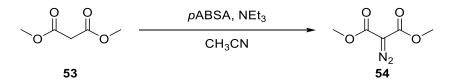
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Table of Contents

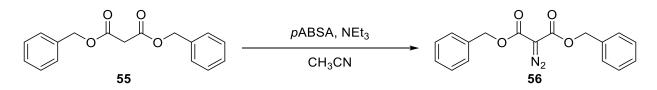
1.	Gen	eral Methods	. 3		
2.	2. Preparation of Starting Materials				
2	.1	Synthesis of Diazo Compounds	. 4		
2.2		Synthesis of Cyclopropenes	. 6		
2.	.3	Synthesis of Cyclopropylanilines	17		
3. Synthesis of Organic Dyes					
4.	4. Preliminary Attempts at the Lewis-Acid Catalysed [3+2] Annulation				
4.1 Synthesis o		Synthesis of the Donor-Acceptor Cyclopropane	24		
4.2		Preliminary Cycloaddition Attempts	24		
5.	Optimizations				
6.	Photoredox Mediated [3+2] Cycloaddition				
7.	Gram-scale Synthesis of 9 and Product Modifications				
8.	Crystal Structure of 16b				
9.	Spe	ctra of New Compounds	72		

1. General Methods


All reactions were carried out in oven dried glassware under an atmosphere of nitrogen, unless stated otherwise. For quantitative flash chromatography technical grade solvents were used. For flash chromatography for analysis, HPLC grade solvents from Sigma-Aldrich were used. THF, Et₂O, CH₃CN, toluene, hexane and CH₂Cl₂ were dried by passage over activated alumina under nitrogen atmosphere (H₂O content < 10 ppm, Karl-Fischer titration). The solvents were degassed by Freeze-Pump-Thaw method when mentioned. All chemicals were purchased from Acros, Aldrich, Fluka, VWR, Aplichem, Fluorochem or Merck and used as such unless stated otherwise. Chromatographic purification was performed as flash chromatography using Macherey-Nagel silica 40-63, 60 Å, using the solvents indicated as eluent with 0.1-0.5 bar pressure. TLC was performed on Merck silica gel 60 F254 TLC glass plates or aluminium plates and visualized with UV light, permanganate stain, CAN stain or Anisaldehyde stain. Melting points were measured on a Büchi B-540 melting point apparatus using open glass capillaries, the data is uncorrected. ¹H-NMR spectra were recorded on a Brucker DPX-400 400 MHz spectrometer in chloroform-d, all signals are reported in ppm with the internal chloroform signal at 7.26 ppm. The data is being reported as (s = singlet, d = doublet, t = triplet, q = quadruplet, qi = quintet, m = multiplet or unresolved, br = broad signal, app = apparent, coupling constant(s) in Hz, integration, interpretation). ¹⁹F-NMR spectra were recorded on a Bruker DPX-400 376 MHz spectrometer in CDCl₃. ¹³C-NMR spectra were recorded with ¹H-decoupling on a Brucker DPX-400 100 MHz spectrometer in chloroform-d, all signals are reported in ppm with the internal chloroform signal at 77.0 ppm. Infrared spectra were recorded on a JASCO FT-IR B4100 spectrophotometer with an ATR PRO410-S and a ZnSe prisma and are reported as cm^{-1} (w = weak, m = medium, s = strong, br = broad). High resolution mass spectrometric measurements were performed by the mass spectrometry service of ISIC at the EPFL on a MICROMASS (ESI) Q-TOF Ultima API.

Photoredox catalyzed reactions were performed in test tubes (2, 5 and 10 mL), which were hold using a rack for test tubes placed at the center of a crystallization flask or regular clamps. On this flask were attached the blue LEDs (RUBAN LED 5MÈTRES - 60LED/M - 3528 BLEU - IP65 with Transformateur pour Ruban LED 24W/2A/12V, bought directly on RubanLED.com). The distance between the LEDs and the test tubes was approximatively 3 to 5 cm. Long irradiation resulted in temperature increasing up to 32 °C during overnight reactions.

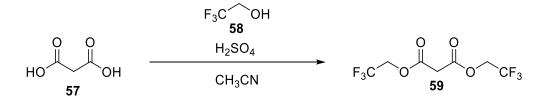
2. Preparation of Starting Materials


2.1 Synthesis of Diazo Compounds

Dimethyl 2-diazomalonate (54)

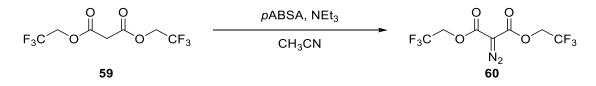
Following a modified procedure,¹ triethylamine (13.4 mL, 96.0 mmol, 2.4 equiv.) and dimethyl malonate (**53**) (4.60 mL, 40.0 mmol, 1.0 equiv.) were added to a solution of *p*ABSA (14.4 g, 60.0 mmol, 1.5 equiv.) in CH₃CN (160 mL) at room temperature and the resulting mixture was stirred for 18 hours at room temperature. Thereafter the mixture was filtered and the solvent was evaporated. The residue was triturated with CH₂Cl₂ (100 mL), the remaining solids were filtered off and the solvent was evaporated. The crude residue was purified by column chromatography (SiO₂, Pentane:EtOAc 95:5 to 90:10) to afford compound **54** (6.26 g, 39.6 mmol, 99 % yield) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 3.84 (s, 6H, CH₃); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.2, 52.4. One carbon was not resolved. The characterization data is corresponding to the reported values.¹

Dibenzyl 2-diazomalonate (56)



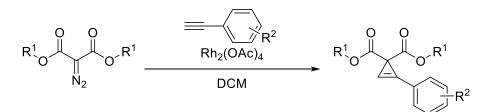
Following a modified procedure,² triethylamine (1.0 mL, 7.2 mmol, 2.4 equiv.) and dibenzyl malonate (**55**) (0.75 mL, 4.0 mmol, 1.0 equiv.) were added to a solution of *p*ABSA (1.08 g, 4.50 mmol, 1.5 equiv.) in CH₃CN (16.0 mL) at room temperature and the resulting mixture was stirred for 18 hours at room temperature. Thereafter the mixture was filtered and the solvent was evaporated. The residue was triturated with CH₂Cl₂ (15 mL), the remaining solids were filtered off and the solvent was evaporated. The crude residue was purified by column chromatography (SiO₂, Pentane:EtOAc 95:5) to afford compound **56** (889 mg, 2.86 mmol, 95% yield) as a yellow oil. ¹H NMR (**400 MHz, Chloroform-***d*) δ 7.39- 7.34 (m, 10H, ArH), 5.28 (s, 4H, CH₂); ¹³C NMR (**101 MHz, Chloroform-***d*) δ 160.9, 135.3, 128.8, 128.6, 128.5, 67.3. One carbon was not resolved. The characterization data correspond to the reported values.²

¹ F. de Nanteuil, J. Waser, Angew. Chem. Int. Ed. 2011, 50, 12075–12079.

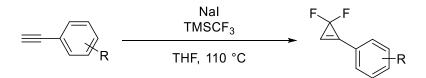

² F. de Nanteuil, J. Loup, J. Waser, Org. Lett. 2013, 15, 3738-3741.

Bis(2,2,2-trifluoroethyl) malonate (59)

Following a reported procedure,² H₂SO₄ (1.00 mL, 18.8 mmol, 0.25 equiv.) was added to a solution of trifluoroethanol (**58**) (29.9 mL, 415 mmol, 5.4 equiv.) and malonic acid **57** (8.00 g, 77.0 mmol, 1.0 equiv.) in toluene (40.0 mL) and the resulting mixture was heated to reflux for 8 hours. After cooling to room temperature, toluene (80.0 mL) was added and the mixture was washed with aq. NaOH (200 mL, 1 M), water (200 mL) and brine (200 mL). The organic layer was dried over MgSO₄ and the solvent was evaporated under reduced pressure to afford the title compound **59** (6.80 g, 25.4 mmol, 33 % yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.55 (q, *J* = 8.2 Hz, 4H, OCH₂), 3.61 (s, 2H, CH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.4, 122.8 (q, *J* = 277.3 Hz), 61.4 (q, *J* = 37.0 Hz), 40.3. The characterization data correspond to the reported values.²


Bis(2,2,2-trifluoroethyl) 2-diazomalonate (60)

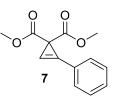
Following a modified procedure,² triethylamine (6.00 mL, 43.3 mmol, 2.4 equiv.) and bis(trifluorethyl)malonate (**59**) (4.84 g, 18.0 mmol, 1.0 equiv.) were added to a solution of *p*ABSA (6.50 g, 27.1 mmol, 1.5 equiv.) in CH₃CN (72.0 mL) at room temperature and the resulting mixture was stirred for 18 hours. Thereafter the mixture was filtered and the solvent was evaporated. The residue was triturated with CH₂Cl₂ (50 mL), the solids were filtered off and the solvent was evaporated. The crude residue was purified by column chromatography (SiO₂, Pentane:EtOAc 95:5 to 90:10) to afford compound **60** (5.26 g, 17.9 mmol, 99 % yield) as a yellow oil. ¹H NMR (**400 MHz, Chloroform-d**) δ 4.62 (q, 4 H, *J* = 8.2 Hz, CH₂); ¹³C NMR (**101 MHz, Chloroform-d**) δ 158.7, 122.6 (q, *J* = 277.3 Hz), 60.9 (q, *J* = 37.0 Hz). One carbon was not resolved. The characterization data correspond to the reported values.²


2.2 Synthesis of Cyclopropenes

General procedure A: Synthesis of cyclopropenes from diazo compounds.

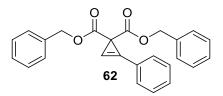
Following a modified procedure,³ the diazo compound was dissolved in DCM (0.5 M) and the resulting solution was added via syringe pump to a suspension of $Rh_2(OAc)_4$ (0.01 equiv.) in the indicated acetylene (3.0 equiv.) at room temperature over 10 hours. After the addition was complete, the reaction mixture was allowed to stir for another 10 hours. The reaction mixture was then filtered through a small pad of silica eluting with CH_2Cl_2 and the filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography with the indicated solvents.

General procedure B: Synthesis of difluorocyclopropenes.

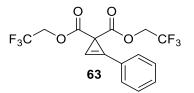


Following a modified procedure,⁴ a 20 mL microwave vial was charged with NaI (2.2 equiv.). The vial was sealed, evacuated and back-filled with nitrogen (3 times). Then THF (0.33 M), TMSCF₃ (2 equiv.) and the alkyne (1 equiv.), were added via syringe. The resulting reaction mixture was then stirred at 110 °C for 4 hours. The reaction was quenched by adding a saturated Na₂CO₃ solution, followed by extraction with Et₂O. The combined organic layers were dried over anhydrous K₂CO₃, filtered, and evaporated under reduced pressure. The crude residue was purified by column chromatography with the indicated solvents (the column should be previously deactivated with a 97:3 mixture of Pentane:Et₃N).

³ S. Chuprakov, M. Rubin, V. Gevorgyan, J. Am. Chem. Soc. 2005, 127, 3714-3715.


⁴ F. Wang, T. Luo, J. Hu, Y. Wang, H. S. Krishnan, P. V. Jog, S. K. Ganesh, G. K. Suryah Prakash, G. A. Olah, *Angew. Chem. Int. Ed.* **2011**, *50*, 7153 –7157.

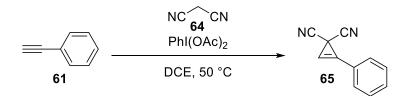
Dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (7)


Following the general procedure A, starting from dimethyl 2-diazomalonate (**54**) (5.10 g, 32.0 mmol, 1.0 equiv.) and phenylacetylene (**61**) (10.54 mL, 96.00 mmol, 3.0 equiv.), the title compound **7** was obtained after purification by column chromatography (SiO₂, Pentane:Et₂O 80:20) as a pale yellow solid (5.08 g, 21.9 mmol, 68 % yield). ¹H NMR (**400 MHz**, **Chloroform-d**) δ 7.67 – 7.60 (m, 2H, Ar*H*), 7.48 – 7.41 (m, 3H, Ar*H*), 6.89 (s, 1H, C=C*H*), 3.74 (s, 6H, C*H*₃); ¹³C NMR (**101 MHz**, **Chloroform-d**) 171.3, 130.8, 130.4, 128.8, 123.5, 112.2, 95.1, 52.3, 32.8. The characterization data correspond to the reported values.⁵

Dibenzyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (61)

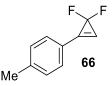
Following the general procedure A, starting from dibenzyl 2-diazomalonate (**56**) (889 mg, 2.86 mmol, 1.0 equiv.) and phenylacetylene (**61**) (0.95 mL, 8.5 mmol, 3.0 equiv.), the title compound **62** was obtained after purification by column chromatography (SiO₂, Pentane:Et₂O 80:20 to 70:30) as a pale yellow solid (738 mg, 1.92 mmol, 67 % yield). ¹H NMR (**400 MHz**, **Chloroform-d**) δ 7.64 – 7.58 (m, 2H, Ar*H*), 7.44 – 7.40 (m, 3H, Ar*H*), 7.31 – 7.26 (m, 10H, Ar*H*), 6.91 (s, 1H, C=C*H*), 5.18 (s, 4H, C*H*₂); ¹³C NMR (**101 MHz**, **Chloroform-d**) δ 170.7, 135.9, 130.7, 130.5, 129.0, 128.6, 128.2, 128.0, 124.1, 112.5, 95.3, 67.0, 33.5. The characterization data correspond to the reported values.⁶

Bis(2,2,2-trifluoroethyl) 2-phenylcycloprop-2-ene-1,1-dicarboxylate (63)


Following the general procedure A, starting from bis(2,2,2-trifluoroethyl) 2-diazomalonate (57) (935 mg, 3.18 mmol, 1.0 equiv.) and phenylacetylene (61) (1.05 mL, 9.54 mmol, 3.0 equiv), the title compound 63 was obtained after purification by column chromatography (SiO₂, Pentane:Et₂O 90:10 to 80:20) as a pale yellow oil (542 mg, 1.47 mmol, 46 % yield). **R**_f 0.55

⁵ L.-A. Liao, F. Zhang, N. Yan, J. A. Golen, J. M. Fox, *Tetrahedron* **2004**, *60*, 1803–1816.

⁶ Y. Wang, E. A. F. Fordyce, F. Y. Chen, H. W. Lam, Angew. Chem. Int. Ed. 2008, 47, 7350 –7353.


(Pentane:Et₂O 80:20). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.66 – 7.57 (m, 2H, Ar*H*), 7.51 – 7.44 (m, 3H, Ar*H*), 6.92 (s, 1H, C=C*H*), 4.53 (qd, *J* = 8.3, 6.3 Hz, 4H, C*H*₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.6, 131.4, 130.5, 129.2, 123.0, 122.8 (q, *J* = 277.3 Hz), 111.7, 93.9, 61.1 (q, *J* = 37.0 Hz), 32.5; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -73.9 (t, *J* = 8.3 Hz); IR $\tilde{\nu}_{max}$ 3663 (w), 2983 (m), 2899 (m), 1758 (m), 1452 (w), 1409 (m), 1288 (s), 1253 (s), 1228 (m), 1171 (s), 1084 (s), 976 (w), 882 (w), 847 (w); HRMS (ESI) calcd for C₁₅H₁₀F₆NaO₄⁺ [M+Na]⁺ 391.0375; found 391.0370.

2-Phenylcycloprop-2-ene-1,1-dicarbonitrile (65)

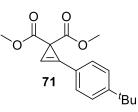
Following a reported procedure,⁷ PhI(OAc)₂ (773 mg, 2.40 mmol, 1.2 equiv.) and malonitrile (**64**) (159 mg, 2.40 mmol, 1.2 equiv.) were charged in a 25 mL microwave vial. Then Phenylacetylene (**61**) (0.22 mL, 2.0 mmol, 1.0 equiv.) and DCE (8.0 mL) were added, and the resulting solution was stirred at 50 °C. After 3 hours, the reaction mixture was cooled to room temperature, quenched with water (25 mL), and extracted with DCM (3 x 20 mL). The combined organic layers were evaporated under reduced pressure. The crude residue was purified by column chromatography (SiO₂, Pentane:EtOAc 90:10) affording the title compound **65** (82 mg, 0.49 mmol, 25 % yield) as an orange oil.¹H NMR (**400 MHz, Chloroform-d**) δ 7.76 – 7.70 (m, 2H, Ar*H*), 7.66 – 7.56 (m, 3H, Ar*H*), 7.08 (s, 1H, C=C*H*); ¹³C NMR (**101 MHz, Chloroform-d**) δ 133.1, 130.7, 129.8, 120.5, 116.3, 112.2, 92.7, 3.9. The characterization data correspond to the reported values.⁷

1-(3,3-Difluorocycloprop-1-en-1-yl)-4-methylbenzene (66)

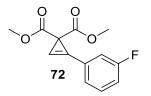
Following the general procedure B, starting from 1-ethynyl-4-methylbenzene (**67**) (0.51 mL, 4.0 mmol, 1.0 equiv.), the title compound **66** was obtained after purification by column chromatography (SiO₂, Pentane:Et₃N 95:5) as a brown solid (584 mg, 3.51 mmol, 88 % yield). ¹H NMR (**400 MHz, Chloroform-d**) δ 7.55 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.38 (t, *J* = 1.8 Hz, 1H, C=C*H*), 7.29 (d, *J* = 7.8 Hz, 2H, Ar*H*), 2.42 (s, 3H, C*H*₃); ¹³C NMR (**101 MHz, Chloroform-d**) δ 142.4, 133.7 (t, *J* = 10.2 Hz), 130.2, 129.6, 120.4, 112.2 (t, *J* = 12.5 Hz), 101.7 (t, *J* = 268.1 Hz), 21.8. The characterization data correspond to the reported values.⁸

⁷ S. Lin, M. Li, Z. Dong, F. Liang, J. Zhang, Org. Biomol. Chem. **2014**, *12*, 1341–1350.

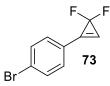
⁸ F. Wang, W. Zhang, J. Zhu, H. Li, K.-W. Huang, J. Hu, Chem. Commun. 2011, 47, 2411–2413.


6,6-Dimethyl-1-(p-tolyl)-4,8-dioxaspiro[2.5]oct-1-ene (70)

A 20 mL microwave vial was charged with NaI (0.66 g, 4.4 mmol, 2.2 equiv.). The vial was sealed, evacuated and back-filled with nitrogen (3 times). Then THF (6 mL), TMSCF₃ (0.64 mL, 4.0 mmol, 2 equiv.) and 1-ethynyl-4-methylbenzene (67) (0.25 mL, 2.0 mmol, 1 equiv.), were added via syringe. The resulting reaction mixture was then stirred at 110 °C for 4 hours. The reaction was quenched by adding a saturated Na₂CO₃ solution, followed by extraction with Et₂O. The combined organic layers were dried over anhydrous K_2CO_3 , filtered, and evaporated under reduced pressure. 3.50 g of SiO₂ and 10 mL of DCM were added to the previously obtained crude product, and the resulting mixture was left stirring overnight. The suspension was then filtered through a small pad of silica gel eluting with EtOAc, and the filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography (SiO₂, 100 % Et₂O) affording compound **68** (262 mg, 1.82 mmol, 91 % yield) as a brown oil. \mathbf{R}_f 0.25 (100% Et₂O); ¹H NMR (400 MHz, Chloroform-d) δ 8.41 (s, 1H, C=CH), 7.75 (d, J = 8.1 Hz, 2H, ArH), 7.35 (d, J = 7.8 Hz, 2H, ArH), 2.45 (s, 3H, CH₃); ¹³C NMR (101 MHz, Chloroform-d) δ 161.8, 155.5, 144.8, 139.2, 131.4, 130.2, 120.7, 22.1; **IR** $\tilde{\nu}_{max}$ 3052 (w), 1826 (s), 1609 (s), 1587 (s), 1567 (m), 1497 (m), 1451 (w), 1416 (w), 1214 (w), 1183 (w), 1114 (w), 812 (m); HRMS (ESI) calcd for $C_{10}H_9O^+$ [M+H]⁺ 145.0648; found 145.0647.

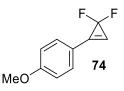

Et₃OBF₄ (0.285 g, 1.50 mmol, 1.5 equiv.) was added to a solution of 2-(p-tolyl)cycloprop-2enone (68) (144 mg, 1.00 mmol, 1 equiv.) in DCM (1.6 mL) under vigorous stirring at room temperature. After 30 min, a solution of 2,2-dimethylpropane-1,3-diol (69) (0.208 g, 2.00 mmol, 2 equiv.) and Et₃N (0.278 mL, 2.00 mmol) in DCM (0.55 mL) was added dropwise. After 2 h, the reaction was treated with NaHCO₃ (10 mL), followed by extraction with DCM (2 x 10 mL). Combined organic layers were further washed with NaHCO₃ (20 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography (SiO₂, Pentane:Et₃N 98:2, the column should be previously eluted with Pentane:Et₃N 95:5) affording compound 70 (164 mg, 0.711 mmol, 71 % yield) as an orange solid. \mathbf{R}_f 0.32 (Pentane:Et₂O 90:10); $\mathbf{m}.\mathbf{p} = 63-64$ °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.60 (s, 1H, C=CH), 7.53 (d, J = 8.1 Hz, 2H, ArH), 7.24 (d, J = 7.8 Hz, 2H, ArH), 3.82 – 3.68 (m, 4H, OCH₂), 2.39 (s, 3H, C_{Ar}-CH₃), 1.14 (s, 3H, CH₃), 1.08 (s, 3H, CH₃); ¹³C NMR (101 MHz, **Chloroform-***d*) δ 140.4, 135.6, 129.8, 129.6, 123.2, 113.3, 83.3, 78.0, 30.6, 22.6, 22.4, 21.7; **IR** \tilde{v}_{max} 3106 (w), 3031 (w), 2952 (m), 2851 (m), 1721 (w), 1610 (w), 1508 (w), 1465 (w), 1269 (s), 1206 (m), 1173 (w), 1077 (s), 1023 (s), 995 (m), 925 (w), 823 (m), 750 (m), 650 (w), 618 (w); **HRMS (APPI)** calcd for $C_{15}H_{18}O_2^+$ [M]⁺230.1301; found 230.1303.

Dimethyl 2-(4-(*tert*-butyl)phenyl)cycloprop-2-ene-1,1-dicarboxylate (71)

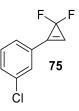

Following the general procedure A, starting from dimethyl 2-diazomalonate (**54**) (395 mg, 2.50 mmol, 1.0 equiv.) and 1-(*tert*-butyl)-4-ethynylbenzene (1.35 mL, 7.50 mmol, 3.0 equiv.), the title compound **71** was obtained after purification by column chromatography (SiO₂, Pentane:EtOAc 95:5 to 90:10) as an orange solid (517 mg, 1.79 mmol, 72 % yield). ¹H NMR (**400 MHz**, **Chloroform-d**) δ 7.58 – 7.54 (m, 2H, Ar*H*), 7.49 – 7.44 (m, 2H, Ar*H*), 6.82 (s, 1H, C=C*H*), 3.73 (s, 6H, OC*H*₃), 1.33 (s, 9H, *t*Bu); ¹³C NMR (**101 MHz**, **Chloroform-d**) δ 171.4, 154.3, 130.3, 126.1, 121.2, 112.1, 94.3, 52.5, 35.2, 32.8, 31.3. The characterization data correspond to the reported values.⁹

Dimethyl 2-(3-fluorophenyl)cycloprop-2-ene-1,1-dicarboxylate (72)

Following the general procedure A, starting from dimethyl 2-diazomalonate (**54**) (316 mg, 2.0 mmol, 1.0 equiv.) and 1-ethynyl-3-fluorobenzene (0.69 mL, 6.0 mmol, 3.0 equiv.), the title compound **72** was obtained after purification by column chromatography (SiO₂, Pentane:EtOAc 90:10) as a pale yellow oil (282 mg, 1.13 mmol, 56 % yield). **R**_f 0.37 (Pentane:EtOAc 90:10); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.44 – 7.40 (m, 2H, Ar*H*), 7.33 (dd, *J* = 9.0, 2.5 Hz, 1H, Ar*H*), 7.18 – 7.11 (m, 1H, Ar*H*), 6.96 (s, 1H, C=C*H*), 3.75 (s, 6H, OC*H*₃); ¹³**C NMR (101 MHz, Chloroform-d)** δ 171.0, 162.9 (d, *J* = 248.0 Hz), 130.7 (d, *J* = 8.4 Hz), 126.3 (d, *J* = 3.1 Hz), 126.1 (d, *J* = 8.3 Hz), 117.9 (d, *J* = 21.2 Hz), 117.1 (d, *J* = 22.7 Hz), 111.7 (d, *J* = 3.4 Hz), 97.0, 52.7, 33.2; ¹⁹**F NMR (376 MHz, Chloroform-d)** δ -111.9; **IR** $\tilde{\nu}_{max}$ 3149 (w), 2955 (w), 2924 (w), 2851 (w), 1736 (s), 1609 (w), 1586 (m), 1484 (w), 1436 (m), 1288 (s), 1244 (s), 1067 (s), 870 (m); **HRMS (ESI)** calcd for C₁₃H₁₁FNaO₄⁺ [M+Na]⁺ 273.0534; found 273.0534.

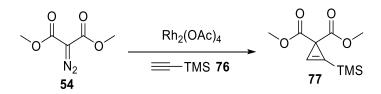

1-Bromo-4-(3,3-difluorocycloprop-1-en-1-yl)benzene (73)

⁹ Y. Liu, Q. Yu, S. Ma, Eur. J. Org. Chem. 2013, 3033–3040.

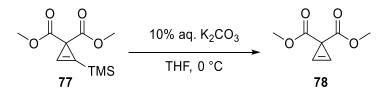

Following the general procedure B, starting from 1-bromo-4-ethynylbenzene (0.36 g, 2.0 mmol, 1.0 equiv.), the title compound **73** was obtained after purification by column chromatography (SiO₂, Pentane:Et₃N 95:5) as a light brown oil (360 mg, 1.56 mmol, 78 % yield). **R**_f 0.35 (Pentane:Et₃N 96:4) ; ¹**H NMR (400 MHz, Chloroform-d)** δ 7.67 – 7.60 (m, 2H, Ar*H*), 7.56 – 7.49 (m, 3H, Ar*H* & C=C*H*); ¹³**C NMR (101 MHz, Chloroform-d)** δ 133.2 (t, *J* = 10.7 Hz), 132.6, 131.6, 126.5, 122.4, 114.4 (t, *J* = 12.4 Hz), 101.4 (t, *J* = 270.3 Hz); ¹⁹**F NMR (376 MHz, Chloroform-d)** δ -106.6; **IR** $\tilde{\nu}_{max}$ 3134 (w), 1717 (w), 1586 (m), 1482 (m), 1402 (w), 1313 (s), 1286 (s), 1230 (w), 1180 (w), 1105 (w), 1071 (m), 1017 (s), 972 (w), 838 (m), 818 (s); **HRMS (APPI)** calcd for C₉H₅⁷⁹BrF₂ [M⁺] 229.9537; found 229.9540.

1-(3,3-Difluorocycloprop-1-en-1-yl)-4-methoxybenzene (74)

Following the general procedure B, starting from 1-ethynyl-4-methoxybenzene (0.39 mL, 3.0 mmol, 1.0 equiv.), the title compound **74** was obtained after purification by column chromatography (SiO₂, Pentane:Et₃N 95:5) as a brown oil (519 mg, 2.85 mmol, 95 % yield). ¹H **NMR (400 MHz, Chloroform-d)** δ 7.63 – 7.58 (m, 2H, Ar*H*), 7.28 (t, *J* = 1.9 Hz, 1H, C=C*H*), 7.02 – 6.96 (m, 2H, Ar*H*), 3.87 (s, 3H, OMe); ¹³C **NMR (101 MHz, Chloroform-d)** δ 162.3, 133.3 (t, *J* = 10.3 Hz), 132.1, 116.1, 114.7, 110.5 (t, *J* = 12.5 Hz), 102.1 (t, *J* = 269.4 Hz), 55.6. The characterization data correspond to the reported values.¹⁰


1-Chloro-3-(3,3-difluorocycloprop-1-en-1-yl)benzene (75)

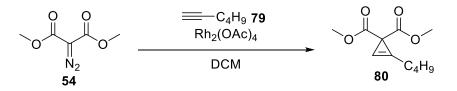
Following the general procedure B, starting from 1-chloro-3-ethynylbenzene (0.25 mL, 2.0 mmol, 1.0 equiv.), the title compound **75** was obtained after purification by column chromatography (SiO₂, Pentane:Et₃N 95:5) as a brown oil (263 mg, 1.41 mmol, 71 % yield).**R**_f 0.32 (Pentane:Et₃N 96:4); ¹**H NMR** (**400 MHz, Chloroform-d**) δ 7.65 (t, J = 1.7 Hz, 1H, C=CH), 7.57 – 7.52 (m, 2H, ArH), 7.50 – 7.41 (m, 2H, ArH); ¹³**C NMR** (**101 MHz, Chloroform-d**) δ 135.3, 133.2 (t, J = 10.9 Hz), 131.8, 130.5, 130.1, 128.3, 125.1, 115.3 (t, J = 12.3 Hz), 101.3 (t, J = 270.7 Hz); ¹⁹**F NMR** (**376 MHz, Chloroform-d**) δ -106.4; **IR** $\tilde{\nu}_{max}$ 3137 (w), 1723 (w), 1569 (w), 1471 (w), 1421 (w), 1303 (s), 1236 (w), 1026 (s), 976 (w), 890 (w), 828 (m); **HRMS** (**APPI**) calcd for C₉H₅ClF⁺ [M⁺] 167.0058; found 167.0057.


¹⁰ X.-Y. Deng, J.-H. Lin, J. Zheng, J.-C. Xiao, *Chem. Commun.* **2015**, *51*, 8805-8808.

Dimethyl 2-(trimethylsilyl)cycloprop-2-ene-1,1-dicarboxylate (77)

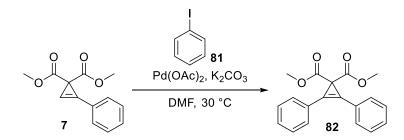
Following a modified procedure,¹¹ a solution of dimethyl 2-diazomalonate (**54**) (0.79 g, 5.0 mmol, 1.0 equiv.) in ethynyltrimethylsilane (**76**) (2 mL) was added using a syringe pump over 18 hours to a refluxing stirred suspension of Rh₂(OAc)₄ (22 mg, 0.050 mmol, 0.01 equiv.) in ethynyltrimethylsilane (**76**) (10 mL). After the addition was complete, the reaction mixture was stirred at reflux for an additional 4 hours. The suspension was then filtered through a small pad of silica gel eluting with DCM, and the filtrate was evaporated under reduced pressure. The crude residue was purified by column chromatography (SiO₂, Pentane:EtOAc 90:10) affording the title compound **77** (824 mg, 3.61 mmol, 72 % yield) as a colorless oil. ¹H NMR (**400 MHz**, **Chloroform-d**) δ 7.05 (s, 1H, C=CH), 3.70 (s, 6H, OCH₃), 0.25 (s, 9H, TMS); ¹³C NMR (**101 MHz**, **Chloroform-d**) δ 172.4, 113.5, 110.8, 52.8, 30.8, -1.7. The characterization data correspond to the reported values.¹¹

Dimethyl cycloprop-2-ene-1,1-dicarboxylate (78)



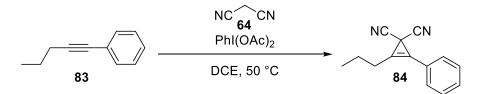
Following a reported procedure,¹² to a stirred solution of dimethyl 2-(trimethylsilyl)cycloprop-2ene-1,1-dicarboxylate (**77**) (355 mg, 1.55 mmol, 1 equiv.) in THF (3 mL) was added dropwise a 10% aq. K₂CO₃ solution (2 mL). The reaction mixture was stirred for 30 min at 0 °C and 30 min at room temperature. Then brine (5 mL) was added and the phases were separated. The organic phase was further washed with brine (2 x 5 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography (SiO₂, Pentane:EtOAc 85:15) affording compound **78** (150 mg, 0.961 mmol, 62 % yield) as a colorless oil. ¹H NMR (**400 MHz, Chloroform-d**) δ 6.90 (s, 2H, *H*C=*CH*), 3.73 (s, 6H, OC*H*₃); ¹³C NMR (**101 MHz, Chloroform-d**) δ 171.9, 102.5, 52.7, 30.3. The characterization data correspond to the reported values.¹²

¹¹ S. Chuprakov, D. A. Malyshev, A. Trofimov, V. Gevorgyan, J. Am. Chem. Soc. 2007, 129, 14868-14869.

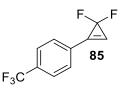

¹² K. Krämer, P. Leong, M. Lautens, Org. Lett. 2011, 13, 819-821.

Dimethyl 2-butylcycloprop-2-ene-1,1-dicarboxylate (80)

A solution of dimethyl 2-diazomalonate (54) (395 mg, 2.50 mmol, 1.0 equiv.) in DCM (1.75 mL) was added using a syringe pump over 15 hours to a stirred mixture of hex-1-yne (79) (1.15 mL, 10.0 mmol, 4.0 equiv.) and Rh₂(OAc)₄ (11.1 mg, 0.025 mmol, 0.01 equiv.) in DCM (2.0 mL). After the addition was complete, the mixture was stirred for additional 3 hours. The suspension was then filtered through a small pad of silica gel eluting with DCM, and the filtrate was evaporated under reduced pressure. The crude residue was purified by column chromatography (SiO₂, Pentane:EtOAc 90:10) affording the title compound 80 (240 mg, 1.13 mmol, 45 % yield) as a pale yellow oil. ¹H NMR (400 MHz, Chloroform-d) δ 6.35 (t, *J* = 1.4 Hz, 1H, C=CH), 3.71 (s, 6H, OCH₃), 2.55 (td, *J* = 7.4, 1.4 Hz, 2H, CH₂CH₂CH₂CH₂CH₃), 1.60 – 1.53 (m, 2H, CH₂CH₂CH₂CH₃), 1.44 – 1.32 (m, 2H, CH₂CH₂CH₂CH₃), 0.91 (t, *J* = 7.3 Hz, 3H, CH₂CH₂CH₂CH₃); ¹³C NMR (101 MHz, Chloroform-d) 172.5, 114.8, 93.8, 52.8, 32.4, 29.1, 24.5, 22.5, 14.2. The characterization data correspond to the reported values.⁵

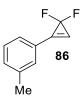

Dimethyl 2,3-diphenylcycloprop-2-ene-1,1-dicarboxylate (82)

Following a reported procedure,³ a 5 mL microwave vial was loaded with Pd(OAc)₂ (45 mg, 0.20 mmol, 0.1 equiv.), iodobenzene (**81**) (0.25 mL, 2.2 mmol, 1.1 equiv.), dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (**7**) (0.464 g, 2.00 mmol, 1.0 equiv.) and K₂CO₃ (0.691 g, 5.00 mmol, 2.5 equiv.) under nitrogen atmosphere. DMF (2.0 mL) was added, and the reaction mixture was stirred at 30 °C for 18 hours. The reaction mixture was filtered through a short column of silica gel eluting with Et₂O, and the obtained ethereal solution was washed subsequently with a sat. NH₄Cl solution (15 mL), water (15 mL), and brine (15 mL). Combined organic layers were then dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography (SiO₂, Pentane:EtOAc 97:3 to 90:10) affording the title compound **82** (228 mg, 0.738 mmol, 37 % yield) as a pale yellow solid. ¹H **NMR (400 MHz, Chloroform-d)** δ 7.78 – 7.71 (m, 4H, Ar*H*), 7.52 – 7.46 (m, 4H, Ar*H*), 7.46 – 7.42 (m, 2H, Ar*H*), 3.73 (s, 6H, OCH₃); ¹³C **NMR (101 MHz, Chloroform-d)** δ 170.9, 130.3,

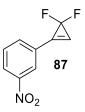

130.1, 129.2, 125.4, 106.6, 52.5, 35.1. The characterization data correspond to the reported values.¹³

2-phenyl-3-propylcycloprop-2-ene-1,1-dicarbonitrile (84)

Following a reported procedure,⁷ PhI(OAc)₂ (1.16 g, 3.60 mmol, 1.2 equiv.) and malonitrile (**64**) (238 mg, 3.60 mmol, 1.2 equiv.) were charged in a 25 mL microwave vial. Then pent-1-yn-1-ylbenzene (**83**) (0.22 mL, 2.0 mmol, 1.0 equiv.) and DCE (12.0 mL) were added, and the resulting solution was stirred at 50 °C. After 3 hours, the reaction mixture was cooled to room temperature, quenched with water (25 mL), and extracted with DCM (3 x 20 mL). The combined organic layers were evaporated under reduced pressure. The crude residue was purified by column chromatography (SiO₂, Pentane:EtOAc 95:5) affording the title compound **84** (212 mg, 1.02 mmol, 34 % yield) as an orange oil. ¹H NMR (**400 MHz, Chloroform-d**) δ = 7.61 (m, 2H, ArH), 7.55 (m, 3H, ArH), 2.82 (t, *J* = 7.28, 2H, CH₂CH₂CH₃), 1.90 (h, *J* = 7.35, 2H, CH₂CH₂CH₃), 1.13 (t, *J* = 7.40, 3H, CH₂CH₂CH₃); ¹³C NMR (101 MHz, Chloroform-d) δ 131.8, 129.5, 129.3, 121.7, 116.5, 106.1, 104.1, 26.1, 20.2, 13.8, 5.2. The characterization data correspond to the reported values.⁷


1-(3,3-Difluorocycloprop-1-en-1-yl)-4-(trifluoromethyl)benzene (85)

Following the general procedure B, starting from 1-ethynyl-4-(trifluoromethyl)benzene (0.41 mL, 2.5 mmol, 1.0 equiv.), the title compound **85** was obtained after purification by column chromatography (SiO₂, Pentane:Et₃N 96:4) as a brown oil (201 mg, 0.913 mmol, 37 % yield). **R**_f 0.38 (Pentane:Et₃N 96:4) ; ¹**H NMR (400 MHz, Chloroform-d)** δ 7.81 – 7.73 (m, 4H, Ar*H*), 7.65 (t, *J* = 1.6 Hz, 1H, C=C*H*) ; ¹³**C NMR (101 MHz, Chloroform-d)** δ 133.4 (q, *J* = 32.7 Hz), 133.2 (t, *J* = 10.8 Hz), 130.5, 126.8, 126.3 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 272.5 Hz), 116.6 (t, *J* = 12.2 Hz), 101.1 (t, *J* = 271.0 Hz) ; ¹⁹**F NMR (376 MHz, Chloroform-d)** δ -63.1, -106.6; **IR** $\tilde{\nu}_{max}$ 1721 (w), 1410 (m), 1325 (s), 1305 (s), 1292 (s), 1175 (s), 1129 (s), 1064 (s), 1030 (s), 1020 (s), 972 (w), 851 (m), 823 (s), 789 (m), 780 (m), 735 (m); **HRMS (APPI)** calcd for C₁₀H₅F₄⁺ [M⁺] 201.0322; found 201.0321.


¹³ D. C. Horwell, V. Sabin, **2000**, US Patent: US6020519.

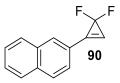
1-(3,3-Difluorocycloprop-1-en-1-yl)-3-methylbenzene (86)

Following the general procedure B, starting from 1-ethynyl-3-methylbenzene (0.26 mL, 2.0 mmol, 1.0 equiv.), the title compound **86** was obtained after purification by column chromatography (SiO₂, Pentane:Et₃N 95:5) as a brown oil (260 mg, 1.57 mmol, 78 % yield). **R**_f 0.43 (Pentane:Et₃N 96:4); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.47 (d, *J* = 7.6 Hz, 2H, Ar*H*), 7.43 (t, *J* = 1.7 Hz, 1H, C=C*H*), 7.37 (td, *J* = 7.3, 1.2 Hz, 1H, Ar*H*), 7.31 (d, *J* = 7.6 Hz, 1H, Ar*H*), 2.41 (s, 3H, C*H*₃); ¹³**C NMR (101 MHz, Chloroform-d)** δ 139.1, 134.2 (t, *J* = 10.4 Hz), 132.6, 130.9, 129.1, 127.4, 123.4, 113.3 (t, *J* = 12.3 Hz), 102.0 (t, *J* = 269.9 Hz), 21.3; ¹⁹**F NMR (376 MHz, Chloroform-d)** δ -106.4; **IR** $\tilde{\nu}_{max}$ 3134 (w), 2928 (w), 2862 (w), 1717 (w), 1604 (w), 1584 (w), 1484 (w), 1463 (w), 1305 (s), 1188 (w), 1021 (s), 890 (w), 811 (m); **HRMS (ESI)** calcd for C₁₀H₈F₂ [M⁺] 166.0589; found 166.0593.

1-(3,3-Difluorocycloprop-1-en-1-yl)-3-nitrobenzene (87)

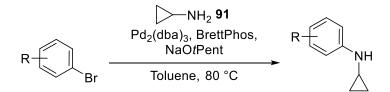
Following the general procedure B, starting from 1-ethynyl-3-nitrobenzene (0.29 g, 2.0 mmol, 1.0 equiv.), the title compound **87** was obtained after purification by column chromatography (SiO₂, Pentane:Et₃N 96:4 to Pentane:Et₃N:EtOAc 90:5:5) as a brown solid (171 mg, 0.866 mmol, 43 % yield). **R**_f 0.32 (Pentane:Et₃N:EtOAc 90:5:5); **m.p** = 41-44 °C; ¹**H NMR** (400 **MHz**, **Chloroform-d**) δ 8.51 (t, *J* = 1.9 Hz, 1H, C=C*H*), 8.37 (ddd, *J* = 8.4, 2.3, 1.1 Hz, 1H, Ar*H*), 7.98 (dt, *J* = 7.7, 1.3 Hz, 1H, Ar*H*), 7.76 – 7.67 (m, 2H, Ar*H*); ¹³**C NMR** (101 MHz, Chloroform-d) δ 148.8, 135.7, 132.5 (t, *J* = 11.2 Hz), 130.5, 126.2, 125.1, 124.9, 117.3 (t, *J* = 12.2 Hz), 100.7 (t, *J* = 271.6 Hz); ¹⁹**F NMR** (376 MHz, Chloroform-d) δ -106.4; **IR** $\tilde{\nu}_{max}$ 3133 (w), 3092 (w), 1723 (w), 1613 (w), 1530 (s), 1474 (w), 1434 (w), 1356 (s), 1305 (s), 1283 (s), 1031 (s), 892 (w), 818 (m), 790 (m), 747 (s), 735 (s), 675 (m); **HRMS** (APPI) calcd for C₉H₅F₂NO₂⁺ [M⁺] 197.0288; found 197.0231.

1-(3,3-difluorocycloprop-1-en-1-yl)-2-methoxybenzene (88)


Following the general procedure B, starting from 1-ethynyl-2-methoxybenzene (0.26 mL, 2.0 mmol, 1.0 equiv.), the title compound **88** was obtained after purification by column chromatography (SiO₂, Pentane:Et₃N 90:10) as a brown oil (317 mg, 1.74 mmol, 87 % yield). **R**_f 0.35 (Pentane:Et₃N 96:4); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.58 (dd, *J* = 7.6, 1.7 Hz, 1H, Ar*H*), 7.48 (ddd, *J* = 8.3, 7.5, 1.8 Hz, 1H, Ar*H*), 7.41 (t, *J* = 2.0 Hz, 1H, C=C*H*), 7.04 (td, *J* = 7.5, 1.0 Hz, 1H, Ar*H*), 6.98 (d, *J* = 8.4 Hz, 1H, Ar*H*), 3.94 (s, 3H, OC*H*₃); ¹³**C NMR (101 MHz, Chloroform-d)** δ 159.5, 133.5, 132.1, 130.2 (t, *J* = 10.5 Hz), 120.8, 113.9 (t, *J* = 12.2 Hz), 112.7, 111.2, 101.4 (t, *J* = 269.9 Hz), 55.9; ¹⁹**F NMR (376 MHz, Chloroform-d)** δ -105.3; **IR** $\tilde{\nu}_{max}$ 1722 (w), 1599 (m), 1490 (m), 1469 (w), 1305 (s), 1273 (s), 1173 (w), 1018 (s), 826 (m), 785 (m), 755 (s), 728 (w); **HRMS (APPI)** calcd for C₁₀H₈F₂O⁺ [M⁺] 182.0538; found 182.0540.

3-(3,3-Difluorocycloprop-1-en-1-yl)thiophene (89)

Following the general procedure B, starting from 1-ethynyl-2-methoxybenzene (0.20 mL, 2.0 mmol, 1.0 equiv.), the title compound **89** was obtained after purification by column chromatography (SiO₂, Pentane:Et₃N 96:4) as a brown oil (225 mg, 1.42 mmol, 71 % yield). ¹H **NMR (400 MHz, Chloroform-d)** δ 7.81 (d, J = 1.7 Hz, 1H, HetArH), 7.43 (dd, J = 5.0, 2.9 Hz, 1H, HetArH), 7.35 (dd, J = 5.1, 1.2 Hz, 1H, HetArH), 7.28 (t, J = 1.8 Hz, 1H, C=CH); ¹³C NMR (101 MHz, Chloroform-d) δ 130.9 (t, J = 1.4 Hz), 128.3 (t, J = 10.5 Hz), 127.8, 127.2, 124.4, 110.8 (t, J = 12.4 Hz), 100.9 (t, J = 269.8 Hz). The characterization data correspond to the reported values.¹⁰


2-(3,3-Difluorocycloprop-1-en-1-yl)naphthalene (90)

Following the general procedure B, starting from 2-ethynylnaphthalene (0.30 g, 2.0 mmol, 1.0 equiv.), the title compound **90** was obtained after purification by column chromatography (SiO₂, Pentane:Et₃N 95:5) as a light brown solid (379 mg, 1.87 mmol, 94 % yield). **R**_f 0.28 (Pentane:Et₃N 96:4); **m.p** = 46-48 °C ; ¹**H NMR (400 MHz, Chloroform-d)** δ 8.19 (s, 1H, C=CH), 7.96 – 7.91 (m, 2H, ArH), 7.91 – 7.86 (m, 1H, ArH), 7.69 (dd, *J* = 8.5, 1.7 Hz, 1H, ArH), 7.63 – 7.53 (m, 3H, ArH); ¹³**C NMR (101 MHz, Chloroform-d)** δ 134.7, 134.2 (t, *J* = 10.6 Hz), 133.1, 131.4, 129.2, 128.9, 128.3, 128.1, 127.2, 126.0, 120.7, 113.8 (t, *J* = 12.3 Hz), 102.0 (t, *J* = 270.2 Hz); ¹⁹**F NMR (376 MHz, Chloroform-d)** δ -106.4; **IR** $\tilde{\nu}_{max}$ 3130 (w), 3060 (w), 1716 (w), 1631 (w), 1462 (w), 1289 (s), 1196 (w), 1139 (w), 1014 (s), 893 (w), 862 (w), 809 (m), 787 (m), 766 (m), 675 (w); **HRMS (APPI)** calcd for C₁₃H₈F₂⁺ [M⁺] 202.0589; found 202.0592.

2.3 Synthesis of Cyclopropylanilines

General procedure C: Synthesis of cyclopropylanilines.

Following a modified procedure,¹⁴ an oven-dried microwave vial was charged with $Pd_2(dba)_3$ (1 mol%) and BrettPhos (3 mol%). The vial was sealed, evacuated and back-filled with nitrogen (3 times). Then toluene (0.5 M), cyclopropylamine (**91**) (1.6 equiv.), the aromatic bromide (1 equiv.) and NaO'Pent (45% solution in toluene, 1.5 equiv.) were added via syringe to the vial and it was heated at 80 °C for 18 h. The reaction mixture was then cooled to room temperature, diluted with Et₂O, and filtered through a small pad of silica gel. The filtrate was evaporated under reduced pressure, and the obtained crude residue was subjected to column chromatography with the indicated solvents.

