hparams.add_hparam("pos", "timing") 

hparams.add_hparam("nbr_decoder_problems", 1) 

hparams.add_hparam("proximity_bias", False) 

hparams.add_hparam("causal_decoder_self_attention", True) 

hparams.add_hparam("use_pad_remover", True) 

hparams.add_hparam("self_attention_type", "dot_product") 

hparams.add_hparam("conv_first_kernel", 3) 

hparams.add_hparam("attention_variables_3d", False) 

hparams.add_hparam("use_target_space_embedding", True) 
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hparams.add_hparam("moe_overhead_train", 1.0) 

hparams.add_hparam("moe_overhead_eval", 2.0) 

hparams.moe_num_experts = 16 

hparams.moe_loss_coef = 1e-3 

hparams.add_hparam("overload_eval_metric_name", "") 

hparams.add_hparam("unidirectional_encoder", False) 

hparams.add_hparam("hard_attention_k", 0) 

hparams.layer_preprocess_sequence = "n" 

hparams.layer_postprocess_sequence = "da" 

hparams.layer_prepostprocess_dropout = 0.1 

hparams.attention_dropout = 0.1 

hparams.relu_dropout = 0.1 

hparams.learning_rate_warmup_steps = 8000 

hparams.learning_rate = 0.2 

hparams.optimizer_adam_beta2 = 0.997 

hparams.learning_rate_schedule =  

    ("constant*linear_warmup*rsqrt_decay*rsqrt_hidden_size") 

hparams.learning_rate_constant = 2.0 
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S2 Additional Methods  

S2.1 Reaction Classification Algorithm and Results 

We took the 80% reactions equally distributed among 10 diff erent reaction classes 

of USPTO_50K dataset to train a logistic regression (LR) classification model using 

transformation FP AP3(folded) + Morgan2 FP(agents, folded) as inputs. Below are the 

results for 10,000 test set reactions equally distributed among 10 diff erent reaction 

classes. Then we use this LR model to predict the reaction class of reactions in 

USPTO_MIT dataset. 

 

ID   recall    prec  F-score     reaction class 

0  0.9660 0.9593 0.9626      1 Heteroatom alkylation and arylation 

1  0.9362 1.0000 0.9670     10 Functional group addition (FGA) 

2  0.9773 0.9691 0.9732      2 Acylation and related processes 

3  0.9602 0.9645 0.9623      3 C-C bond formation 

4  0.8516 0.9281 0.8883      4 Heterocycle formation 

5  0.8963 0.9680 0.9308      5 Protections 

6  0.9909 0.9831 0.9870      6 Deprotections 

7  0.9534 0.9575 0.9554      7 Reductions 

8  0.9818 0.9759 0.9789      8 Oxidations 

9  0.8591 0.9031 0.8806      9 Functional group interconversion (FGI) 

Mean:  0.94 0.96 0.95  
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S2.2 Token- and Character-based Preprocessing 

Token-based preprocessing splits the reactants and products as tokens using the 

following regular expression 

token_regex = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|= |# |-

|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])" 

Character-based preprocessing splits the reactants and products as characters. 

Here is an example of the representations of token- and character-based 

preprocessing. 

 

token:  N c 1 n c 2 [nH] c ( C C C c 3 c s c ( C ( = O ) O ) c 3 ) c c 2 c ( = O ) [nH] 1 

character:  N c 1 n c 2 [ n H ] c ( C C C c 3 c s c ( C ( = O ) O ) c 3 ) c c 2 c ( = O ) 

[ n H ] 1 
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S2.3 Model architecture 

The Transformer architecture follows an encoder-decoder structure using stacked 

self-attention and point-wise fully connected layers.  

The encoder maps an input symbol sequence (𝑥1, … , 𝑥𝑛)  to continuous 

representations 𝑧 = (𝑧1, … , 𝑧𝑛). Given 𝑧, the decoder then generates an output symbol 

sequence (𝑦1, … , 𝑦𝑚) . The encoder and decoder are composed of a stack of 𝑁 

identical layers, each of which contains three sub-modules. The first sub-module is a 

multi-head self-attention mechanism, which is made of several scaled dot-product 

attention layers running in parallel. In this attention layer, the input consists of queries 

(𝑄), keys (𝐾) of 𝑑𝑘 dimension, and values (𝑉) of 𝑑𝑣 dimension. The formula of 

a single attention function is 

Attention(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 

This attention function will yield 𝑑𝑣-dimensional output values. These values are 

concatenated into the multi-head attention layer using the following formula: 

