Electronic Supplementary Information

Achieving Current Rectification Ratio $\geq 10^5$ across Thin Film of Coordination Polymer

Anupam Prasoon, Barun Dhara, Debashree Roy, Shammi Rana, Sujit Bhand and Nirmalya Ballav*

Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune – 411 008, Maharashtra, India

Corresponding Author: nballav@iiserpune.ac.in

Figure S1. Zoomed-in FE-SEM images on pristine Cu-BTEC (left) and doped Cu-BTEC (right) thin films.

Figure S2. PXRD patterns of bulk TCNQ (black) and TCNQ doped Cu-BTEC thin film (pink).

Figure S3. EPR spectra recorded on pristine Cu-BTEC thin film (blue), TCNQ doped Cu-BTEC thin film (pink) and TCNQ bulk powder (green).

Figure S4. Raman spectra of pristine and doped Cu-BTEC thin films and pristine Cu-TCNQ thin film. Band characteristic of C-H out-of-plane bending mode at ~845 cm⁻¹ (highlighted in yellow) in the doped Cu-BTEC thin film is suppressed in comparison to pristine Cu-BTEC thin film which was absent in pristine Cu-TCNQ thin film.

Figure S5. Raman spectra of pristine (blue) and doped Cu-BTEC (pink) thin films and of pure TCNQ (black). A significant red-shift of the band characteristic of C=C wing stretching mode of TCNQ from ~1455 cm⁻¹ to ~1374 cm⁻¹ was observed in doped thin film (pink).

Figure S6. FTIR spectrum of pure TCNQ (black) and IRRAS spectrum of doped Cu-BTEC thin film.

Figure S7. Schematic of bonding motif of TCNQ molecules to Cu-BTEC units.

Figure S8. Direct comparison of I-V characteristics of the doped Cu-BTEC thin film (blue) with commercial Si rectifier diodes (1N4007, magenta and 1N4733A, green; and respective optical images are shown). An optical image of TCNQ doped Cu-BTEC thin film device showing the cross-plane I-V measurement after scratching out sample to expose the Au substrate.

Upper Range Middle Range					c Alexandra
Lower Range			<u>2 μm</u>	<u>2 μm</u>	<u> </u>
Doped Thin Film			d	e	f
Upper Range (Nitrogen)	Middle Range (Nitrogen)	Lower Range (Nitrogen)	2μm	<u>2 μm</u>	<u>2 μm</u>
23.49 (a)	14.89 (d)	3.87 (g)	g	h aller market	1 12 Barrow That
26.62 (b)	15.62 (e)	1.85 (h)	and the second second		
18.95 <mark>(c)</mark>	11.50 (f)	3.65 <mark>(i)</mark>	 _1 μm	 1 μm	1 μm

Figure S9. Cross-sectional EDXS analysis of the doped Cu-BTEC thin film in three different ranges (upper, middle and lower) with corresponding FE-SEM images.

Figure S10. I-V characteristics on commercial IN4007 Si diode in forward bias (top left, red circles) and reverse bias (top right, blue circles). I-V characteristics of our TCNQ doped Cu-BTEC thin film upon changing the direction of current flow from SMU-2 to SMU-1 (bottom left, red circles, forward bias) and SMU-1 to SMU-2 (bottom right, blue circles, reverse bias). Identities of p and n sides are marked for clarity.

Figure S11: Mott-Schottky plots $(1/C^2 \text{ versus V} \text{ where C} \text{ is capacitance and V} \text{ is voltage})$ recorded on pristine (left panel) and doped (right panel) Cu-BTEC thin films at 100 Hz. Respective slopes are indicated by black arrows.

Figure S12. I-V characteristics of the doped Cu-BTEC thin film both in-plane (top panels) and cross-plane (bottom panels) modes recorded using various contacts (C-paste, EGaIn, direct Au-tip and direct Pt-tip).

Figure S13. I-V characteristics recorded on the TCNQ spin-coated Cu-BTEC thin film both in-plane (left) and cross-plane (right) modes using EGaIn contacts (green circles). As reference, data on TCNQ doped Cu-BTEC thin film are provided (pink circles) and the marked difference is the current rectification.

Figure S14. Cross-plane I-V characteristics on 3 different batches of TCNQ doped Cu-BTEC thin film and on two different points on the sample surface.

Figure S15. Estimation of activation energy (E_a) from Arrhenius plot extracted from the temperaturedependent conductance study.

Figure S16. Out-of-plane XRD pattern of pristine (blue) and doped (pink) Cu-BTEC thin films and of pristine Cu-TCNQ thin film. The peak at 2θ ~5.8^o characteristic of pore-filling phenomenon in Cu-BTEC system is not a characteristic of pristine Cu-TCNQ thin film (highlighted in yellow).

Figure S17. Raman spectra of pristine (blue) and doped (pink) Cu-BTEC thin films and of pristine Cu-TCNQ thin film (black). Band at 520 cm⁻¹ is due to Cu---Cu interaction mode appeared in pristine Cu-TCNQ thin film was consistently absent in both pristine and doped Cu-BTEC thin films (highlighted in yellow).

Figure S18. Cross-sectional elemental mapping of O, C, Cu and N on the doped Cu-BTEC thin film by EDXS analysis showing the absence of TCNQ in lower region near the Au substrate.

Figure S19. Distinctive solid-state UV-vis spectra of pristine (blue) and doped (pink) Cu-BTEC thin films and of pristine Cu-TCNQ thin film (black).

Figure S20. In-plane I–V characteristics of doped (pink) Cu-BTEC and pristine Cu-TCNQ (black) thin films (left panel). Variable-temperature in-plane I-V characteristics of doped Cu-BTEC thin film recorded at 300 K (black filled circle) and at 450 K (pink filled circle); and of pristine Cu-TCNQ thin film recorded at 300 K (black open circle) and at 450 K (pink open circle) (right panel).