N-Cyclopropylaniline (9)

Following the general procedure C, starting from bromobenzene (3.16 mL, 30.0 mmol, 1.0 equiv.), the title compound **9** was obtained after purification by column chromatography (SiO₂, Pentane:EtOAc 97:3) as a pale yellow oil (3.40 g, 25.5 mmol, 85 % yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 – 7.15 (m, 2H, Ar*H*), 6.84 – 6.77 (m, 2H, Ar*H*), 6.77 – 6.70 (m, 1H, Ar*H*), 4.21 (bs, 1H, NH), 2.43 (tt, *J* = 6.7, 3.6 Hz, 1H, NHC*H*), 0.77 – 0.70 (m, 2H, C*H*₂), 0.56 – 0.49 (m, 2H, C*H*₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.8, 129.2, 117.9, 113.3, 25.4, 7.5. The characterization data correspond to the reported values.¹⁵

4-Chloro-N-cyclopropylaniline (92)

Following the general procedure C, starting from 1-bromo-4-chlorobenzene (383 mg, 2.00 mmol, 1.0 equiv.), the title compound **92** was obtained after purification by column chromatography (SiO₂, Pentane:EtOAc 97:3) as a yellow oil (221 mg, 1.32 mmol, 66 % yield). ¹H NMR (400

¹⁴ S. Maity, M. Zhu, R. S. Shinabery, N. Zheng, Angew. Chem. Int. Ed. 2012, 51, 222 – 226.

¹⁵ T. V. Nykaza, J. Yang, A. T. Radosevich, *Tetrahedron* **2019**, *75*, 3248–3252.

MHz, Chloroform-*d*) δ 7.17 – 7.09 (m, 2H, Ar*H*), 6.75 – 6.66 (m, 2H, Ar*H*), 2.40 (tt, *J* = 6.7, 3.5 Hz, 1H, NHC*H*), 0.77 – 0.70 (td, *J* = 6.7, 4.7 Hz, 2H, C*H*₂), 0.53 – 0.46 (td, *J* = 6.7, 4.7 Hz, 2H, C*H*₂); ¹³C **NMR (101 MHz, Chloroform-***d*) δ 147.3, 129.1, 122.5, 114.4, 25.5, 7.6. The characterization data correspond to the reported values.¹⁶

N-Cyclopropyl-4-methylaniline (93)

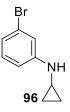
Following the general procedure C, starting from 1-bromo-4-methylbenzene (0.37 mL, 3.0 mmol, 1.0 equiv.), the title compound **93** was obtained after purification by column chromatography (SiO₂, Pentane:EtOAc 97:3) as a yellow oil (242 mg, 1.64 mmol, 55 % yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.04 – 6.98 (d, J = 8.2 Hz, 2H, ArH), 6.76 – 6.69 (d, J = 8.2 Hz, 2H, ArH), 4.14 (brs, 1H, NH), 2.41 (tt, J = 6.7, 3.6 Hz, 1H, NHCH), 2.26 (s, 3H, CH₃), 0.75 – 0.67 (m, 2H, CH₂), 0.55 – 0.46 (m, 2H, CH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.4, 129.7, 127.1, 113.4, 25.7, 20.6, 7.5. The characterization data correspond to the reported values.¹⁷

N-Cyclopropyl-4-methoxyaniline (94)


Following the general procedure C, starting from 1-bromo-4-methoxybenzene (0.25 mL, 2.0 mmol, 1.0 equiv.), the title compound **94** was obtained after purification by column chromatography (SiO₂, Pentane:EtOAc 97:3) as a yellow oil (248 mg, 1.52 mmol, 76 % yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.84 – 6.72 (m, 4H, Ar*H*), 4.22 (bs, 1H, N*H*), 3.76 (s, 3H, OC*H*₃), 2.40 (tt, *J* = 6.7, 3.6 Hz, 1H, NHC*H*), 0.70 (m, 2H, C*H*₂), 0.54 – 0.48 (m, 2H, C*H*₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.6, 142.8, 114.9, 114.5, 56.0, 26.2, 7.4. The characterization data correspond to the reported values.¹⁸

¹⁶ R. N. Loeppky, S. Elomari, J. Org. Chem. 2000, 65, 96-103.

¹⁷ Y. Kuang, Y. Ning, J. Zhu, Y. Wang, Org. Lett. 2018, 20, 2693–2697.

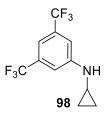

¹⁸ T. H. Nguyen, S. Maity, N. Zheng, Beilstein J. Org. Chem. 2014, 10, 975–980.

N-cyclopropyl-3-methoxyaniline (95)

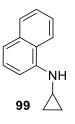
Following the general procedure C, starting from 1-bromo-3-methoxybenzene (0.38 mL, 3.0 mmol, 1.0 equiv.), the title compound **95** was obtained after purification by column chromatography (SiO₂, Pentane:EtOAc 97:3) as a white solid (434 mg, 2.66 mmol, 89 % yield).¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 – 7.05 (m, 1H, Ar*H*), 6.42 – 6.35 (m, 2H, Ar*H*), 6.34 – 6.28 (m, 1H, Ar*H*), 3.79 (s, 3H, OC*H*₃), 2.42 (tt, *J* = 6.7, 3.6 Hz, 1H, NHC*H*), 0.76 – 0.69 (m, 2H, C*H*₂), 0.59 – 0.51 (m, 2H, C*H*₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.7, 150.2, 129.8, 106.3, 102.6, 99.0, 54.8, 25.1, 7.3. The characterization data correspond to the reported values.17

3-Bromo-*N***-cyclopropylaniline (96)**

Following the general procedure C, starting from 1,3-dibromobenzene (0.30 mL, 2.5 mmol, 1.0 equiv.), the title compound **96** was obtained after purification by column chromatography (SiO₂, Pentane:EtOAc 50:50) as a yellow oil (142 mg, 0.670 mmol, 27 % yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.02 (t, *J* = 8.0 Hz, 1H, Ar*H*), 6.95 (t, *J* = 2.1 Hz, 1H, Ar*H*), 6.85 (ddd, *J* = 7.8, 1.9, 1.0 Hz, 1H, Ar*H*), 6.66 (ddd, *J* = 8.2, 2.3, 1.0 Hz, 1H, Ar*H*), 4.32 (bs, 1H, NH), 2.41 (tt, *J* = 6.7, 3.5 Hz, 1H, NHC*H*), 0.79 – 0.71 (m, 2H, CH₂), 0.55 – 0.48 (m, 2H, CH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.0, 130.5, 123.3, 120.7, 115.8, 112.2, 25.2, 7.6. The characterization data correspond to the reported values.¹⁷


N-Cyclopropylpyridin-3-amine (97)

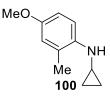
Following the general procedure C, starting from 3-bromopyridine (0.24 mL, 2.5 mmol, 1.0 equiv.), the title compound **97** was obtained after purification by column chromatography (SiO₂, Pentane:EtOAc 50:50) as a yellow oil (206 mg, 1.54 mmol, 61 % yield). ¹H NMR (400 MHz,


Chloroform-*d*) δ 8.18 – 8.10 (m, 1H, Ar*H*), 7.99 (dd, *J* = 3.7, 2.4 Hz, 1H, Ar*H*), 7.13 – 7.04 (m, 2H, Ar*H*), 4.23 (bs, 1H, N*H*), 2.43 (tt, *J* = 6.7, 3.5 Hz, 1H, NHC*H*), 0.82 – 0.72 (m, 2H, C*H*₂), 0.55 – 0.48 (m, 2H, C*H*₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.8, 139.2, 136.2, 123.8, 119.4, 25.0, 7.6. The characterization data correspond to the reported values.¹⁹

N-Cyclopropyl-3,5-bis(trifluoromethyl)aniline (98)

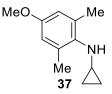
Following the general procedure C, starting from 1-bromo-3,5-bis(trifluoromethyl)benzene (0.35 mL, 2.0 mmol, 1.0 equiv.), the title compound **98** was obtained after purification by column chromatography (SiO₂, Pentane:EtOAc 97:3) as a white solid (310 mg, 1.15 mmol, 58 % yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (m, 1H, Ar*H*), 7.11 (m, 2H, Ar*H*), 2.48 (tt, *J* = 6.7, 3.6 Hz, 1H, NHC*H*), 0.88 – 0.80 (m, 2H, C*H*₂), 0.59 – 0.52 (m, 2H, C*H*₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.4, 132.4 (q, *J* = 32.7 Hz), 123.7 (q, *J* = 272.4 Hz), 112.6 – 112.1 (m), 110.8 (dt, *J* = 8.0, 4.2 Hz), 25.0, 7.8. The characterization data correspond to the reported values.¹⁷

N-cyclopropylnaphthalen-1-amine (99)



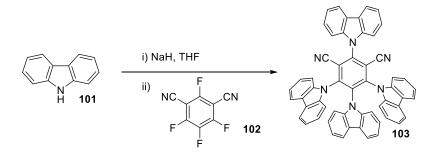
Following the general procedure C, starting from 1-bromonaphthalene (0.28 mL, 2.0 mmol, 1.0 equiv.), the title compound **99** was obtained after purification by column chromatography (SiO₂, Pentane:EtOAc 98:2) as a white solid (328 mg, 1.79 mmol, 89 % yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.77 (m, 1H, Ar*H*), 7.76 – 7.70 (m, 1H, Ar*H*), 7.49 – 7.37 (m, 3H, Ar*H*), 7.29 (d, *J* = 8.2 Hz, 1H, Ar*H*), 7.08 (dd, *J* = 7.6, 1.1 Hz, 1H, Ar*H*), 4.89 (bs, 1H, N*H*), 2.59 (tt, *J* = 6.8, 3.6 Hz, 1H, NHC*H*), 0.90 – 0.81 (m, 2H, C*H*₂), 0.69 – 0.62 (m, 2H, C*H*₂); ¹³C NMR (101 MHz, Chloroform-d) δ 144.0, 134.3, 128.8, 126.7, 125.8, 124.8, 123.3, 119.8, 117.9, 106.0, 25.6, 7.7. The characterization data correspond to the reported values.^{19,20}

¹⁹ W. Cui, R. N. Loeppky, *Tetrahedron* **2001**, *57*, 2953-2956.

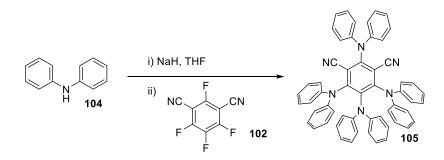

²⁰ Our obtained signals were slightly shifted from the reported ones.

N-Cyclopropyl-4-methoxy-2-methylaniline (100)

Following the general procedure C, starting from 1-bromo-4-methoxy-2-methylbenzene (0.28 mL, 2.0 mmol, 1.0 equiv.), the title compound **100** was obtained after purification by column chromatography (SiO₂, Pentane:EtOAc 97:3) as a yellow oil (250 mg, 1.41 mmol, 71 % yield). **R**_f 0.25 (Pentane:EtOAc 95:5); ¹**H NMR** (**400 MHz, Chloroform-d**) δ 6.99 (d, J = 8.6, 1H, Ar*H*), 6.74 (dd, J = 8.6, 3.0, 1H, ArH), 6.69 (d, J = 2.9, 1H, ArH), 3.76 (s, 3H, OC*H*₃), 2.41 (tt, J = 6.7, 3.6, 1H, NHCH), 2.10 (s, 3H, C*H*₃), 0.77 – 0.70 (m, 2H, C*H*₂), 0.56 – 0.49 (m, 2H, C*H*₂); ¹³**C NMR** (**101 MHz, Chloroform-d**) δ 152.1, 141.0, 123.5, 116.9, 112.1, 111.7, 56.0, 26.0, 17.7, 7.5; **IR** $\tilde{\nu}_{max}$ 3398 (w), 2996 (w), 2951 (w), 2830 (w), 1667 (w), 1612 (w), 1509 (s), 1455 (m), 1365 (m), 1284 (m), 1233 (s), 1208 (m), 1161 (m), 1050 (m), 852 (w), 805 (w); **HRMS** (**ESI**) calcd for C₁₁H₁₆NO⁺ [M+H]⁺ 178.1226; found 178.1227.


N-Cyclopropyl-4-methoxy-2,6-dimethylaniline (37)

Following the general procedure C, starting from 2-bromo-5-methoxy-1,3-dimethylbenzene (1.8 g, 8.5 mmol, 1.0 equiv.), the title compound **37** was obtained after purification by column chromatography (SiO₂, Pentane:EtOAc 97:3) as a yellow oil (1.38 g, 7.19 mmol, 85 % yield). **R**_f 0.3 (Pentane:EtOAc 95:5); ¹**H NMR (400 MHz, Chloroform-d)** δ 6.57 (s, 2H, ArH), 3.75 (s, 3H, OCH₃), 2.49 (tt, J = 6.8, 3.8 Hz, 1H, NHCH), 2.29 (s, 6H, CH₃), 0.62 – 0.53 (td, J = 6.8, 4.7 Hz, 2H, CH₂), 0.53 – 0.45 (td, J = 6.8, 4.7 Hz, 2H, CH₂); ¹³C NMR (101 MHz, Chloroform-d) δ 154.5, 139.1, 131.1, 114.0, 55.5, 30.7, 19.6, 8.4; **IR** $\tilde{\nu}_{max}$ 3365 (w), 2995 (w), 2947 (m), 2833 (w), 1609 (m), 1489 (s), 1358 (w), 1316 (m), 1256 (m), 1203 (m), 1149 (s), 1065 (s), 1019 (w), 999 (w), 855 (m), 836 (m); **HRMS (ESI)** calcd for C₁₂H₁₇NO [M]⁺ 191.1305; found 191.1308.

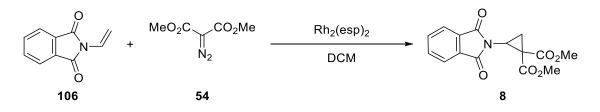

3. Synthesis of Organic Dyes

2,4,5,6-Tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN, 103)

Following a reported procedure,²¹ sodium hydride (60% suspension in mineral oil, 0.60 g, 15 mmol, 7.5 equiv), was added slowly to a stirred solution of 9H-carbazole (101) (1.67 g, 10.0 mmol, 5.00 equiv) in dry THF (40 mL) under a nitrogen atmosphere at room temperature. After 45 min, 2,4,5,6-tetrafluoroisophthalo-nitrile (102) (0.40 g, 2.0 mmol, 1.0 equiv.) was added portionwise. After stirring at room temperature for 15 hours, 2 mL of water were added to the reaction mixture to quench the excess of NaH. The resulting mixture was then concentrated under reduced pressure. The obtained residue was purified by recrystallization from hexane/CH₂Cl₂ (1:1, 90 mL) affording the crude product as a yellow powder. Further purification by column chromatography (SiO₂, Pentane:DCM 50:50 to 40:60) afforded the title compound 103 as a bright yellow crystalline solid (1.14 g, 1.45 mmol, 73 % yield). ¹H NMR (400 MHz, **Chloroform-***d*) δ 8.2 (d, J = 7.7 Hz, 2H, Ar*H*), 7.8 – 7.6 (m, 8H, Ar*H*), 7.5 (ddd, J = 8.0, 6.6, 1.6Hz, 2H, ArH), 7.3 (d, J = 7.5 Hz, 2H, ArH), 7.2 (dd, J = 8.4, 1.5 Hz, 4H, ArH), 7.2 – 7.0 (m, 8H, ArH), 6.8 (t, J = 7.8 Hz, 4H, ArH), 6.6 (td, J = 7.6, 1.2 Hz, 2H, ArH).¹³C NMR (101 MHz, **Chloroform-***d*) δ 145.2, 144.6, 140.0, 138.2, 136.9, 134.7, 127.0, 125.8, 124.9, 124.7, 124.5, 123.8, 122.4, 121.9, 121.4, 121.0, 120.4, 119.6, 116.3, 111.6, 109.9, 109.5, 109.4. The characterization data correspond to the reported values.²¹

2,4,5,6-Tetrakis(diphenylamino)isophthalonitrile (4DPAIPN, 105)

Following a slightly modified procedure,²¹ sodium hydride (60% suspension in mineral oil, 0.65 g, 16 mmol, 8.0 equiv), was added slowly to a stirred solution diphenylamine (**104**) (2.03 g, 12.0 mmol, 6 equiv.) in dry DMF (20 mL). The resulting suspension was heated to 50 °C for 1 h. Then 2,4,5,6-tetrafluoroisophthalonitrile (**102**) (0.40 g, 2.0 mmol, 1.0 equiv.) was added portionwise,


²¹ M. Garreau, F. Le Vaillant, J. Waser, Angew. Chem. Int. Ed. 2019, 58, 8182-8186.

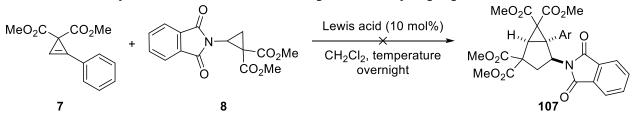
and the resulting reaction mixture was stirred at 50 °C for 4 h, and then at room temperature for 15 h. Water (5 mL) was added to quench the excess NaH, and the precipitate was filtered and purified by recrystallization from hexane/CH₂Cl₂ (1:2, 100 mL) to afford the title compound **105** as an orange crystalline solid (877 mg, 1.10 mmol, 55 % yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.22 (m, 4H, ArH), 7.12 – 7.05 (m, 12H, ArH), 7.07 – 6.98 (m, 2H, ArH), 6.96 – 6.84 (m, 8H, ArH), 6.73 – 6.63 (m, 10H, ArH), 6.56 (d, J = 7.4 Hz, 4H, ArH). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.2, 151.7, 145.5, 144.6, 143.1, 140.3, 129.4, 128.6, 127.5, 124.2, 123.9, 122.9, 122.6, 122.6, 121.1, 113.1, 113.0. The characterization data correspond to the reported values.²¹

4. Preliminary Attempts at the Lewis-Acid Catalysed [3+2] Annulation

4.1 Synthesis of the Donor-Acceptor Cyclopropane

Dimethyl 2-(1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (8)

Following a modified procedure,²² bis[rhodium($\alpha,\alpha,\alpha',\alpha'$ -tetramethyl-1,3-benzenedipropionic acid)] (11 mg, 0.014 mmol, 0.1 mol%) was weighted in the glovebox. The flask was closed with a septum and put under N₂ atmosphere. A solution of *N*-vinyl-phthalimide (**106**) (2.5 g, 14 mmol, 1 equiv) in 30 mL of dry dichloromethane was added and the resulting green suspension was cooled down to 0 °C with an ice/water bath. A solution of dimethyl-2-diazomalonate (**54**) (2.5 g, 15 mmol, 1.1 equiv) in dichloromethane (20 mL) was then added over five minutes. When the addition was complete, the reaction wass allowed to warm to room temperature. After 5 hours at room temperature, the solvent wass removed under reduced pressure and the obtained crude residue was purified by column chromatography (SiO₂, Hexane:EtOAc 90:10 to 70:30) to afford compound **8** (3.4 g, 11 mmol, 78% yield) as a colorless solid. ¹**H NMR (400 MHz, Chloroform**-*d*) δ 7.86 (m, 2H, Phth), 7.75 (m, 2H, Phth), 3.85 (s, 3H, OCH₃), 3.72 (dd, 1H, *J* = 8.5, 6.6 Hz, NCH), 3.64 (s, 3H, OCH₃), 2.73 (dd, 1H, *J* = 6.5, 6.5 Hz, CH₂), 2.06 (dd, 1 H, J = 8.5, 6.4 Hz, CH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.5, 167.8, 166.9, 134.3, 131.4, 123.5, 53.1, 53.0, 34.9, 33.1, 19.6. The characterization data is corresponding to the reported values.²²


4.2 Preliminary Cycloaddition Attempts

General method for the lewis acid catalyzed annulation:

A 5 mL microwave vial was charged in a glove box with the Lewis acid (10 mol%). The vial was sealed and put under N_2 atmosphere. A solution of 2-phenylcycloprop-2-ene-1,1-dicarboxylate (7) (23 mg, 0.10 mmol, 1.0 equiv.) and dimethyl 2-(1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (8) (36 mg, 0.12 mmol, 1.2 equiv.) in DCM was then added. The resulting reaction mixture was left stirring overnight at the indicated temperature. The reaction mixture was then filtered through a small pad of silica gel eluting with EtOAc, and the filtrate was concentrated under reduced pressure.

²² F. Gonzalez-Bobes, M. D. B. Fenster, S. Kiau, L. Kolla, S. Kolotuchin, M. Soumeillant, Adv. Synth. Catal. 2008, 350, 813-816.

 Table S1: [3+2] cycloaddition with donor-acceptor aminocyclopropane 8

Entry	Lewis acid	Dilution	Temperature	Outcome
1	Yb(OTf) ₃	1 M	RT	Complex mixture
2	Hf(OTf) ₄	0.1 M	RT	Complex mixture
3	SnCl ₄	0.1 M	-78 °C	Complex mixture

5. Optimizations

General method for the optimization:

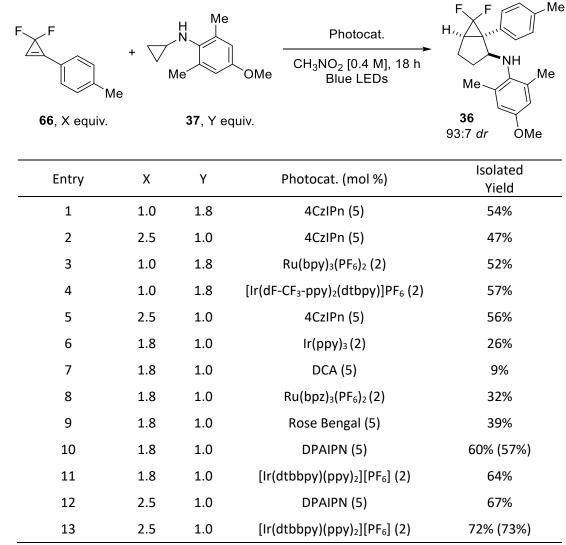

A 2 mL test tube was charged with the photocatalyst, the cyclopropene (0.1 mmol, 1 equiv.) and the cyclopropylaniline. The tube was sealed, evacuated and back-filled with nitrogen (3 times). Then degassed solvent (3 freeze pump thaw cycles) was added via syringe and the resulting mixture was irradiated at room temperature for 18 h with Blue LEDs, positioned at 4 to 5 cm of the reaction vessel. The reaction mixture was then filtered through a small pad of silica gel eluting with Et_2O , and the filtrate was concentrated under reduced pressure. The obtained crude residue was then subjected to preparative TLC, leading to the isolation of the desired cycloadduct.

Table S2: Optimization of the general [3+2] cycloaddition

MeO ₂ C CO ₂ Me		HN	Photocat.	MeO ₂ C CO ₂ Me
Ph	+	\bigtriangledown	Solvent, 18 h Blue LEDs	NH
7, X equiv.		9 , Y equiv.		10 55:45 dr

Entry	Х	Y	Photocat. (mol %)	Solvent [M]	lsolated Yield
1	2.5	1.0	$Ru(bpz)_3(PF_6)_2(2)$	CH ₃ NO ₂ [0.1]	52%
2	1.0	1.2	Ru(bpz) ₃ (PF ₆) ₂ (2)	CH ₃ NO ₂ [0.1]	49%
3	1.0	1.2	Ru(bpz) ₃ (PF ₆) ₂ (2)	CH ₃ CN [0.1]	38%
4	1.0	1.2	Ru(bpz) ₃ (PF ₆) ₂ (2)	MeOH [0.1]	28%
5	1.0	1.2	Ru(bpz) ₃ (PF ₆) ₂ (2)	DMF [0.1]	11%
6	1.0	1.2	Ru(bpz) ₃ (PF ₆) ₂ (2)	THF [0.1]	24%
7	1.0	1.2	$Ru(bpz)_3(PF_6)_2(2)$	DCE [0.1]	32%
8	1.0	1.5	$Ru(bpz)_3(PF_6)_2(2)$	CH ₃ NO ₂ [0.1]	53%
9	1.0	1.5	4CzIPn (5)	CH ₃ NO ₂ [0.1]	60%
10	1.0	1.5	4CzIPn (5)	CH ₃ NO ₂ [0.2]	70%
11	1.0	1.5	4CzIPn (5)	CH ₃ NO ₂ [0.4]	82%
12	1.0	1.8	4CzIPn (5)	CH ₃ NO ₂ [0.4]	86%
13	1.0	1.8	4DPAIPN (5)	CH ₃ NO ₂ [0.4]	87% (87%ª)
14	1.0	1.8	[lr(dtbbpy)(ppy) ₂][PF ₆] (2)	CH ₃ NO ₂ [0.4]	85%
15	1.0	2.5	[lr(dtbbpy)(ppy) ₂][PF ₆] (2)	CH ₃ NO ₂ [0.4]	89%

^{*a*}Isolated yield on 0.3 mmol.

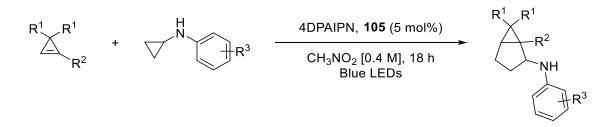
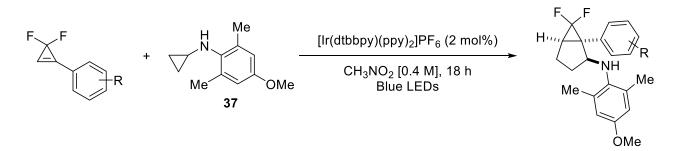


Table S3: Optimization of the diastereoselective [3+2] cycloaddition

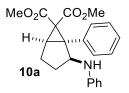
^{*a*}Isolated yield on 0.3 mmol.


6. Photoredox Mediated [3+2] Cycloaddition

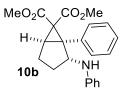
General procedure D

A 5 mL test tube was charged with 2,4,5,6-tetrakis(diphenylamino)isophthalonitrile (4-DPAIPN, **105**) (12 mg, 0.015 mmol, 0.05 equiv.), the cyclopropene (0.30 mmol, 1.0 equiv.) and the cyclopropylaniline (0.54 mmol, 1.8 equiv.). The tube was sealed, evacuated and back-filled with nitrogen (3 times). Then 0.75 mL of degassed nitromethane (3 freeze pump thaw cycles) was added via syringe and the resulting mixture was irradiated at room temperature for 18 hours with Blue LEDs, positioned at 4 to 5 cm of the reaction vessel. The reaction mixture was then filtered through a small pad of silica gel eluting with Et_2O , and the filtrate was concentrated under reduced pressure. The obtained crude residue was then subjected to column chromatography using the indicated solvents.

General procedure E



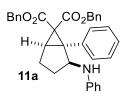
A 5 mL test tube was charged with $[Ir(dtbbpy)(ppy)_2]PF_6$ (5.5 mg, 6.0 µmol, 0.02 equiv.), the difluorocyclopropene (0.30 mmol, 1.0 equiv.) and *N*-cyclopropyl-4-methoxy-2,6-dimethylaniline (**37**) (0.14 g, 0.75 mmol, 2.5 equiv.). The tube was sealed, evacuated and back-filled with nitrogen (3 times). Then 0.75 mL of degassed nitromethane (3 freeze pump thaw cycles) was added via syringe and the resulting mixture was irradiated at room temperature for 18 hours with Blue LEDs, positioned at 4 to 5 cm of the reaction vessel. The reaction mixture was then filtered through a small pad of silica gel eluting with Et₂O, and the filtrate was concentrated under reduced pressure. The obtained crude residue was then subjected to column chromatography using the indicated solvents.


The stereochemistry of the major diastereoisomer for the cycloadducts was assigned by analogy with compound **10a**, for which product modification led to **50**, confirming its proposed relative configuration. The stereochemistry of the minor diastereoisomer was assigned by analogy with compound **16b**, for which a crystal structure could be obtained by X-Ray diffraction.

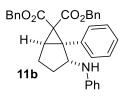
Dimethyl 1-phenyl-2-(phenylamino)bicyclo[3.1.0]hexane-6,6-dicarboxylate (10)

Following the general procedure D, starting from dimethyl 2-phenylcycloprop-2-ene-1,1dicarboxylate (7) (70 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylaniline (9) (72 mg, 0.54 mmol, 1.8 equiv.), the title compound **10** (55:45 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10).

10a, major diastereoisomer, colorless oil (52 mg, 0.14 mmol, 47 % yield). **R**_f 0.35 (Pentane:Et₂O 80:20); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.33 - 7.27 (m, 2H, Ar*H*), 7.24 - 7.14 (m, 3H, Ar*H*), 7.05 - 6.99 (m, 2H, Ar*H*), 6.55 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.45 (d, *J* = 7.4 Hz, 2H, Ar*H*), 5.23 (d, *J* = 10.4 Hz, 1H, N*H*), 4.42 (td, *J* = 10.3, 9.7, 7.0 Hz, 1H, C*H*NH), 3.86 (s, 3H, OC*H*₃), 3.41 (s, 3H, OC*H*₃), 2.65 (d, *J* = 4.6 Hz, 1H, C*H*CH₂), 2.35 - 2.12 (m, 3H, NHCHC*H*₂ and NHCHCH₂C*H*₂), 0.96 - 0.84 (m, 1H, NHCHC*H*₂); ¹³C **NMR (101 MHz, Chloroform-d)** δ 170.1, 167.8, 148.2, 137.8, 129.1, 129.0, 128.3, 127.4, 116.9, 113.2, 63.5, 53.4, 52.8, 50.5, 42.0, 34.8, 28.1, 24.5; **IR** $\tilde{\nu}_{max}$ 3383 (w), 3055 (w), 3028 (w), 2955 (w), 1731 (s), 1602 (s), 1511 (s), 1436 (m), 1313 (s), 1236 (s), 1196 (m), 1124 (m), 1076 (m), 1011 (w), 934 (w); **HRMS (ESI)** calcd for C₂₂H₂₄NO₄⁺ [M+H]⁺ 366.1700; found 366.1700.

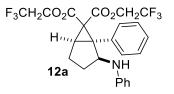


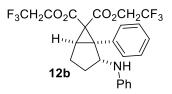
10b, minor diastereoisomer, colorless oil (44 mg, 0.12 mmol, 40 % yield). **R**_f 0.25 (Pentane:Et₂O 80:20); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.41 - 7.35 (m, 1H, Ar*H*), 7.36 - 7.28 (m, 2H, Ar*H*), 7.26 - 7.21 (m, 2H, Ar*H*), 7.11 - 7.02 (m, 2H, Ar*H*), 6.63 (t, *J* = 7.4 Hz, 1H, Ar*H*), 6.37 (d, *J* = 7.3 Hz, 2H, Ar*H*), 4.35 (d, *J* = 5.7 Hz, 1H, C*H*NH), 3.88 (s, 3H, OC*H*₃), 3.52 (bs, 1H, N*H*), 3.36 (s, 3H, OC*H*₃), 2.92 (d, *J* = 4.3 Hz, 1H, C*H*CH₂), 2.41 - 2.28 (m, 1H, NHCHCH₂C*H*₂), 2.14 (dd, *J* = 13.5, 8.3 Hz, 1H, NHCHCH₂C*H*₂), 1.92 (dd, *J* = 14.9, 9.4 Hz, 1H, NHCHCH₂), 1.46 - 1.33 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.1, 167.4, 146.9, 134.8, 129.8, 129.1, 128.9, 128.0, 117.6, 113.5, 58.8, 53.1, 52.7, 51.0, 42.5, 36.5, 30.1, 24.8; IR $\tilde{\nu}_{max}$ 3407 (w), 3055 (w), 3028 (w), 2953 (w), 1735 (s), 1602 (s), 1504 (m), 1434 (m), 1315 (m), 1259 (s), 1211 (m), 1178 (m), 1121 (m), 1073 (w), 1013 (w); HRMS (ESI) calcd for C₂₂H₂₄NO₄⁺ [M+H]⁺ 366.1700; found 366.1698.


Dibenzyl 1-phenyl-2-(phenylamino)bicyclo[3.1.0]hexane-6,6-dicarboxylate (11)

Following the general procedure D, starting from dibenzyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (62) (0.12 g, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylaniline (9) (72 mg, 0.54

mmol, 1.8 equiv.), the title compound **11** (58:42 dr in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 90:10 to 85:15).

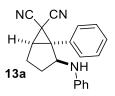

11a, major diastereoisomer, pale yellow oil (65 mg, 0.13 mmol, 42 % yield). **R**_f 0.40 (Pentane:Et₂O 80:20); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.39 – 7.33 (m, 5H, Ar*H*), 7.29 – 7.24 (m, 5H, Ar*H*), 7.16 (dp, J = 3.6, 2.0 Hz, 3H, Ar*H*), 7.06 – 7.01 (m, 2H, Ar*H*), 7.02 – 6.95 (m, 2H, Ar*H*), 6.54 (t, J = 7.3 Hz, 1H, Ar*H*), 6.32 (d, J = 7.3 Hz, 2H, Ar*H*), 5.25 (app. d, J = 2.5 Hz, 2H, CH₂Ph), 5.14 (d, J = 10.6 Hz, 1H, N*H*), 4.89 (d, J = 12.3 Hz, 1H, CH₂Ph), 4.71 (d, J = 12.2 Hz, 1H, CH₂Ph), 4.40 (td, J = 10.3, 7.4 Hz, 1H, CHNH), 2.65 (d, J = 4.2 Hz, 1H, CHCH₂), 2.30 – 2.10 (m, 3H, NHCHCH₂ and NHCHCH₂CH₂), 0.89 (td, J = 7.5, 6.6, 3.7 Hz, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-d) δ 169.3, 167.3, 148.1, 137.7, 135.2, 134.9, 129.1, 129.0, 128.9, 128.5, 128.3, 128.3, 127.3, 116.8, 113.2, 68.4, 67.5, 63.7, 50.7, 42.2, 35.0, 28.0, 24.5; 3 aromatic carbons were not resolved. IR $\tilde{\nu}_{max}$ 3385 (w), 3064 (w), 3031 (w), 2960 (w), 1729 (s), 1602 (m), 1513 (m), 1453 (w), 1401 (w), 1378 (w), 1312 (m), 1277 (m), 1254 (m), 1221 (s), 1187 (m), 1119 (m), 1075 (m), 911 (m); HRMS (ESI) calcd for C₃₄H₃₂NO₄⁺ [M+H]⁺ 518.2326; found 518.2332.


11b, minor diastereoisomer, pale yellow oil (62 mg, 0.12 mmol, 40 % yield). **R**_f 0.35 (Pentane:Et₂O 80:20); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.46 – 7.40 (m, 2H, ArH), 7.41 – 7.35 (m, 3H, ArH), 7.34 – 7.30 (m, 1H, ArH), 7.28 – 7.24 (m, 5H, ArH), 7.19 (tt, *J* = 7.1, 1.7, 1H, ArH), 7.13 (t, *J* = 7.5, 1H, ArH), 7.08 – 6.95 (m, 4H, ArH), 6.61 (t, *J* = 7.3, 1H, ArH), 6.24 (d, *J* = 7.5, 2H, ArH), 5.37 (d, *J* = 12.0, 1H, CH₂Ph), 5.20 (d, *J* = 12.0, 1H, CH₂Ph), 4.85 (d, *J* = 12.3, 1H, CH₂Ph), 4.67 (d, *J* = 12.4, 1H, CH₂Ph), 4.26 (d, *J* = 5.8, 1H, CHNH), 3.51 (bs, 1H, NH), 2.91 (d, *J* = 4.3, 1H, CHCH₂), 2.34 – 2.21 (m, 1H, NHCHCH₂CH₂), 2.10 (dd, *J* = 13.5, 8.3, 1H, NHCHCH₂CH₂), 1.75 (dd, *J* = 14.9, 9.4, 1H, NHCHCH₂), 1.31 – 1.26 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-d) δ 167.2, 166.9, 146.9, 135.4, 135.2, 134.6, 130.0, 129.7, 129.1, 129.0, 128.8, 128.7, 128.5, 128.2, 128.1, 128.0, 127.9, 117.5, 113.4, 67.8, 67.3, 58.8, 51.1, 42.6, 36.6, 29.9, 24.7. IR \tilde{v}_{max} 3409 (w), 3057 (m), 3033 (m), 2960 (m), 2928 (m), 1731 (s), 1604 (s), 1500 (s), 1455 (m), 1430 (w), 1375 (w), 1309 (m), 1286 (s), 1257 (s), 1203 (s), 1180 (s), 1117 (s), 1071 (m), 1026 (w), 1003 (w), 982 (w), 907 (s); HRMS (ESI) calcd for C₃₄H₃₂NO₄⁺ [M+H]⁺ 518.2326; found 518.2327.

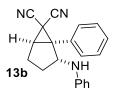
Bis(2,2,2-trifluoroethyl) 1-phenyl-2-(phenylamino)bicyclo[3.1.0]hexane-6,6-dicarboxylate (12)

Following the general procedure D, starting from bis(2,2,2-trifluoroethyl) 2-phenylcycloprop-2ene-1,1-dicarboxylate (**63**) (0.11 g, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylaniline (**9**) (72 mg, 0.54 mmol, 1.8 equiv.), the title compound **12** (66:34 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 90:10 to 85:15).

12a, major diastereoisomer, colorless oil (81 mg, 0.16 mmol, 54 % yield). **R**_f 0.42 (Pentane:Et₂O 80:20); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.31 – 7.27 (m, 2H, Ar*H*), 7.25 – 7.19 (m, 3H, Ar*H*), 7.07 – 6.99 (m, 2H, Ar*H*), 6.59 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.44 (d, *J* = 7.4 Hz, 2H, Ar*H*), 5.07 (bs, 1H, N*H*) 4.77 (dq, *J* = 12.6, 8.3 Hz, 1H, C*H*₂CF₃), 4.59 – 4.45 (m, 2H, C*H*₂CF₃ and C*H*NH), 4.24 (dq, *J* = 12.7, 8.3 Hz, 1H, C*H*₂CF₃), 4.12 (dq, *J* = 12.6, 8.3 Hz, 1H, C*H*₂CF₃), 2.77 (d, *J* = 4.3 Hz, 1H, NHCHCH₂), 2.40 – 2.28 (m, 2H, NHCHCH₂C*H*₂ and NHCHC*H*₂), 2.24 (dd, *J* = 12.6, 8.7 Hz, 1H, NHCHCH₂C*H*₂), 1.03 – 0.90 (m, 1H, NHCHC*H*₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.7, 165.4, 147.8, 136.6, 129.2, 128.9, 128.6, 127.8, 122.8 (q, *J* = 277.1 Hz), 122.5 (q, *J* = 276.9 Hz), 117.2, 113.2, 63.7, 61.9 (q, *J* = 37.0 Hz), 61.3 (q, *J* = 37.2 Hz), 52.1, 41.4, 36.2, 28.0, 24.3; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -73.4 (t, *J* = 8.3 Hz), -74.0 (t, *J* = 8.2 Hz); IR $\tilde{\nu}_{max}$ 3414 (w), 3064 (w), 3028 (w), 2972 (w), 1752 (m), 1602 (m), 1513 (m), 1442 (w), 1413 (m), 1286 (s), 1250 (m), 1219 (m), 1171 (s), 1119 (m), 1084 (w), 971 (m), 911 (m); HRMS (ESI) calcd for C₂₄H₂₂F₆NO₄⁺ [M+H]⁺ 502.1448; found 502.1466.

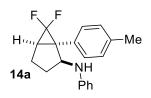

12b, minor diastereoisomer, colorless oil (36 mg, 0.072 mmol, 24 % yield). **R**_f 0.36 (Pentane:Et₂O 80:20); ¹**H NMR (400 MHz, Chloroform-***d*)²³ δ 7.38 – 7.30 (m, 3H, Ar*H*), 7.26 – 7.23 (m, 2H, Ar*H*), 7.13 – 7.03 (m, 2H, Ar*H*), 6.67 (t, *J* = 7.4 Hz, 1H, Ar*H*), 6.38 (d, *J* = 7.2 Hz, 2H, Ar*H*), 4.65 (qd, *J* = 8.4, 1.2 Hz, 2H, C*H*₂CF₃), 4.41 (d, *J* = 5.9 Hz, 1H, C*H*NH), 4.20 (dq, *J* = 12.6, 8.3 Hz, 1H, C*H*₂CF₃), 4.05 (dq, *J* = 12.6, 8.3 Hz, 1H, C*H*₂CF₃), 3.03 (d, *J* = 4.4 Hz, 1H, C*H*CH₂), 2.50 – 2.37 (m, 1H, NHCHCH₂C*H*₂), 2.18 (dd, *J* = 13.8, 8.4 Hz, 1H, NHCHCH₂C*H*₂), 1.99 (dd, *J* = 15.2, 9.6 Hz, 1H, NHCHCH₂), 1.46 (dddd, *J* = 14.8, 10.8, 8.5, 5.9 Hz, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.4, 165.0, 146.4, 133.6, 129.7, 129.2, 128.4, 128.3, 122.9 (q, *J* = 277.3), 122.4 (q, *J* = 277.3), 118.2, 113.7, 61.4 (q, *J* = 37.0 Hz), 61.3 (q, *J* = 37.1 Hz) 59.0, 52.4, 41.9, 37.8, 29.9, 24.8; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -73.35 (t, *J* = 8.2 Hz), -74.03 (t, *J* = 8.2 Hz); **IR** $\tilde{\nu}_{max}$ 3407 (w), 3058 (w), 3030 (w), 2974 (w), 1754 (m),

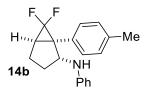
²³ NH was not resolved.


1602 (m), 1502 (m), 1411 (w), 1288 (s), 1250 (m), 1167 (s), 1117 (m), 1080 (w), 1026 (w), 982 (m), 909 (w); **HRMS (ESI)** calcd for $C_{24}H_{22}F_6NO_4^+$ [M+H]⁺ 502.1448; found 502.1454.

1-Phenyl-2-(phenylamino)bicyclo[3.1.0]hexane-6,6-dicarbonitrile (13)

Following the general procedure D, starting from 2-phenylcycloprop-2-ene-1,1-dicarbonitrile (65) (50 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylaniline (9) (72 mg, 0.54 mmol, 1.8 equiv.), the title compound 13 (70:30 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 90:10 to 70:30).

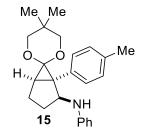

13a, major diastereoisomer, brown oil (46 mg, 0.15 mmol, 51 % yield). **R**_f 0.44 (Pentane:Et₂O 65:35); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.44 – 7.39 (m, 2H, Ar*H*), 7.38 – 7.33 (m, 3H, Ar*H*), 7.07 – 6.99 (m, 2H, Ar*H*), 6.67 (t, *J* = 7.4 Hz, 1H, Ar*H*), 6.34 (d, *J* = 7.6 Hz, 2H, Ar*H*), 4.65 (q, *J* = 9.3 Hz, 1H, C*H*NH), 4.09 (d, *J* = 9.1 Hz, 1H, N*H*), 2.79 (d, *J* = 3.5 Hz, 1H, C*H*CH₂), 2.56 – 2.41 (m, 3H, NHCHCH₂ and NHCHCH₂C*H*₂), 1.90 – 1.79 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.8, 133.9, 129.5, 129.3, 128.9, 118.6, 114.7, 113.6, 113.6, 63.6, 55.9, 42.0, 30.1, 24.9, 12.9; **IR** \tilde{v}_{max} 3405 (m), 2970 (s), 2900 (s), 2245 (m), 1638 (s), 1603 (s), 1498 (s), 1441 (m), 1400 (s), 1315 (m), 1262 (s), 1175 (m), 1071 (s), 914 (s), 739 (s), 698 (s); **HRMS (ESI)** calcd for C₂₀H₁₈N₃⁺ [M+H]⁺ 300.1495; found 300.1503.


13b, minor diastereoisomer, brown oil (22 mg, 0.073 mmol, 25 % yield). **R**_f 0.32 (Pentane:Et₂O 65:35); ¹**H NMR (400 MHz, Chloroform-***d*)²³ δ 7.43 (dd, *J* = 4.3, 1.8 Hz, 5H, Ar*H*), 7.18 – 7.11 (m, 2H, Ar*H*), 6.76 (t, *J* = 7.4 Hz, 1H, Ar*H*), 6.45 (d, *J* = 7.4 Hz, 2H, Ar*H*), 4.46 (dd, *J* = 6.7, 2.0 Hz, 1H, C*H*NH), 3.06 (d, *J* = 4.7 Hz, 1H, C*H*CH₂), 2.68 – 2.55 (m, 1H, NHCHCH₂C*H*₂), 2.45 (dtd, *J* = 15.1, 8.7, 6.6 Hz, 1H, NHCHCH₂C*H*₂), 2.31 (ddd, *J* = 14.3, 8.9, 2.4 Hz, 1H, NHCHCH₂), 2.11 (ddt, *J* = 15.1, 10.8, 2.4 Hz, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.7, 130.9, 130.1, 129.5, 129.4, 119.0, 114.0, 113.3, 113.1, 58.6, 55.3, 42.1, 31.8, 25.2, 15.9; **IR** $\tilde{\nu}_{max}$ 3395 (w), 3058 (w), 2932 (w), 2249 (m), 1603 (s), 1498 (s), 1439 (w), 1313 (m), 1258 (w), 1178 (w), 1031 (w), 912 (m), 737 (s), 694 (s); **HRMS (ESI)** calcd for C₂₀H₁₈N₃⁺ [M+H]⁺ 300.1495; found 300.1499.

6,6-Difluoro-*N*-phenyl-1-(p-tolyl)bicyclo[3.1.0]hexan-2-amine (14)

Following the general procedure D, starting from 1-(3,3-difluorocycloprop-1-en-1-yl)-4methylbenzene (**66**) (50 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylaniline (**9**) (72 mg, 0.54 mmol, 1.8 equiv.), the title compound **14** (68:32 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 98:2 to 95:5).

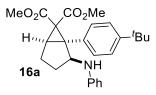
14a, major diastereoisomer, pale brown oil (56 mg, 0.19 mmol, 62 % yield). **R**_f 0.40 (Pentane:Et₂O 95:5); ¹**H NMR (400 MHz, Chloroform-***d*)²³ δ 7.16 (d, *J* = 8.1 Hz, 2H, Ar*H*), 7.04 – 6.96 (m, 4H, Ar*H*), 6.57 (t, *J* = 7.4 Hz, 1H, Ar*H*), 6.42 (d, *J* = 7.7 Hz, 2H, Ar*H*), 4.44 (td, *J* = 8.9, 6.2 Hz, 1H, C*H*NH), 2.44 – 2.32 (m, 1H, CF₂CHC*H*₂), 2.29 – 2.18 (m, 5H, CF₂CHC*H*₂), NHCHC*H*₂ and C*H*₃), 2.09 (dd, *J* = 14.4, 5.0 Hz, 1H, C*H*CF₂), 1.54 – 1.43 (m, 1H, NHCHC*H*₂); ¹³C **NMR (101 MHz, Chloroform-***d*)²⁴ δ 147.5, 137.3, 132.1, 129.3, 128.7, 117.8, 116.8 (dd, *J* = 303.4, 281.6 Hz), 113.7, 63.9, 44.5 (dd, *J* = 11.7, 8.5 Hz), 33.6 (dd, *J* = 12.3, 9.0 Hz), 31.3 (d, *J* = 7.4 Hz), 24.5, 21.3; ¹⁹F **NMR (376 MHz, Chloroform-***d*) δ -124.7 (dd, *J* = 161.0, 14.8 Hz), -138.5 (d, *J* = 160.4 Hz); **IR** $\tilde{\nu}_{max}$ 3418 (w), 3025 (w), 2953 (m), 1733 (w), 1603 (s), 1511 (s), 1447 (s), 1315 (m), 1280 (m), 1245 (m), 1196 (s), 1155 (m), 1060 (m), 984 (s), 918 (m), 813 (m), 748 (s), 694 (m); **HRMS (ESI)** calcd for C₁₉H₂₀F₂N⁺ [M+H]⁺ 300.1558; found 300.1559.