 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(head1, … , headh)𝑊𝑂 

 

where headi = Attention(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉) and the trainable parameter matrices 

(𝑊𝑖
𝑄 ∈ ℝ𝑑model×𝑑𝑘 , 𝑊𝑖

𝐾 ∈ ℝ𝑑model×𝑑𝑘 , 𝑊𝑖
𝑉 ∈ ℝ𝑑model×𝑑𝑣 , and 𝑊𝑂 ∈ ℝ𝑑model×ℎ𝑑𝑘) 

are the linear projections. The number of parallel attention layers or heads is ℎ. For each 

of these heads, 𝑑𝑘 = 𝑑𝑣 = 𝑑model/ℎ. 

The second sub-module is a fully connected feed-forward network, which is 

applied to each position separately and identically. The transformation function is as 

follows: 

𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 

where 𝑊1, 𝑊2 and 𝑏1, 𝑏2 are learnable weights and biases, respectively. 

The third sub-module in the decoder stack is a modified self-attention layer that 

uses a masking operation to prevent positions from attending to subsequent positions, 

which ensures that predictions at position 𝑖 can be only up to the known outputs at 

position < 𝑖. 

Similar to other sequence models, the embedding layer is added to convert the input 

tokens and output tokens to 𝑑model-dimension vectors. To preserve the order of the 

sequence, the positional encoding operation is combined into the input embeddings. 

These encodings have the same dimension 𝑑model as the embeddings, so that the two 

can be summed. The sine and cosine functions of different frequencies are used in the 

positional encoding as follows: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑model) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠(𝑝𝑜𝑠/100002𝑖/𝑑model) 
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where 𝑝𝑜𝑠 is the position and 𝑖 is the dimension. 
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S2.4 Reward in MCTS 

If a state is unsolved during rollout, it will receive a reward of -1. If a state exists, 

its reward is calculated by the following steps: All scaffolds of the target molecule and 

all the starting molecules in building block database are calculated; Then the maximum 

common subscaffold (MaxSubscaffold) of the target and starting molecules is 

calculated; Finally, a score is defined as the similarity between the MaxSubscaffold and 

candidate terminal molecule, and a reward (between 0 and 1) will be given according 

to the score.  

 

The formulas are shown below:  

(1) MaxSubscaffold=MaxCommonSubScaffold(target molecule, building blocks) 

(2) score=DiceSimilarity(MaxSubscaffold, candidate terminal molecule) 

(3) reward=(a*score)/(1.0+a*score), where a is a parameter between 0 and 1. 
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S3 Additional Results 

S3.1 Single-Step Retrosynthetic Top-10 Accuracy Within Each Reaction Class 

 

Table S1. Model top-10 accuracy for 10 reaction classes 

  Reaction class, top-10 accuracy (%) 

model (dataset) 1 2 3 4 5 6 7 8 9 10 

Liu et al. template+class (USPTO_50K)1 77.2 84.9 53.4 54.4 6.2 26.9 74.7 68.4 46.7 73.9 

Liu et al. LSTM+class (USPTO_50K)1 57.5 74.6 46.1 27.8 80.0 62.8 67.8 69.1 47.3 56.5 

Coley et al. Similarity+class (USPTO_50K)2 86.7 94.2 74.6 67.0 97.1 95.5 88.3 98.8 71.2 91.3 

Our Transformer+char+class (USPTO_50K) 83.1 90.4 76.2 60.0 92.3 88.6 88.2 86.4 73.9 82.6 

Our Transformer+char+class (USPTO_MIT) 88.2 91.2 81.9 67.8 75.4 86.6 87.1 88.5 73.5 66.7 

Key: “+class” means that reaction class information was provided to the model; “+char” means that char-

based preprocessing was applied. 
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S3.2 Single-Step Retrosynthetic Result Within Each Reaction Class 

 

Recorded reaction in reaction class 1 (ID_1) 

 

 

Top-10 recommended candidate reactants 

Figure S1: Randomly-selected example from class 1 (heteroatom alkylation and 

arylation). Our approach proposes the recorded reactants with rank 1. The results 

containing invalid SMILES are left blank. 
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Recorded reaction in reaction class 2 (ID_8108) 

 
 

Top-10 recommended candidate reactants 

Figure S2: Randomly-selected example from class 2 (acylation and related processes). 