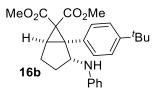
14b, minor diastereoisomer, pale brown oil (23 mg, 0.077 mmol, 26 % yield). **R**_f 0.35 (Pentane:Et₂O 95:5); ¹**H NMR (400 MHz, Chloroform**-*d*)²³ δ 7.16 (d, *J* = 1.3 Hz, 4H, Ar*H*), 7.14 – 7.09 (m, 2H, Ar*H*), 6.69 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.46 (d, *J* = 7.8 Hz, 2H, Ar*H*), 4.22 (d, *J* = 4.4 Hz, 1H, C*H*NH), 2.42 (dd, *J* = 14.2, 5.3 Hz, 1H, C*H*CF₂), 2.37 – 2.29 (m, 4H, C*H*₃ and CF₂CHC*H*₂), 2.15 – 1.99 (m, 3H, CF₂CHC*H*₂ and NHCHC*H*₂); ¹³**C NMR (101 MHz, Chloroform**-*d*) δ 146.6, 138.0, 129.6, 129.5, 129.3, 128.9, 118.0, 115.5 (dd, *J* = 305.0, 276.3 Hz), 113.7, 57.6, 46.2 – 45.7 (m), 32.5 (dd, *J* = 11.4, 9.4 Hz), 31.8 (d, *J* = 9.7 Hz), 24.0, 21.3; ¹⁹**F NMR (376 MHz, Chloroform**-*d*) δ -125.5 (ddd, *J* = 158.3, 14.4, 4.9 Hz), -141.3 (d, *J* = 158.3 Hz); **IR** $\tilde{\nu}_{max}$ 3405 (w), 3031 (w), 2932 (w), 2878 (w), 1602 (s), 1503 (s), 1431 (s), 1321 (m), 1251 (m), 1208 (m), 1082 (w), 993 (m), 923 (m), 820 (w), 752 (s), 690 (m); **HRMS (ESI)** calcd for C₁₉H₂₀F₂N⁺ [M+H]⁺ 300.1558; found 300.1561.

²⁴ One carbon was not resolved.

5',5'-Dimethyl-*N*-phenyl-1-(p-tolyl)spiro[bicyclo[3.1.0]hexane-6,2'-[1,3]dioxan]-2-amine (15)

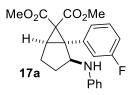

Following the general procedure D, starting from 6,6-dimethyl-1-(*p*-tolyl)-4,8-dioxaspiro[2.5]oct-1-ene (**70**) (69 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylaniline (**9**) (72 mg, 0.54 mmol, 1.8 equiv.), the title compound **15** (> 95:5 *dr* in the crude ¹H NMR, putative minor diastereoisomer could not be detected) was obtained as a single diastereoisomer after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 98:2 to 95:5), and as a pale yellow oil (49 mg, 0.14 mmol, 45 % yield).

R_f 0.55 (Pentane:Et₂O 90:10); ¹**H NMR (400 MHz, Chloroform-***d*) δ 7.31 (d, J = 8.1 Hz, 2H, Ar*H*), 7.14 – 7.05 (m, 4H, Ar*H*), 6.64 (t, J = 7.3 Hz, 1H, Ar*H*), 6.57 (d, J = 7.3 Hz, 2H, Ar*H*), 4.53 – 4.35 (m, 2H, C*H*NH & N*H*), 3.73 (d, J = 10.6 Hz, 1H, OC*H*₂), 3.61 (d, J = 10.6 Hz, 1H, OC*H*₂), 3.57 – 3.46 (m, 2H, OC*H*₂), 2.45 – 2.35 (m, 1H, CH), 2.31 (s, 3H, C_{Ar}-C*H*₃), 2.28 – 2.19 (m, 1H, NHCHCH₂C*H*₂), 1.69 – 1.56 (m, 1H, NHCHC*H*₂), 1.29 (s, 3H, C*H*₃), 0.82 (s, 3H, C*H*₃); ¹³C **NMR (101 MHz, Chloroform-***d*) δ 148.5, 136.1, 135.5, 129.1, 128.8, 128.7, 116.8, 113.5, 94.1, 76.9, 76.3, 63.4, 46.0, 34.5, 32.5, 31.0, 25.4, 23.0, 22.1, 21.3; **IR** $\tilde{\nu}_{max}$ 3399 (w), 3050 (w), 3026 (w), 2952 (m), 2863 (m), 1906 (w), 1601 (m), 1504 (m), 1464 (w), 1392 (w), 1308 (w), 1278 (w), 1241 (w), 1143 (m), 1115 (m), 1062 (m), 1012 (m), 969 (w), 908 (s), 811 (m), 728 (s), 691 (m), 646 (w); **HRMS (ESI)** calcd for C₂₄H₂₉NNaO₂⁺ [M + Na]⁺ 386.2090; found 386.2094.

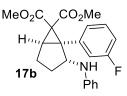

Dimethyl 1-(4-(*tert*-butyl)phenyl)-2-(phenylamino)bicyclo[3.1.0]hexane-6,6-dicarboxylate (16)

Following the general procedure D, starting from dimethyl 2-(4-(*tert*-butyl)phenyl)cycloprop-2ene-1,1-dicarboxylate (**71**) (78 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylaniline (**9**) (72 mg, 0.54 mmol, 1.8 equiv.), the title compound **16** (54:46 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10).

16a, major diastereoisomer, pale yellow oil (61 mg, 0.15 mmol, 48 % yield). **R**_f 0.38 (Pentane:Et₂O 80:20); ¹**H NMR (400 MHz, Chloroform-***d*)²³ δ 7.20 – 7.14 (m, 4H, Ar*H*), 7.06 – 7.00 (m, 2H, Ar*H*), 6.59 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.50 (d, *J* = 7.9 Hz, 2H, Ar*H*), 4.42 (dd, *J* =

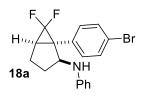

10.1, 8.0 Hz, 1H, C*H*NH), 3.87 (s, 3H, OC*H*₃), 3.41 (s, 3H, OC*H*₃), 2.63 (d, J = 4.5 Hz, 1H, C*H*CH₂), 2.36 – 2.16 (m, 3H, NHCHC*H*₂ and NHCHCH₂C*H*₂), 1.24 (s, 9H, 'Bu), 0.95 – 0.87 (m, 1H, NHCHC*H*₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.3, 167.7, 150.0, 147.5, 134.5, 129.1, 128.5, 125.1, 117.5, 113.9, 64.0, 53.4, 52.8, 49.9, 42.2, 34.9, 34.6, 31.4, 28.0, 24.5; IR $\tilde{\nu}_{max}$ 3386 (w), 3028 (w), 2964 (m), 2875 (w), 1732 (s), 1604 (s), 1521 (s), 1438 (m), 1310 (s), 1246 (s), 1144 (m), 1010 (w), 908 (s), 735 (s); HRMS (ESI) calcd for C₂₆H₃₂NO₄⁺ [M+H]⁺ 422.2326; found 422.2332.

16b, minor diastereoisomer, pale yellow solid (55 mg, 0.13 mmol, 44 % yield). **R**_f 0.32 (Pentane:Et₂O 80:20); **m.p** = 59-62 °C; ¹**H NMR (400 MHz, Chloroform-***d*)²³ δ 7.34 – 7.26 (m, 2H, ArH), 7.24 – 7.19 (m, 2H, ArH), 7.10 – 7.03 (m, 2H, ArH), 6.65 (t, *J* = 7.3 Hz, 1H, ArH), 6.41 (d, *J* = 7.9 Hz, 2H, ArH), 4.33 (d, *J* = 5.8 Hz, 1H, CHNH), 3.87 (s, 3H, OCH₃), 3.33 (s, 3H, OCH₃), 2.91 (d, *J* = 4.4 Hz, 1H, CHCH₂), 2.44 – 2.29 (m, 1H, NHCHCH₂CH₂), 2.12 (dd, *J* = 13.4, 8.3 Hz, 1H, NHCHCH₂CH₂), 1.94 (dd, *J* = 14.9, 9.4 Hz, 1H, NHCHCH₂), 1.44 – 1.35 (m, 1H, NHCHCH₂), 1.27 (s, 9H, 'Bu); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.1, 167.4, 150.8, 146.5, 131.3, 129.6, 129.3, 129.1, 126.0, 124.7, 118.0, 114.0, 59.2, 53.1, 52.6, 50.5, 42.6, 36.3, 34.7, 31.4, 29.9, 24.8; IR $\tilde{\nu}_{max}$ 3398 (w), 2964 (m), 2875 (w), 1732 (s), 1604 (m), 1502 (m), 1438 (m), 1259 (s), 1208 (m), 1125 (m), 914 (s), 735 (s), 697 (m); HRMS (ESI) calcd for C₂₆H₃₂NO₄⁺ [M+H]⁺ 422.2326; found 422.2321.

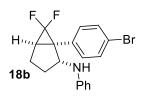

Dimethyl 1-(3-fluorophenyl)-2-(phenylamino)bicyclo[3.1.0]hexane-6,6-dicarboxylate (17)

Following the general procedure D, starting from dimethyl 2-(3-fluorophenyl)cycloprop-2-ene-1,1-dicarboxylate (**72**) (75 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylaniline (**9**) (72 mg, 0.54 mmol, 1.8 equiv.), the title compound **17** (56:44 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 85:15).

17a, major diastereoisomer, pale yellow oil (57 mg, 0.15 mmol, 50 % yield). **R**_f 0.45 (Pentane:Et₂O 70:30); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.17 (td, J = 7.9, 5.9 Hz, 1H, ArH), 7.13 – 6.98 (m, 4H, ArH), 6.88 (tdd, J = 8.4, 2.7, 1.1 Hz, 1H, ArH), 6.60 (t, J = 7.3 Hz, 1H, ArH), 6.49 (d, J = 7.6 Hz, 2H, ArH), 5.35 (bs, 1H, NH), 4.44 (dd, J = 10.1, 7.6 Hz, 1H, CHNH), 3.88 (s, 3H, OCH₃), 3.47 (s, 3H, OCH₃), 2.65 (d, J = 4.1 Hz, 1H, CHCH₂), 2.38 – 2.15 (m, 3H, NHCHCH₂ and NHCHCH₂CH₂), 0.96 – 0.86 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-d) δ 169.9, 167.6, 162.6 (d, J = 246.0 Hz), 147.7, 140.3 (d, J = 7.7 Hz), 129.7 (d, J

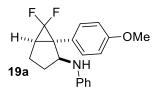

= 8.4 Hz), 129.2, 124.8 (d, J = 2.9 Hz), 117.4, 116.0 (d, J = 21.6 Hz), 114.4 (d, J = 21.0 Hz), 113.5, 63.5, 53.5, 52.9, 49.9, 42.1, 35.1, 28.0, 24.4; ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ - 113.4 (td, J = 8.8, 6.0 Hz); **IR** $\tilde{\nu}_{max}$ 3373 (m), 3028 (w), 2958 (m), 1725 (s), 1604 (s), 1508 (m), 1432 (s), 1309 (s), 1235 (s), 1190 (s), 1149 (s), 1075 (m), 992 (w), 912 (s), 867 (m), 789 (m), 733 (s), 692 (s), 651 (w); **HRMS (ESI)** calcd for C₂₂H₂₃FNO₄⁺ [M+H]⁺ 384.1606; found 384.1606.

17b, minor diastereoisomer, pale yellow oil (47 mg, 0.12 mmol, 41 % yield). \mathbf{R}_f 0.40 (Pentane:Et₂O 70:30); ¹H NMR (400 MHz, Chloroform-d, 1:1 mixture of rotamers (A/B)) δ 7.25 - 7.19 (m, 0.5H, ArH (A)), 7.13 - 7.07 (m, 1H, ArH (A+B)), 7.04 - 6.96 (m, 3H, ArH (A+B)), 6.96 – 6.91 (m, 0.5H, ArH (B)), 6.88 – 6.78 (m, 1H, ArH (A+B)), 6.57 (t, J = 7.2 Hz, 1H, ArH (A+B)), 6.32 (dd, J = 8.2, 3.4 Hz, 2H, ArH (A+B)), 4.30 (dd, J = 12.8, 5.9 Hz, 1H, CHNH (A+B)), 3.80 (s, 3H, OCH₃ (A+B)), 3.47 (s, 1H, NH (A+B)), 3.36 (s, 1.5H, OCH₃ (A)), 3.32 (s, 1.5H, OCH₃ (B)), 2.82 (dd, J = 7.8, 4.4 Hz, 1H, CHCH₂ (A+B)), 2.26 (dddd, J = 14.0, 10.9, 9.4, 4.5 Hz, 1H, NHCHCH₂CH₂ (A+B)), 2.06 (dd, J = 13.6, 8.3 Hz, 1H, NHCHCH₂CH₂ (A+B)), 1.83 (dd, J = 15.0, 9.4 Hz, 1H, NHCHCH₂ (A+B)), 1.34 (ddq, J = 14.6, 9.3, 5.4 Hz, 1H, NHCHCH₂ (A+B)); ¹³C NMR (101 MHz, Chloroform-d, 1:1 mixture of rotamers) δ 167.2, 162.9 (d, J = 247.4 Hz), 162.3 (d, J = 246.7 Hz), 146.6, 146.5, 137.6 (t, J = 7.5 Hz), 130.3 (d, J = 8.3 Hz), 129.6 (d, J = 8.5 Hz), 129.2, 125.6 (d, J = 3.1 Hz), 117.8, 117.8, 117.1 (d, J = 21.5 Hz), 116.6 (d, J = 21.2 Hz), 115.2 (d, J = 21.2 Hz), 114.8 (d, J = 20.8 Hz), 113.5, 113.5, 59.0, 58.9, 53.2, 52.9, 52.8, 50.4, 50.4, 42.7, 42.5, 36.8, 36.6, 30.2, 30.0, 24.6; Not all carbon were resolved. ¹⁹F NMR (376 MHz, Chloroform-d, 1:1 mixture of rotamers (A/B)) δ -112.7 (q, J = 8.4 Hz (A)), -113.2 (q, J = 7.2 Hz (B)); **IR** \tilde{v}_{max} 3411 (m), 3060 (m), 2964 (m), 1735 (s), 1601 (m), 1498 (m), 1433 (m), 1243 (s), 1212 (s), 1180 (s), 1120 (m), 1073 (w), 1017 (w), 959 (m), 908 (s), 731 (s), 694 (s), 651 (m); **HRMS (ESI)** calcd for $C_{22}H_{23}FNO_4^+$ [M+H]⁺ 384.1606; found 384.1603.

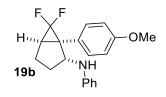

1-(4-Bromophenyl)-6,6-difluoro-N-phenylbicyclo[3.1.0]hexan-2-amine (18)

Following the general procedure D, starting from 1-bromo-4-(3,3-difluorocycloprop-1-en-1-yl)benzene (**73**) (69 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylaniline (**9**) (72 mg, 0.54 mmol, 1.8 equiv.), the title compound **18** (67:33 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 98:2 to 95:5).

18a, major diastereoisomer, pale orange oil (65 mg, 0.18 mmol, 60 % yield). **R**_f 0.40 (Pentane:Et₂O 90:10); ¹**H NMR (400 MHz, Chloroform-***d*) δ 7.41 (d, J = 8.4 Hz, 2H, Ar*H*),

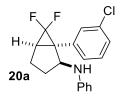

7.23 (d, J = 8.4 Hz, 2H, Ar*H*), 7.13 – 7.05 (m, 2H, Ar*H*), 6.68 (t, J = 7.4 Hz, 1H, Ar*H*), 6.49 (d, J = 7.2 Hz, 2H, Ar*H*), 4.53 (td, J = 8.8, 6.0 Hz, 1H, C*H*NH), 4.04 (bs, 1H, N*H*), 2.52 – 2.40 (m, 1H, NHCHC*H*₂), 2.38 – 2.22 (m, 2H, CF₂CHC*H*₂), 2.18 (dd, J = 14.3, 4.9 Hz, 1H, C*H*CF₂), 1.64 – 1.50 (m, 1H, NHCHC*H*₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.2, 134.3, 131.7, 130.6, 129.4, 121.7, 118.1, 116.4 (dd, J = 303.5, 281.3 Hz), 113.7, 63.7, 44.3 (dd, J = 11.9, 8.2 Hz), 33.7 (dd, J = 12.6, 9.1 Hz), 31.3 (d, J = 7.4 Hz), 24.4; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -124.7 (dd, J = 161.6, 13.8 Hz), -138.6 (d, J = 161.5 Hz); IR $\tilde{\nu}_{max}$ 3405 (w), 3053 (w), 2951 (m), 2875 (w), 1603 (s), 1509 (s), 1496 (s), 1443 (m), 1396 (w), 1309 (m), 1284 (m), 1243 (m), 1206 (s), 1194 (s), 1151 (m), 1060 (m), 1013 (m), 986 (s), 910 (s), 820 (m), 729 (s), 692 (s), 653 (m); HRMS (ESI) calcd for C₁₈H₁₇BrF₂N⁺ [M+H]⁺ 364.0507; found 364.0502.

18b, minor diastereoisomer, pale orange oil (32 mg, 0.088 mmol, 29 % yield). **R**_f 0.34 (Pentane:Et₂O 90:10); ¹**H NMR (400 MHz, Chloroform-***d*) δ 7.49 – 7.43 (m, 2H, ArH), 7.17 – 7.08 (m, 4H, ArH), 6.70 (t, J = 7.4 Hz, 1H, ArH), 6.46 (d, J = 7.7 Hz, 2H, ArH), 4.28 (d, J = 5.0 Hz, 1H, CHNH), 3.53 (bs, 1H, NH) 2.44 (dd, J = 14.3, 5.3 Hz, 1H, CHCF₂), 2.38 – 2.25 (m, 1H, CF₂CHCH₂), 2.16 – 1.99 (m, 3H, CF₂CHCH₂ and NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-*d*)²⁴ δ 146.2, 131.8, 131.2, 129.2, 122.0, 118.1, 114.9 (dd, J = 305.0, 276.6 Hz), 113.5, 57.3, 45.7 (dd, J = 12.4, 9.3 Hz), 32.6 (dd, J = 11.7, 9.1 Hz), 31.9 (d, J = 9.4 Hz), 23.7; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -125.4 (ddd, J = 159.2, 14.3, 4.6 Hz), -141.3 (d, J = 159.3 Hz); IR $\tilde{\nu}_{max}$ 3417 (w), 3053 (w), 2945 (m), 2862 (w), 1725 (w), 1604 (s), 1502 (s), 1425 (s), 1310 (m), 1247 (m), 1208 (m), 1075 (m), 994 (s), 906 (s), 822 (s), 727 (s), 694 (s), 649 (m); HRMS (ESI) calcd for C₁₈H₁₇BrF₂N⁺ [M+H]⁺ 364.0507; found 364.0502.

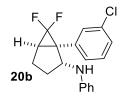

6,6-Difluoro-1-(4-methoxyphenyl)-N-phenylbicyclo[3.1.0]hexan-2-amine (19)

Following the general procedure D, starting from 1-(3,3-difluorocycloprop-1-en-1-yl)-4methoxybenzene (**74**) (55 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylaniline (**9**) (72 mg, 0.54 mmol, 1.8 equiv.), the title compound **19** (68:32 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 98:2 to 95:5).

19a, major diastereoisomer, yellow oil (45 mg, 0.14 mmol, 48 % yield). **R**_f 0.40 (Pentane:Et₂O 90:10); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.32 – 7.27 (m, 2H, Ar*H*), 7.12 – 7.06 (m, 2H, Ar*H*), 6.87 – 6.81 (m, 2H, Ar*H*), 6.66 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.49 (d, *J* = 7.7 Hz, 2H, Ar*H*), 4.52 (td, *J* = 8.8, 6.1 Hz, 1H, C*H*NH), 3.97 (bs, 1H, N*H*), 3.78 (s, 3H, C*H*₃), 2.53 – 2.40 (m, 1H,

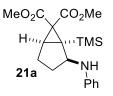

NHCHC*H*₂), 2.39 – 2.23 (m, 2H, CF₂CHC*H*₂), 2.16 (dd, J = 14.3, 5.0 Hz, 1H, CHCF₂), 1.64 – 1.50 (m, 1H, NHCHC*H*₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.1, 147.7, 129.9, 129.3, 127.2, 117.6, 116.9 (hidden dd, one peak was not found due to overlapping), 114.0, 113.5, 63.9, 55.4, 44.3 (dd, J = 11.7, 8.3 Hz), 33.6 (dd, J = 12.4, 9.0 Hz), 31.3 (d, J = 7.5 Hz), 24.4; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -124.7 (dd, J = 160.2, 14.3 Hz), -138.7 (d, J = 159.6 Hz); IR $\tilde{\nu}_{max}$ 3405 (w), 3041 (w), 2945 (m), 2836 (w), 1604 (s), 1515 (s), 1444 (m), 1291 (m), 1246 (s), 1188 (m), 1180 (m), 1151 (m), 1066 (m), 1038 (m), 1021 (m), 984 (s), 943 (w), 912 (s), 828 (s), 807 (m), 752 (s), 731 (s), 694 (s); HRMS (ESI) calcd for C₁₉H₂₀F₂NO⁺ [M+H]⁺ 316.1507; found 316.1511.

19b, minor diastereoisomer, yellow oil (19 mg, 0.060 mmol, 20 % yield). **R**_{*f*} 0.34 (Pentane:Et₂O 90:10); ¹**H NMR (400 MHz, Chloroform-***d***) \delta 7.23 – 7.17 (m, 2H, Ar***H***), 7.16 – 7.08 (m, 2H, Ar***H***), 6.91 – 6.85 (m, 2H, Ar***H***), 6.69 (t,** *J* **= 7.3 Hz, 1H, Ar***H***), 6.46 (d,** *J* **= 7.6 Hz, 2H, Ar***H***), 4.20 (d,** *J* **= 4.6 Hz, 1H, C***H***NH), 3.80 (s, 3H, C***H***₃), 3.62 (bs, 1H, N***H***), 2.39 (dd,** *J* **= 14.1, 5.3 Hz, 1H, C***H***CF₂), 2.36 – 2.25 (m, 1H, CF₂CHC***H***₂), 2.17 – 1.98 (m, 3H, CF₂CHC***H***₂ and NHCHC***H***₂); ¹³C NMR (101 MHz, Chloroform-***d***) \delta 159.4, 146.7, 130.8, 129.3, 123.9, 117.8, 115.5 (dd,** *J* **= 304.6, 276.1 Hz), 114.3, 113.5, 57.4, 55.4, 45.7 (dd,** *J* **= 12.2, 9.5 Hz), 32.7 (dd,** *J* **= 11.8, 8.9 Hz), 32.0 (d,** *J* **= 9.5 Hz), 24.0; ¹⁹F NMR (376 MHz, Chloroform-***d***) \delta -125.6 (ddd,** *J* **= 158.1, 14.2, 4.9 Hz), -141.5 (d,** *J* **= 156.7 Hz); IR** $\tilde{\nu}_{max}$ 3053 (w), 2951 (m), 3398 (w), 2849 (w), 1732 (w), 1601 (s), 1515 (s), 1505 (s), 1426 (s), 1299 (m), 1252 (s), 1206 (m), 1180 (s), 1108 (m), 1075 (m), 1036 (m), 992 (s), 922 (m), 908 (m), 832 (m), 746 (s), 692 (s); **HRMS (ESI)** calcd for C₁₉H₂₀F₂NO⁺ [M+H]⁺ 316.1507; found 316.1514.

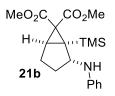

1-(3-Chlorophenyl)-6,6-difluoro-*N*-phenylbicyclo[3.1.0]hexan-2-amine (20)

Following the general procedure D, starting from 1-chloro-3-(3,3-difluorocycloprop-1-en-1-yl)benzene (**75**) (56 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylaniline (**9**) (72 mg, 0.54 mmol, 1.8 equiv.), the title compound **20** (67:33 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 98:2 to 95:5).

20a, major diastereoisomer, pale yellow oil (52 mg, 0.16 mmol, 54 % yield). **R**_f 0.46 (Pentane:Et₂O 90:10); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.35 – 7.31 (m, 1H, Ar*H*), 7.29 – 7.26 (m, 1H, Ar*H*), 7.25 – 7.18 (m, 2H, Ar*H*), 7.12 – 7.06 (m, 2H, Ar*H*), 6.67 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.49 (d, *J* = 7.4 Hz, 2H, Ar*H*), 4.54 (td, *J* = 8.9, 6.1 Hz, 1H, C*H*NH), 3.92 (bs, 1H, N*H*),


2.46 (m, 1H, NHCHC*H*₂), 2.39 – 2.26 (m, 2H, CF₂CHC*H*₂), 2.20 (dd, J = 14.4, 5.0 Hz, 1H, C*H*CF₂), 1.63 – 1.49 (m, 1H, NHCHC*H*₂); ¹³C **NMR (101 MHz, Chloroform-***d*) δ 147.4, 137.3, 134.3, 129.8, 129.3, 128.9 (d, J = 2.7 Hz), 127.9, 127.4, 118.0, 116.3 (dd, J = 303.4, 281.5 Hz), 113.7, 63.7, 44.5 (dd, J = 12.0, 8.3 Hz), 33.8 (dd, J = 12.5, 9.1 Hz), 31.3 (d, J = 7.4 Hz), 24.4; ¹⁹F **NMR (376 MHz, Chloroform-***d*) δ -124.4 (dd, J = 161.4, 14.1 Hz), -138.4 (d, J = 161.6 Hz); **IR** $\tilde{\nu}_{max}$ 3411 (m), 3060 (m), 2951 (m), 2875 (w), 1604 (s), 1502 (s), 1444 (m), 1311 (m), 1284 (m), 1243 (s), 1208 (s), 1198 (s), 1153 (s), 1064 (m), 988 (s), 949 (w), 912 (m), 879 (w), 785 (m), 750 (s), 694 (s); **HRMS (ESI)** calcd for C₁₈H₁₇ClF₂N⁺ [M+H]⁺ 320.1012; found 320.0998.

20b, minor diastereoisomer, pale yellow oil (29 mg, 0.091 mmol, 30 % yield). **R**_f 0.40 (Pentane:Et₂O 90:10); ¹**H NMR (400 MHz, Chloroform-***d*) δ 7.27 – 7.24 (m, 3H, ArH), 7.19 – 7.15 (m, 1H, ArH), 7.14 – 7.08 (m, 2H, ArH), 6.69 (t, J = 7.4 Hz, 1H, ArH), 6.46 (d, J = 7.6 Hz, 2H, ArH), 4.30 (d, J = 4.6 Hz, 1H, CHNH), 3.54 (bs, 1H, NH), 2.45 (dd, J = 14.4, 5.3 Hz, 1H, CHCF₂), 2.38 – 2.25 (m, 1H, CF₂CHCH₂), 2.16 – 1.98 (m, 3H, CF₂CHCH₂ and NHCHCH₂); ¹³C **NMR (101 MHz, Chloroform-***d*) δ 146.3, 134.6, 134.4 (d, J = 3.7 Hz), 130.0, 129.7 (d, J = 2.7 Hz), 129.3, 128.4, 128.0, 118.1, 115.0 (dd, J = 304.9, 276.8 Hz), 113.6, 57.4, 46.0 (dd, J = 12.5, 9.2 Hz), 32.7 (dd, J = 11.8, 9.0 Hz), 32.0 (d, J = 9.5 Hz), 23.8; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -125.2 (ddd, J = 159.4, 14.5, 5.0 Hz), -141.2 (d, J = 158.3 Hz); IR $\tilde{\nu}_{max}$ 3405 (m), 3047 (m), 2958 (m), 2881 (m), 1601 (s), 1568 (m), 1505 (s), 1426 (s), 1315 (m), 1247 (s), 1208 (s), 1169 (m), 1089 (m), 1001 (s), 931 (s), 879 (m), 791 (s), 748 (s), 690 (s); HRMS (ESI) calcd for C₁₈H₁₇ClF₂N⁺ [M+H]⁺ 320.1012; found 320.1007.


Dimethyl 2-(phenylamino)-1-(trimethylsilyl)bicyclo[3.1.0]hexane-6,6-dicarboxylate (21)

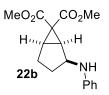
Following the general procedure D, starting from dimethyl 2-(trimethylsilyl)cycloprop-2-ene-1,1dicarboxylate (77) (69 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylaniline (9) (72 mg, 0.54 mmol, 1.8 equiv.), the title compound **21** (59:41 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10).

21a, major diastereoisomer, colorless oil (28 mg, 0.077 mmol, 26 % yield). **R**_f 0.35 (Pentane:Et₂O 90:10); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.19 – 7.10 (m, 2H, ArH), 6.65 (t, J = 7.3 Hz, 1H, ArH), 6.58 (d, J = 7.9 Hz, 2H, ArH), 5.24 (bs, 1H, NH), 4.34 (t, J = 8.8 Hz, 1H, CHNH), 3.78 (s, 3H, OCH₃), 3.73 (s, 3H, OCH₃), 2.27 – 2.09 (m, 3H, CHCH₂, NHCHCH₂ and NHCHCH₂CH₂), 2.08 – 1.96 (m, 1H, NHCHCH₂CH₂), 0.56 (dtd, J = 13.7, 10.2, 8.4 Hz, 1H,


NHCHC*H*₂), 0.11 (s, 9H, TMS); ¹³C NMR (101 MHz, Chloroform-*d*)²⁴ δ 171.0, 170.6, 147.8, 129.3, 117.0, 113.3, 60.4, 53.3, 53.0, 39.8, 36.8, 35.9, 26.1, -0.5; **IR** $\tilde{\nu}_{max}$ 3028 (w), 2958 (m), 2894 (w), 3373 (w), 1729 (s), 1603 (m), 1513 (m), 1435 (m), 1309 (m), 1182 (m), 1130 (m), 1075 (w), 978 (w), 908 (m), 844 (s), 754 (m), 692 (m); **HRMS (ESI)** calcd for C₁₉H₂₈NO₄Si⁺ [M+H]⁺ 362.1782; found 362.1773.

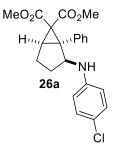
21b, minor diastereoisomer, colorless oil (25 mg, 0.069 mmol, 23 % yield). **R**_f 0.25 (Pentane:Et₂O 90:10); ¹**H NMR (400 MHz, Chloroform**-*d*)²³ δ 7.23 – 7.12 (m, 2H, ArH), 6.72 (t, *J* = 7.3 Hz, 1H, ArH), 6.58 (d, *J* = 7.6 Hz, 2H, ArH), 4.22 (d, *J* = 5.4 Hz, 1H, CHNH), 3.76 (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃), 2.61 (d, *J* = 4.0 Hz, 1H, CHCH₂), 2.20 – 1.96 (m, 2H, NHCHCH₂CH₂), 1.55 – 1.51 (m, 1H, NHCHCH₂), 1.14 – 1.03 (m, 1H, NHCHCH₂), 0.10 (s, 9H, TMS); ¹³C NMR (101 MHz, Chloroform-*d*)²⁴ δ 169.4, 169.0, 146.1, 129.5, 118.1, 114.1, 60.1, 53.0, 53.0, 41.2, 36.7, 29.3, 24.7, 0.9; **IR** $\tilde{\nu}_{max}$ 3383 (w), 2924 (m), 2853 (s), 1734 (s), 1604 (m), 1551 (w), 1503 (m), 1441 (m), 1307 (m), 1247 (s), 1208 (m), 1169 (m), 1123 (m), 1072 (w), 1010 (w), 915 (m), 849 (m), 745 (m), 696 (s); **HRMS (ESI)** calcd for C₁₉H₂₈NO₄Si⁺ [M+H]⁺ 362.1782; found 362.1777.

Dimethyl 2-(phenylamino)bicyclo[3.1.0]hexane-6,6-dicarboxylate (22)

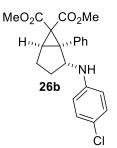

Following the general procedure D, starting from dimethyl cycloprop-2-ene-1,1-dicarboxylate (**78**) (47 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylaniline (**9**) (72 mg, 0.54 mmol, 1.8 equiv.), the title compound **22** (69:31 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 90:10 to 80:20).

22a, major diastereoisomer,²⁵ colorless oil (22 mg, 0.076 mmol, 25 % yield). **R**_f 0.42 (Pentane:Et₂O 70:30); ¹**H NMR (400 MHz, Chloroform-d)**²³ δ 7.24 – 7.16 (m, 2H, Ar*H*), 6.76 (t, *J* = 7.4 Hz, 1H, Ar*H*), 6.69 (d, *J* = 7.9 Hz, 2H, Ar*H*), 4.12 (d, *J* = 6.6 Hz, 1H, C*H*NH), 3.80 (s, 3H, OC*H*₃), 3.71 (s, 3H, OC*H*₃), 2.31 – 2.24 (m, 2H, NHCHC*H* & C_{quat}C*H*), 2.22 – 2.11 (m, 1H, NHCHCH₂C*H*₂), 2.07 (dd, *J* = 13.8, 8.7 Hz, 1H, NHCHCH₂C*H*₂), 1.74 (dd, *J* = 15.3, 9.3 Hz, 1H, NHCHC*H*₂), 1.34 – 1.26 (m, 1H, NHCHC*H*₂); ¹³C **NMR (101 MHz, Chloroform-d)** δ 170.2, 167.8, 146.1, 129.5, 118.5, 114.1, 55.0, 53.1, 53.0, 38.2, 36.3, 34.1, 29.7, 24.6; **IR** $\tilde{\nu}_{max}$ 3398 (w), 2951 (m), 1725 (s), 1605 (s), 1507 (m), 1435 (s), 1326 (s), 1252 (s), 1196 (m), 1161 (s), 1114

²⁵ Relative stereochemistry attributed by analogy with compounds **16b**, based on ¹H NMR chemical shifts and couplings.

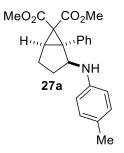

(m), 1064 (w), 994 (w), 908 (m), 731 (s), 694 (m); **HRMS (ESI)** calcd for $C_{16}H_{19}NNaO_4^+$ [M+Na]⁺ 312.1206; found 312.1212.

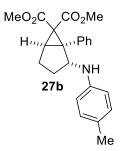
22b, minor diastereoisomer,²⁶ pale yellow oil (8 mg, 0.03 mmol, 9 % yield). **R**_f 0.30 (Pentane:Et₂O 70:30); ¹**H NMR (400 MHz, Chloroform-***d*) δ 7.20 – 7.15 (m, 2H, ArH), 6.72 – 6.65 (m, 3H, ArH), 4.70 (bs, 1H, NH), 4.47 (ddd, J = 10.3, 8.3, 4.4 Hz, 1H, CHNH), 3.84 (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃), 2.43 (dd, J = 6.7, 4.3 Hz, 1H, NHCHCH), 2.21 – 2.01 (m, 4H, C_{quat}CH, NHCHCH₂CH₂ and NHCHCH₂), 0.78 – 0.63 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.3, 169.7, 147.9, 129.5, 117.7, 113.8, 55.9, 53.2, 53.1, 37.1, 36.1, 32.1, 27.4, 25.0; **IR** $\tilde{\nu}_{max}$ 3379 (w), 3034 (w), 2951 (m), 2856 (w), 1732 (s), 1603 (s), 1515 (s), 1435 (m), 1313 (s), 1247 (s), 1202 (m), 1163 (m), 1114 (w), 916 (w), 752 (s), 696 (m); **HRMS** (**ESI**) calcd for C₁₆H₂₀NO₄⁺ [M+H]⁺ 290.1387; found 290.1388.


Dimethyl 2-((4-chlorophenyl)amino)-1-phenylbicyclo[3.1.0]hexane-6,6-dicarboxylate (26)

Following the general procedure D, starting from dimethyl dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (**7**) (70 mg, 0.30 mmol, 1.0 equiv.) and 4-chloro-*N*-cyclopropylaniline (**92**) (91 mg, 0.54 mmol, 1.8 equiv.), the title compound **26** (56:44 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10).

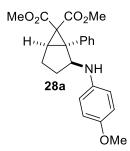
26a, major diastereoisomer, pale yellow oil (48 mg, 0.12 mmol, 40 % yield). **R**_f 0.38 (Pentane:Et₂O 80:20); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.32 – 7.28 (m, 2H, Ar*H*), 7.26 – 7.20 (m, 3H, Ar*H*), 6.97 (d, *J* = 8.8, 2H, Ar*H*), 6.38 (d, *J* = 8.9, 2H, Ar*H*), 5.38 (s, 1H, N*H*), 4.40 (dd, *J* = 10.3, 7.6, 1H, C*H*NH), 3.90 (s, 3H, OC*H*₃), 3.44 (s, 3H, OC*H*₃), 2.68 (d, *J* = 4.3, 1H, C*H*CH₂), 2.34 – 2.18 (m, 3H, NHCHC*H*₂ and NHCHCH₂C*H*₂), 0.93 (dtd, *J* = 16.9, 8.3, 7.9, 3.4, 1H, NHCHC*H*₂); ¹³**C NMR (101 MHz, Chloroform-d)** δ 170.3, 167.7, 146.6, 137.6, 128.9, 128.9, 128.3, 127.5, 121.4, 114.4, 63.8, 53.5, 52.8, 50.3, 42.1, 34.9, 28.1, 24.5; **IR** $\tilde{\nu}_{max}$ 3384 (w), 3030 (w), 2953 (m), 1727 (s), 1600 (m), 1504 (s), 1434 (m), 1402 (w), 1296 (s), 1236 (s), 1196 (m), 1176 (m), 1121 (m), 1090 (m), 1007 (w), 911 (s), 817 (m); **HRMS (ESI)** calcd for C₂₂H₂₃ClNO₄⁺ [M+H]⁺ 400.1310; found 400.1308.


²⁶ Relative stereochemistry attributed by analogy with compounds **9a**, based on ¹H NMR chemical shifts and couplings.

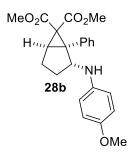

26b, minor diastereoisomer, pale yellow oil (41 mg, 0.10 mmol, 34 % yield). **R**_f 0.30 (Pentane:Et₂O 80:20); ¹**H NMR (400 MHz, Chloroform-***d*)²³ δ 7.40 – 7.26 (m, 3H, ArH), 7.23 (m, 2H, ArH), 6.99 (d, J = 8.9, 2H, ArH), 6.30 (d, J = 8.7, 2H, ArH), 4.31 (d, J = 5.9, 1H, CHNH), 3.87 (s, 3H, OCH₃), 3.36 (s, 3H, OCH₃), 2.92 (d, J = 4.4, 1H, CHCH₂), 2.35 (dddd, J = 13.9, 10.8, 9.5, 4.5, 1H, NHCHCH₂CH₂), 2.13 (dd, J = 13.6, 8.2, 1H, NHCHCH₂CH₂), 1.88 (dd, J = 14.9, 9.5, 1H, NHCHCH₂), 1.44 – 1.36 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.0, 167.3, 145.1, 134.5, 129.8, 129.7, 128.9, 128.1, 128.1, 114.8, 59.3, 53.2, 52.8, 50.8, 42.6, 36.4, 30.0, 24.7; IR $\tilde{\nu}_{max}$ 3409 (w), 2956 (m), 2905 (m), 1735 (s), 1602 (m), 1500 (s), 1436 (m), 1398 (w), 1317 (m), 1259 (s), 1209 (m), 1178 (m), 1124 (m), 1071 (m), 913 (m), 818 (m); HRMS (ESI) calcd for C₂₂H₂₂ClNNaO₄⁺ [M+Na]⁺ 422.1130; found 422.1141.

Dimethyl 1-phenyl-2-(*p*-tolylamino)bicyclo[3.1.0]hexane-6,6-dicarboxylate (27)

Following the general procedure D, starting from dimethyl dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (**7**) (70 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropyl-4-methylaniline (**93**) (79 mg, 0.54 mmol, 1.8 equiv.), the title compound **27** (55:45 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10).

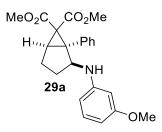

27a, major diastereoisomer, pale yellow oil (55 mg, 0.15 mmol, 48 % yield). **R**_f 0.40 (Pentane:Et₂O 80:20); ¹**H NMR (400 MHz, Chloroform-***d*) δ 7.34 – 7.28 (m, 2H, ArH), 7.25 – 7.14 (m, 3H, ArH), 6.85 (d, *J* = 7.9, 2H, ArH), 6.40 (d, *J* = 8.3, 2H, ArH), 5.15 (bs, 1H, NH), 4.40 (dd, *J* = 10.1, 7.4, 1H, CHNH), 3.87 (s, 3H, OCH₃), 3.42 (s, 3H, OCH₃), 2.65 (d, *J* = 4.1, 1H, CHCH₂), 2.35 – 2.18 (m, 3H, NHCHCH₂ and NHCHCH₂CH₂), 2.17 (s, 3H, CH₃), 0.88 (ddt, *J* = 13.7, 8.2, 4.0, 1H, NHCHCH₂); ¹³C **NMR (101 MHz, Chloroform-***d*) δ 170.1, 167.8, 145.7, 137.8, 129.6, 129.0, 128.2, 127.3, 126.2, 113.5, 64.0, 53.4, 52.8, 50.5, 42.0, 34.8, 28.0, 24.5, 20.4; **IR** $\tilde{\nu}_{max}$ 3375 (w), 3027 (w), 2956 (w), 1730 (m), 1619 (m), 1518 (m), 1434 (m), 1305 (m), 1238 (m), 1189 (m), 1126 (m), 1078 (w), 920 (w), 806 (m), 735 (m), 701 (m); **HRMS (ESI)** calcd for C₂₃H₂₆NO₄⁺ [M+H]⁺ 380.1856; found 380.1868.

27b, minor diastereoisomer, pale yellow oil (45 mg, 0.12 mmol, 40 % yield). **R**_f 0.34 (Pentane:Et₂O 80:20); ¹**H NMR (400 MHz, Chloroform**-*d*)²³ δ 7.42 – 7.29 (m, 3H, Ar*H*), 7.25 – 7.17 (m, 2H, Ar*H*), 6.89 (d, *J* = 8.0, 2H, Ar*H*), 6.34 (d, *J* = 8.5, 2H, Ar*H*), 4.32 (d, *J* = 5.8, 1H, C*H*NH), 3.87 (s, 3H, OC*H*₃), 3.36 (s, 3H, OC*H*₃), 2.92 (d, *J* = 4.4, 1H, C*H*CH₂), 2.44 – 2.30 (m, 1H, NHCHCH₂C*H*₂), 2.18 (s, 3H, C*H*₃), 2.13 (dd, *J* = 13.6, 8.4, 1H, NHCHCH₂C*H*₂), 1.94 (dd, *J* = 14.8, 9.3, 1H, NHCHC*H*₂), 1.43 – 1.32 (m, 1H, NHCHC*H*₂); ¹³**C NMR (101 MHz, Chloroform**-*d*) δ 168.1, 167.4, 144.2, 134.6, 129.8, 129.7, 128.9, 128.0, 128.0, 114.1, 59.6, 53.1, 52.7, 50.9, 42.5, 36.5, 29.8, 24.8, 20.5; **IR** $\tilde{\nu}_{max}$ 3401 (w), 3025 (w), 2949 (m), 2872 (w), 1737 (s), 1731 (s), 1620 (m), 1518 (s), 1436 (m), 1254 (s), 1212 (s), 1126 (s), 1072 (w), 1013 (w), 913 (m), 808 (m), 737 (m), 703 (s); **HRMS (ESI)** calcd for C₂₃H₂₆NO4⁺ [M+H]⁺ 380.1856; found 380.1849.

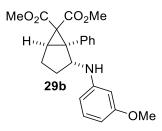

Dimethyl 2-((4-methoxyphenyl)amino)-1-phenylbicyclo[3.1.0]hexane-6,6-dicarboxylate (28)

Following the general procedure D, starting from dimethyl dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (7) (70 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropyl-4-methoxyaniline (94) (88 mg, 0.54 mmol, 1.8 equiv.), the title compound 28 (52:48 dr in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 90:10 to 80:20).

28a, major diastereoisomer, yellow oil (53 mg, 0.13 mmol, 45 % yield). **R**_f 0.35 (Pentane:Et₂O 75:25); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.32 – 7.26 (m, 2H, Ar*H*), 7.24 – 7.13 (m, 3H, Ar*H*), 6.63 (d, *J* = 8.9 Hz, 2H, Ar*H*), 6.43 (d, *J* = 8.8 Hz, 2H, Ar*H*), 5.01 (bs, 1H, N*H*), 4.41 – 4.30 (m, 1H, C*H*NH), 3.87 (s, 3H, COOC*H*₃), 3.68 (s, 3H, OC*H*₃), 3.42 (s, 3H, COOC*H*₃), 2.64 (d, *J* = 4.8 Hz, 1H, C*H*CH₂), 2.34 – 2.13 (m, 3H, NHCHC*H*₂ and NHCHCH₂C*H*₂), 0.96 – 0.83 (m, 1H, NHCHC*H*₂); ¹³C **NMR (101 MHz, Chloroform-d)**²⁴ δ 170.2, 167.8, 151.9, 142.2, 137.9, 129.0, 128.2, 127.3, 114.9, 64.8, 56.0, 53.4, 52.8, 50.5, 42.1, 34.9, 28.1, 24.5; **IR** $\tilde{\nu}_{max}$ 3366 (w), 3028 (w), 2958 (m), 1732 (s), 1515 (s), 1444 (m), 1310 (m), 1234 (s), 1182 (m), 1131 (m), 1074

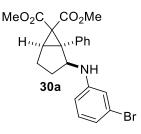

(w), 1036 (m), 908 (m), 822 (m), 733 (s), 702 (m); **HRMS (ESI)** calcd for $C_{23}H_{26}NO_5^+$ [M+H]⁺ 396.1805; found 396.1802.

28b, minor diastereoisomer, pale yellow oil (47 mg, 0.12 mmol, 40 % yield). **R**_f 0.30 (Pentane:Et₂O 75:25); ¹**H NMR** (400 **MHz**, **Chloroform**-*d*)²³ δ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.28 (m, 3H, ArH), 7.25 – 7.19 (m, 2H, ArH), 6.67 (d, *J* = 8.5 Hz, 2H, ArH), 6.36 (d, *J* = 8.4 Hz, 2H, ArH), 4.27 (d, *J* = 5.7 Hz, 1H, CHNH), 3.87 (s, 3H, COOCH₃), 3.69 (s, 3H, OCH₃), 3.36 (s, 3H, COOCH₃), 2.91 (d, *J* = 4.3 Hz, 1H, CHCH₂), 2.43 – 2.30 (m, 1H, NHCHCH₂CH₂), 2.13 (dd, *J* = 13.5, 8.3 Hz, 1H, NHCHCH₂CH₂), 1.90 (dd, *J* = 14.9, 9.4 Hz, 1H, NHCHCH₂), 1.42 – 1.33 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.1, 167.4, 152.5, 141.1, 134.8, 129.8 (d, *J* = 3.5 Hz), 128.9, 128.0 (d, *J* = 9.7 Hz), 115.1, 114.8, 59.9, 55.9, 53.1, 52.7, 51.1, 42.5, 36.4, 30.0, 24.8; IR $\tilde{\nu}_{max}$ 3398 (w), 3028 (w), 2951 (m), 2843 (w), 1732 (s), 1511 (s), 1435 (m), 1243 (s), 1186 (m), 1124 (m), 1071 (w), 1036 (m), 912 (s), 826 (m), 731 (s), 700 (m); HRMS (ESI) calcd for C₂₃H₂₆NO₅⁺ [M+H]⁺ 396.1805; found 396.1807.

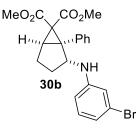

Dimethyl 2-((3-methoxyphenyl)amino)-1-phenylbicyclo[3.1.0]hexane-6,6-dicarboxylate (29)

Following the general procedure D, starting from dimethyl 2-phenylcycloprop-2-ene-1,1dicarboxylate (7) (70 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropyl-3-methoxyaniline (95) (88 mg, 0.54 mmol, 1.8 equiv.), the title compound 29 (56:44 dr in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 90:10 to 80:20).

29a, major diastereoisomer, pale yellow oil (57 mg, 0.14 mmol, 48 % yield). **R**_f 0.35 (Pentane:Et₂O 75:25); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.32 – 7.28 (m, 2H, ArH), 7.23 – 7.17 (m, 3H, ArH), 6.94 (t, *J* = 8.1 Hz, 1H, ArH), 6.14 (dd, *J* = 8.1, 1.9 Hz, 1H, ArH), 6.10 (dd, *J* = 8.0, 1.7 Hz, 1H, ArH), 5.99 (t, *J* = 2.3 Hz, 1H, ArH), 5.36 (bs, 1H, NH), 4.41 (dd, *J* = 10.1, 7.6 Hz, 1H, CHNH), 3.87 (s, 3H, COOCH₃), 3.67 (s, 3H, OCH₃), 3.42 (s, 3H, COOCH₃), 2.65 (d, *J* = 4.1 Hz, 1H, CHCH₂), 2.34 – 2.18 (m, 3H, NHCHCH₂ and NHCHCH₂CH₂), 0.95 – 0.86 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.2, 167.7, 160.8, 149.3, 137.7, 129.9,

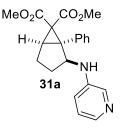

129.0, 128.3, 127.4, 106.5, 102.5, 99.1, 63.6, 55.1, 53.4, 52.8, 50.4, 42.1, 34.9, 28.1, 24.5; **IR** $\tilde{\nu}_{max}$ 3366 (w), 3015 (w), 2951 (m), 1725 (s), 1604 (s), 1508 (m), 1432 (m), 1297 (s), 1227 (s), 1163 (s), 1119 (m), 1074 (w), 1042 (w), 908 (m), 838 (w), 731 (s), 702 (m); **HRMS (ESI)** calcd for C₂₃H₂₆NO₅⁺ [M+H]⁺ 396.1805; found 396.1806.

29b, minor diastereoisomer, colorless oil (48 mg, 0.12 mmol, 41 % yield). **R**_f 0.30 (Pentane:Et₂O 75:25); ¹**H NMR (400 MHz, Chloroform-***d*)²³ δ 7.33 – 7.23 (m, 3H, Ar*H*), 7.18 – 7.13 (m, 2H, Ar*H*), 6.90 (t, *J* = 8.1 Hz, 1H, Ar*H*), 6.15 (dd, *J* = 8.0, 2.0 Hz, 1H, Ar*H*), 5.94 (dd, *J* = 8.2, 1.8 Hz, 1H, Ar*H*), 5.89 (t, *J* = 2.1 Hz, 1H, Ar*H*), 4.26 (d, *J* = 5.8 Hz, 1H, C*H*NH), 3.80 (s, 3H, COOC*H*₃), 3.64 (s, 3H, OC*H*₃), 3.29 (s, 3H, COOC*H*₃), 2.85 (d, *J* = 4.4 Hz, 1H, C*H*CH₂), 2.36 – 2.20 (m, 1H, NHCHCH₂C*H*₂), 2.06 (dd, *J* = 13.7, 8.1 Hz, 1H, NHCHCH₂C*H*₂), 1.87 (dd, *J* = 15.0, 9.4 Hz, 1H, NHCHCH₂), 1.33 – 1.27 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.0, 167.3, 160.7, 147.7, 134.6, 129.9, 129.0, 128.1, 128.0, 107.1, 103.0, 100.1, 59.3, 55.3, 53.2, 52.7, 50.8, 42.6, 36.4, 30.0, 24.8; IR $\tilde{\nu}_{max}$ 3405 (w), 2955 (m), 2850 (w), 1737 (s), 1607 (s), 1500 (m), 1443 (m), 1258 (s), 1212 (s), 1169 (m), 1118 (m), 1050 (w), 912 (m), 834 (w), 729 (s), 696 (m); HRMS (ESI) calcd for C₂₃H₂₅NNaO₅⁺ [M+Na]⁺ 418.1625; found 418.1632.

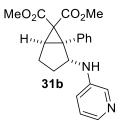

Dimethyl 2-((3-bromophenyl)amino)-1-phenylbicyclo[3.1.0]hexane-6,6-dicarboxylate (30)

Following the general procedure D, starting from dimethyl dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (7) (70 mg, 0.30 mmol, 1.0 equiv.) and 3-bromo-*N*-cyclopropylaniline (96) (115 mg, 0.54 mmol, 1.8 equiv.), the title compound **30** (56:44 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 90:10 to 85:15).

30a, major diastereoisomer, yellow oil (62 mg, 0.14 mmol, 47 % yield). **R**_f 0.40 (Pentane:Et₂O 70:30); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.30 – 7.26 (m, 2H, Ar*H*), 7.25 – 7.16 (m, 3H, Ar*H*), 6.85 (t, *J* = 8.0 Hz, 1H, Ar*H*), 6.66 (ddd, *J* = 7.8, 1.8, 0.9 Hz, 1H, Ar*H*), 6.55 (t, *J* = 2.1 Hz, 1H, Ar*H*), 6.36 (ddd, *J* = 8.2, 2.3, 0.9 Hz, 1H, Ar*H*), 5.37 (bs, 1H, N*H*), 4.38 (dd, *J* = 10.1, 7.4 Hz, 1H, C*H*NH), 3.87 (s, 3H, COOC*H*₃), 3.42 (s, 3H, COOC*H*₃), 2.70 – 2.64 (d, *J* = 5.1 Hz, 1H, C*H*CH₂), 2.36 – 2.14 (m, 3H, NHCHC*H*₂ and NHCHCH₂C*H*₂), 0.99 – 0.83 (m, 1H, NHCHC*H*₂);

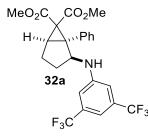

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.2, 167.6, 149.4, 137.5, 130.3, 128.9, 128.4, 127.5, 123.2, 119.6, 115.7, 112.0, 63.4, 53.5, 52.8, 50.3, 42.1, 34.9, 28.0, 24.5; **IR** $\tilde{\nu}_{max}$ 3668 (w), 3379 (m), 2959 (m), 2898 (m), 1723 (s), 1595 (s), 1510 (s), 1480 (m), 1434 (m), 1288 (s), 1231 (s), 1197 (m), 1120 (m), 1079 (s), 985 (m), 908 (s), 760 (s), 731 (s), 700 (s), 681 (m); **HRMS** (**ESI**) calcd for C₂₂H₂₃⁷⁹BrNO₄⁺ [M + H]⁺444.0805; found 444.0812.

30b, minor diastereoisomer, yellow oil (39 mg, 0.088 mmol, 29 % yield). **R**_f 0.35 (Pentane:Et₂O 70:30); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.41 – 7.29 (m, 2H, Ar*H*), 7.27 – 7.22 (m, 3H, Ar*H*), 6.89 (t, *J* = 8.0 Hz, 1H, Ar*H*), 6.73 (ddd, *J* = 7.9, 1.8, 0.9 Hz, 1H, Ar*H*), 6.50 (t, *J* = 2.1 Hz, 1H, Ar*H*), 6.27 (ddd, *J* = 8.3, 2.3, 1.0 Hz, 1H, Ar*H*), 4.33 (d, *J* = 5.8 Hz, 1H, C*H*NH), 3.89 (s, 3H, COOC*H*₃), 3.62 (bs, 1H, N*H*), 3.37 (s, 3H, COOC*H*₃), 2.92 (d, *J* = 4.4 Hz, 1H, C*H*CH₂), 2.40 – 2.26 (m, 1H, NHCHCH₂C*H*₂), 2.15 (dd, *J* = 13.5, 8.3 Hz, 1H, NHCHCH₂C*H*₂), 1.88 (dd, *J* = 14.9, 9.4 Hz, 1H, NHCHC*H*₂), 1.46 – 1.37 (m, 1H, NHCHC*H*₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.0, 167.3, 148.0, 134.5, 130.4, 129.8, 129.6, 129.0, 128.1, 128.1, 123.1, 120.3, 115.9, 112.1, 58.7, 53.2, 52.8, 50.7, 42.6, 36.3, 30.0, 24.7; IR $\tilde{\nu}_{max}$ 3405 (w), 3031 (w), 2952 (m), 2858 (w), 1733 (s), 1595 (s), 1489 (m), 1434 (m), 1317 (m), 1255 (s), 1211 (s), 1122 (m), 1074 (w), 987 (m), 914 (m), 839 (w), 732 (s), 702 (s); HRMS (ESI) calcd for C₂₂H₂₂BrNNaO₄⁺ [M + Na]⁺ 466.0624; found 466.0624.

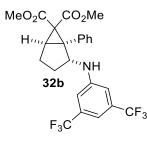

Dimethyl 1-phenyl-2-(pyridin-3-ylamino)bicyclo[3.1.0]hexane-6,6-dicarboxylate (31)

Following the general procedure D, starting from dimethyl dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (**7**) (70 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylpyridin-3-amine (**97**) (73 mg, 0.54 mmol, 1.8 equiv.), the title compound **31** (56:44 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:EtOAc 85:15 to 80:20).

31a, major diastereoisomer, yellow oil (54 mg, 0.15 mmol, 49 % yield). **R**_f 0.25 (Pentane:EtOAc 30:70); ¹**H NMR (400 MHz, Chloroform-***d*) δ 7.90 (d, J = 2.9 Hz, 1H, HetAr*H*), 7.80 (d, J = 4.7 Hz, 1H, HetAr*H*), 7.31 – 7.27 (m, 2H, Ar*H*), 7.25 – 7.14 (m, 3H, Ar*H*), 6.89 (dd, J = 8.4, 4.6 Hz, 1H, HetAr*H*), 6.62 (d, J = 8.1 Hz, 1H, HetAr*H*), 5.34 (d, J = 10.7 Hz, 1H, N*H*), 4.43 (td, J = 10.1, 7.4 Hz, 1H, C*H*NH), 3.89 (s, 3H, COOC*H*₃), 3.43 (s, 3H, COOC*H*₃), 2.68 (d, J = 4.2 Hz, 1H,

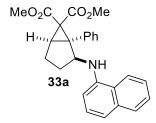

CHCH₂), 2.37 – 2.15 (m, 3H, NHCHCH₂ and NHCHCH₂CH₂), 1.03 – 0.91 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.3, 167.6, 144.1, 138.2, 137.5, 136.4, 128.9, 128.4, 127.6, 123.6, 119.0, 63.3, 53.5, 52.8, 50.3, 42.1, 35.0, 28.1, 24.5; **IR** $\tilde{\nu}_{max}$ 3369 (w), 3032 (w), 2954 (w), 1730 (s), 1587 (s), 1515 (m), 1438 (m), 1306 (s), 1237 (s), 1189 (m), 1129 (m), 1121 (m), 1077 (w), 1009 (w), 916 (m), 791 (m), 730 (s), 702 (s), 645 (w); **HRMS (ESI)** calcd for C₂₁H₂₃N₂O₄⁺ [M+H]⁺ 367.1652; found 367.1649.

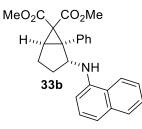
31b, minor diastereoisomer, yellow oil (36 mg, 0.098 mmol, 33 % yield). **R**_f 0.20 (Pentane:EtOAc 30:70); ¹**H NMR (400 MHz, Chloroform-***d*) δ 7.86 (dd, J = 4.7, 1.3 Hz, 1H, HetAr*H*), 7.75 (d, J = 2.9 Hz, 1H, HetAr*H*), 7.39 – 7.26 (m, 3H, Ar*H*), 7.24 – 7.18 (m, 2H, Ar*H*), 6.95 (dd, J = 8.3, 4.7 Hz, 1H, HetAr*H*), 6.66 (ddd, J = 8.7, 2.9, 1.4 Hz, 1H, HetAr*H*), 4.36 (t, J = 6.0 Hz, 1H, *CHN*H), 3.88 (s, 3H, COOC*H*₃), 3.62 (d, J = 5.4 Hz, 1H, NH), 3.37 (s, 3H, COOC*H*₃), 2.92 (d, J = 4.4 Hz, 1H, CHC*H*₂), 2.41 – 2.29 (m, 1H, NHCHCH₂*CH*₂), 2.16 (dd, J = 13.6, 8.4 Hz, 1H, NHCHCH₂*CH*₂), 1.86 (dd, J = 15.0, 9.4 Hz, 1H, NHCHCH₂), 1.52 – 1.39 (m, 1H, NHCHC*H*₂); ¹³C **NMR (101 MHz, Chloroform-***d*) δ 167.9, 167.2, 142.9, 138.7, 136.4, 134.5, 129.8, 128.9, 128.1, 123.6, 119.3, 58.7, 53.2, 52.8, 50.9, 42.6, 36.4, 30.2, 24.8; **IR** $\tilde{\nu}_{max}$ 3396 (w), 3262 (w), 3036 (w), 2954 (w), 1736 (s), 1583 (s), 1480 (m), 1434 (m), 1306 (s), 1253 (s), 1203 (s), 1117 (s), 1070 (w), 1014 (w), 910 (m), 794 (m), 735 (s), 702 (s), 644 (w); **HRMS (ESI)** calcd for C₂₁H₂₃N₂O₄⁺ [M+H]⁺ 367.1652; found 367.1647.


Dimethyl 2-((3,5-bis(trifluoromethyl)phenyl)amino)-1-phenylbicyclo[3.1.0]hexane-6,6-dicarboxylate (32)

Following the general procedure D, starting from dimethyl dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (7) (70 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropyl-3,5bis(trifluoromethyl)aniline (**98**) (0.15 g, 0.54 mmol, 1.8 equiv.), the title compound **32** (58:42 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 90:10 to 85:15).

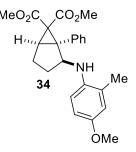
32a, major diastereoisomer, colorless oil (69 mg, 0.14 mmol, 46 % yield). **R**_f 0.42 (Pentane:Et₂O 75:25); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.29 – 7.25 (m, 2H, ArH), 7.24 – 7.18 (m, 3H,


Ar*H*), 6.97 (s, 1H, Ar*H*), 6.70 (s, 2H, Ar*H*), 5.78 (d, J = 10.5 Hz, 1H, N*H*), 4.49 (q, J = 9.5 Hz, 1H, C*H*NH), 3.90 (s, 3H, OC*H*₃), 3.44 (s, 3H, OC*H*₃), 2.70 (d, J = 4.5 Hz, 1H, C*H*CH₂), 2.39 – 2.19 (m, 3H, NHCHC*H*₂ and NHCHCH₂C*H*₂), 1.08 – 0.94 (m, 1H, NHCHC*H*₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.6, 167.5, 148.8, 137.2, 132.2 (q, J = 32.6 Hz), 128.8, 128.6, 127.8, 123.6 (q, J = 272.5 Hz), 112.6 – 112.1 (m), 109.7 (p, J = 4.1 Hz), 63.4, 53.6, 52.9, 50.2, 42.2, 35.3, 28.1, 24.5; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.3; IR $\tilde{\nu}_{max}$ 3377 (w), 3031 (w), 2957 (w), 1725 (m), 1622 (m), 1529 (w), 1478 (w), 1439 (m), 1394 (m), 1276 (s), 1178 (s), 1122 (s), 994 (w), 912 (m), 861 (m), 733 (s), 700 (s), 682 (m), 639 (w); HRMS (ESI) calcd for C₂₄H₂₂F₆NO₄⁺ [M+H]⁺ 502.1448; found 502.1451.


32b, minor diastereoisomer, yellow oil (38 mg, 0.076 mmol, 25 % yield). **R**_f 0.28 (Pentane:Et₂O 75:25); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.40 – 7.34 (m, 1H, Ar*H*), 7.33 – 7.27 (m, 1H, Ar*H*), 7.26 – 7.19 (m, 3H, Ar*H*), 7.03 (s, 1H, Ar*H*), 6.66 (s, 2H, Ar*H*), 4.44 (d, *J* = 6.1 Hz, 1H, C*H*NH), 3.95 (bs, 1H, N*H*), 3.90 (s, 3H, OC*H*₃), 3.39 (s, 3H, OC*H*₃), 2.93 (d, *J* = 4.4 Hz, 1H, C*H*CH₂), 2.34 (dddd, *J* = 14.0, 10.9, 9.4, 4.6 Hz, 1H, NHCHCH₂C*H*₂), 2.19 (dd, *J* = 13.7, 8.4 Hz, 1H, NHCHCH₂C*H*₂), 1.85 (dd, *J* = 15.1, 9.4 Hz, 1H, NHCHCH₂), 1.56 – 1.49 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-d) δ 167.9, 167.1, 147.3, 134.3, 132.2 (q, *J* = 32.6 Hz), 129.9, 129.7, 129.0, 128.3, 128.2, 123.6 (q, *J* = 272.6 Hz), 112.9 – 112.3 (m), 110.4 (p, *J* = 3.9 Hz), 58.8, 53.3, 52.9, 50.7, 42.7, 36.3, 30.1, 24.8; ¹⁹F NMR (376 MHz, Chloroform-d) δ -63.2; IR $\tilde{\nu}_{max}$ 3393 (w), 3033 (w), 2955 (w), 1731 (m), 1622 (w), 1521 (w), 1478 (w), 1439 (w), 1396 (m), 1276 (s), 1171 (s), 1124 (s), 1005 (w), 912 (w), 861 (w), 729 (w), 700 (m), 682 (w); HRMS (ESI) calcd for C₂₄H₂₁F₆NNaO₄⁺ [M+Na]⁺ 524.1267; found 524.1277.

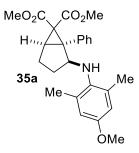
Dimethyl 2-(naphthalen-1-ylamino)-1-phenylbicyclo[3.1.0]hexane-6,6-dicarboxylate (33)

Following the general procedure D, starting from dimethyl dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (7) (70 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropylnaphthalen-1-amine (99) (99 mg, 0.54 mmol, 1.8 equiv.), the title compound **33** (61:39 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10).

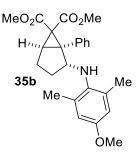


33a, major diastereoisomer, colorless oil (59 mg, 0.14 mmol, 47 % yield). **R**_f 0.44 (Pentane:Et₂O 80:20); ¹**H NMR (400 MHz, Chloroform-***d*)²³ δ 8.11 (d, *J* = 8.4 Hz, 1H, Ar*H*), 7.74 (d, *J* = 7.5 Hz, 1H, Ar*H*), 7.51 (ddd, *J* = 8.4, 6.8, 1.5 Hz, 1H, Ar*H*), 7.44 (ddd, *J* = 8.0, 6.8, 1.2 Hz, 1H, Ar*H*), 7.37 (dt, *J* = 6.0, 1.6 Hz, 2H, Ar*H*), 7.23 – 7.07 (m, 5H, Ar*H*), 6.31 (d, *J* = 7.5 Hz, 1H, Ar*H*), 4.63 (dd, *J* = 10.2, 8.2 Hz, 1H, C*H*NH), 3.89 (s, 3H, OC*H*₃), 3.46 (s, 3H, OC*H*₃), 2.73 (d, *J* = 4.5 Hz, 1H, C*H*CH₂), 2.51 (dt, *J* = 14.4, 8.5 Hz, 1H, NHCHCH₂C*H*₂), 2.42 – 2.24 (m, 2H, NHCHCH₂ and NHCHCH₂C*H*₂), 1.04 – 0.91 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.5, 167.8, 143.3, 137.7, 134.5, 129.0, 128.6, 128.3, 127.4, 126.5, 125.8, 124.9, 123.9, 120.8, 116.8, 104.3, 63.5, 53.6, 52.9, 50.6, 42.3, 34.9, 27.9, 24.8; IR $\tilde{\nu}_{max}$ 3391 (s), 3052 (s), 2955 (s), 1731 (s), 1580 (s), 1534 (s), 1490 (s), 1407 (s), 1306 (s), 1233 (s), 1128 (s), 1080 (s), 1015 (s), 911 (s), 772 (s), 730 (s), 699 (s); HRMS (ESI) calcd for C₂₆H₂₆NO₄⁺ [M+H]⁺ 416.1856; found 416.1858.

33b, minor diastereoisomer, colorless oil (36 mg, 0.087 mmol, 29 % yield). **R**_f 0.40 (Pentane:Et₂O 80:20); ¹**H NMR (400 MHz, Chloroform-d)**²³ δ 7.71 (d, J = 8.0 Hz, 1H, ArH), 7.53 (d, J = 7.8 Hz, 1H, ArH), 7.49 – 7.42 (m, 2H, ArH), 7.36 (ddd, J = 8.0, 6.7, 1.2 Hz, 1H, ArH), 7.31 – 7.27 (m, 2H, ArH), 7.24 (d, J = 1.7 Hz, 2H, ArH), 7.21 – 7.17 (m, 2H, ArH), 6.52 (d, J = 7.5 Hz, 1H, ArH), 4.48 (d, J = 5.7 Hz, 1H, CHNH), 3.92 (s, 3H, OCH₃), 3.41 (s, 3H, OCH₃), 3.01 (d, J = 4.4 Hz, 1H, CHCH₂), 2.51 – 2.36 (m, 1H, NHCHCH₂CH₂), 2.20 (dd, J = 13.5, 8.3 Hz, 1H, NHCHCH₂CH₂), 2.08 (dd, J = 14.9, 9.5 Hz, 1H, NHCHCH₂), 1.51 – 1.41 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-d) δ 168.1, 167.5, 141.8, 134.8, 134.3, 129.9, 129.7, 129.3, 128.7, 128.3, 128.3, 126.4, 125.8, 124.9, 124.0, 119.7, 117.9, 105.6, 59.1, 53.2, 52.8, 51.1, 42.4, 36.8, 29.5, 25.1; IR $\tilde{\nu}_{max}$ 3420 (w), 3060 (w), 2953 (m), 1733 (s), 1580 (m), 1526 (m), 1476 (m), 1440 (m), 1407 (m), 1254 (s), 1210 (m), 1126 (m), 1019 (w), 908 (m), 770 (m), 735 (s), 703 (m); HRMS (ESI) calcd for C₂₆H₂₅NNaO₄⁺ [M+Na]⁺ 438.1676; found 438.1680.


Dimethyl 2-((4-methoxyphenyl)amino)-1-phenylbicyclo[3.1.0]hexane-6,6-dicarboxylate (34)

Following the general procedure D, starting from dimethyl dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (7) (70 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropyl-4-methoxy-2methylaniline (100) (96 mg, 0.54 mmol, 1.8 equiv.), the title compound 34 (57:43 dr in the crude ¹H NMR) was obtained as an inseparable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O:DCM 85:10:5) and as a yellow oil (87 mg, 0.21 mmol, 71% yield). Rf 0.40 (Pentane:Et₂O:DCM 70:20:10); ¹H NMR (400 MHz, Chloroform-d)²³ major diastereoisomer δ 7.33 – 7.27 (m, 2H, ArH), 7.23 – 7.13 (m, 3H, ArH), 6.66 - 6.63 (m, 1H, ArH), 6.48 (d, J = 3.0 Hz, 1H, ArH), 6.25 (d, J = 8.8 Hz, 1H, ArH), 4.37 (t, J = 9.1 Hz, 1H, CHNH), 3.86 (s, 3H, COOCH₃), 3.68 (s, 3H, OCH₃), 3.42 (s, 3H, COOCH₃), 2.65 (d, J = 4.4 Hz, 1H, CHCH₂), 2.46 – 2.35 (m, 1H, NHCHCH₂CH₂), 2.27 (s, 3H, CH_3), 2.23 (dd, J = 9.3, 1.7 Hz, 1H, NHCH CH_2), 2.20 – 2.11 (m, 1H, NHCH CH_2CH_2), 0.97 -0.80 (m, 1H, NHCHCH₂); minor diastereoisomer δ 7.43 - 7.35 (m, 3H, ArH), 7.32 - 7.30 (m, 2H, ArH), 6.64 - 6.62 (m, 1H, ArH), 6.57 (d, J = 2.8 Hz, 1H, ArH), 6.50 (d, J = 3.0 Hz, 1H, ArH), 4.22 (d, J = 5.7 Hz, 1H, CHNH), 3.88 (s, 3H, COOCH₃), 3.70 (s, 3H, OCH₃), 3.39 (s, 3H, COOCH₃), 2.94 (d, J = 4.3 Hz, 1H, CHCH₂), 2.39 – 2.34 (m, 1H, NHCHCH₂CH₂), 2.24 – 2.21 (m, 1H, NHCHCH₂CH₂), 2.01 – 1.90 (m, 1H, NHCHCH₂), 1.63 (s, 3H, CH₃), 1.43 – 1.31 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-d) major diastereoisomer δ 170.3, 167.8, 137.8, 130.0, 129.8, 129.4, 128.9, 128.3, 128.2, 127.3, 117.0, 111.6, 64.5, 55.9, 53.5, 52.8, 51.0, 42.4, 36.9, 28.2, 24.6, 18.2; minor diastereoisomer δ 168.0, 167.4, 137.8, 130.0, 129.3, 129.1, 128.9, 128.3, 128.2, 127.3, 117.2, 111.4, 64.5, 55.9, 53.1, 52.7, 50.5, 42.1, 34.9, 29.8, 25.0, 17.3; **IR** $\tilde{\nu}_{max}$ 3391 (w), 2953 (m), 2844 (w), 1727 (s), 1511 (s), 1435 (m), 1225 (s), 1120 (s), 1054 (w), 910 (m), 733 (s), 700 (m); **HRMS (ESI)** calcd for $C_{24}H_{28}NO_5^+$ [M+H]⁺ 410.1962; found 410.1957.

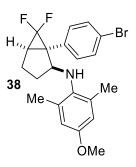

Dimethyl 2-((4-methoxy-2,6-dimethylphenyl)amino)-1-phenylbicyclo[3.1.0]hexane-6,6-dicarboxylate (35)

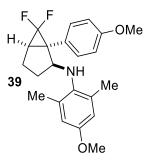
Following the general procedure D, starting from dimethyl dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (7) (70 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropyl-4-methoxy-2,6dimethylaniline (**37**) (0.10 g, 0.54 mmol, 1.8 equiv.), the title compound **35** (84:16 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 85:15).

35a, major diastereoisomer, pale yellow oil (29 mg, 0.068 mmol, 23 % yield). **R**_f 0.42 (Pentane:Et₂O 70:30); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.35 – 7.26 (m, 2H, ArH), 7.23 – 7.18 (m, 2H, ArH), 7.17 – 7.12 (m, 1H, ArH), 6.35 (s, 2H, ArH), 4.15 (bs, 1H, NH), 3.84 (s, 4H, COOCH₃ & CHNH), 3.60 (s, 3H, OCH₃), 3.37 (s, 3H, COOCH₃), 2.55 – 2.50 (m, 1H, CHCH₂), 2.11 – 2.02 (m, 2H, NHCHCH₂CH₂), 1.81 (m, 7H, NHCHCH₂ & CH₃), 1.07 – 0.87 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-d) δ 170.5, 168.1, 154.2, 138.9, 138.3, 131.4, 129.5, 128.0, 127.2, 114.1, 68.5, 55.4, 53.4, 52.8, 50.7, 41.8, 34.5, 28.5, 24.2, 18.8; IR $\tilde{\nu}_{max}$ 3376

(w), 2952 (m), 2842 (w), 1727 (s), 1602 (w), 1485 (s), 1434 (s), 1306 (s), 1219 (s), 1194 (m), 1150 (m), 1123 (s), 1064 (s), 1003 (w), 910 (m), 850 (w), 762 (m), 731 (s), 700 (s), 649 (w); **HRMS (ESI)** calcd for $C_{25}H_{30}NO_5^+$ [M + H]⁺ 424.2118; Found 424.2114.

35b, minor diastereoisomer, pale yellow oil (4 mg, 0.009 mmol, 3 % yield). **R**_f 0.37 (Pentane:Et₂O 70:30); ¹**H NMR (400 MHz, Chloroform**-*d*)²³ δ 7.57 – 7.51 (m, 1H, Ar*H*), 7.33 – 7.29 (m, 2H, Ar*H*), 7.26 – 7.22 (m, 2H, Ar*H*), 6.49 (s, 2H, Ar*H*), 4.18 (d, *J* = 5.9 Hz, 1H, C*H*NH), 3.78 (s, 3H, COOC*H*₃), 3.70 (s, 3H, OC*H*₃), 3.35 (s, 3H, COOC*H*₃), 2.95 (d, *J* = 4.2 Hz, 1H, C*H*CH₂), 2.52 – 2.38 (m, 1H, NHCHCH₂C*H*₂), 2.12 (m, 7H, NHCHCH₂C*H*₂ & C*H*₃), 1.65 – 1.57 (m, 1H, NHCHC*H*₂), 1.05 – 0.91 (m, 1H, NHCHC*H*₂); ¹³**C NMR (101 MHz, Chloroform**-*d*) δ 168.2, 167.5, 133.3, 130.3, 129.7, 128.8, 128.4, 127.9, 127.7, 114.1, 62.5, 55.4, 53.0, 52.7, 51.6, 42.6, 36.1, 27.6, 24.9, 19.3; **IR** $\tilde{\nu}_{max}$ 3362 (w), 2951 (m), 2871 (w), 1739 (s), 1602 (w), 1481 (m), 1442 (m), 1314 (m), 1248 (s), 1212 (s), 1150 (m), 1124 (m), 1065 (m), 1011 (w), 914 (m), 854 (w), 731 (m), 702 (m), 611 (w); **HRMS (ESI)** calcd for C₂₅H₃₀NO₅⁺ [M + H]⁺ 424.2118; Found 424.2120.


6,6-Difluoro-N-(4-methoxy-2,6-dimethylphenyl)-1-(p-tolyl)bicyclo[3.1.0]hexan-2-amine (36)


Following the general procedure D, starting from 1-(3,3-difluorocycloprop-1-en-1-yl)-4methylbenzene (**66**) (50 mg, 0.30 mmol, 1.0 equiv.) and *N*-cyclopropyl-4-methoxy-2,6dimethylaniline (**37**) (0.10 g, 0.54 mmol, 1.8 equiv.), the title compound **36** (93:7 *dr* in the crude ¹⁹F NMR) was obtained after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10) as a yellow oil and as a mixture of diastereoisomers (61 mg, 0.14 mmol, 57% yield). **R**_f 0.45 (Pentane:Et₂O 90:10); ¹**H NMR** (**400 MHz, Chloroform-d**) δ 7.22 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.07 (d, *J* = 7.7 Hz, 2H, Ar*H*), 6.44 (s, 2H, Ar*H*), 4.20 (dd, *J* = 16.4, 8.0 Hz, 1H, C*H*NH), 3.70 (s, 3H, OMe), 3.23 (bs, 1H, N*H*), 2.32 (s, 3H, C*H*₃), 2.24 – 2.18 (m, 2H, CF₂CHC*H*₂), 2.09 – 2.07 (m, 1H, CF₂C*H*), 2.06 (s, 6H, C*H*₃), 2.06 – 2.02 (m, 1H, NHCHC*H*₂), 1.70 – 1.59 (m, 1H, NHCHC*H*₂); ¹³C **NMR** (**101 MHz, Chloroform-d**) δ 154.4, 138.1, 137.0, 132.5, 130.6, 129.1, 128.9, 115.7 (Hidden dd, one measurable constant: J = 281.8 Hz), 114.1, 67.8, 55.5, 44.8 (dd, J = 11.9, 8.1 Hz), 34.4 (dd, J = 12.6, 9.0 Hz), 31.4 (d, J = 7.5 Hz), 24.2, 21.3, 19.0; ¹⁹F NMR (**376 MHz, Chloroform-d**) $\delta - 123.3$ (dd, J = 160.8, 14.1 Hz, *Major diastereoisomer*), -124.8 (dd, J = 157.3, 18.5 Hz, *Minor diasteroisomer*), -137.6 (d, J = 160.0 Hz, *Major diastereoisomer*), -141.3 (d, J = 157.6 Hz, *Minor diasteroisomer*); **IR** $\tilde{\nu}_{max}$ 3382 (w), 2946 (m), 2251 (w), 1902 (w), 1728 (w), 1607 (m), 1517 (m), 1484 (s), 1440 (s), 1378 (w), 1317 (m), 1223 (s), 1194 (s), 1149 (s), 1106 (m), 1065 (s), 1029 (m), 984 (s), 984 (s), 939 (m), 912 (s), 855 (m), 812 (s), 734 (s), 693 (m), 669 (w), 650 (m); **HRMS (ESI)** calcd for C₂₂H₂₆F₂NO⁺ [M+H]⁺ 358.1977; found 358.1984.

Following the general procedure E, starting from 1-(3,3-difluorocycloprop-1-en-1-yl)-4methylbenzene (**63**) (50 mg, 0.30 mmol, 1.0 equiv), the title compound **35** (93:7 *dr* in the crude ¹⁹F NMR) was obtained after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10) as a yellow oil and as a mixture of diastereoisomers (78 mg, 0.22 mmol, 73% yield). With this procedure the characterization was the same as described above.

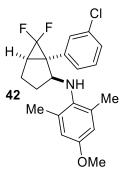
1-(4-Bromophenyl)-6,6-difluoro-*N*-(4-methoxy-2,6-dimethylphenyl)bicyclo[3.1.0]hexan-2-amine (38)



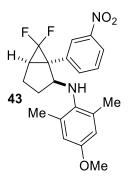
Following the general procedure E, starting from 1-bromo-4-(3,3-difluorocycloprop-1-en-1yl)benzene (**73**) (69 mg, 0.30 mmol, 1.0 equiv.), the title compound **38** (93:7 *dr* in the crude ¹⁹F NMR) was obtained after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10) as a colorless oil and as a single diastereoisomer (100 mg, 0.24 mmol, 79 % yield). **R**_{*f*} 0.37 (Pentane:Et₂O 90:10); ¹**H NMR (400 MHz, Chloroform**-*d*) δ 7.36 (d, *J* = 8.4 Hz, 2H, Ar*H*), 7.16 (d, *J* = 8.4 Hz, 2H, Ar*H*), 6.43 (s, 2H, Ar*H*), 4.20 (dt, *J* = 9.5, 7.2 Hz, 1H, C*H*NH), 3.70 (s, 3H, OMe), 3.28 (bs, 1H, N*H*), 2.27 – 2.10 (m, 3H, CF₂CHC*H*₂ & NHCHC*H*₂), 2.06 (m, 7H, CF₂C*H* & C*H*₃), 1.70 – 1.58 (m, 1H, NHCHC*H*₂); ¹³C **NMR (101 MHz, Chloroform**-*d*) δ 154.6, 137.8, 134.7, 131.3, 130.9, 130.5, 121.3, 116.7 (dd, *J* = 302.8, 281.9 Hz), 114.2, 67.6, 55.5, 44.6 (dd, *J* = 12.1, 7.8 Hz), 34.6 (dd, *J* = 12.6, 9.0 Hz), 31.4 (d, *J* = 7.7 Hz), 24.2, 19.0; ¹⁹F **NMR (376 MHz, Chloroform**-*d*) δ -123.1 (dd, *J* = 161.7, 13.9 Hz), -137.7 (d, *J* = 161.3 Hz); **IR** $\tilde{\nu}_{max}$ 3373 (w), 2951 (m), 2830 (w), 1604 (w), 1489 (s), 1313 (m), 1287 (m), 1227 (s), 1196 (s), 1153 (s), 1106 (m), 1062 (s), 1013 (m), 986 (s), 945 (w), 912 (w), 822 (s), 741 (m); **HRMS (ESI)** calcd for C₂₁H₂₃⁷⁹BrF₂NO⁺ [M+H]⁺ 422.0926; found 422.0928. 6,6-Difluoro-*N*-(4-methoxy-2,6-dimethylphenyl)-1-(4-methoxyphenyl)bicyclo[3.1.0]hexan-2-amine (39)


Following the general procedure E, starting from 1-(3,3-difluorocycloprop-1-en-1-yl)-4methoxybenzene (74) (55 mg, 0.30 mmol, 1.0 equiv.), the title compound 39 (93:7 dr in the crude 19 F NMR) was obtained after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10) as a vellow oil and as a single diastereoisomer (68 mg, 0.18 mmol, 61 % yield). \mathbf{R}_f 0.28 (Pentane:Et₂O 90:10); ¹H NMR (400 **MHz, Chloroform-d**) δ 7.24 (d, J = 8.6 Hz, 2H, ArH), 6.80 (d, J = 8.7 Hz, 2H, ArH), 6.44 (s, 2H, ArH), 4.18 (dt, J = 9.3, 7.3 Hz, 1H, CHNH), 3.78 (s, 3H, OMe), 3.70 (s, 3H, OMe), 3.25 (bs, 1H, NH), 2.25 – 2.17 (m, 2H, CF₂CHCH₂ & NHCHCH₂), 2.15 – 2.09 (m, 1H, CF₂CHCH₂), 2.08 - 2.00 (m, 7H, CF₂CH & CH₃), 1.67 - 1.56 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, **Chloroform-***d*) δ 158.9, 154.4, 138.2, 130.6, 130.4, 127.6, 117.3 (dd, J = 302.4, 281.9 Hz), 114.1, 113.7, 67.9 (d, J = 2.1 Hz), 55.5, 55.4, 44.6 (dd, J = 11.9, 8.5 Hz), 34.4 (dd, J = 12.5, 8.9 Hz), 31.4 (d, J = 7.6 Hz), 24.2, 19.0; ¹⁹F NMR (376 MHz, Chloroform-d) δ -123.3 (dd, J =159.6, 13.6 Hz), -137.8 (d, J = 159.8 Hz); **IR** $\tilde{\nu}_{max}$ 3379 (w), 2958 (m), 2913 (w), 2836 (w), 1727 (w), 1614 (m), 1517 (s), 1484 (s), 1301 (m), 1247 (s), 1194 (s), 1151 (s), 1110 (w), 1066 (s), 1029 (m), 986 (m), 910 (m), 830 (m), 737 (m), 587 (w); HRMS (ESI) calcd for C₂₂H₂₆F₂NO₂⁺ [M+H]⁺ 374.1926; found 374.1929.

6,6-Difluoro-*N*-(4-methoxy-2,6-dimethylphenyl)-1-(4-(trifluoromethyl)phenyl)bicyclo[3.1.0] hexan-2-amine (40)


Following the general procedure E, starting from 1-(3,3-difluorocycloprop-1-en-1-yl)-4-(trifluoromethyl)benzene (**85**) (66 mg, 0.30 mmol, 1.0 equiv.), the title compound **40** (93:7 *dr* in the crude ¹⁹F NMR) was obtained after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10) as a pale yellow oil and as a single diastereoisomer (95 mg, 0.23 mmol, 77 % yield). **R**_f 0.20 (Pentane:Et₂O 90:10); ¹H NMR (**400** **MHz, Chloroform-***d*) δ 7.49 (d, J = 8.1 Hz, 2H, Ar*H*), 7.39 (d, J = 8.1 Hz, 2H, Ar*H*), 6.41 (s, 2H, Ar*H*), 4.26 (dt, J = 9.6, 6.9 Hz, 1H, C*H*NH), 3.68 (s, 3H, OC*H*₃), 3.28 (bs, 1H, N*H*), 2.30 – 2.15 (m, 3H, NHCHC*H*₂ & CF₂CHC*H*₂), 2.10 (dd, J = 14.5, 3.9 Hz, 1H, CF₂C*H*), 2.07 (s, 6H, C*H*₃), 1.73 – 1.59 (m, 1H, NHCHC*H*₂); ¹³C **NMR (101 MHz, Chloroform-***d*) δ 154.7, 139.8, 137.8, 130.4, 129.6, 129.3 (q, J = 32.8 Hz), 125.0 (q, J = 3.8 Hz), 124.3 (q, J = 272.1 Hz), 116.5 (dd, J = 303.0, 282.2 Hz), 114.1, 67.6, 55.4, 44.9 (dd, J = 12.3, 7.7 Hz), 34.9 (dd, J = 12.8, 9.2 Hz), 31.4 (d, J = 7.7 Hz), 24.2, 18.9; ¹⁹F **NMR (376 MHz, Chloroform-***d*) δ -62.6, -122.9 (dd, J = 162.6, 14.4 Hz), -137.6 (d, J = 162.0 Hz); **IR** $\tilde{\nu}_{max}$ 3384 (w), 2950 (m), 2844 (w), 1611 (m), 1486 (s), 1448 (m), 1325 (s), 1201 (m), 1158 (s), 1126 (s), 1059 (s), 1017 (m), 985 (m), 949 (w), 913 (m), 837 (m), 734 (m), 702 (m); **HRMS (ESI)** calcd for C₂₂H₂₃F₅NO⁺ [M+H]⁺ 412.1694; found 412.1705.

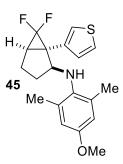
6,6-Difluoro-N-(4-methoxy-2,6-dimethylphenyl)-1-(m-tolyl)bicyclo[3.1.0]hexan-2-amine (41)


Following the general procedure E, starting from 1-(3,3-difluorocycloprop-1-en-1-yl)-3methylbenzene (86) (50 mg, 0.30 mmol, 1.0 equiv.), the title compound 41 (94:6 dr in the crude ¹⁹F NMR) was obtained after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10) as a pale yellow oil and as a mixture of diastereoisomers (80 mg, 0.22 mmol, 75 % yield). **R**_f 0.38 (Pentane:Et₂O 90:10); ¹**H NMR** (400 **MHz, Chloroform-***d*) δ 7.17 – 7.01 (m, 4H, Ar*H*), 6.43 (s, 2H, Ar*H*), 4.24 (dt, J = 9.8, 6.9 Hz, 1H, CHNH), 3.70 (s, 3H, OMe), 3.26 (bs, 1H, NH), 2.27 (s, 3H, CH₃), 2.24 - 2.11 (m, 3H, CF₂CHCH₂ & NHCHCH₂), 2.09 - 2.03 (m, 7H, CF₂CH & CH₃), 1.70 - 1.60 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-d) δ 154.4, 138.1, 137.7, 135.5, 133.0, 130.5, 130.1, 128.1, 126.1 (d, J = 2.5 Hz), 117.2 (dd, J = 302.6, 282.2 Hz), 114.1, 67.8, 55.4, 45.2 (dd, J = 11.8, 8.1 Hz), 34.6 (dd, J = 12.6, 9.1 Hz), 31.6 (d, J = 7.7 Hz), 24.2, 21.4, 19.0; ¹⁹F NMR (376) **MHz, Chloroform-d**) δ -123.1 (dd, J = 160.6, 15.3 Hz, Major diastereoisomer), -124.7 (d, J =158.0 Hz, Minor diasteroisomer), -137.5 (d, J = 160.9 Hz, Major diastereoisomer), -141.2 (d, J =157.6 Hz, Minor diasteroisomer); IR $\tilde{\nu}_{max}$ 3379 (w), 3041 (w), 2945 (m), 1610 (m), 1486 (s), 1449 (s), 1319 (m), 1194 (s), 1157 (m), 1103 (w), 1068 (s), 1031 (m), 986 (m), 914 (m), 852 (m), 787 (m), 739 (m), 704 (s), 643 (w). **HRMS (ESI)** calcd for $C_{22}H_{26}F_{2}NO^{+}[M+H]^{+}358.1977;$ found 358.1983.

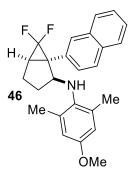
1-(3-Chlorophenyl)-6,6-difluoro-N-(4-methoxy-2,6-dimethylphenyl)bicyclo[3.1.0]hexan-2-amine (42)


Following the general procedure E, starting from 1-chloro-3-(3,3-difluorocycloprop-1-en-1vl)benzene (75) (56 mg, 0.30 mmol, 1.0 equiv.), the title compound 42 (92:8 dr in the crude 19 F NMR) was obtained after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10) as a vellow oil and as a mixture of diastereoisomers (94 mg, 0.25 mmol, 83 % yield). \mathbf{R}_f 0.35 (Pentane:Et₂O 90:10); ¹H NMR (400 MHz, **Chloroform-d**) δ 7.26 – 7.24 (m, 1H, ArH), 7.22 – 7.14 (m, 3H, ArH), 6.43 (s, 2H, ArH), 4.22 (q, J = 8.1 Hz, 1H, CHNH), 3.70 (s, 3H, OMe), 3.23 (bs, 1H, NH), 2.29 - 2.15 (m, 3H, 100 H)CF₂CHCH₂ & NHCHCH₂), 2.09 - 2.03 (m, 7H, CF₂CH & CH₃), 1.70 - 1.60 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-d) δ 154.6, 137.8, 137.7, 133.9, 130.5, 129.4 (d, J = 2.3 Hz), 129.4, 127.5, 127.5 (d, J = 2.3 Hz), 116.6 (dd, J = 302.8, 283.1 Hz), 114.2, 67.6 (d, J = 302.8, 114.2 Hz), 114.2 Hz, 114.2 Hz), 114.2 Hz, 114.2 Hz), 114.2 Hz, 114.2 Hz), 114.2 Hz), 114.2 Hz, 114 = 2.0 Hz), 55.4, 44.8 (dd, J = 12.1, 7.8 Hz), 34.8 (dd, J = 12.7, 9.2 Hz), 31.5 (d, J = 7.6 Hz), 24.1, 19.0; ¹⁹F NMR (376 MHz, Chloroform-d) δ -123.1 (dd, J = 161.8, 14.6 Hz, Major diastereoisomer), -124.6 (ddd, J = 158.7, 14.2, 5.0 Hz, Minor diasteroisomer), -137.6 (d, J =161.4 Hz, Major diastereoisomer), -141.1 (d, J = 158.0 Hz, Minor diasteroisomer); IR \tilde{v}_{max} 3386 (w), 3047 (w), 2945 (m), 2843 (w), 1731 (w), 1599 (m), 1486 (s), 1322 (m), 1196 (s), 1153 (s), 1101 (m), 1071 (s), 1027 (w), 988 (m), 912 (m), 848 (m), 785 (m), 733 (s), 694 (m); HRMS (ESI) calcd for $C_{21}H_{23}ClF_2NO^+$ [M+H]⁺ 378.1431; found 378.1430.

6,6-Difluoro-*N*-(4-methoxy-2,6-dimethylphenyl)-1-(3-nitrophenyl)bicyclo[3.1.0]hexan-2-amine (43)


Following the general procedure E, starting from 1-(3,3-difluorocycloprop-1-en-1-yl)-3nitrobenzene (87) (59 mg, 0.30 mmol, 1.0 equiv.), the title compound 43 (91:9 dr in the crude ¹⁹F NMR) was obtained after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 90:10 to 80:20) as a yellow oil and as a mixture of diastereoisomers (87 mg, 0.22 mmol, 75 % yield). **R**_f 0.25 (Pentane:Et₂O 70:30); ¹**H NMR** (400 MHz, **Chloroform-d**) δ 8.09 – 8.00 (m, 2H, Ar*H*), 7.58 (dt, *J* = 7.8, 1.3 Hz, 1H, Ar*H*), 7.37 (t, *J* = 7.9 Hz, 1H, Ar*H*), 6.37 (s, 2H, Ar*H*), 4.28 (dt, *J* = 9.7, 7.4 Hz, 1H, C*H*NH), 3.66 (s, 3H, OC*H*₃), 3.26 (bs, 1H, N*H*), 2.33 – 2.20 (m, 3H, NHCHC*H*₂ & CF₂CHC*H*₂), 2.16 – 2.12 (m, 1H, CF₂C*H*), 2.07 (s, 6H, C*H*₃), 1.74 – 1.64 (m, 1H, NHCHC*H*₂); ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 154.6, 148.0, 137.9, 137.5, 135.5, 130.3, 129.0, 124.1 (d, *J* = 2.6 Hz), 122.3, 116.2 (dd, *J* = 302.8, 281.9 Hz), 114.1, 67.5, 55.4, 44.7 (dd, *J* = 12.5, 7.6 Hz), 35.2 (dd, *J* = 12.7, 9.1 Hz), 31.3 (d, *J* = 7.7 Hz), 24.1, 18.9; ¹⁹F **NMR** (376 MHz, Chloroform-*d*) δ -122.8 (dd, *J* = 162.8, 14.6 Hz, *Major diastereoisomer*), -124.4 (ddd, *J* = 159.2, 14.5, 4.6 Hz, *Minor diasteroisomer*), -137.9 (d, *J* = 162.8 Hz, *Major diastereoisomer*), -141.0 (d, *J* = 158.7 Hz, *Minor diasteroisomer*); **IR** $\tilde{\nu}_{max}$ 3377 (w), 3081 (w), 2951 (m), 1720 (w), 1603 (w), 1529 (s), 1486 (s), 1447 (m), 1349 (s), 1314 (m), 1197 (m), 1151 (s), 1102 (m), 1065 (s), 1032 (w), 989 (m), 915 (w), 857 (w), 809 (w), 737 (m), 687 (m); **HRMS (ESI)** calcd for C₂₁H₂₃F₂N₂O₃⁺ [M+H]⁺ 389.1671; found 389.1677.