Our approach proposes the recorded reactants with rank 1. The results containing 

invalid SMILES are left blank. 
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Recorded reaction in reaction class 3 (ID_49) 

 

 

Top-10 recommended candidate reactants 

Figure S3: Randomly-selected example from class 3 (C-C bond formation). Our 

approach proposes the recorded reactants with rank 1. The results containing invalid 

SMILES are left blank. 
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Recorded reaction in reaction class 4 (ID_8717) 

 

 

Top-10 recommended candidate reactants 

Figure S4: Randomly-selected example from class 4 (heterocycle formation). Our 

approach proposes the recorded reactants with rank 7. The results containing invalid 

SMILES are left blank. 
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Recorded reaction in reaction class 5 (ID_155) 

 

 

Top-10 recommended candidate reactants 

Figure S5: Randomly-selected example from class 5 (protections). Our approach 

proposes the recorded reactants with rank 1. The results containing invalid SMILES are 

left blank. 
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Recorded reaction in reaction class 6 (ID_8743) 

 

 

Top-10 recommended candidate reactants 

Figure S6: Randomly-selected example from class 6 (deprotections). Our approach 

proposes the recorded reactants with rank 1. The results containing invalid SMILES are 

left blank. 
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Recorded reaction in reaction class 7 (ID_8746) 

 

 

Top-10 recommended candidate reactants 

Figure S7: Randomly-selected example from class 7 (reductions). Our approach 

proposes the recorded reactants with rank 2. The results containing invalid SMILES are 

left blank. 
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Recorded reaction in reaction class 8 (ID_198) 

 

 

 

Top-10 recommended candidate reactants 

Figure S8: Randomly-selected example from class 8 (oxidations). Our approach 

proposes the recorded reactants with rank 1. The results containing invalid SMILES are 

left blank. 
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Recorded reaction in reaction class 9 (ID_192) 

 

 

Top-10 recommended candidate reactants 

Figure S9: Randomly-selected example from class 9 (functional group interconversion). 

Our approach proposes the recorded reactants with rank 1. The results containing 

invalid SMILES are left blank. 
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Recorded reaction in reaction class 10 (ID_228) 

 

 

Top-10 recommended candidate reactants 

Figure S10: Randomly-selected example from class 10 (functional group addition). Our 

approach proposes the recorded reactants with rank 1. The results containing invalid 

SMILES are left blank. 
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S3.3 Reproduction of baseline experiments 

(i) For Liu et al.’s seq2seq model1, we evaluate their model by retraining their open-

source code using the USPTO_MIT dataset. We use the same hyper parameters of 

theirs during training. 

 

(ii) For Segler et al.’s Neural Symbolic approach, we evaluate their approach by 

retraining the Coley’s reproduced code (https://github.com/connorcoley/retrotemp). In 

the case of USPTO_50K, since our raw data comes from Liu et al.’s work1 and does not 

have atom mapping, we used the dataset with atom mapping that have been used by 

Coley et al.2 for Segler et al’s approach. The two datasets both originated from the 

dataset used by Schneider et al.3 We follow the same data split like Coley et al. In the 

case of USPTO_MIT, we use the our original data split. Using Coley et al.’s template 

extraction method2 in both USPTO_50K and USPTO_MIT, we have fine-tuned the 

hyper parameters and change the model architecture of Coley’s reproduced model as 

FC(1024)-elu-dropout (keep_prob = 0.9), and the final results are shown in Table 3. 
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S3.4 Automatic Retrosynthetic Pathway Planning Within Four Examples 

Figure S11: Automatic retrosynthetic pathway planning of Rufinamide. Routes are 

constructed by automatic searching via MCTS coupled with heuristic scoring function. 

The suggested disconnections are consistent with published pathways. 
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Figure S12. Automatic retrosynthetic pathway planning of an antagonist of the 

interaction between WDR5 and MLL1, from the examples of Grzybowski et al. Routes 

are constructed by automatic searching via MCTS coupled with heuristic scoring 

function. The suggested disconnections are consistent with published pathways. 



 23 / 25 

 

 

Figure S13. Automatic retrosynthetic pathway planning of an allosteric activator for 

GPX4. Routes are constructed by automatic searching via MCTS coupled with heuristic 

scoring function. The suggested disconnections are consistent with published pathways. 
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Figure S14. Automatic retrosynthetic pathway planning of an intermediate of drug 

candidate from the examples of Segler et al. Routes are constructed by automatic 

searching via MCTS coupled with heuristic scoring function. The suggested 

disconnections are consistent with published pathways. 
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