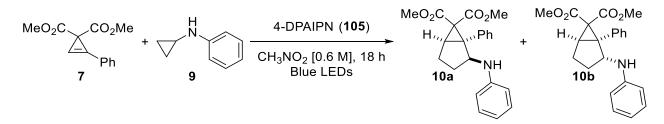
6,6-Difluoro-*N*-(4-methoxy-2,6-dimethylphenyl)-1-(2-methoxyphenyl)bicyclo[3.1.0]hexan-2-amine (44)


Following the general procedure E, starting from 1-(3,3-difluorocycloprop-1-en-1-yl)-2methoxybenzene (88) (55 mg, 0.30 mmol, 1.0 equiv.), the title compound 44 (94:6 dr in the crude ¹⁹F NMR) was obtained after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10) as a pale yellow oil and as a mixture of diastereoisomers (83 mg, 0.22 mmol, 74 % yield). **R**_f 0.28 (Pentane:Et₂O 90:10); ¹**H NMR** (400 **MHz, Chloroform-***d*) δ 7.25 – 7.16 (m, 2H, Ar*H*), 6.87 – 6.80 (m, 2H, Ar*H*), 6.41 (s, 2H, Ar*H*), 4.33 (dd, J = 16.5, 7.9 Hz, 1H, CHNH), 3.84 (s, 3H, OCH₃), 3.69 (s, 3H, OCH₃), 3.25 (bs, 1H, NH), 2.30 – 2.15 (m, 2H, CF₂CHCH₂), 2.12 – 2.06 (m, 1H, NHCHCH₂), 2.03 (s, 6H, CH₃), 1.96 (dd, J = 14.9, 5.2 Hz, 1H, CF₂CH), 1.64 – 1.54 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, **Chloroform-***d*) δ 158.5, 154.2, 138.6, 131.9, 130.5, 128.7, 123.5, 120.3, 117.8 (dd, J = 302.7, 282.8 Hz), 114.0, 110.4, 65.7, 55.5, 55.4, 41.6 (dd, *J* = 12.6, 7.3 Hz), 35.1 (dd, *J* = 12.5, 8.8 Hz), 31.4 (d, J = 7.9 Hz), 24.2, 18.7; ¹⁹F NMR (376 MHz, Chloroform-d) δ -122.7 (dd, J = 160.7, 17.3 Hz, Major diastereoisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, 3.5 Hz, Minor diasteroisomer), -127.3 (ddd, J = 158.9, 14.0, -127.3 (ddd, -127.3) (d 137.9 (d, J = 159.5 Hz, Major diastereoisomer), -141.8 (dd, J = 336.1, 156.5 Hz, Minor *diasteroisomer*); IR $\tilde{\nu}_{max}$ 3386 (w), 2947 (m), 2840 (m), 1606 (m), 1485 (s), 1435 (s), 1317 (m), 1241 (s), 1194 (s), 1148 (s), 1119 (m), 1065 (s), 1029 (s), 981 (s), 910 (s), 850 (m), 795 (w), 754 (s); **HRMS (ESI)** calcd for $C_{22}H_{26}F_2NO_2^+$ [M+H]⁺ 374.1926; Found 374.1930.

6,6-Difluoro-N-(4-methoxy-2,6-dimethylphenyl)-1-(thiophen-3-yl)bicyclo[3.1.0]hexan-2-amine (45)

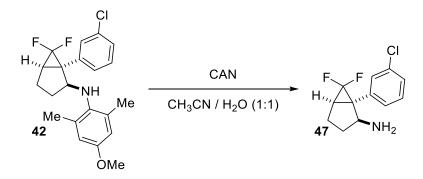
Following the general procedure E, starting from 3-(3,3-difluorocycloprop-1-en-1-yl)thiophene (89) (47 mg, 0.30 mmol, 1.0 equiv.), the title compound 45 (95:5 dr in the crude ¹⁹F NMR) was obtained after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 98:2 to 95:5) as a pale yellow oil and as a mixture of diastereoisomers (43 mg, 0.12 mmol, 41 % vield). **R**_f 0.52 (Pentane:Et₂O 90:10); ¹**H NMR** (400 MHz, Chloroform-d) δ 7.18 (dd, J = 5.0, 3.0 Hz, 1H, HetArH), 7.10 (dd, J = 3.1, 1.3 Hz, 1H, HetArH), 6.96 (dt, J = 5.2, 1.2)Hz, 1H, HetArH), 6.48 (s, 2H, ArH), 4.33 (dt, J = 9.6, 6.7 Hz, 1H, CHNH), 3.72 (s, 3H, OCH₃), 3.27 (bs, 1H, NH), 2.22 – 2.04 (m, 10H, NHCHCH₂, CF₂CHCH₂ & CF₂CH), 1.69 – 1.59 (m, 1H, NHCHCH₂); ¹³C NMR (101 MHz, Chloroform-d) δ 154.5, 138.2, 135.9, 130.6, 127.8, 125.1, 123.1, 117.2 (hidden dd, one peak was not found due to overlapping), 114.2, 66.4, 55.5, 41.5 (dd, J = 12.3, 8.0 Hz), 35.5 (dd, J = 12.2, 9.0 Hz), 31.4 (d, J = 8.0 Hz), 23.9, 19.0; ¹⁹F NMR (376) **MHz, Chloroform-***d*) δ -124.4 (dd, J = 160.6, 15.5 Hz, *Major diastereoisomer*), -125.6 (ddd, J =157.4, 13.5, 5.0 Hz, Minor diasteroisomer), -138.1 (d, J = 161.4 Hz, Major diastereoisomer), -141.8 (d, J = 157.0 Hz, Minor diasteroisomer); **IR** $\tilde{\nu}_{max}$ 3385 (w), 3105 (w), 2947 (m), 2842 (w), 1603 (m), 1486 (s), 1376 (w), 1319 (m), 1225 (s), 1191 (m), 1151 (s), 1101 (m), 1065 (s), 1031 (w), 987 (m), 911 (m), 853 (m), 781 (m), 733 (m), 687 (w), 646 (w); HRMS (ESI) calcd for C₁₉H₂₂F₂NOS⁺ [M+H]⁺ 350.1385; found 350.1388.

6,6-Difluoro-N-(4-methoxy-2,6-dimethylphenyl)-1-(naphthalen-2-yl)bicyclo[3.1.0]hexan-2-amine (46)



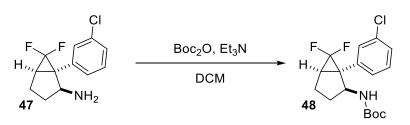
Following the general procedure E, starting from 2-(3,3-difluorocycloprop-1-en-1-yl)naphthalene (**90**) (61 mg, 0.30 mmol, 1.0 equiv.), the title compound **46** (93:7 *dr* in the crude ¹⁹F NMR) was obtained after purification by column chromatography on Biotage (SNAP cartridge KP-SIL 25 g, Pentane:Et₂O 95:5 to 90:10) as a pale yellow oil and as a single diastereoisomer (81 mg, 0.21

mmol, 69 % yield). **R**_{*f*} 0.32 (Pentane:Et₂O 90:10); ¹**H NMR** (**400 MHz**, **Chloroform-***d*) δ 7.82 – 7.76 (m, 1H, Ar*H*), 7.76 – 7.71 (m, 3H, Ar*H*), 7.49 – 7.40 (m, 3H, Ar*H*), 6.37 (s, 2H, Ar*H*), 4.35 (dd, J = 16.5, 7.9 Hz, 1H, C*H*NH), 3.60 (s, 3H, OMe), 3.35 (bs, 1H, N*H*), 2.34 – 2.25 (m, 2H, CF₂CHC*H*₂), 2.18 (m, 2H, CF₂C*H* & NHCHC*H*₂), 2.05 (s, 6H, C*H*₃), 1.76 – 1.64 (m, 1H, NHCHC*H*₂); ¹³C **NMR** (**101 MHz**, **Chloroform-***d*)²⁴ δ 154.4, 138.1, 133.2, 133.0, 132.6, 130.5, 128.4, 128.0, 127.8, 127.7, 126.0, 125.9, 117.2 (dd, J = 302.7, 282.4 Hz), 114.1, 67.6, 55.4, 45.4 (dd, J = 11.9, 8.0 Hz), 34.7 (dd, J = 12.6, 9.0 Hz), 31.7 (d, J = 7.6 Hz), 24.3, 19.0; ¹⁹F **NMR** (**376 MHz**, **Chloroform-***d*) δ -123.0 (dd, J = 161.3, 15.8 Hz), -137.3 (d, J = 160.5 Hz); **IR** $\tilde{\nu}_{max}$ 3373 (w), 3053 (w), 1610 (m), 1486 (s), 1443 (m), 1317 (m), 1231 (m), 1194 (m), 1151 (m), 1066 (s), 1025 (w), 988 (m), 908 (s), 861 (m), 820 (m), 731 (s), 649 (w); **HRMS** (**ESI**) calcd for C₂₅H₂₆F₂NO⁺ [M+H]⁺ 394.1977; found 394.1969.

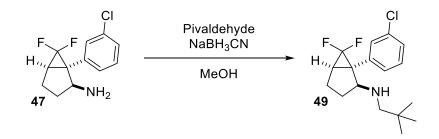

7. Gram-scale Synthesis of 9 and Product Modifications

Procedure for the gram scale 3+2 cycloaddition

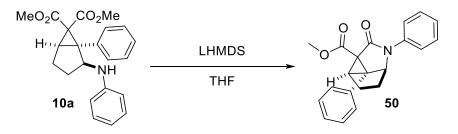
A 10 mL test tube was charged with 2,4,5,6-tetrakis(diphenylamino)isophthalonitrile (4-DPAIPN, **105**) (69 mg, 0.086 mmol, 0.02 equiv.), dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (7) (1.00 g, 4.31 mmol, 1 equiv.) and *N*-cyclopropylaniline (9) (1.03 g, 7.75 mmol, 1.8 equiv.). The tube was sealed, evacuated and back-filled with nitrogen (3 times). Then 7.2 mL of degassed nitromethane (3 freeze pump thaw cycles) was added via syringe and the resulting mixture was irradiated at room temperature for 18 hours with Blue LEDs, positioned at 4 to 5 cm of the reaction vessel. The reaction mixture was then filtered through a small pad of silica gel eluting with Et₂O, and the filtrate was concentrated under reduced pressure. The desired product (55:45 *dr* in the crude ¹H NMR) was obtained as a separable mixture of two diastereoisomers after purification by column chromatography (SiO₂, Pentane:Et₂O 95:5 to 90:10) affording **10a** (755 mg, 2.07 mmol, 48 % yield) and **10b** (677 mg, 1.85 mmol, 43 % yield).


1-(3-Chlorophenyl)-6,6-Difluorobicyclo[3.1.0]hexan-2-amine (47)

To a solution of **42** (92:8 dr, 94 mg, 0.25 mmol, 1.0 equiv.) in CH₃CN (5 mL) was added dropwise at room temperature, a solution of CAN (546 mg, 0.995 mmol, 4.0 equiv.) in H₂O (5 mL). After 30 mins, TLC monitoring (pentane:Et₂O 9:1) indicated full conversion of the starting material. The reaction mixture was quenched with 1 M aq. NaOH until pH = 11 was reached, followed by extraction with EtOAc (3 x 15 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography (SiO₂, DCM:MeOH 98:2 to 95:5) affording the title compound **47** (0.041 g, 0.168 mmol, 68 % yield) as a colorless oil and as a 93:7 mixture of diastereoisomers (based on ¹⁹F NMR integrations). **R**_f 0.55 (DCM:MeOH 95:5); ¹H NMR (**400** MHz, **Chloroform-d**) δ 7.35 – 7.32 (m, 1H, Ar*H*), 7.32 – 7.27 (m, 2H, Ar*H*), 7.25 – 7.22 (m, 1H, Ar*H*), 3.77 (dt, *J* = 9.8, 7.3 Hz, 1H, *CH*NH₂), 2.31 – 2.17 (m, 3H, CF₂CHCH₂ & NH₂CHCH₂); ¹³C NMR

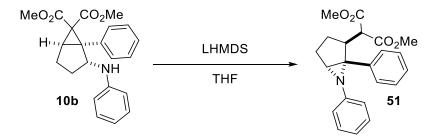

(101 MHz, Chloroform-*d*) δ 137.7, 134.6, 130.1, 129.2 (d, J = 2.6 Hz), 128.0, 127.4, 116.4 (dd, J = 303.4, 280.1 Hz), 63.3, 46.2 (dd, J = 11.8, 7.4 Hz), 34.9 (dd, J = 12.6, 9.2 Hz), 32.8 (d, J = 8.2 Hz), 24.4; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -122.9 (dd, J = 161.9, 14.8, *Major diastereoisomer*), -125.1 (d, J = 162.0, *Minor diastereoisomer*), -140.4 (d, J = 161.9, *Major diastereoisomer*), -141.4 (d, J = 159.3, *Minor diastereoisomer*); IR $\tilde{\nu}_{max}$ 3381 (w), 3060 (w), 3033 (w), 2956 (m), 2882 (w), 1717 (w), 1598 (m), 1572 (m), 1477 (m), 1446 (m), 1303 (w), 1255 (m), 1203 (s), 1072 (m), 1023 (w), 987 (s), 946 (w), 915 (w), 874 (w), 783 (s), 733 (m), 697 (s), 603 (w); HRMS (ESI) calcd for C₁₂H₁₃ClF₂N⁺ [M+H]⁺ 244.0699; found 244.0699.

Tert-butyl (-1-(3-chlorophenyl)-6,6-difluorobicyclo[3.1.0]hexan-2-yl)carbamate (48)

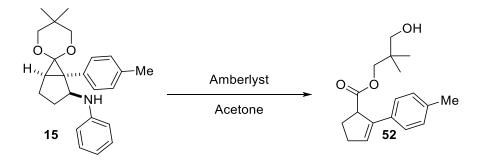

To a solution of 47 (93:7 dr, 21 mg, 0.086 mmol, 1.0 equiv.) in DCM (0.4 mL) was added Boc₂O (26 mg, 0.12 mmol, 1.4 equiv.) and trimethylamine (32 µL, 0.23 mmol, 2.7 equiv.), and the resulting mixture was left stirring overnight at room temperature. The solution was then washed with aqueous citric acid (0.1 M, 1.5 mL). The aqueous layer was extracted with DCM (3 x 5 mL), and the combined organic layers were washed with aqueous NaHCO₃ (saturated solution, 5 mL) and brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by preparative TLC (Pentane:EtOAc 85:15) affording compound 48 (22 mg, 0.064 mmol, 74 % yield) as a colorless oil and as a 95:5 mixture of diastereoisomers (based on ¹⁹F NMR integrations). **R**_f 0.45 (Pentane:EtOAc 80:20); ¹H NMR (400 MHz, Acetonitrile- d_3) δ 7.40 - 7.27 (m, 4H, ArH), 5.44 (d, J = 9.0, 1H, NH), 4.61 (qd, J = 9.6, 6.6, 1H, NHCH), 2.39 - 7.40 - 7.27 (m, 4H, ArH), 5.44 (d, J = 9.0, 1H, NH), 4.61 (qd, J = 9.6, 6.6, 1H, NHCH), 2.39 - 7.40 - 7.27 (m, 4H, ArH), 5.44 (d, J = 9.0, 1H, NH), 4.61 (qd, J = 9.6, 6.6, 1H, NHCH), 2.39 - 7.40 - 7.27 (m, 4H, ArH), 5.44 (d, J = 9.0, 1H, NH), 4.61 (qd, J = 9.6, 6.6, 1H, NHCH), 2.39 - 7.40 - 7.27 (m, 4H, 42.24 (m, 2H, NHCHCH₂), 2.19 – 2.14 (m, 2H, NHCHCH₂CH₂ & CF₂CH), 1.56 – 1.46 (m, 1H, NHCHCH₂CH₂), 1.35 (s, 9H, Boc); ¹³C NMR (101 MHz, Acetonitrile-d₃) δ 156.3, 138.3, 134.6, 131.0, 130.0, 128.6, 128.5, 117.3 (dd, J = 303.6, 277.9 Hz), 79.6, 60.6, 45.2 – 44.7 (m), 34.3 (t, J = 10.8 Hz), 30.6 (d, J = 8.5 Hz), 28.5, 24.4; ¹⁹F NMR (376 MHz, Acetonitrile-d₃) δ -124.4 (d, J= 161.2, Minor diastereoisomer), -125.3 (dd, J = 160.8, 15.5, Major diastereoisomer), -139.9 (d, J = 163.0, Major diastereoisomer), -142.6 (d, J = 159.0, Minor diastereoisomer); IR $\tilde{\nu}_{max}$ 3443 (m), 3339 (m), 2976 (m), 1704 (s), 1567 (w), 1496 (s), 1448 (m), 1369 (m), 1286 (m), 1241 (m), 1167 (s), 1052 (m), 986 (m), 948 (w), 871 (w), 781 (m), 693 (m); HRMS (ESI) calcd for $C_{17}H_{20}ClF_2NNaO_2^+[M+Na]^+$ 366.1043; found 366.1048.

1-(3-Chlorophenyl)-6,6-difluoro-N-neopentylbicyclo[3.1.0]hexan-2-amine (49)

To a solution of 47 (93:7 dr, 21 mg, 0.086 mmol, 1.0 equiv.) in MeOH (0.8 mL) was added NaBH₃CN (8.1 mg, 0.13 mmol, 1.5 equiv.) and pivaldehyde (19 µL, 0.17 mmol, 2.0 equiv.) and the resulting mixture was left stirring overnight at room temperature. The solution was then acidified using aqueous hydrochloric acid (0.1 M, 2.0 mL), followed by extracting with Et₂O (2 x 5 mL). The aqueous layer was then basified with aqueous sodium hydroxide (0.1 M, 4.5 mL), and extracted with DCM (3 x 5 mL). The DCM fractions were dried over MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by preparative TLC (Pentane:EtOAc 98:2) affording compound 49 (13 mg, 0.041 mmol, 48 % yield) as a pale yellow oil and as a 92:8 mixture of diastereoisomers (based on ¹⁹F NMR integrations). \mathbf{R}_f 0.58 (Pentane:EtOAc 98:2); ¹H NMR (400 MHz, Chloroform-d) δ 7.47 (m, 1H, ArH), 7.27 – 7.21 (m, 1H, ArH), 7.19 - 7.16 (m, 2H, ArH), 3.52 (dt, J = 10.3, 7.0 Hz, 1H, NHCH), 2.36 (dd, J = 10.3, 7.0 Hz, 1H, NHCH), 2.36 (dd, J = 10.3, 7.0 Hz, 1H, NHCH), 2.36 (dd, J = 10.3, 7.0 Hz, 1H, NHCH), 2.36 (dd, J = 10.3, 7.0 Hz, 1H, NHCH), 2.36 (dd, J = 10.3, 7.0 Hz, 1H, NHCH), 2.36 (dd, J = 10.3, 7.0 Hz, 1H, NHCH), 2.36 (dd, J = 10.3, 7.0 Hz, 1H, NHCH), 2.36 (dd, J = 10.3, 7.0 Hz, 1H, NHCH), 2.36 (dd, J = 10.3, 7.0 Hz, 10.3, 7.0 Hz, 10.3, 111.4, 0.7 Hz, 1H, NHCH₂), 2.19 - 1.99 (m, 5H, NHCH₂ & NHCHCH₂ & NHCHCH₂CH₂ & CF_2CH , 1.41 – 1.36 (m, 1H, NHCHCH₂CH₂), 0.79 (s, 9H, (CH₃)₃); ¹³C NMR (101 MHz, **Chloroform-***d*) δ 138.4, 134.1, 129.4, 129.3 (d, J = 2.3 Hz), 127.4, 127.1, 116.6 (dd, J = 305.4, 279.8 Hz), 69.3, 60.9, 44.6 (dd, J = 12.4, 8.1 Hz), 33.2 (dd, J = 12.5, 9.1 Hz), 31.8, 31.1 (d, J = 7.1 Hz), 27.7, 24.2. ¹⁹F NMR (376 MHz, Chloroform-d) δ -124.6 (dd, J = 159.2, 14.9 Hz, Major diastereoisomer), -125.1 (dd, J = 157.6, 16.8 Hz, Minor diastereoisomer), -137.2 (d, J =159.8 Hz, Major diastereoisomer), -141.3 (d, J = 158.3 Hz, Minor diastereoisomer); IR $\tilde{\nu}_{max}$ 2953 (s), 2874 (m), 1736 (w), 1598 (m), 1572 (m), 1473 (s), 1364 (m), 1296 (m), 1251 (m), 1201 (s), 1144 (s), 1091 (m), 1067 (m), 988 (m), 912 (m), 830 (w), 786 (m), 735 (s), 694 (s); HRMS (ESI) calcd for $C_{17}H_{23}ClF_2N^+[M+H]^+314.1482$; found 314.1488.

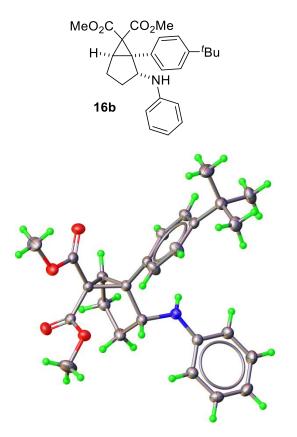

Methyl 3-oxo-2a¹,4-diphenylhexahydro-4-azacyclopropa[*cd*]pentalene-2b(1*H*)-carboxylate (50)

To a stirred solution of compound **10a** (73 mg, 0.20 mmol, 1 equiv.) in THF (3.0 mL) was added dropwise LHMDS (1.0 M solution in THF, 0.22 mL, 0.22 mmol, 1.1 equiv.). After 20 min stirring at room temperature, TLC monitoring indicated full conversion of the starting material. The reaction mixture was therefore quenched by filtration over a small pad of silica gel eluting with EtOAc, and the filtrate was evaporated under reduced pressure. The crude residue was purified by column chromatography (SiO₂ previously deactivated with Et₃N, Pentane:Et₂O 60:40)


affording the title compound **50** (0.058 g, 0.17 mmol, 87 % yield) as a pale yellow oil. **R**_f 0.25 (Pentane:Et₂O 50:50); ¹**H NMR (400 MHz, Chloroform-d)** δ 7.66 – 7.59 (m, 2H, Ar*H*), 7.41 – 7.29 (m, 7H, Ar*H*), 7.18 (t, *J* = 7.4 Hz, 1H, Ar*H*), 4.74 (d, *J* = 3.1 Hz, 1H, C*H*N), 3.56 (s, 3H, OC*H*₃), 3.30 (dd, *J* = 6.7, 1.5 Hz, 1H, C*H*CH₂), 2.47 – 2.34 (m, 1H, NCHC*H*₂), 2.14 – 1.99 (m, 2H, NCHCH₂C*H*₂), 1.97 – 1.86 (m, 1H, NCHC*H*₂); ¹³C **NMR (101 MHz, Chloroform-d)** δ 167.0, 165.9, 138.0, 134.2, 129.3, 128.8, 128.7, 128.5, 125.4, 121.8, 69.3, 55.7, 52.6, 49.4, 38.0, 37.1, 23.9; **IR** $\tilde{\nu}_{max}$ 3057 (w), 2956 (w), 2871 (w), 1734 (s), 1694 (s), 1597 (w), 1496 (s), 1254 (s), 1219 (w), 1175 (w), 1138 (w), 1086 (m), 973 (w), 913 (m), 828 (w), 730 (s), 696 (m), 645 (w); **HRMS (ESI)** calcd for C₂₁H₂₀NO₃⁺ [M+H]⁺ 334.1438; found 334.1442.

Dimethyl 2-(1,6-diphenyl-6-azabicyclo[3.1.0]hexan-2-yl)malonate (51)

To a stirred solution of compound 10b (73 mg, 0.20 mmol, 1 equiv.) in THF (3.0 mL) was added dropwise LHMDS (1.0 M solution in THF, 0.22 mL, 0.22 mmol, 1.1 equiv.). After 20 min stirring at room temperature, TLC monitoring indicated full conversion of the starting material. The reaction mixture was therefore quenched by filtration over a small pad of silica gel eluting with EtOAc, and the filtrate was evaporated under reduced pressure to afford the pure title compound **51** without further purification (0.069 g, 0.19 mmol, 95 % yield) as a pale yellow oil. NMR experiments were performed in $CDCl_3$ that was previously eluted through basic alumina, due to the observed acid sensitivity of 51. \mathbf{R}_f 0.45 (Pentane:Et₂O 70:30); ¹H NMR (400 MHz, **Chloroform-***d*) δ 7.31 – 7.24 (m, 4H, Ar*H*), 7.22 – 7.17 (m, 1H, Ar*H*), 7.12 (t, *J* = 7.7 Hz, 2H, ArH), 6.87 - 6.81 (m, 3H, ArH), 3.61 (s, 3H, OCH₃), 3.53 (s, 3H, OCH₃), 3.51 (d, J = 5.9 Hz, 1H, CHCHCOOCH₃), 3.49 (d, *J* = 2.4 Hz, 1H, CHCOOCH₃), 3.38 (ddd, *J* = 8.9, 5.6, 1.4 Hz, 1H, NCH), 2.18 - 2.06 (m, 2H, NCHCH₂CH₂), 1.74 (ddt, J = 14.4, 8.4, 1.7 Hz, 1H, NCHCH₂CH₂), 1.50 – 1.39 (m, 1H, NCHCH₂CH₂); ¹³C NMR (101 MHz, Chloroform-d) δ 169.3, 168.9, 148.1, 134.9, 130.1, 128.8, 128.3, 127.9, 121.5, 119.9, 59.9, 53.6, 52.5, 52.2, 48.5, 41.6, 26.3, 25.6; IR \tilde{v}_{max} 3026 (w), 2950 (m), 2858 (w), 1739 (s), 1597 (m), 1491 (m), 1442 (m), 1388 (w), 1367 (w), 1254 (s), 1199 (m), 1161 (m), 1029 (w), 930 (w), 766 (m), 698 (m); HRMS (ESI) calcd for C₂₂H₂₄NO₄⁺ [M+H]⁺ 366.1700; found 366.1694.


3-ydroxy-2,2-dimethylpropyl 2-(p-tolyl)cyclopent-2-ene-1-carboxylate (52)

To a stirred solution of **15** (49.0 mg, 0.135 mmol, 1 equiv.) in acetone (4 mL) was added Amberlyst 15 (100 mg). The resulting suspension was stirred at room temperature for 24 h, and then filtered through celite. The filtrate was evaporated under reduced pressure. The crude residue was purified by preparative TLC (Pentane:EtOAc 80:20) affording the title compound **52** (29 mg, 0.099 mmol, 73 % yield) as a white solid. **R**_{*f*} 0.35 (Pentane:EtOAc 80:20); **m.p** = 49-50 °C; ¹**H NMR (400 MHz, Chloroform-***d***) \delta 7.32 (d,** *J* **= 8.1 Hz, 2H, Ar***H***), 7.11 (d,** *J* **= 7.9 Hz, 2H, Ar***H***), 6.28 (td,** *J* **= 2.7, 1.6 Hz, 1H, C=C***H***), 4.00 (dddt,** *J* **= 9.4, 4.2, 2.8, 1.4 Hz, 1H, C***H***CO), 3.85 (q,** *J* **= 11.0 Hz, 2H, COOC***H***₂), 3.06 (s, 2H, C***H***₂OH), 2.77 – 2.64 (m, 1H, C=CHC***H***₂C***H***₂), 2.62 – 2.50 (m, 1H, C=CHC***H***₂C***H***₂), 2.41 – 2.33 (m, 1H, C=CHCH₂C***H***₂), 2.32 (s, 3H, C_{Ar}C***H***₃), 2.30 – 2.21 (m, 1H, C=CHC***H***₂C***H***₂), 0.78 (s, 6H, (CH₃)₂); ¹³C NMR (101 MHz, Chloroform-***d***) \delta 176.1, 141.0, 137.4, 132.7, 129.3, 129.3, 125.9, 69.8, 68.2, 51.5, 36.5, 32.7, 29.5, 21.5, 21.3; IR \tilde{\nu}_{max} 3485 (m), 2958 (s), 1725 (s), 1617 (w), 1513 (w), 1468 (m), 1375 (m), 1331 (m), 1268 (m), 1170 (s), 1044 (s), 962 (w), 810 (m), 740 (w); HRMS (ESI) calcd for C₁₈H₂₄NaO3⁺ [M+Na]⁺ 311.1618; found 311.1621.**

8. Crystal Structure of 16b

Dimethyl 1-(4-(*tert*-butyl)phenyl)-2-(phenylamino)bicyclo[3.1.0]hexane-6,6-dicarboxylate (16b)

Experimental. Single clear colourless plate-shaped crystals of **16b** were obtained by recrystallisation from DCM/Pentane at room temperature. A suitable crystal of $0.29 \times 0.11 \times 0.06$ mm³ was selected and mounted on a suitable support on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal was kept at a steady T = 140.00(10) K during data collection. The structure was solved with the **ShelXT** (Sheldrick, 2015) structure solution program using the dual solution method and by using **Olex2** (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of **ShelXL** (Sheldrick, 2015) using full matrix least squares on $|F|^2$ minimisation.

Crystal Data. C₂₆H₃₁NO₄, M_r = 421.52, orthorhombic, *Pbca* (No. 61), a = 16.11470(19) Å, b = 12.70487(14) Å, c = 22.6264(2) Å, $\alpha = \beta = \gamma = 90^{\circ}$, $V = 4632.42(9) Å^3$, T = 140.00(10) K, Z = 8, Z' = 1, μ (Cu*K* α) = 0.647, 33970 reflections measured, 4653 unique ($R_{int} = 0.0368$) which were used in all calculations. The final wR_2 was 0.0953 (all data) and R_1 was 0.0350 (I > 2(I)).

Compound	bm3-459-pb (16b)
Formula	$C_{26}H_{31}NO_4$
$D_{calc.}$ / g cm ⁻³	1.209
μ/mm^{-1}	0.647
Formula Weight	421.52
Colour	clear colourless
Shape	plate
Size/mm ³	0.29×0.11×0.06
T/K	140.00(10)
Crystal System	orthorhombic
Space Group	Pbca
a/Å	16.11470(19)
b/Å	12.70487(14)
c/Å	22.6264(2)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	90
γ/°	90
V/Å ³	4632.42(9)
Ζ	8
Z'	1
Wavelength/Å	1.54184
Radiation type	Cu <i>Ka</i>
$\Theta_{min}/^{\circ}$	3.907
$\Theta_{max}/^{\circ}$	73.601
Measured Refl.	33970
Independent Refl.	4653
Reflections with I >	3975
2(I)	5775
R_{int}	0.0368
Parameters	290
Restraints	0
Largest Peak/e Å-3	0.352
Deepest Hole/e Å ⁻³	-0.169
GooF	1.022
<i>wR</i> ² (all data)	0.0953
wR_2	0.0891
R_1 (all data)	0.0425
R_1	0.0350

A clear colourless plate-shaped crystal with dimensions of $0.29 \times 0.11 \times 0.06$ mm³ was mounted on a suitable support. Data were collected using a SuperNova, Dual, Cu at home/near, Atlas diffractometer operating at *T* = 140.00(10) K.

Data were measured using ω scans using Cu*K* α radiation. The total number of runs and images was based on the strategy calculation from the program **CrysAlisPro** (Rigaku, V1.171.40.20a, 2018) The maximum resolution achieved was Θ = 73.601° (0.80 Å).

The diffraction pattern was indexed. The total number of runs and images was based on the strategy calculation from the program **CrysAlisPro** (Rigaku, V1.171.40.20a, 2018) and the unit cell was refined using **CrysAlisPro** (Rigaku, V1.171.40.20a, 2018) on 10757 reflections, 32% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using **CrysAlisPro** (Rigaku, V1.171.40.20a, 2018). The final completeness is 100.00 % out to 73.601° in Θ . A Gaussian absorption correction was performed using CrysAlisPro 1.171.40.20a (Rigaku Oxford Diffraction, 2018). Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this material is 0.647 mm⁻¹ at this wavelength (λ = 1.542Å) and the minimum and maximum transmissions are 0.687 and 1.000.

The structure was solved and the space group *Pbca* (# 61) determined by the **ShelXT** (Sheldrick, 2015) structure solution program using dual and refined by full matrix least squares on $|F|^2$ using version 2018/3 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2 U_{eq} of its parent C-atom (1.5 U_{eq} for the methyl groups), but hydrogen on nitrogen atom (N1) was found in a difference map and refined freely.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 8 and Z' is 1.

Atom	X	У	Z	Ueq
01	4552.8(6)	5092.8(7)	4125.0(4)	30.0(2)
O2	5377.9(6)	3665.4(7)	4127.5(4)	29.3(2)
O3	5393.3(6)	2921.6(7)	2813.8(4)	29.1(2)
O4	6560.3(5)	3705.7(7)	3125.0(4)	26.52(19)
N1	6243.3(6)	6845.1(8)	2311.9(4)	23.8(2)
C1	6157.0(7)	5757.2(9)	2499.5(5)	23.2(2)
C2	5611.1(7)	5741.8(9)	3061.0(5)	20.9(2)
C3	4772.6(7)	5337.2(9)	2877.8(5)	22.9(2)
C4	4765.4(8)	5139.6(10)	2218.2(5)	28.0(3)
C5	5686.3(8)	5079.7(10)	2039.1(5)	27.7(3)
C6	5786.2(7)	6567.6(9)	3514.8(5)	20.6(2)
C7	6504.2(8)	6499.7(10)	3849.2(6)	29.6(3)
C8	6748.5(8)	7318.2(10)	4217.5(6)	32.0(3)
C9	6280.8(7)	8233.4(9)	4270.2(5)	22.4(2)
C10	5530.2(8)	8256.0(9)	3965.3(5)	25.5(2)
C11	5285.9(7)	7445.5(10)	3591.6(5)	25.0(2)

Table 3: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **16b**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{eq}
C12	6572.9(8)	9176.3(10)	4640.5(5)	28.4(3)
C13	6142.5(10)	9149.7(13)	5243.1(6)	43.4(4)
C14	6360.4(10)	10211.4(11)	4322.6(7)	39.6(3)
C15	7515.8(9)	9154.2(11)	4733.5(6)	34.2(3)
C16	5326.6(7)	4641.1(9)	3256.0(5)	21.0(2)
C17	5038.3(7)	4519.7(9)	3882.9(5)	22.4(2)
C18	5112.7(11)	3425.2(12)	4723.2(6)	42.2(4)
C19	5744.0(7)	3662.4(9)	3033.9(5)	21.9(2)
C20	7012.1(10)	2778.9(12)	2944.5(8)	46.0(4)
C21	6773.9(7)	7125.4(9)	1857.8(5)	22.3(2)
C22	6709.9(8)	8144.9(9)	1619.5(6)	27.5(3)
C23	7268.0(9)	8498.5(10)	1201.4(6)	32.6(3)
C24	7911.5(8)	7855.6(11)	1007.4(6)	32.7(3)
C25	7969.3(8)	6841.5(10)	1229.5(5)	28.8(3)
C26	7405.2(7)	6469.3(9)	1644.1(5)	24.8(2)

Table 4: Anisotropic Displacement Parameters (×10⁴) **16b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U 11	U_{22}	U 33	U 23	U 13	U 12
01	32.2(5)	31.3(5)	26.3(4)	-3.2(3)	5.8(4)	2.8(4)
O2	39.8(5)	26.0(4)	22.1(4)	3.4(3)	4.9(4)	2.3(4)
O3	33.6(5)	22.8(4)	30.9(4)	-5.4(3)	0.8(4)	-3.8(3)
O4	23.3(4)	27.8(4)	28.4(4)	-2.2(3)	1.4(3)	3.6(3)
N1	24.9(5)	21.6(5)	24.8(5)	2.1(4)	3.2(4)	2.2(4)
C1	26.7(6)	21.5(5)	21.3(5)	0.5(4)	1.9(4)	-0.4(4)
C2	23.1(5)	20.0(5)	19.4(5)	0.5(4)	-0.2(4)	0.1(4)
C3	24.1(5)	21.7(5)	22.8(5)	-1.9(4)	-1.6(4)	-0.1(4)
C4	33.9(6)	26.8(6)	23.2(6)	-2.2(5)	-6.1(5)	-1.4(5)
C5	38.1(7)	25.8(6)	19.1(5)	-1.3(4)	1.8(5)	-3.4(5)
C6	23.3(5)	20.1(5)	18.4(5)	0.9(4)	0.8(4)	-2.9(4)
C7	28.9(6)	24.1(6)	35.8(7)	-5.1(5)	-7.5(5)	5.3(5)
C8	28.8(6)	30.5(7)	36.8(7)	-5.4(5)	-12.5(5)	2.9(5)
C9	26.4(6)	23.2(6)	17.7(5)	0.5(4)	1.9(4)	-3.8(4)
C10	29.4(6)	22.5(6)	24.5(5)	-2.2(4)	-1.8(5)	3.9(5)
C11	24.5(6)	26.8(6)	23.8(5)	-1.8(4)	-4.3(4)	1.7(5)
C12	32.8(6)	27.6(6)	24.9(6)	-4.8(5)	0.6(5)	-5.0(5)
C13	50.8(9)	48.1(9)	31.4(7)	-15.7(6)	9.8(6)	-13.5(7)
C14	43.2(8)	24.7(6)	50.9(8)	-4.4(6)	-7.0(6)	-5.3(5)
C15	35.0(7)	35.1(7)	32.5(6)	-5.0(5)	-6.2(5)	-8.7(5)
C16	21.9(5)	20.2(5)	21.0(5)	-1.0(4)	1.0(4)	-1.5(4)
C17	23.0(5)	21.5(5)	22.7(5)	-2.4(4)	0.4(4)	-4.2(4)
C18	67.1(10)	35.4(7)	23.9(6)	6.7(5)	10.9(6)	2.2(7)
C19	24.4(5)	22.4(5)	18.9(5)	1.8(4)	1.7(4)	-0.6(4)
C20	36.9(8)	42.2(8)	58.8(9)	-13.4(7)	3.9(7)	15.6(6)
C21	23.5(5)	23.6(5)	19.7(5)	0.1(4)	-1.9(4)	-1.4(4)
C22	29.1(6)	24.8(6)	28.7(6)	2.9(5)	1.8(5)	3.8(5)
C23	40.6(7)	25.5(6)	31.5(6)	6.0(5)	3.7(5)	-1.1(5)
C24	33.0(7)	36.2(7)	28.8(6)	2.6(5)	7.5(5)	-5.0(5)
C25	25.8(6)	35.2(7)	25.4(6)	-2.6(5)	1.2(5)	3.5(5)
C26	27.9(6)	23.9(6)	22.6(5)	0.6(4)	-0.8(5)	2.3(4)

 Table 5: Bond Lengths in Å for 16b.

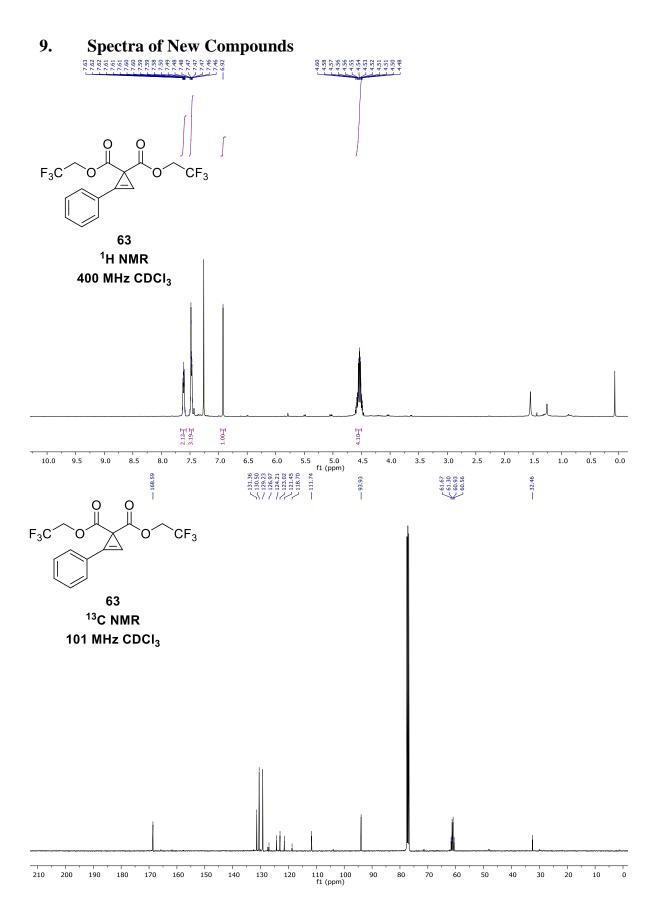
	• •	T (1)
Atom	Atom	Length/Å
01	C17	1.2011(15)
O2	C17	1.3357(15)
O2	C18	1.4466(15)
03	C19	1.2055(15)
O4	C19	1.3326(15)
O4	C20	1.4434(16)
N1	C1	1.4526(15)
N1	C21	1.3834(15)
C1	C2	1.5454(15)
C1	C5	1.5497(16)
C2	C3	1.5038(15)
C2	C6	1.4949(15)
C2	C16	1.5363(15)
C3	C4	1.5134(16)
C3	C16	1.5204(16)
C4	C5	1.5402(18)
C6	C7	1.3851(17)
C6	C11	1.3872(17)
C7	C8	1.3895(18)
C8	C9	1.3908(17)
C9	C10	1.3929(17)
C9	C12	1.5358(16)
C10	C11	1.3894(17)
C12	C13	1.5302(18)
C12	C14	1.5376(19)
C12	C15	1.5342(19)
C16	C17	1.5004(15)
C16	C19	1.5004(16)
C21	C22	1.4068(16)
C21	C26	1.4012(17)
C22	C23	1.3805(18)
C23	C24	1.391(2)
C24	C25	1.3860(19)
C25	C26	1.3892(17)

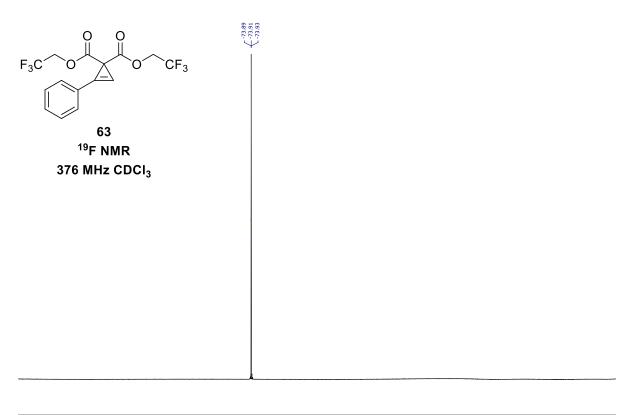
Table 6: Bond Angles in ° for 16b.

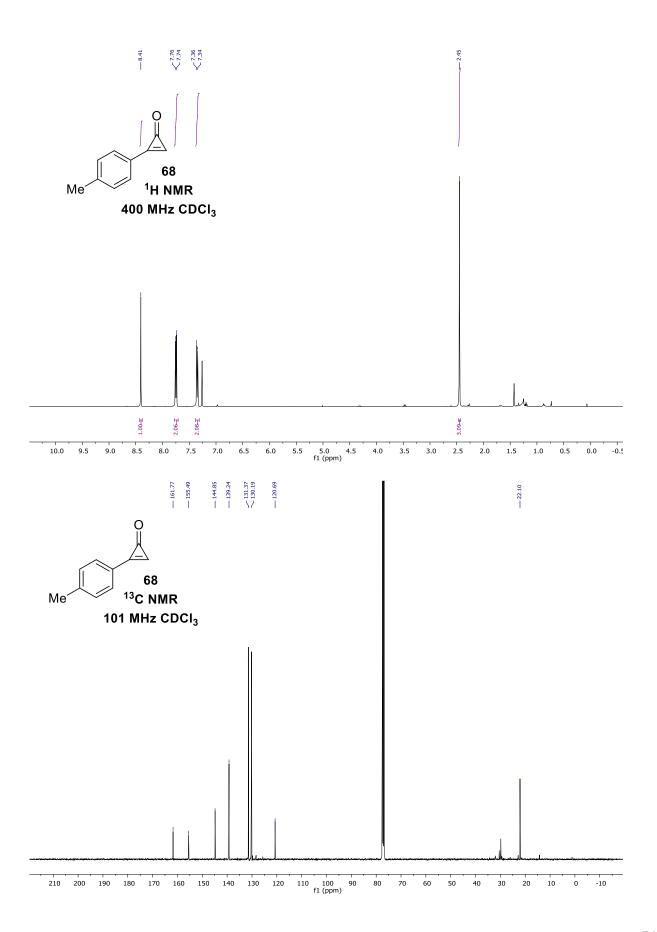
Atom	Atom	Atom	Angle/°
C17	O2	C18	115.88(10)
C19	O4	C20	114.86(10)
C21	N1	C1	121.41(10)
N1	C1	C2	107.87(9)
N1	C1	C5	112.27(9)
C2	C1	C5	105.48(9)
C3	C2	C1	106.81(9)
C3	C2	C16	60.00(7)
C6	C2	C1	116.64(9)
C6	C2	C3	126.79(10)
C6	C2	C16	119.85(9)
C16	C2	C1	114.68(9)
C2	C3	C4	109.59(10)
C2	C3	C16	61.06(7)

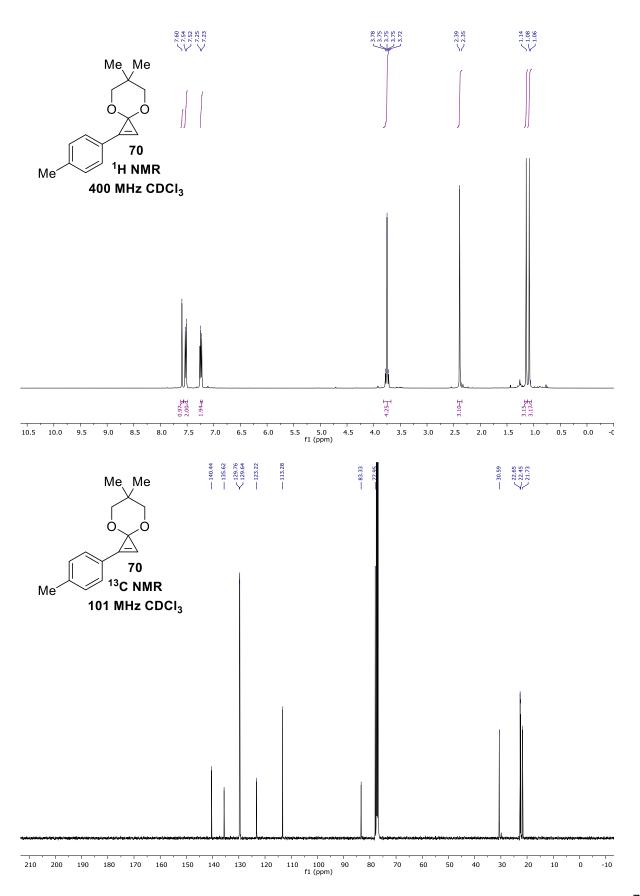
A 4	A 4	A #	A 1 - 1°
Atom	Atom	Atom	Angle/°
C4	C3	C16	117.59(10)
C3	C4	C5	105.09(9)
C4	C5	C1	105.50(9)
C7	C6	C2	119.30(10)
C7	C6	C11	117.85(10)
C11	C6	C2	122.72(10)
C6	C7	C8	121.18(11)
C7	C8	C9	121.57(11)
C8	C9	C10	116.45(11)
C8	C9	C12	122.20(11)
C10	C9	C12	121.36(11)
C11	C10	C9	122.16(11)
C6	C11	C10	120.49(11)
C9	C12	C14	110.10(10)
C13	C12	C9	109.27(10)
C13	C12	C14	109.56(12)
C13	C12	C15	109.05(11)
C15	C12	C9	111.35(10)
C15	C12	C14	107.48(11)
C3	C16	C2	58.94(7)
C17	C16	C2	117.23(9)
C17	C16	C3	114.21(9)
C19	C16	C2	121.63(9)
C19	C16	C3	123.83(9)
C19	C16	C17	111.73(9)
01	C17	O2	124.78(11)
O1	C17	C16	124.80(11)
O2	C17	C16	110.39(9)
O3	C19	O4	123.99(11)
O3	C19	C16	125.12(11)
O4	C19	C16	110.88(10)
N1	C21	C22	118.44(11)
N1	C21	C26	123.50(11)
C26	C21	C22	117.96(11)
C23	C22	C21	120.96(12)
C22	C23	C24	120.72(12)
C25	C24	C23	118.78(12)
C24	C25	C26	121.15(12)
C25	C26	C21	120.37(11)
			. ,

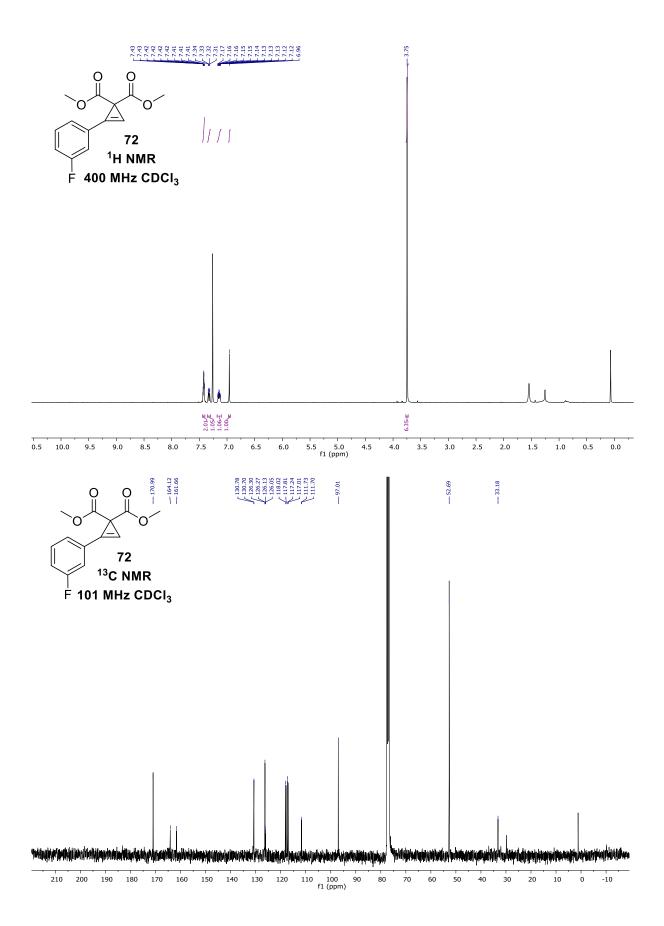
Table 7: Torsion Angles in ° for 16b.

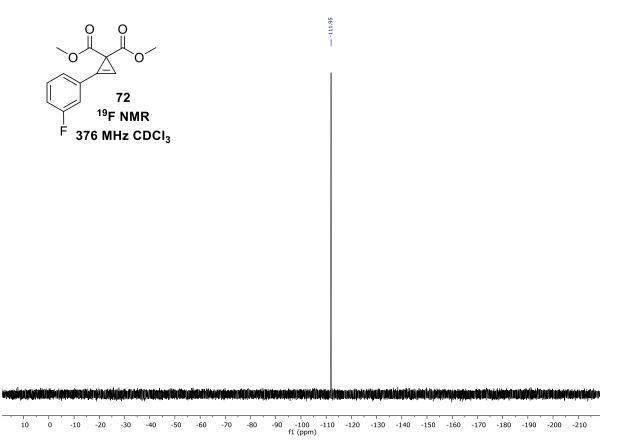

Atom	Atom	Atom	Atom	Angle/°
N1	C1	C2	C3	105.41(10)
N1	C1	C2	C6	-42.95(13)
N1	C1	C2	C16	169.56(9)
N1	C1	C5	C4	-91.34(11)
N1	C21	C22	C23	174.43(12)
N1	C21	C26	C25	-173.31(11)
C1	N1	C21	C22	167.58(11)
C1	N1	C21	C26	-16.23(17)
C1	C2	C3	C4	-2.18(12)
C1	C2	C3	C16	109.22(10)
C1	C2	C6	C7	-71.69(14)

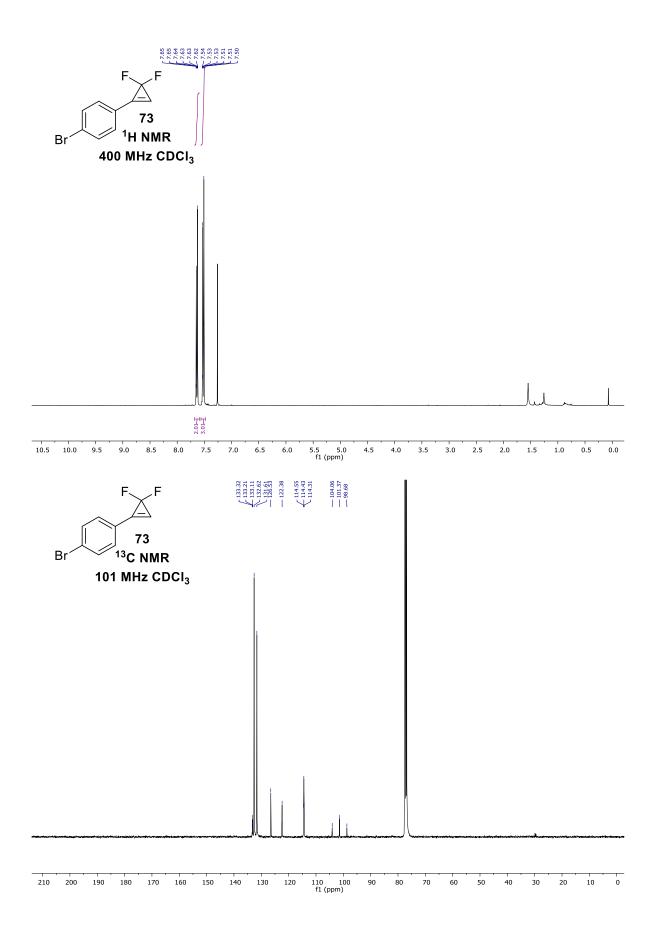

Atom	Atom	Atom	Atom	Angle/°
C1	C2	C6	C11	103.95(13)
C1	C2	C16	C3	-95.87(10)
C1	C2	C16	C17	160.93(10)
C1	C2	C16	C19	17.23(15)
C2	C1	C5	C4	25.88(12)
C2	C3	C4	C5	18.32(13)
C2	C3	C16	C17	108.35(10)
C2	C3	C16	C19	-109.47(12)
C2	C6	C7	C8	171.18(12)
C2	C6	C11	C10	-171.72(11)
C2	C16	C17	01	48.11(16)
C2	C16	C17	02	-133.82(10)
C2	C16	C19	03	-128.14(12)
C2	C16	C19	04	53.38(13)
C3	C2	C6	C7	147.14(12)
C3	C2	C6	C11	-37.22(17)
C3	C2	C16	C17	-103.20(11)
C3	C2 C2	C16	C19	113.10(12)
C3	C2 C4	C5	C1	-27.09(12)
C3	C16	C17	01	-18.00(12)
C3	C16	C17 C17	01	160.07(9)
C3	C16	C17 C19	02 03	-56.61(16)
C3	C16	C19 C19	03 04	124.92(11)
C3 C4	C10 C3	C19 C16	C2	
C4 C4				98.25(11)
C4 C4	C3 C2	C16	C17	-153.40(10)
C4 C5	C3 C1	C16 C2	C19	-11.22(16)
C5	C1 C1		C3	-14.76(12)
		C2	C6	-163.12(10)
C5	C1	C2	C16	49.39(12)
C6	C2	C3	C4	141.98(11)
C6	C2	C3	C16	-106.62(12)
C6	C2	C16	C3	117.77(12)
C6	C2	C16	C17	14.57(15)
C6	C2	C16	C19	-129.13(11)
C6	C7	C8	C9	0.6(2)
C7	C6	C11	C10	3.97(17)
C7	C8	C9	C10	4.09(19)
C7	C8	C9	C12	-175.55(12)
C8	C9	C10	C11	-4.78(18)
C8	C9	C12	C13	-99.20(15)
C8	C9	C12	C14	140.43(13)
C8	C9	C12	C15	21.32(16)
C9	C10	C11	C6	0.80(18)
C10	C9	C12	C13	81.18(15)
C10	C9	C12	C14	-39.19(16)
C10	C9	C12	C15	-158.30(11)
C11	C6	C7	C8	-4.66(19)
C12	C9	C10	C11	174.86(11)
C16	C2	C3	C4	-111.40(10)
C16	C2	C6	C7	74.04(14)
C16	C2	C6	C11	-110.32(13)
C16	C3	C4	C5	-48.51(13)
C17	C16	C19	03	86.38(14)
C17	C16	C19	04	-92.10(11)
C18	O2	C17	01	1.42(18)

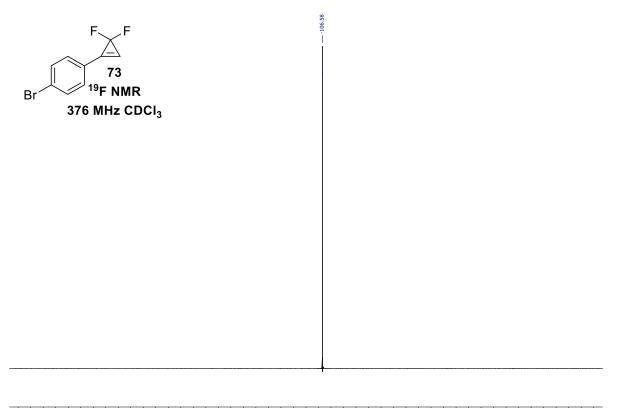

Atom	Atom	Atom	Atom	Angle/°
C18	O2	C17	C16	-176.65(11)
C19	C16	C17	01	-164.75(11)
C19	C16	C17	O2	13.32(13)
C20	O4	C19	03	-0.65(17)
C20	O4	C19	C16	177.85(11)
C21	N1	C1	C2	172.76(10)
C21	N1	C1	C5	-71.44(14)
C21	C22	C23	C24	-0.3(2)
C22	C21	C26	C25	2.89(17)
C22	C23	C24	C25	1.8(2)
C23	C24	C25	C26	-0.8(2)
C24	C25	C26	C21	-1.54(19)
C26	C21	C22	C23	-1.97(18)

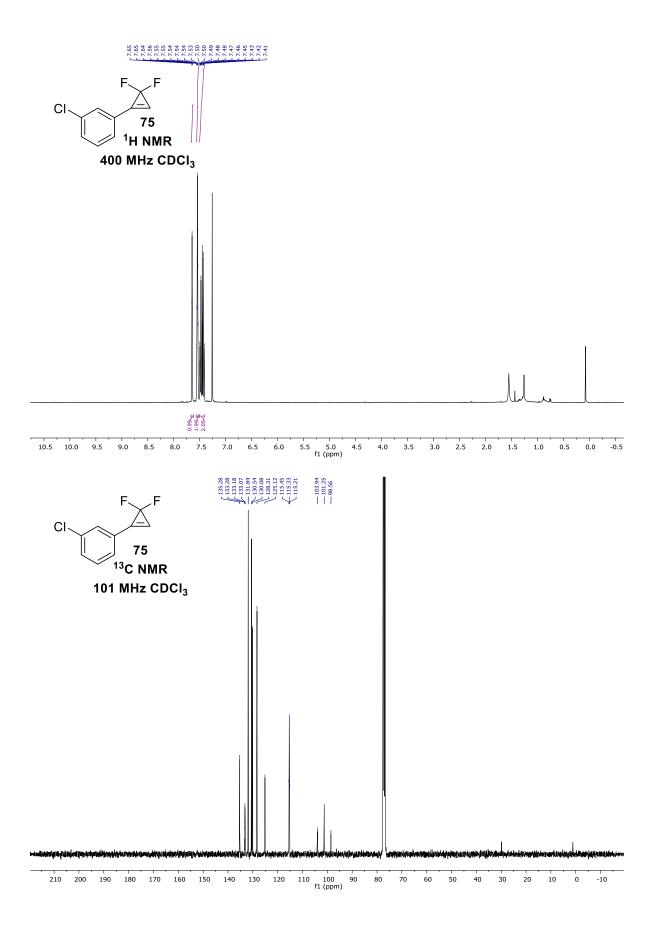

Table 8: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **16b**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

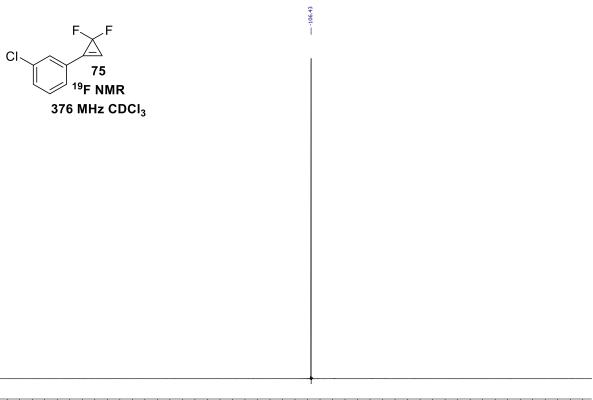

H1 H1A H3 H4A H4B H5A	5797(11) 6702.75 4278.74 4488.29 4483.11 5766.17 5880.87	7204(13) 5450.98 5649.28 5709.33 4484.83 5357.62	2322(7) 2582.72 3059.94 2012.09 2127.79 1643.89	33(4) 28 27 34 34
H3 H4A H4B	4278.74 4488.29 4483.11 5766.17 5880.87	5450.98 5649.28 5709.33 4484.83 5357.62	3059.94 2012.09 2127.79	27 34
H4A H4B	4488.29 4483.11 5766.17 5880.87	5709.33 4484.83 5357.62	2012.09 2127.79	34
H4B	4483.11 5766.17 5880.87	4484.83 5357.62	2127.79	
	5766.17 5880.87	5357.62		34
H5A	5880.87		16/3 89	
		1255 20	1040.09	33
H5B	6929.40	4357.39	2048.49	33
H7	6828.49	5895.56	3826.89	36
H8	7236.4	7252.4	4433.96	38
H10	5181.03	8832.5	4013.48	31
H11	4783.13	7491.86	3391.42	30
H13A	6317.61	9744.07	5473.56	65
H13B	6287.71	8511.75	5445.59	65
H13C	5552.15	9176.73	5188.35	65
H14A	6618.34	10218.52	3940.13	59
H14B	6560.53	10794.94	4551.36	59
H14C	5769.63	10267.05	4277.68	59
H15A	7661.87	8552.87	4968.44	51
H15B	7686.73	9784.78	4933.06	51
H15C	7788.85	9111.04	4357.18	51
H18A	4518.18	3382.9	4735.37	63
H18B	5298.19	3969.75	4986.07	63
H18C	5345.84	2763.73	4843.57	63
H20A	6899.16	2633.98	2535.95	69
H20B	6841.61	2190.23	3181.14	69
H20C	7596.13	2896.17	2996.35	69
H22	6285.37	8587.14	1745.57	33
H23	7213.22	9173.86	1047.8	39
H24	8295.87	8101.67	733.67	39
H25	8393.12	6402.64	1098.71	35
H26	7446.73	5780.83	1780.52	30

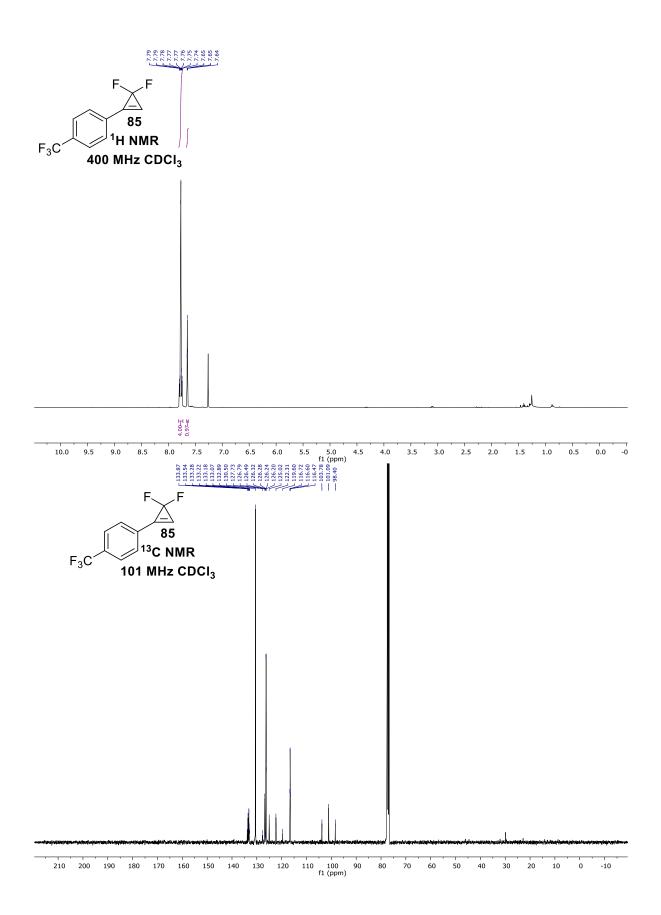


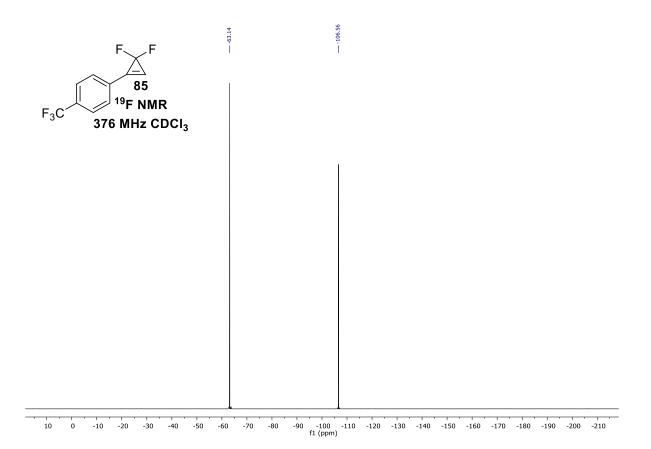


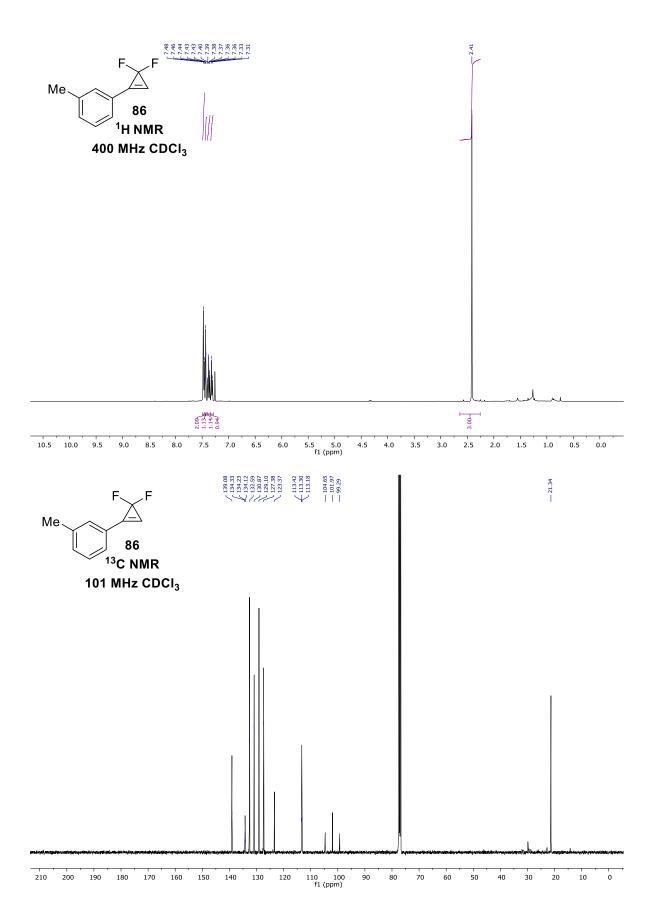


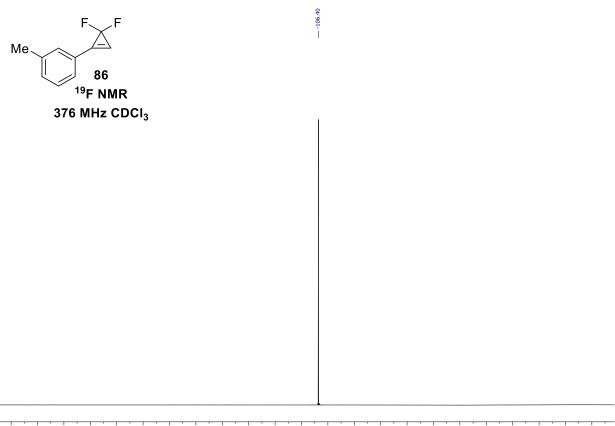


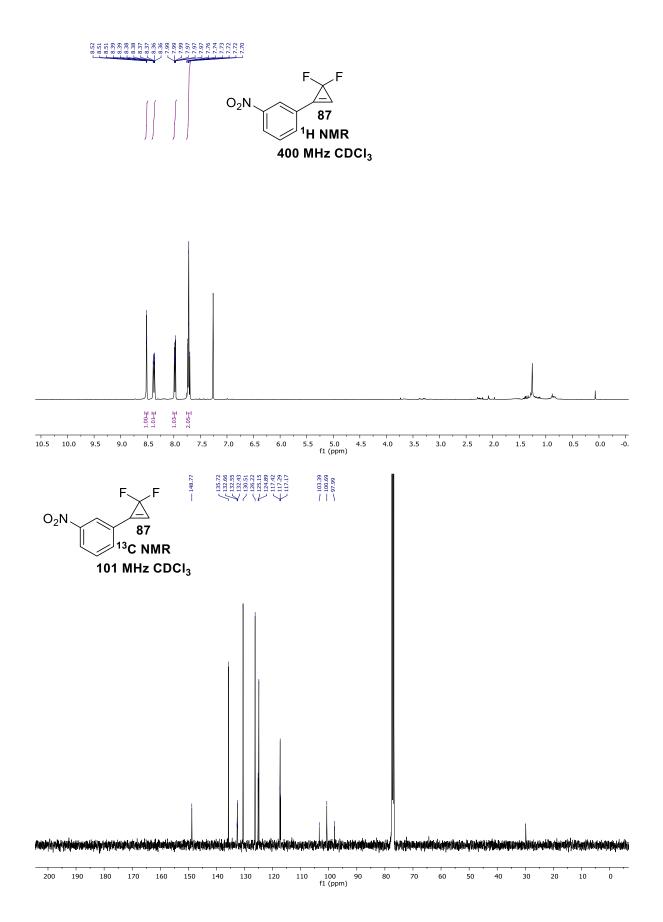


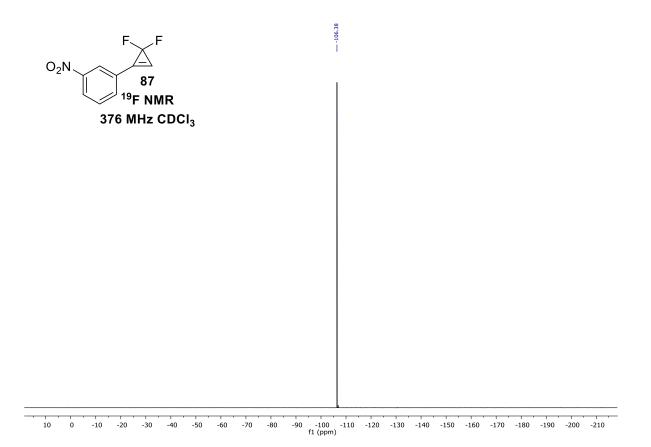


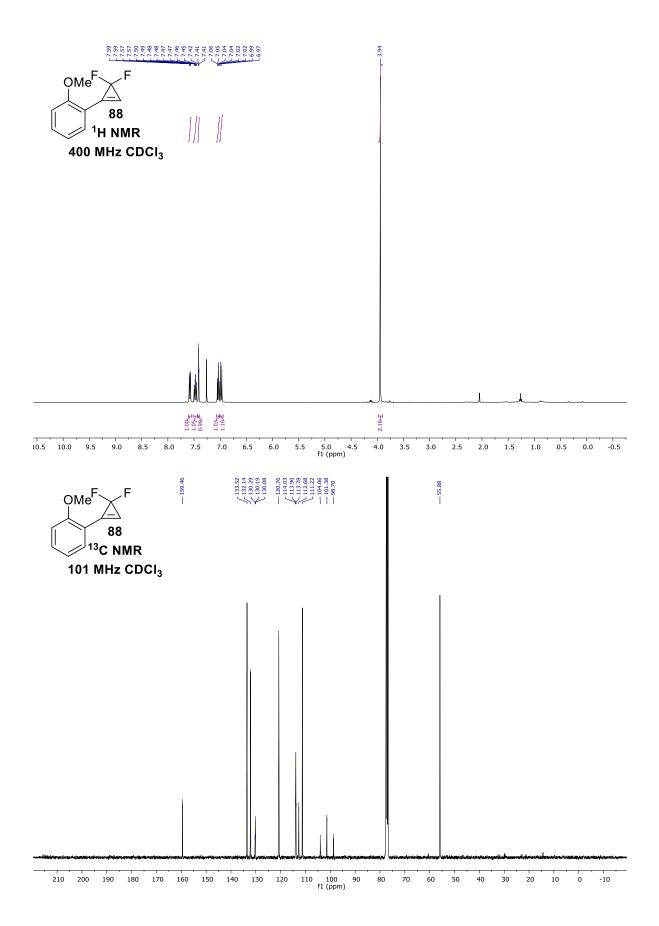


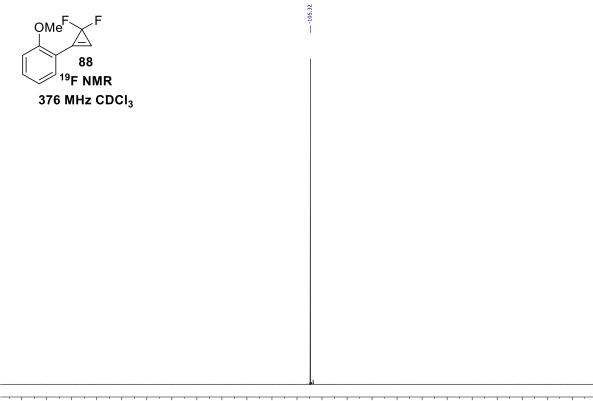


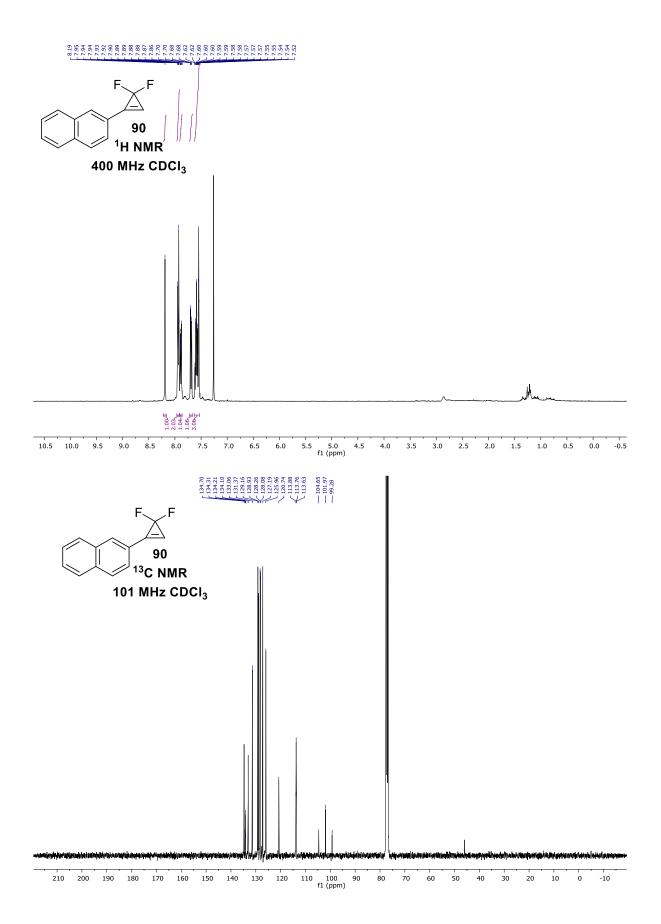


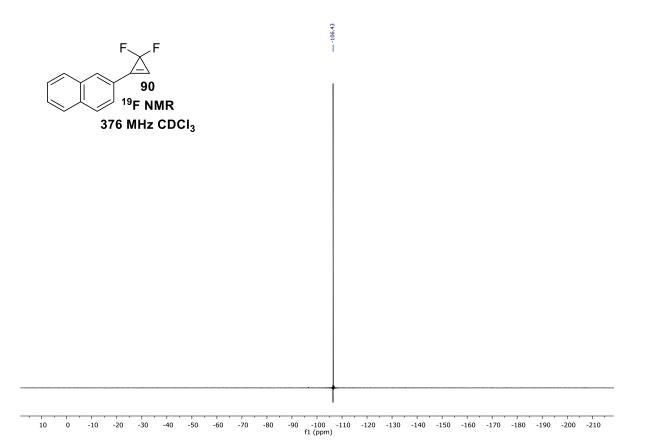




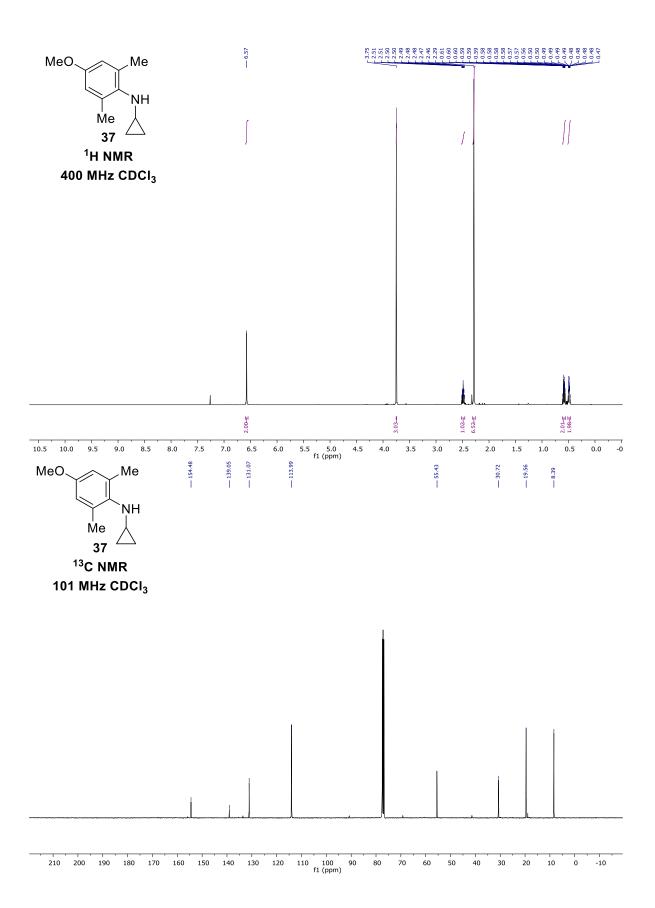


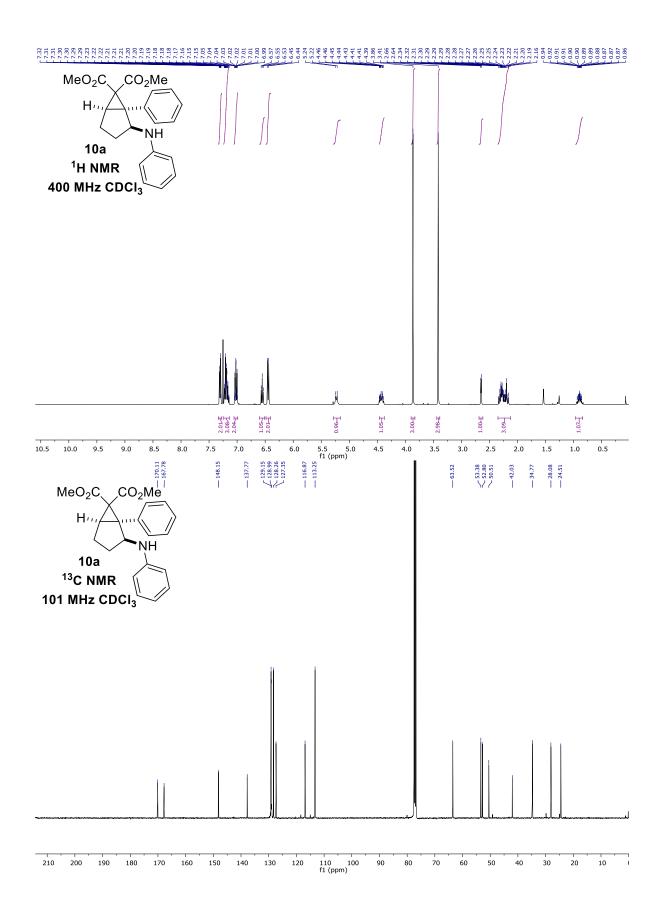


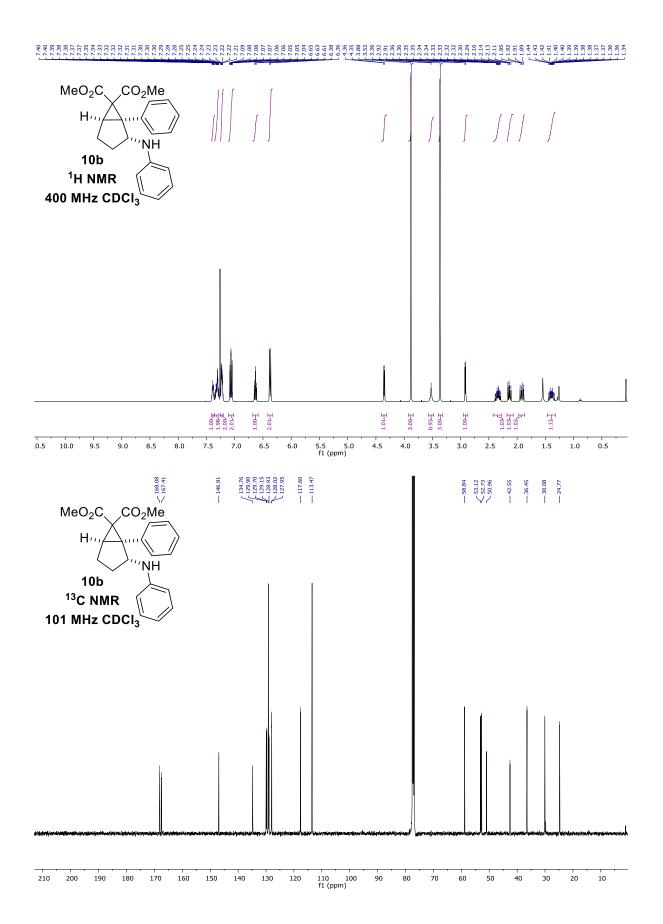


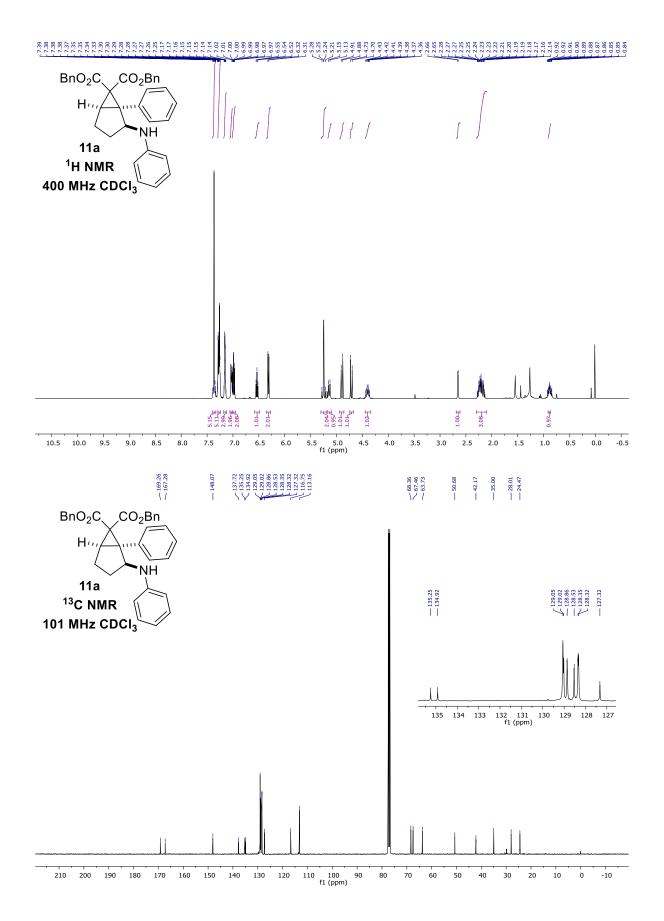


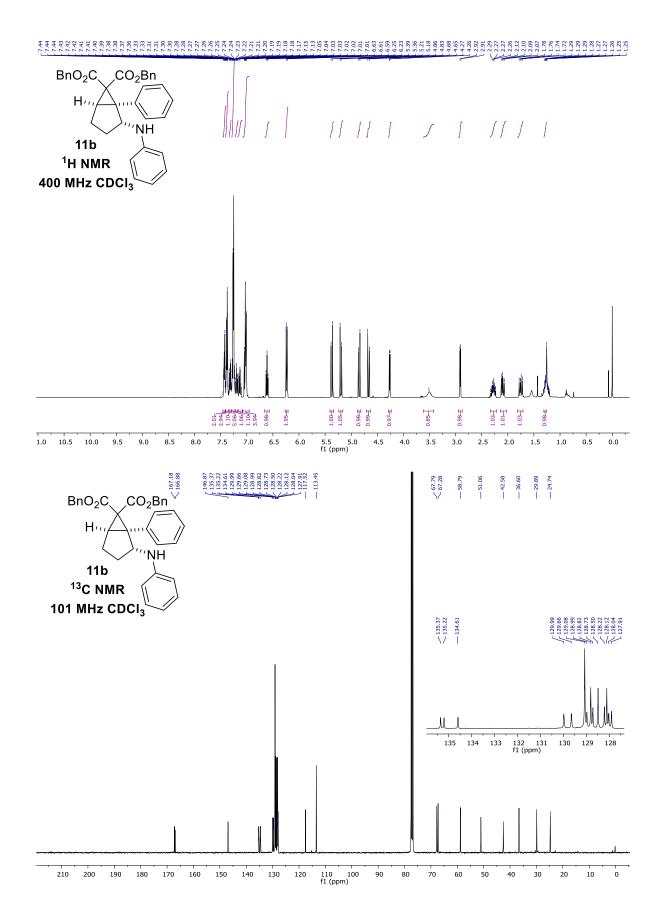


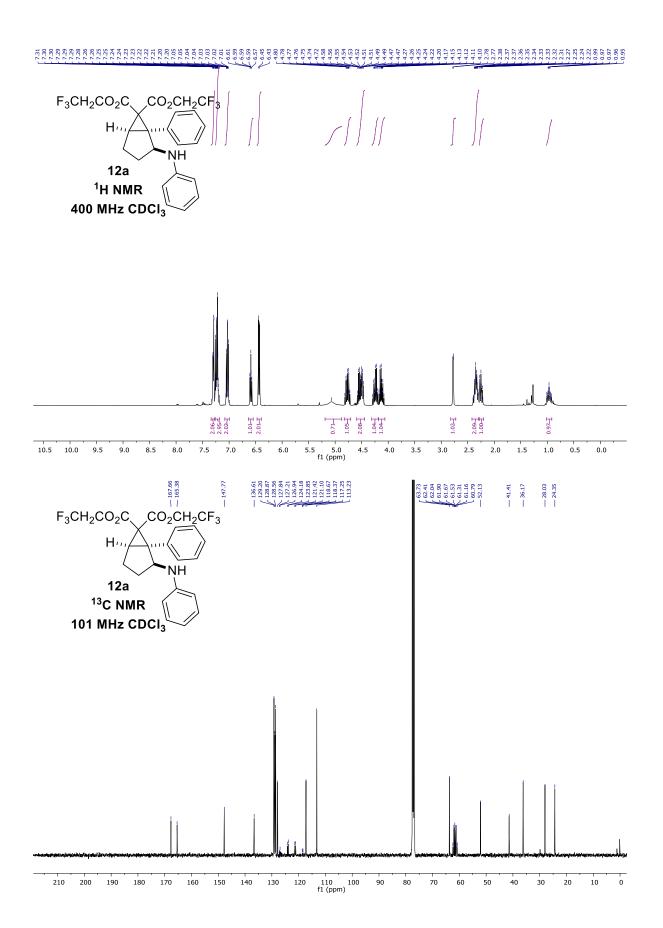


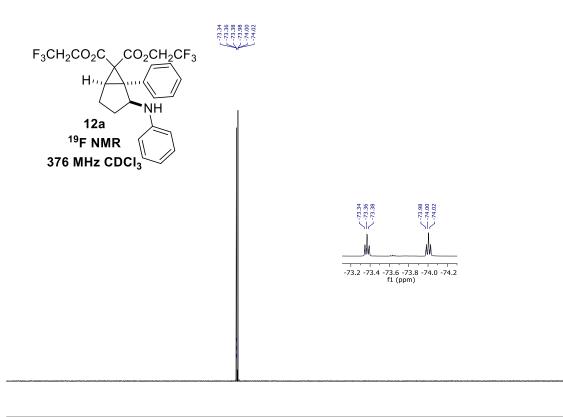


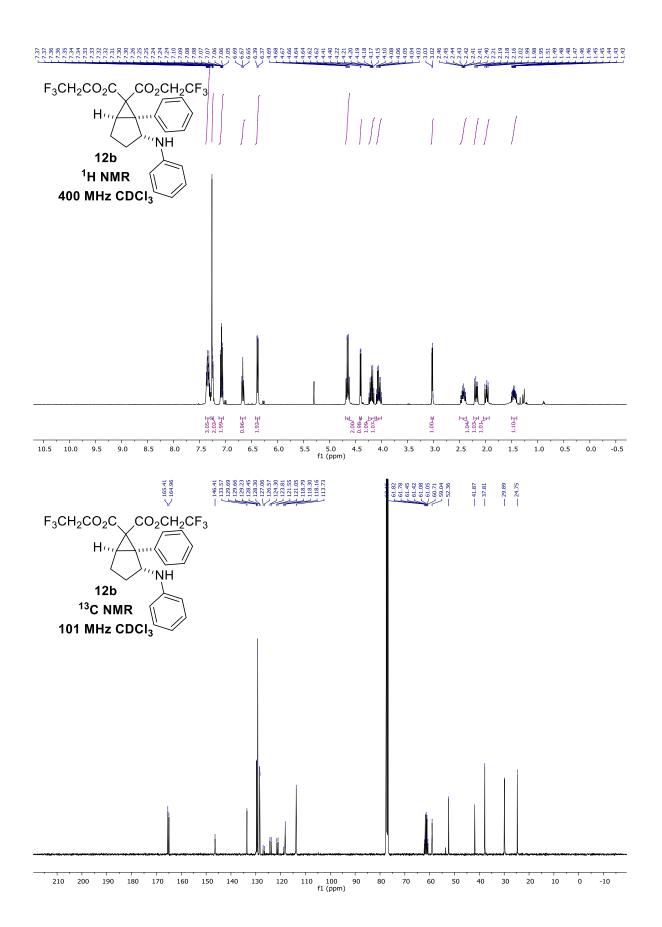


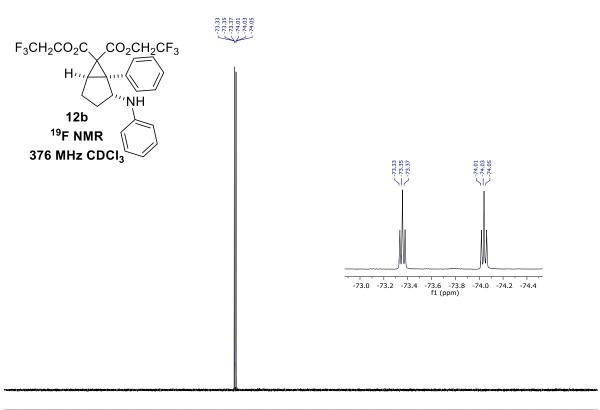


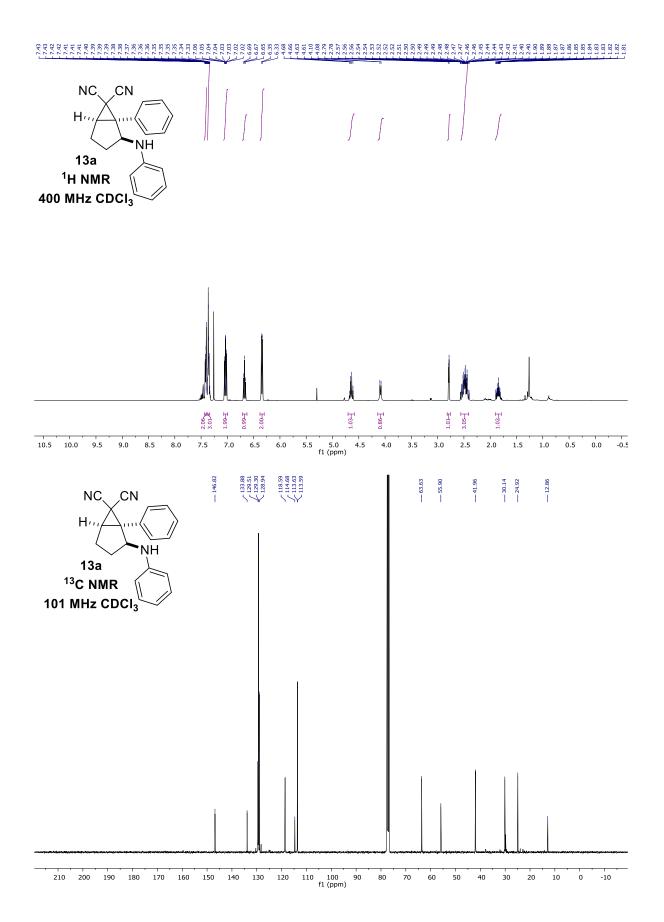


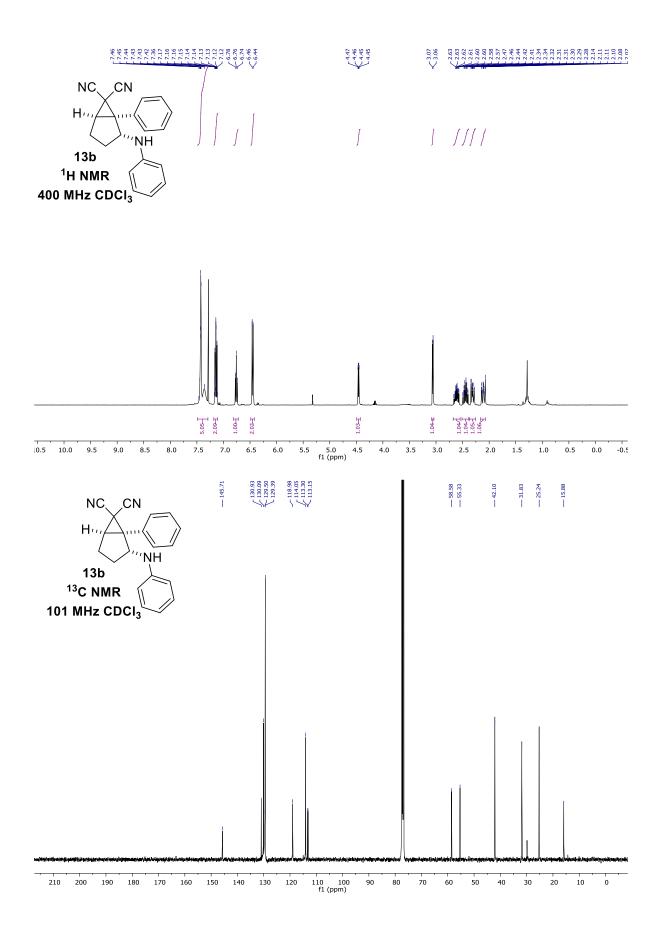


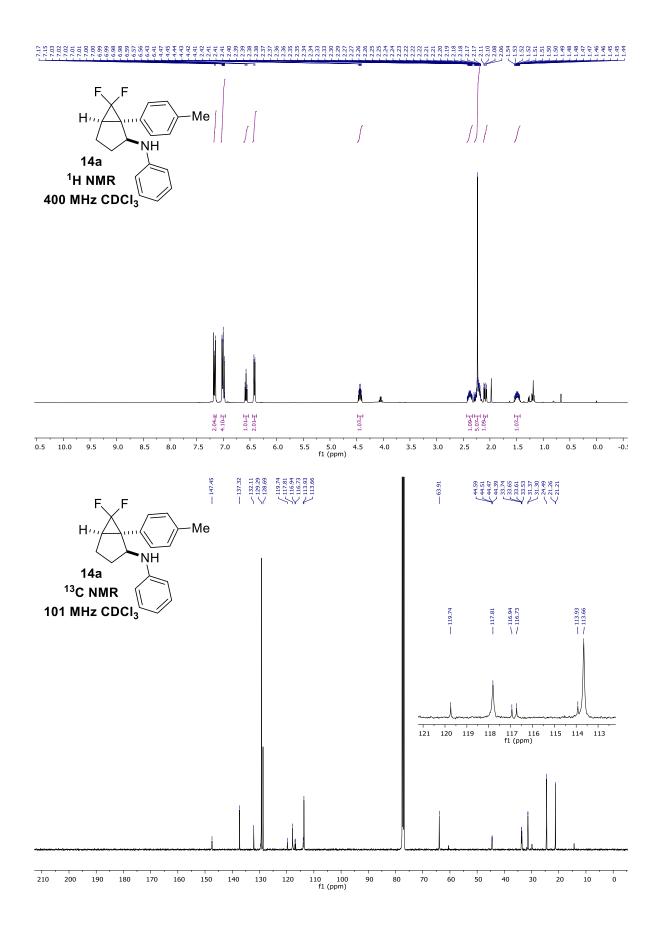


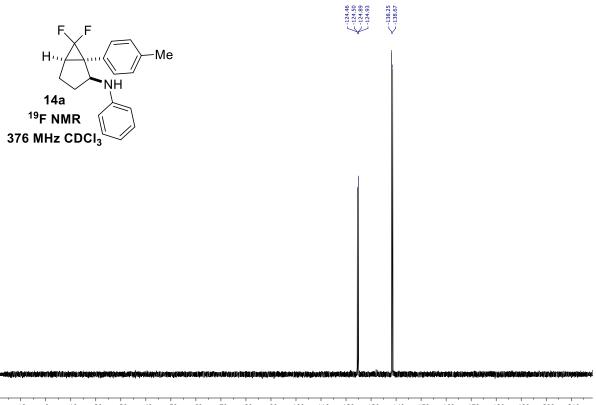


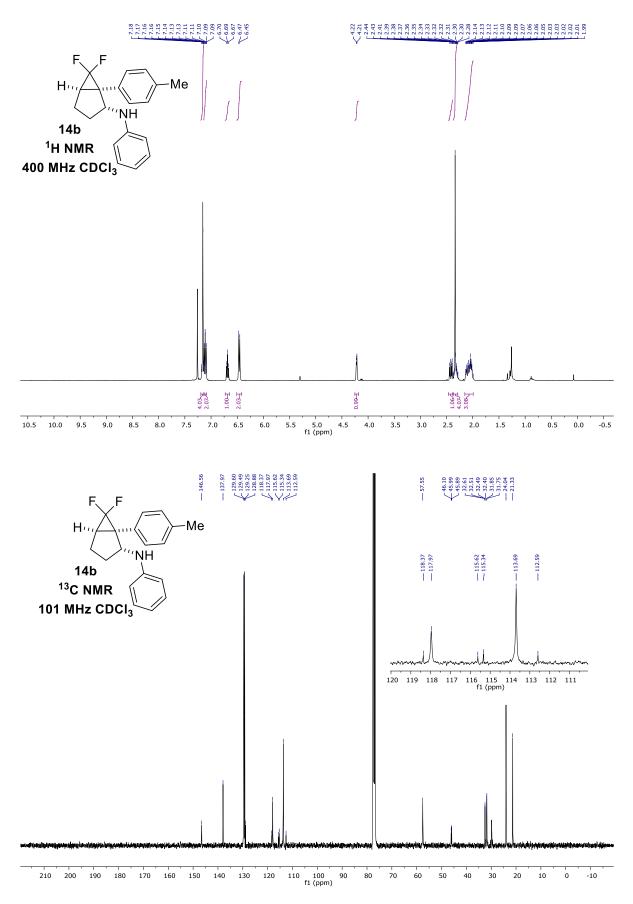


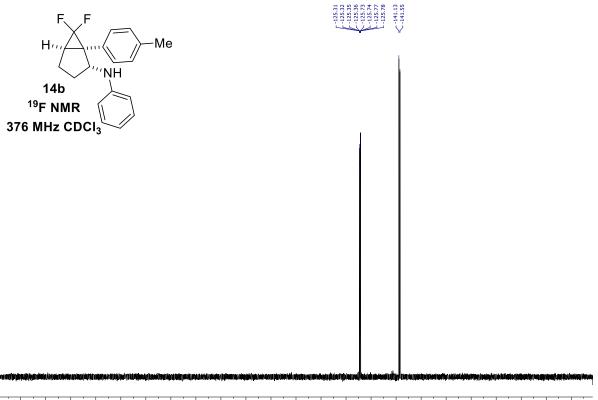


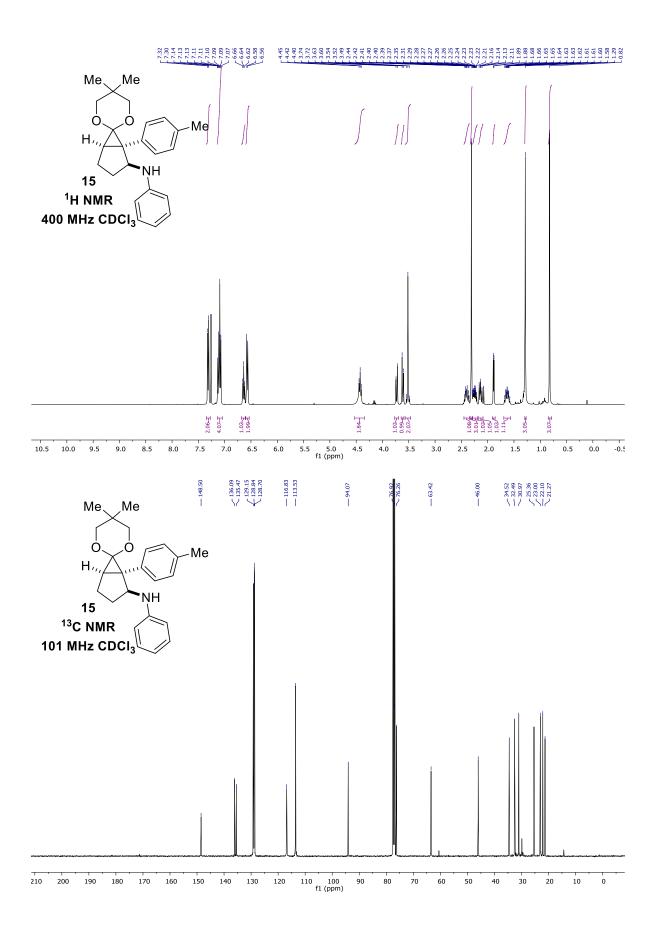


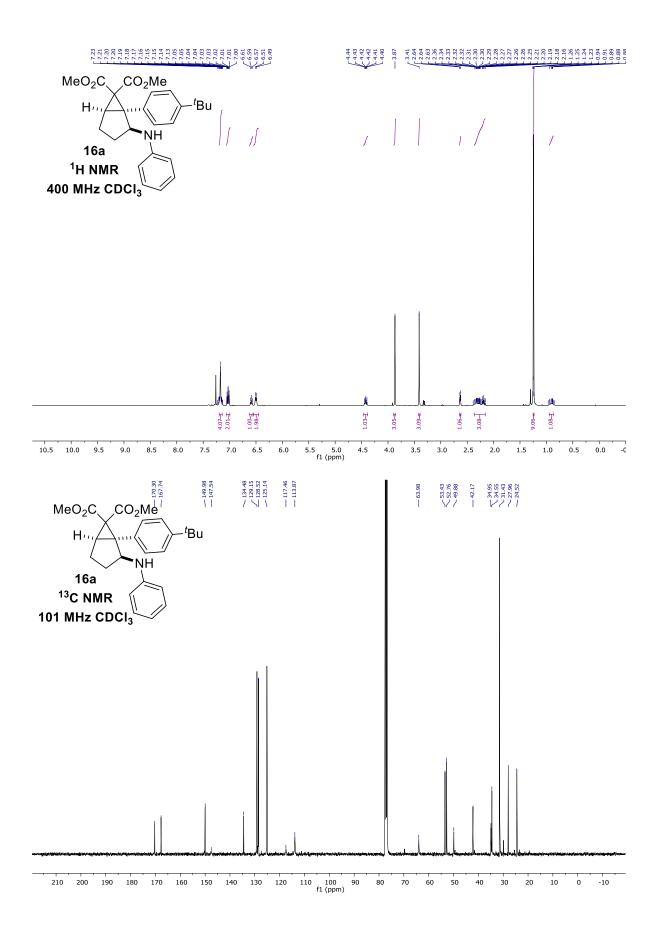


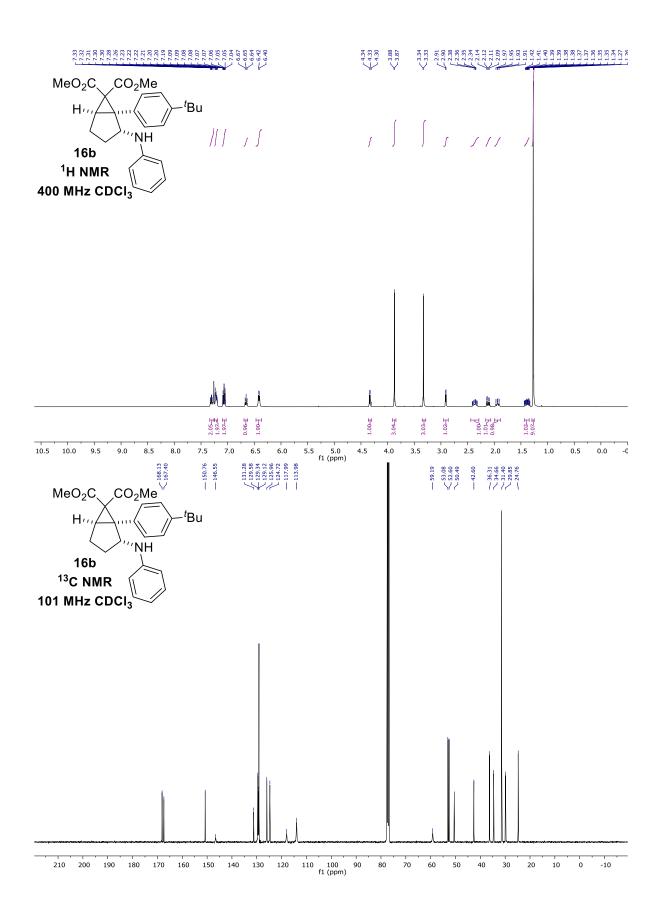


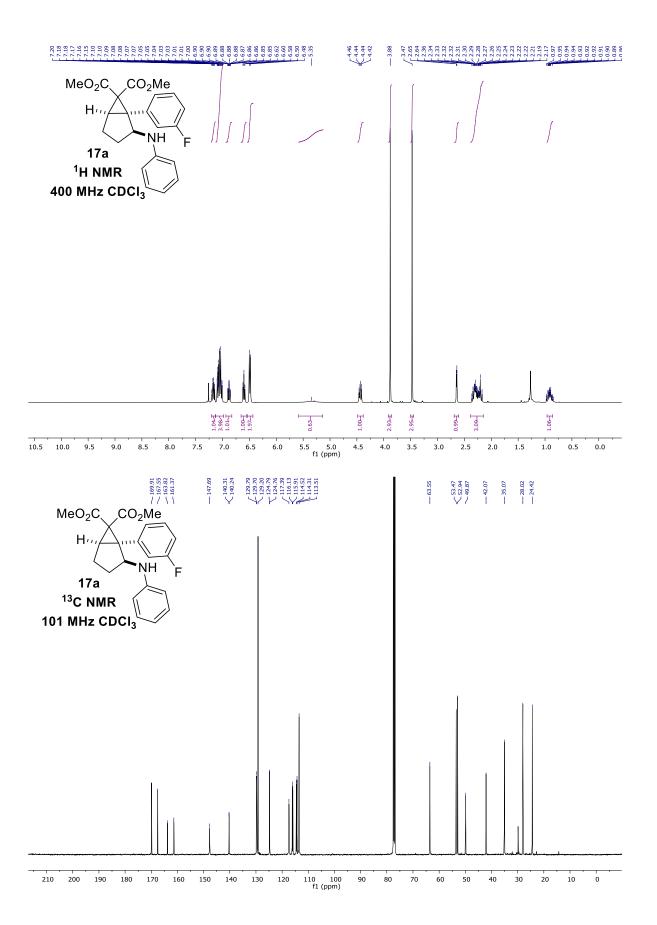


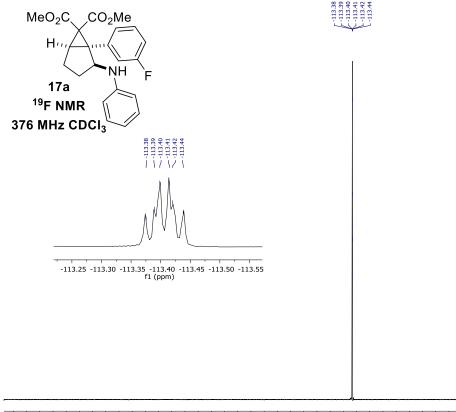


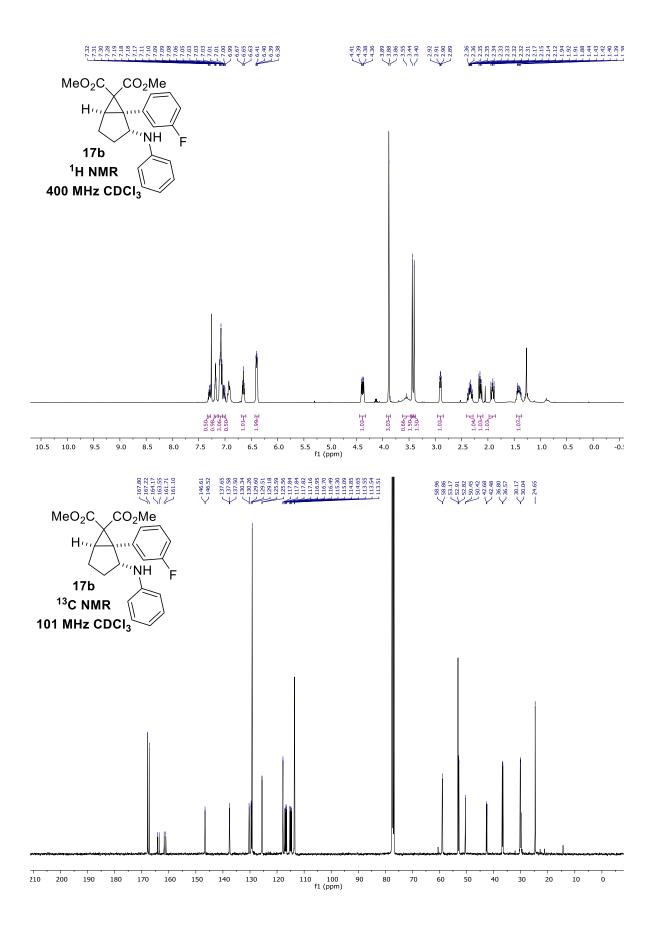


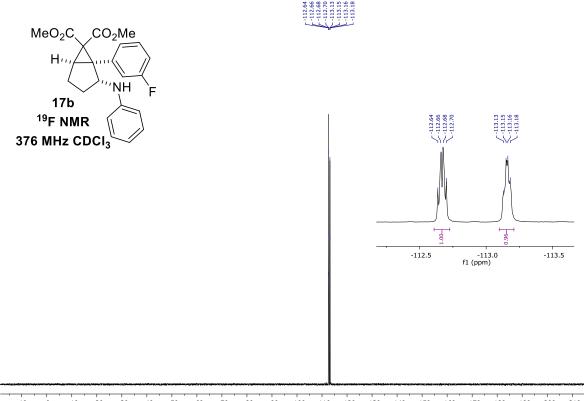


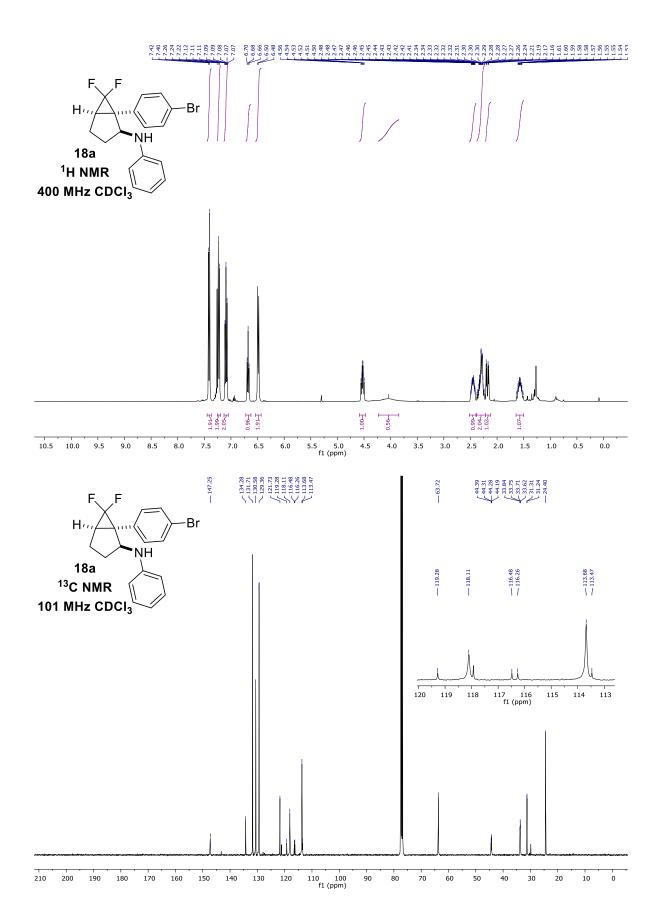


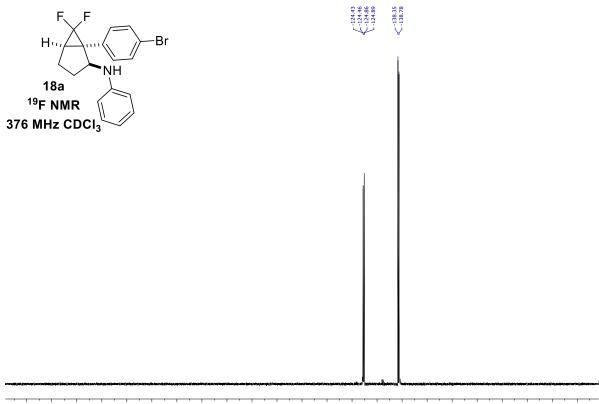


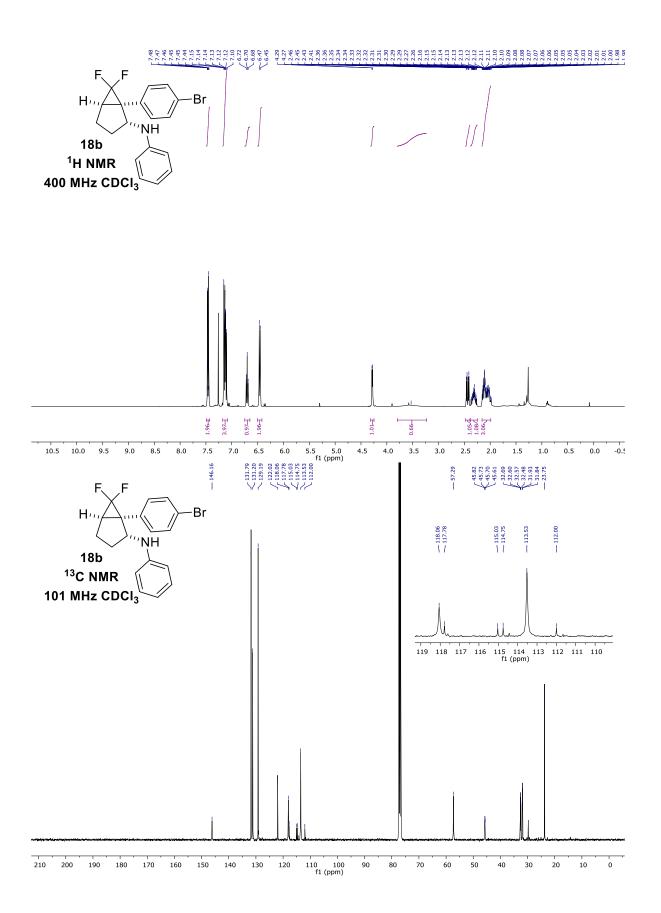


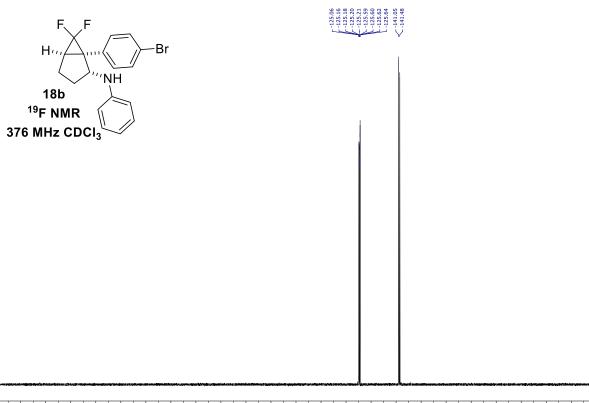


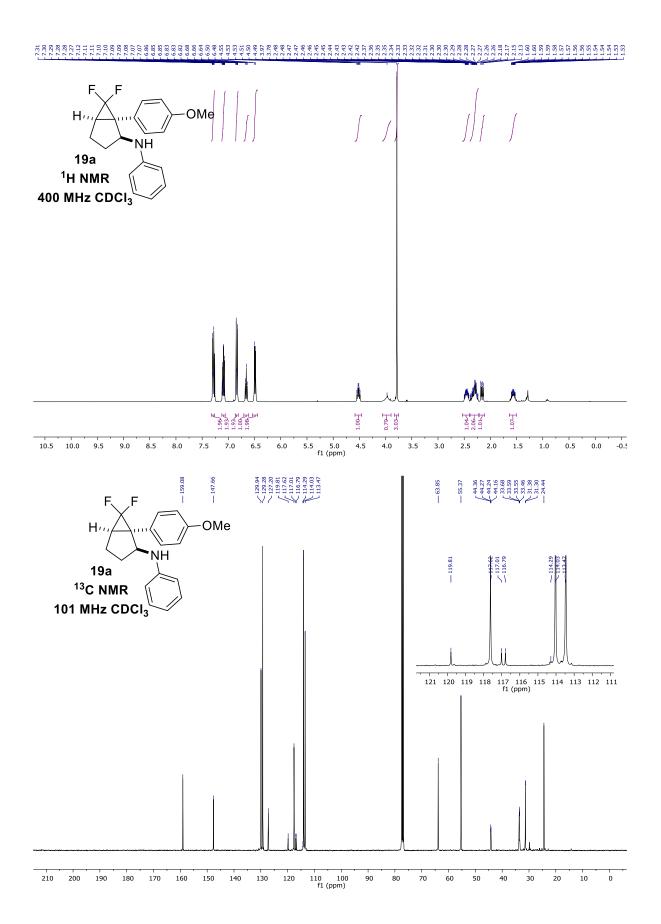


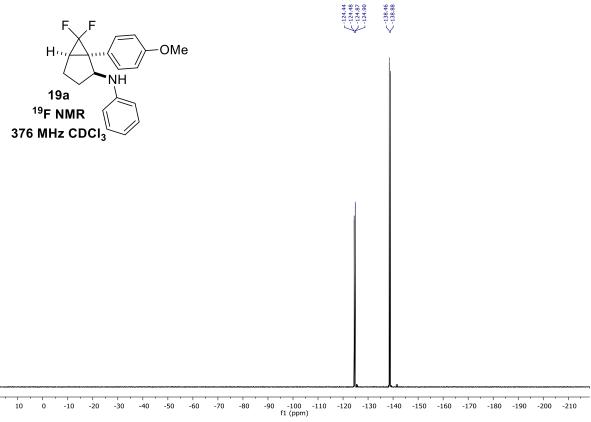


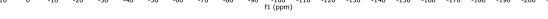

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

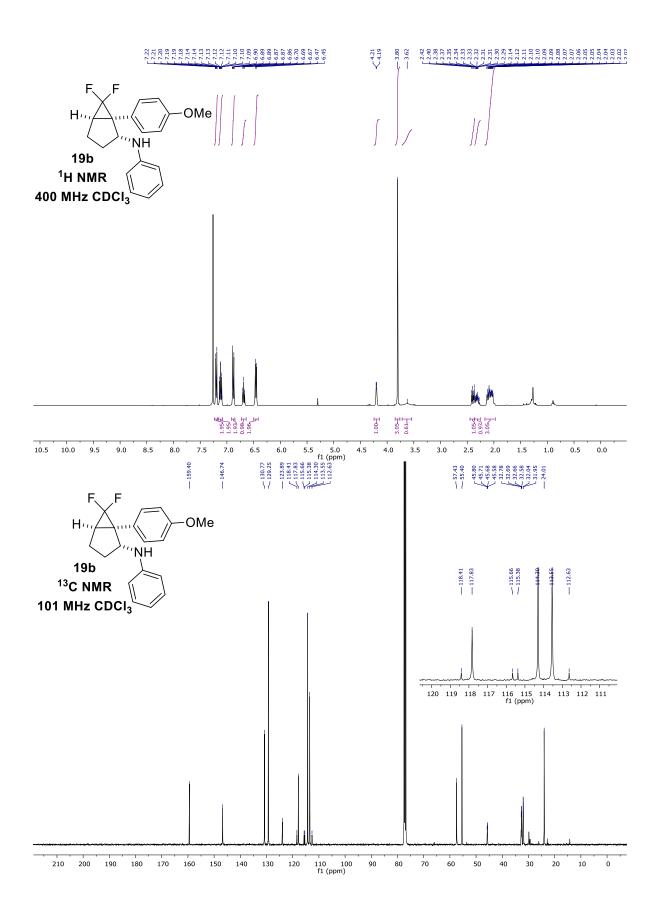


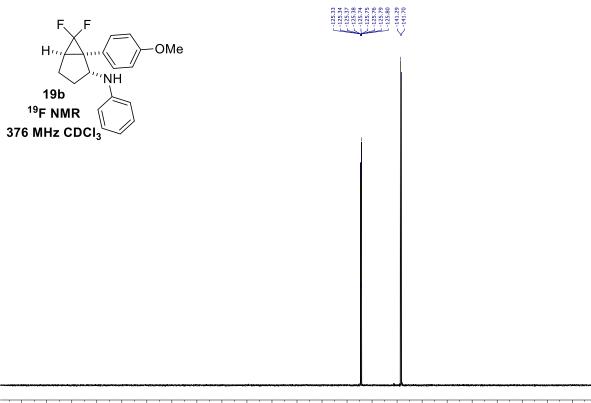

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

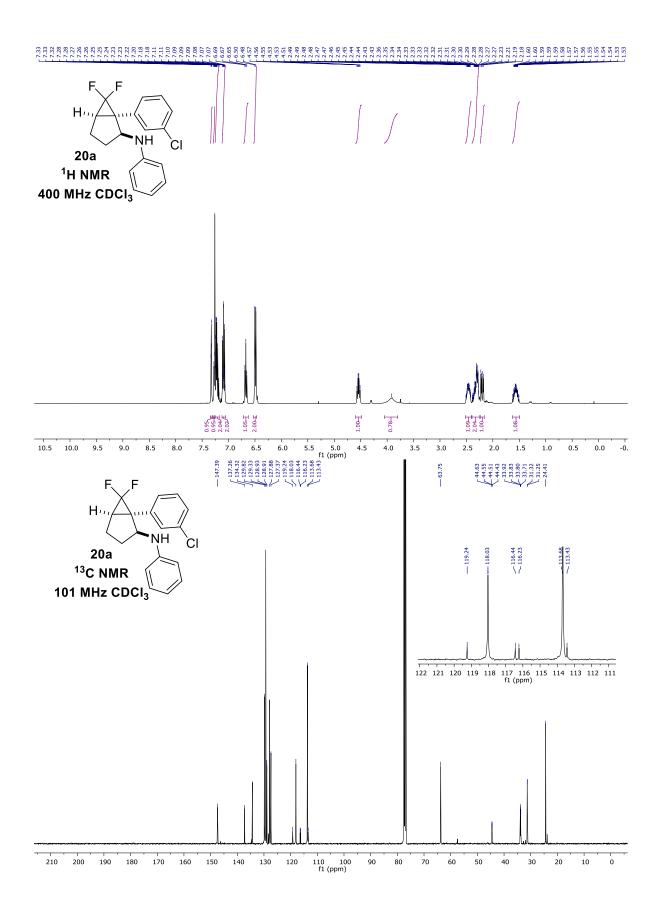


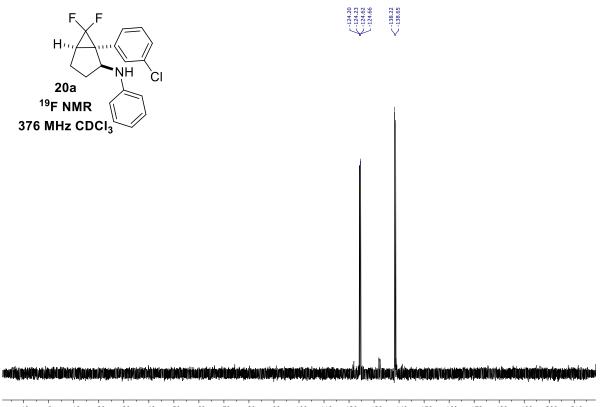

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

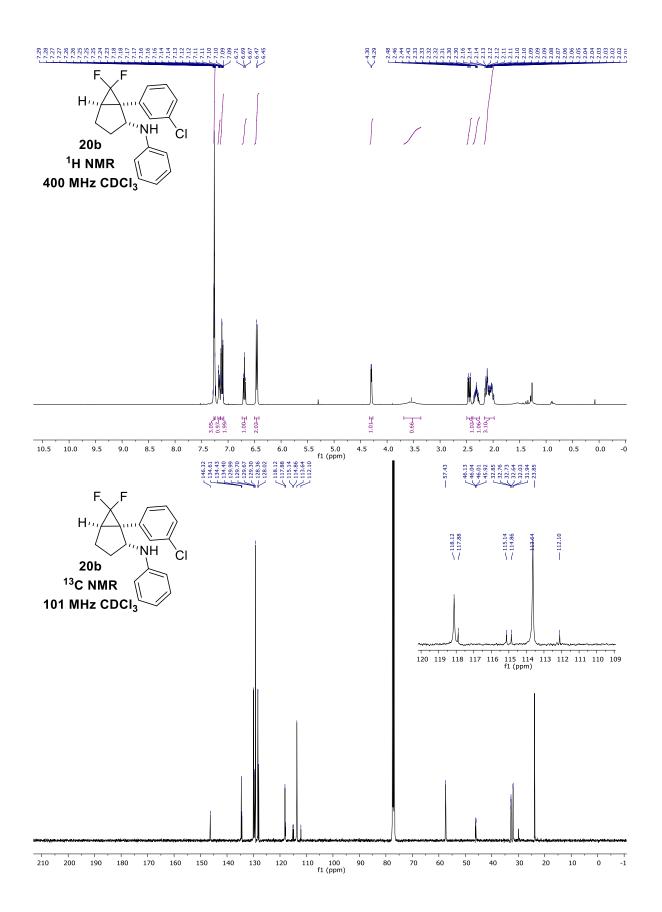


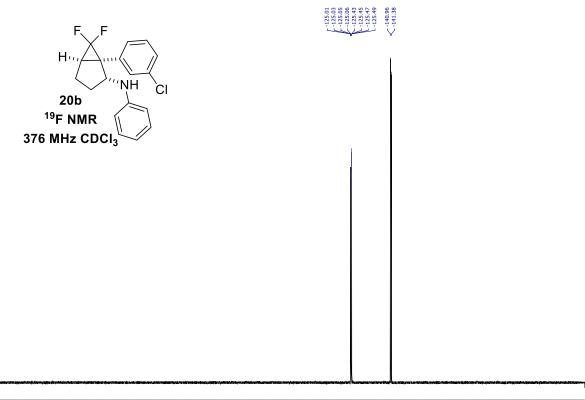


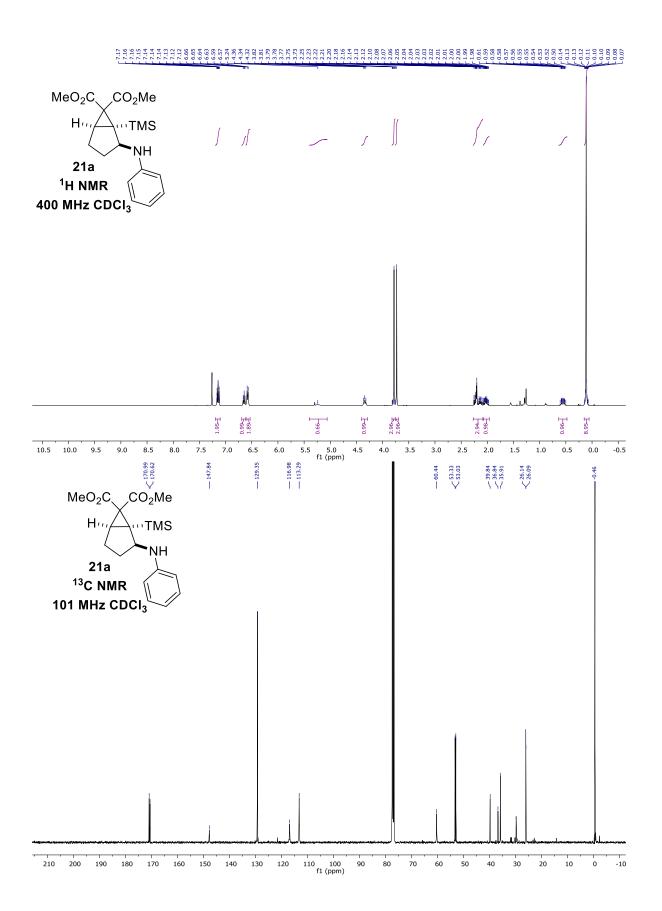

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

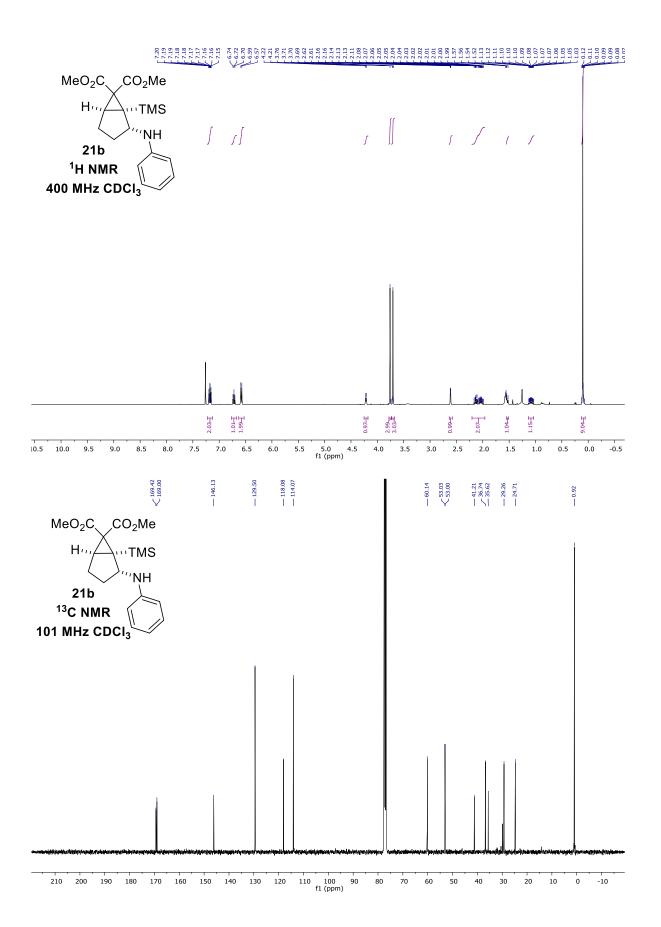


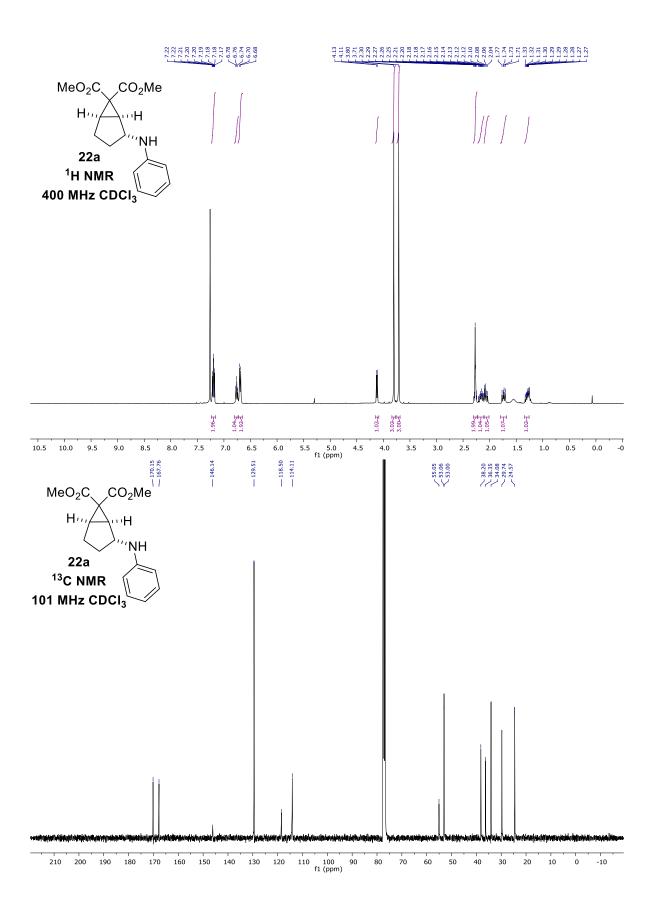


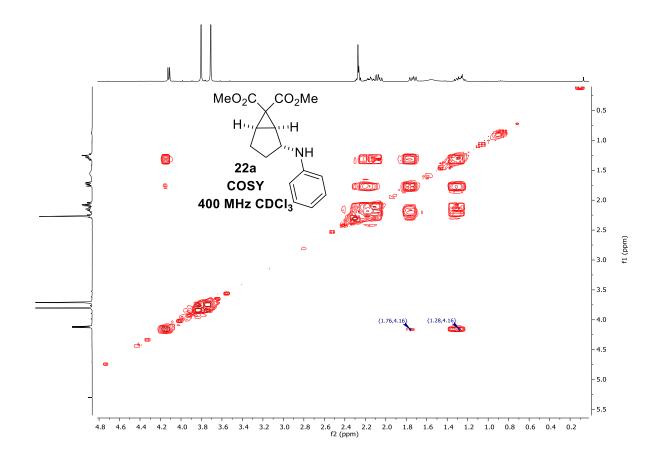


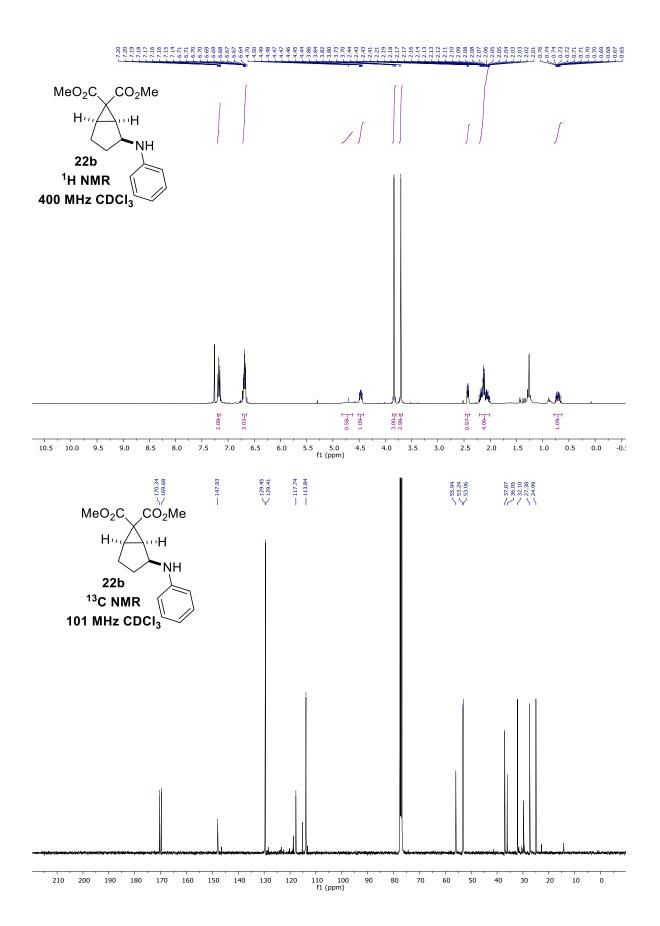

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

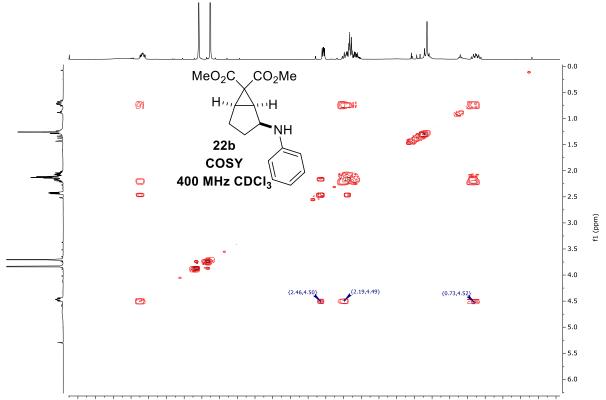


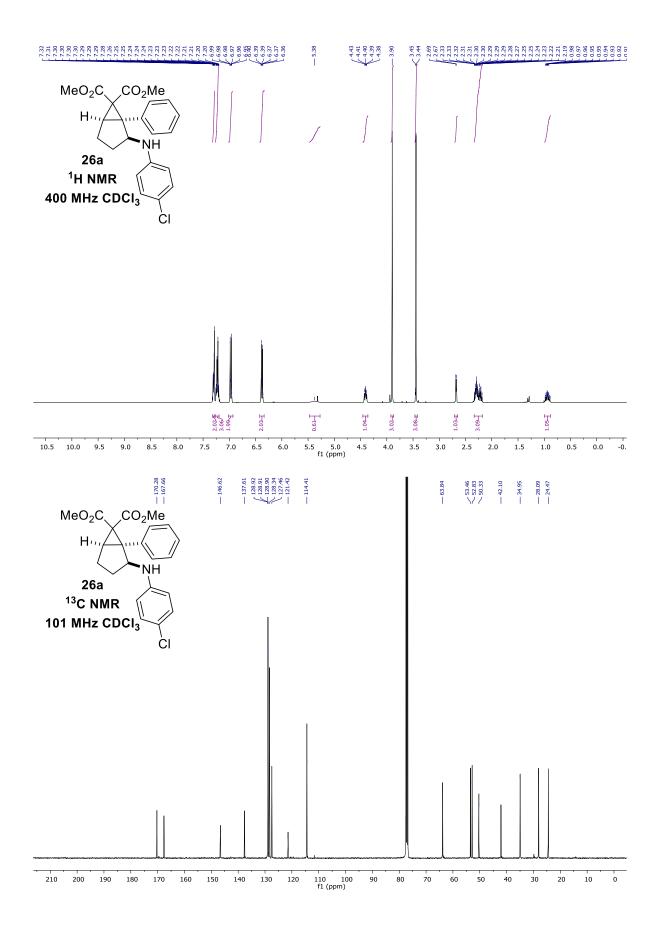

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

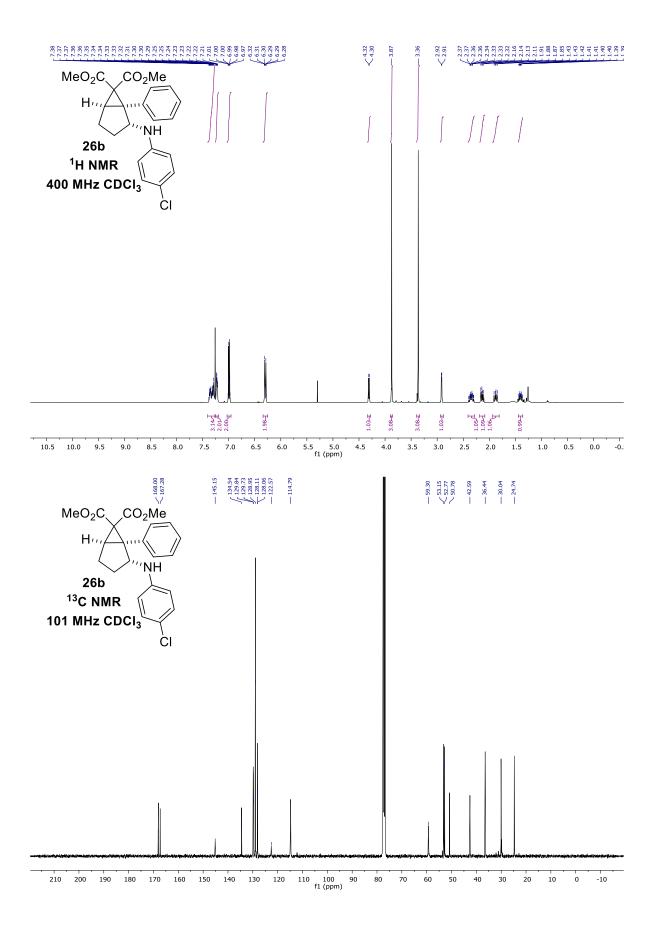




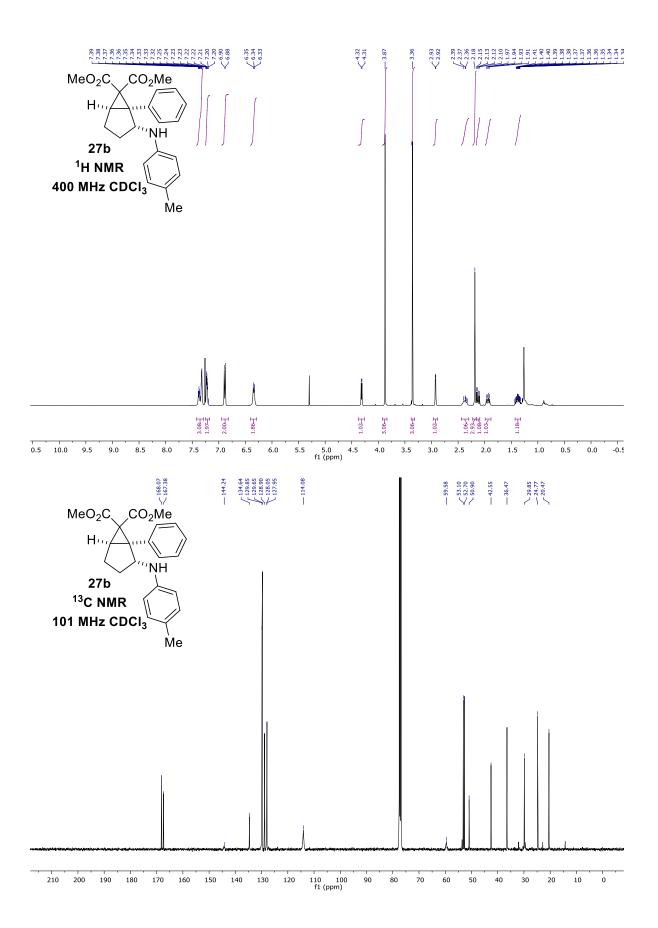

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

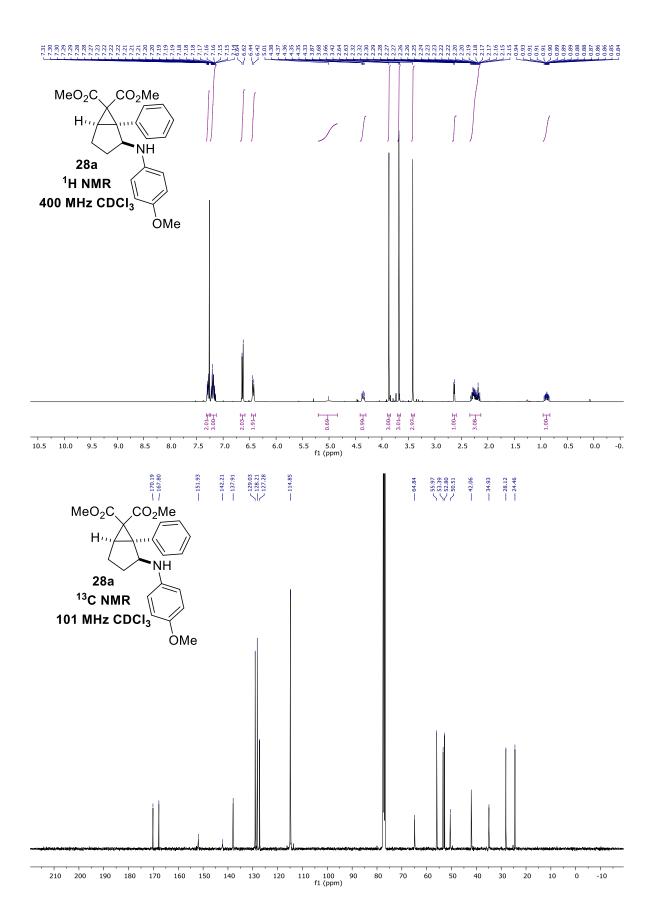


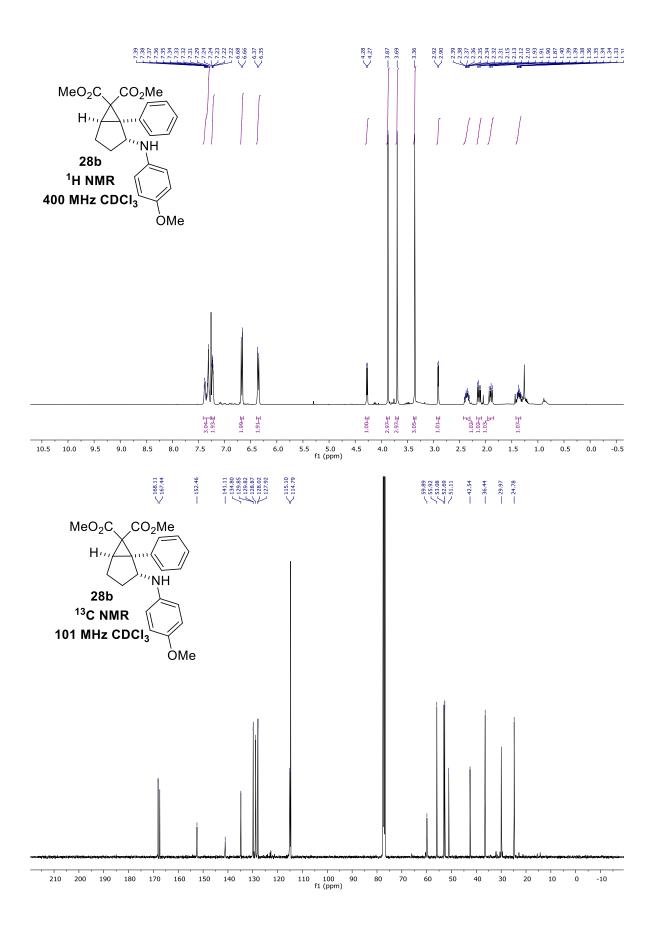


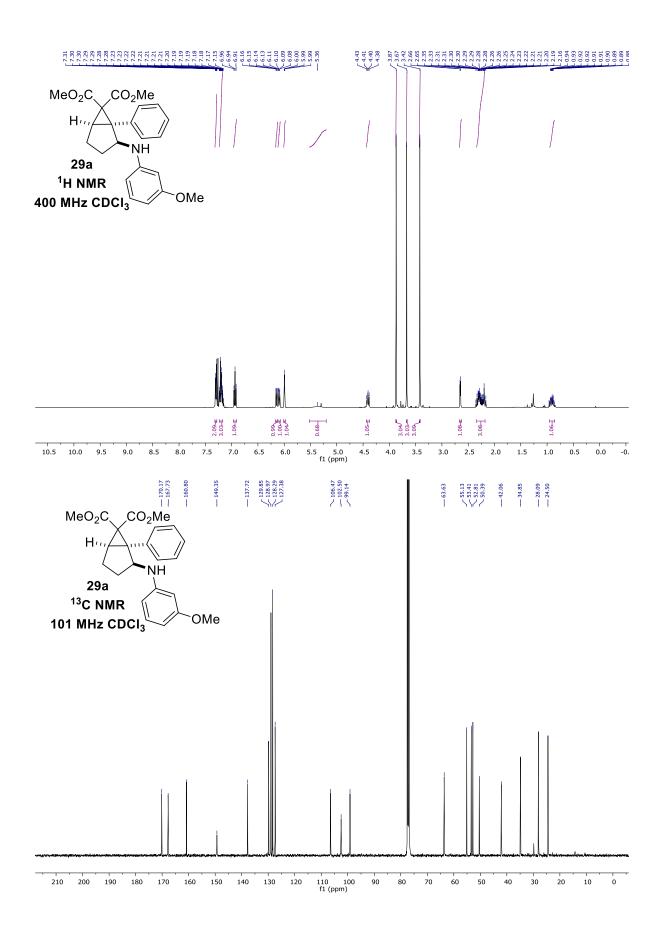


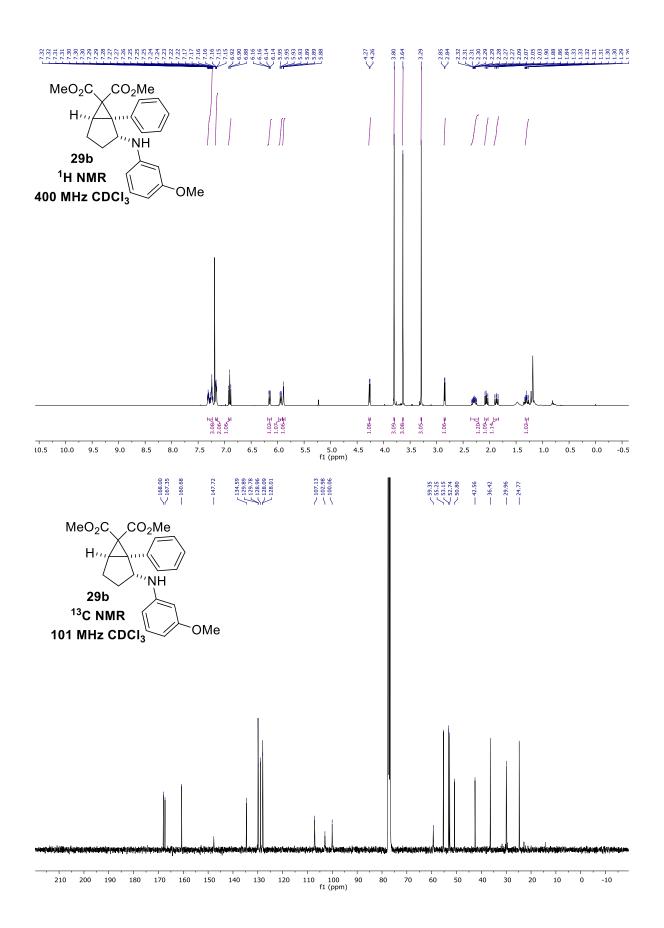


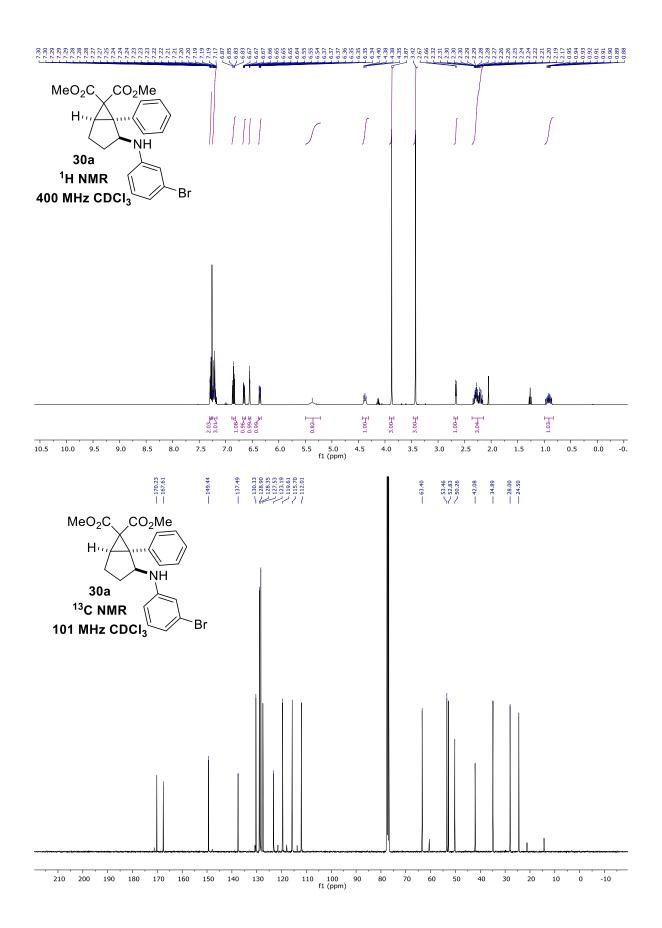


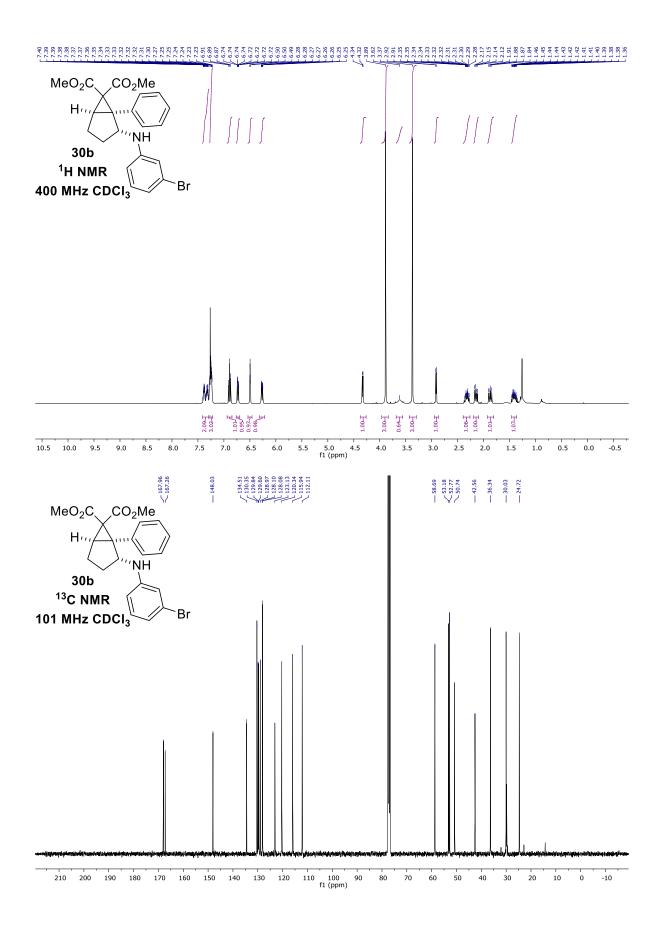

5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 f2 (ppm)

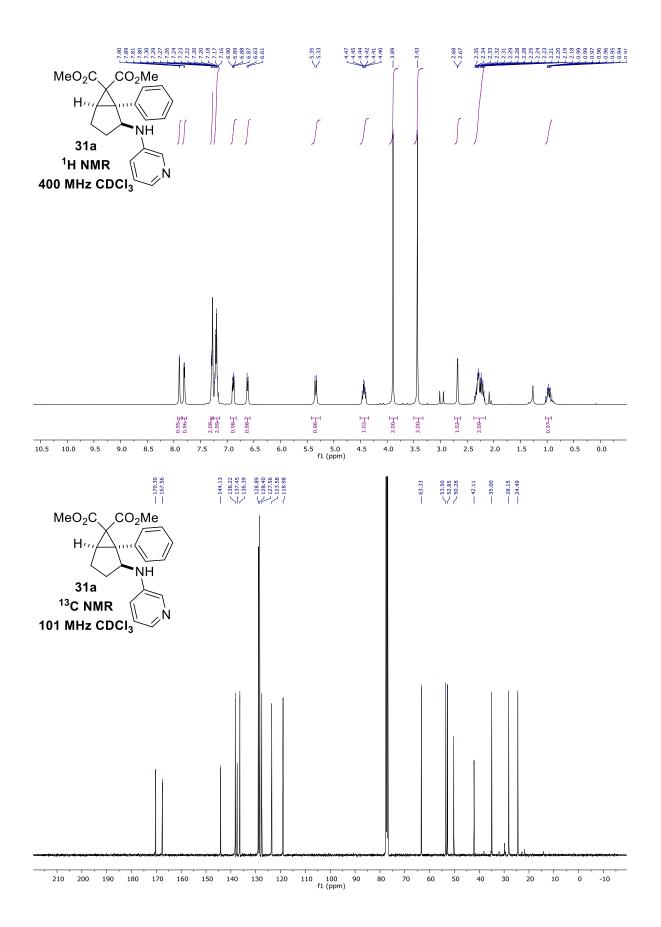


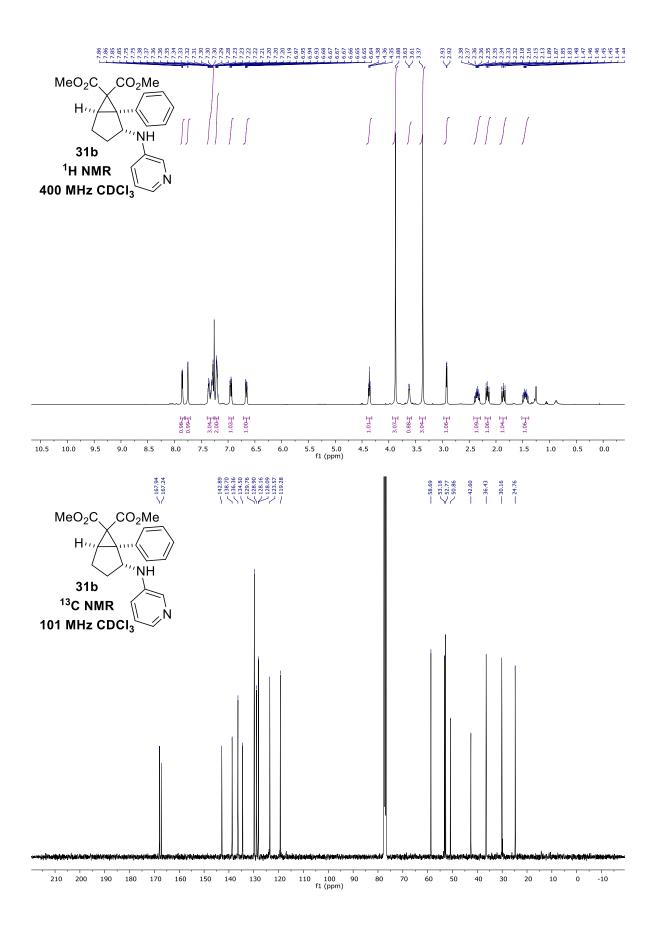


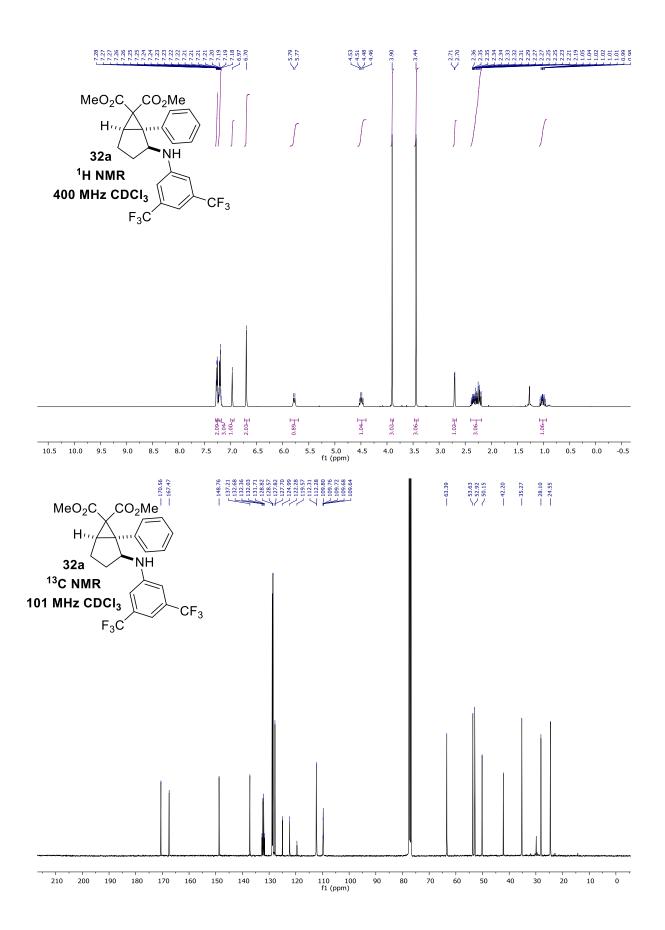


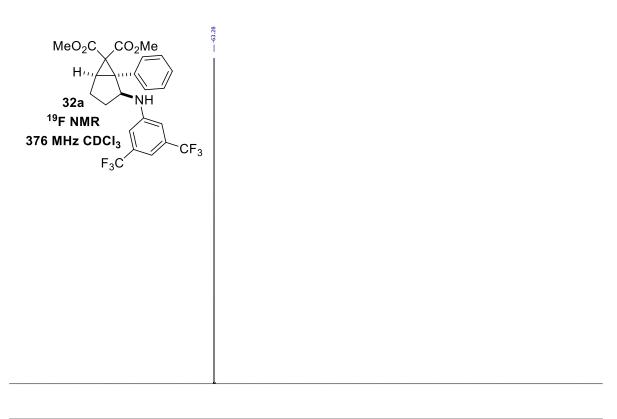


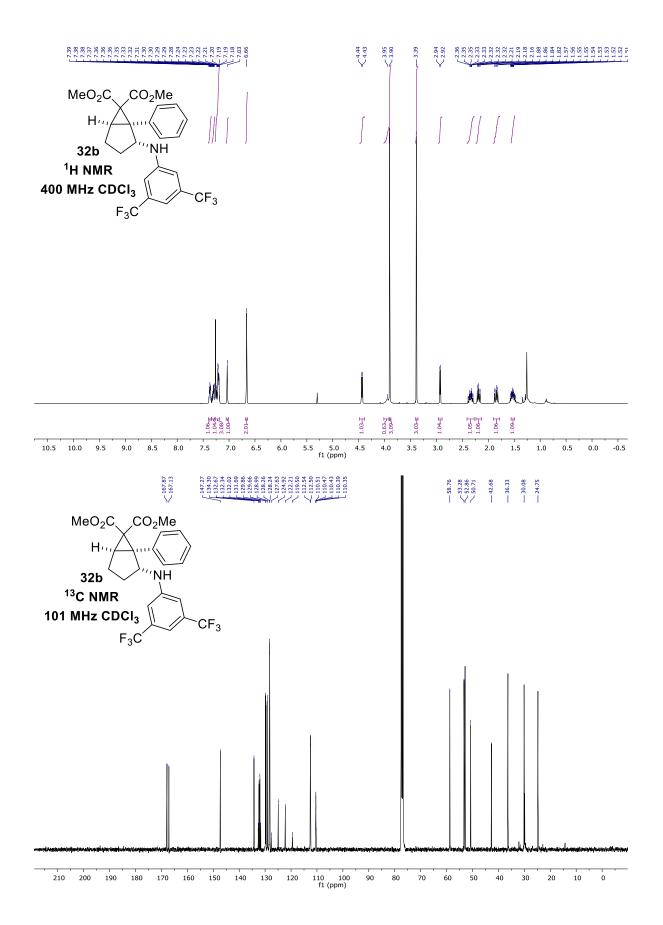


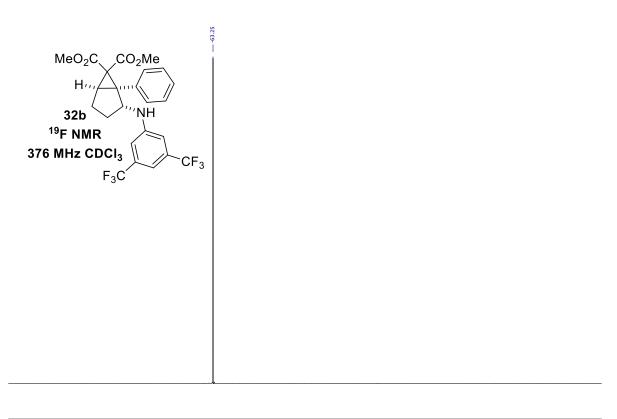


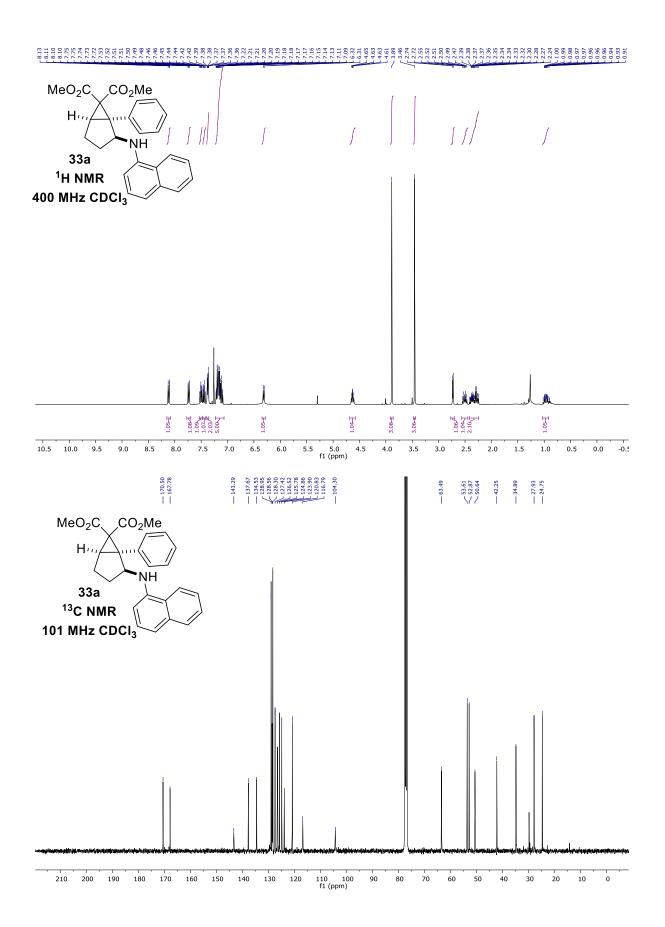


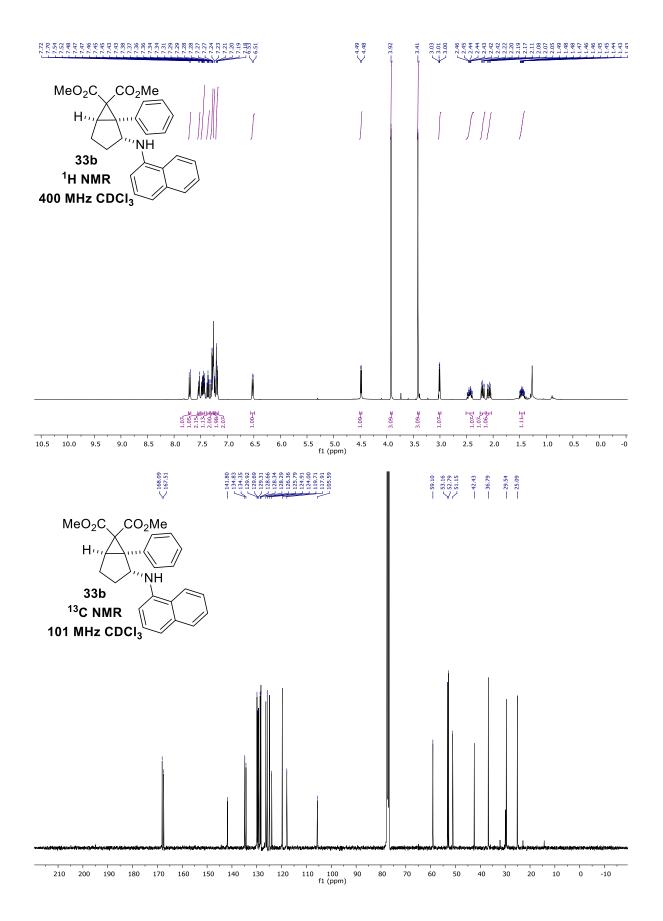


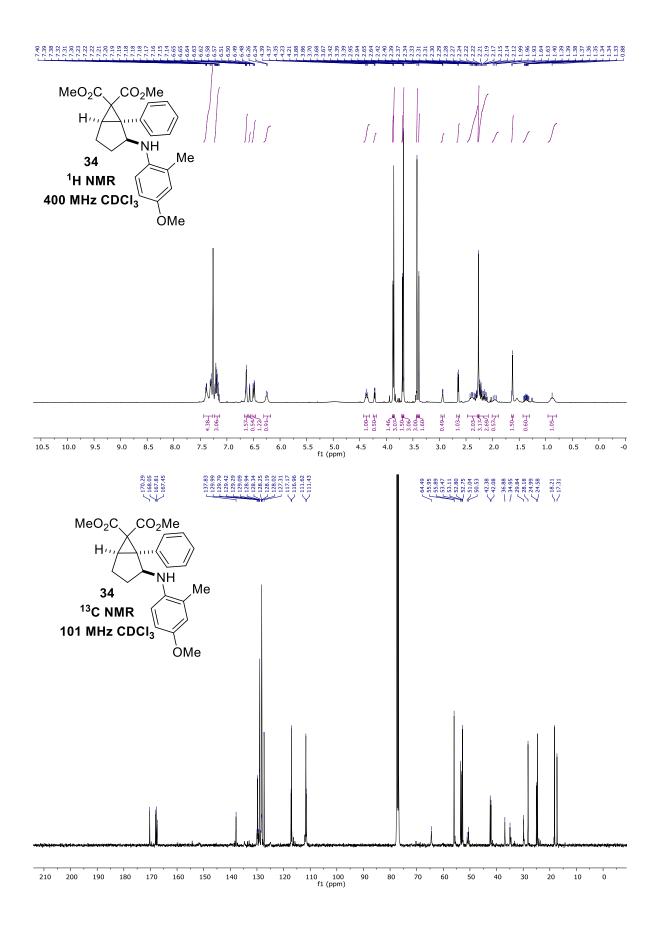


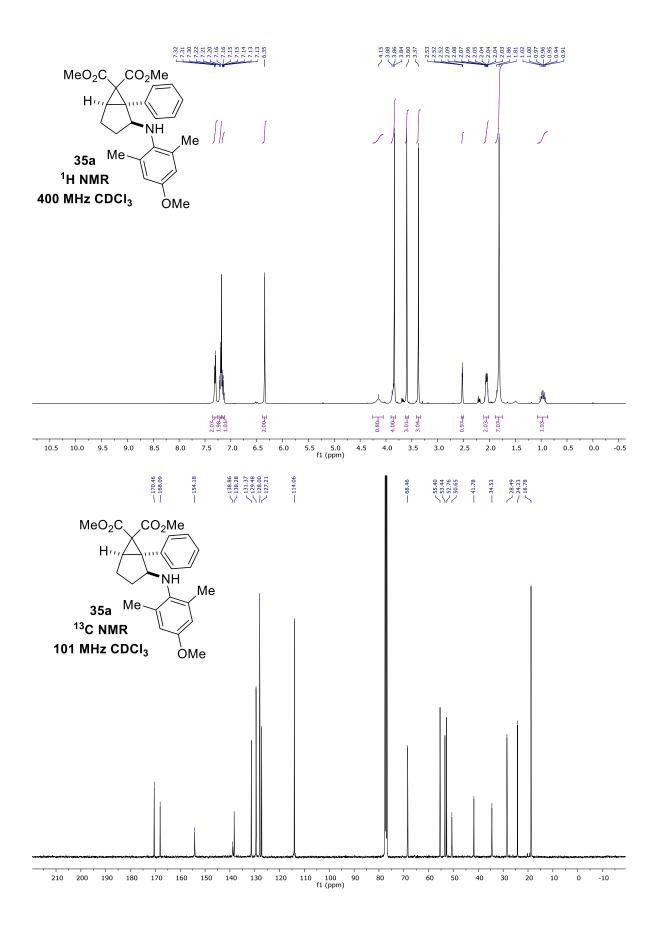


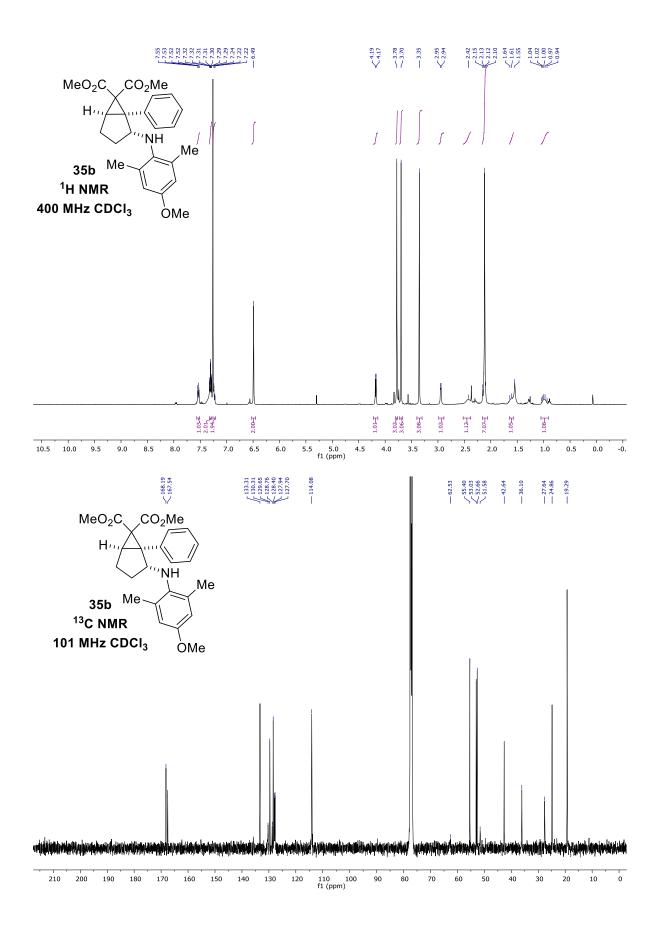


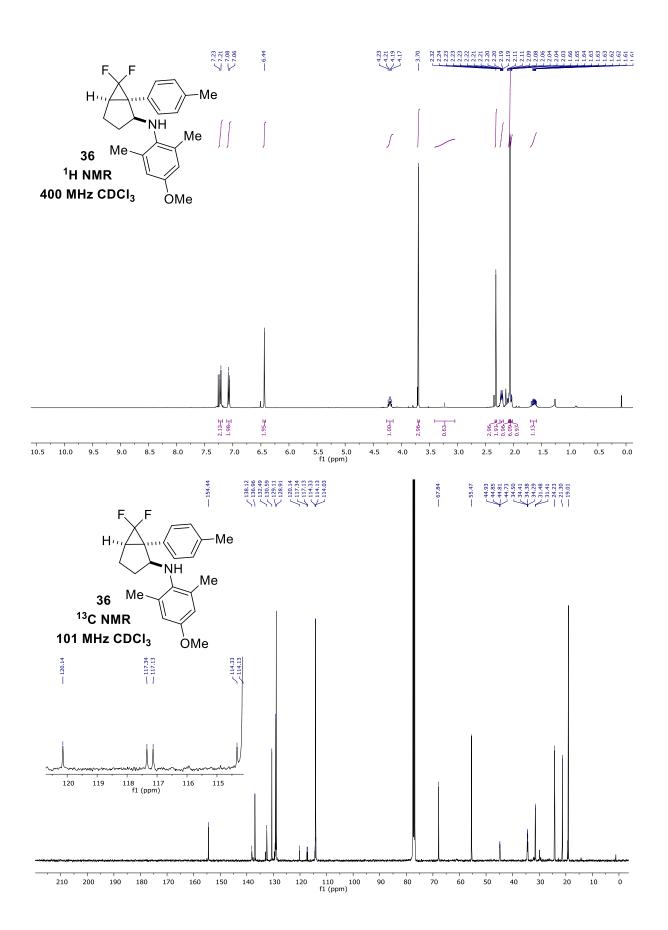


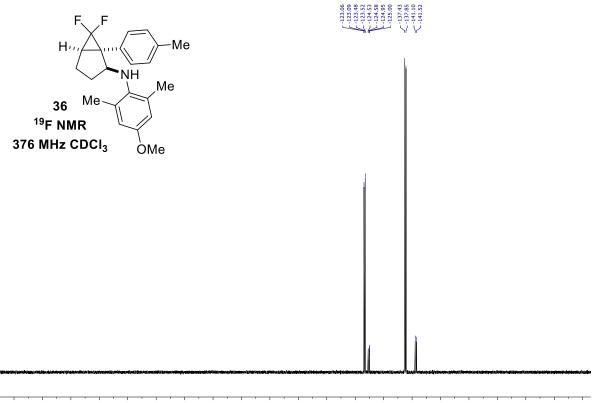


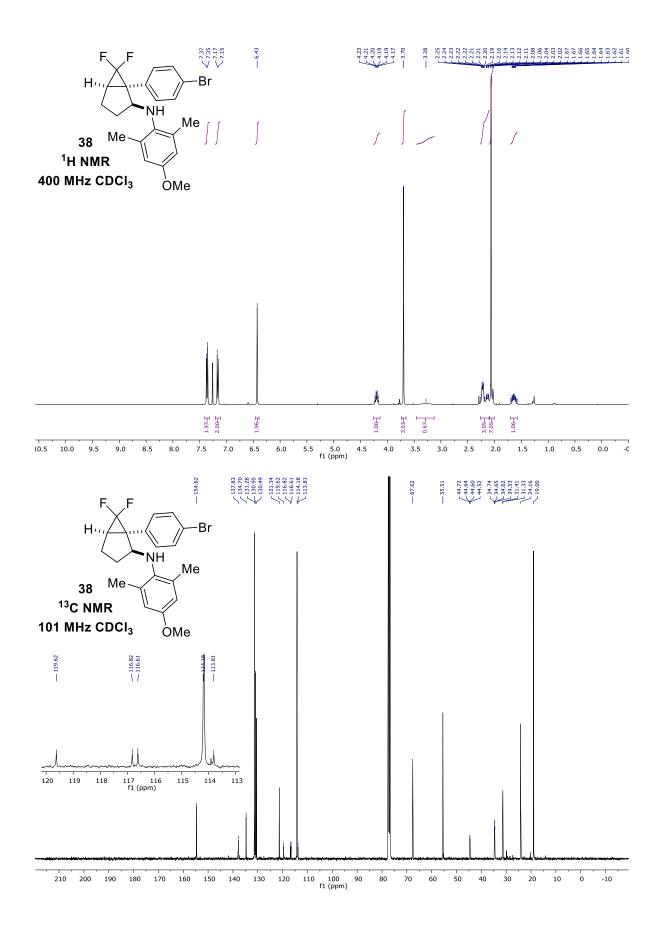


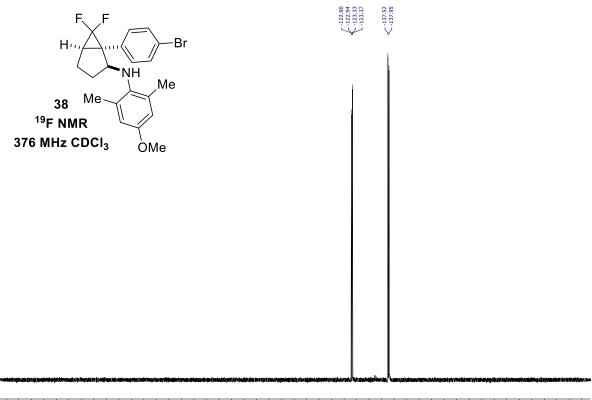


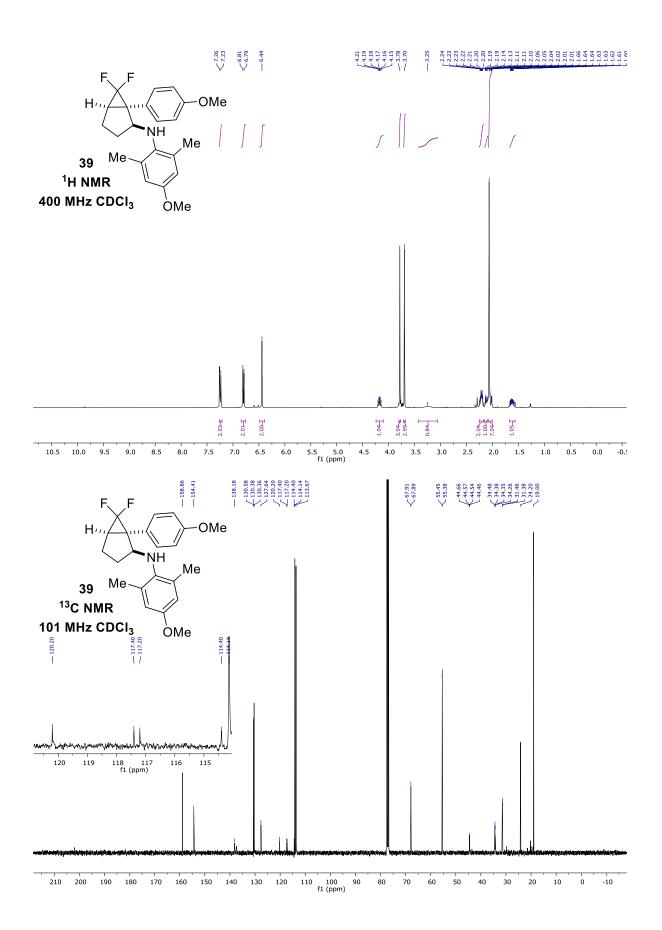


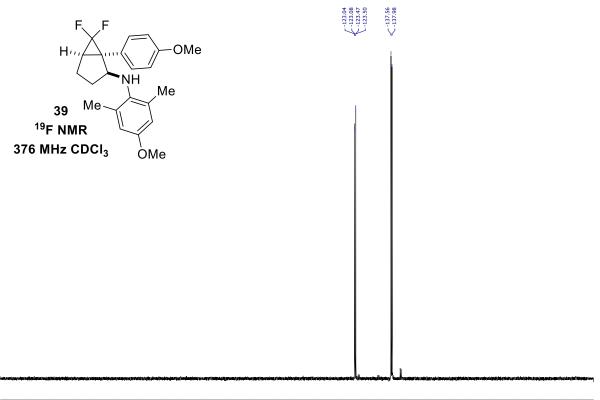


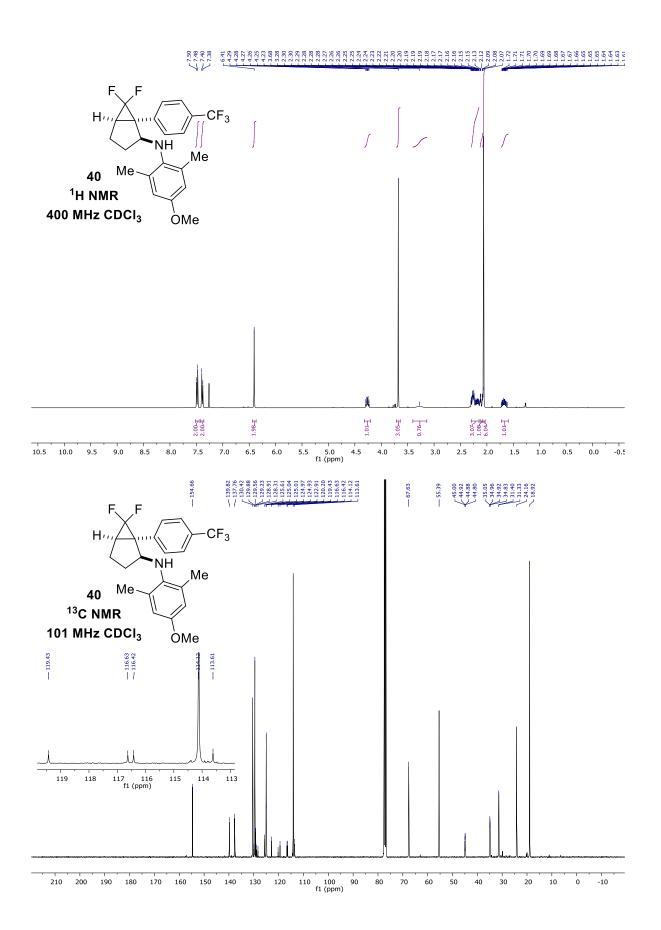


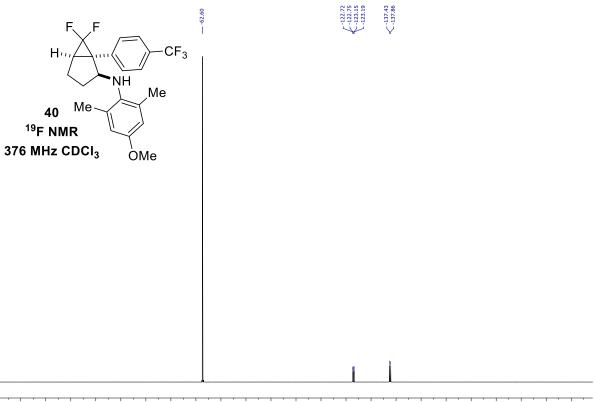


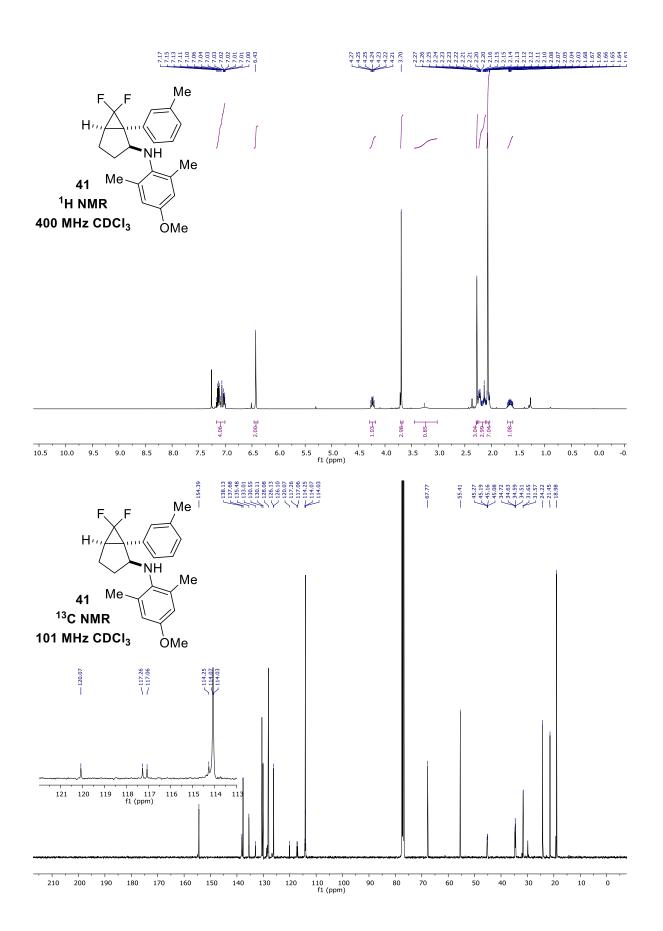


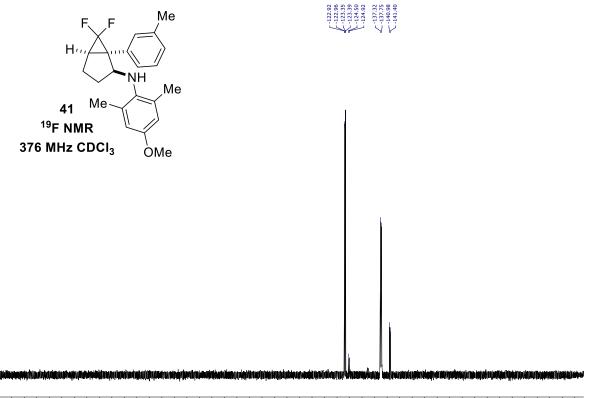


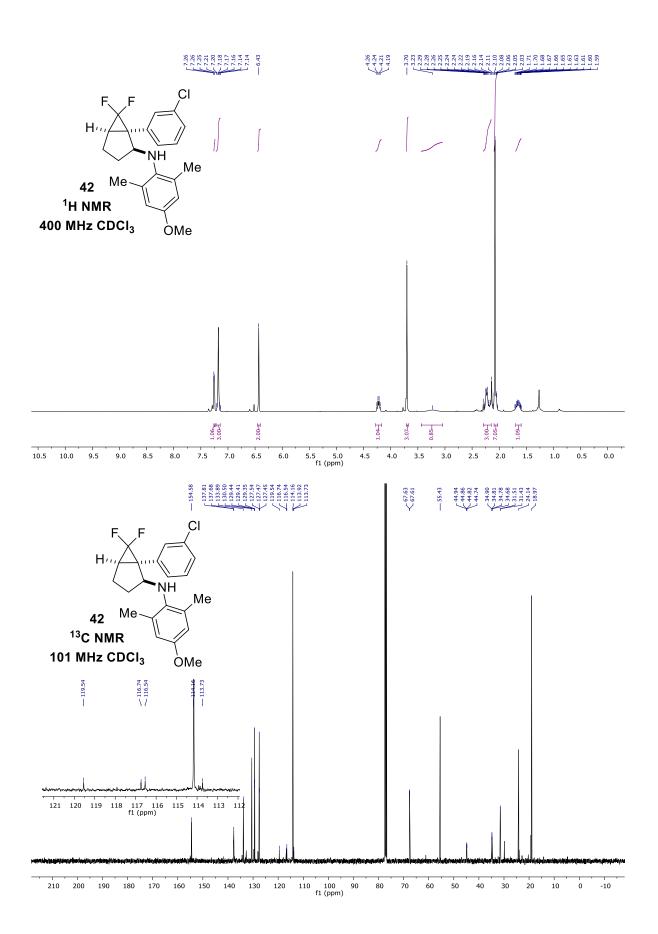


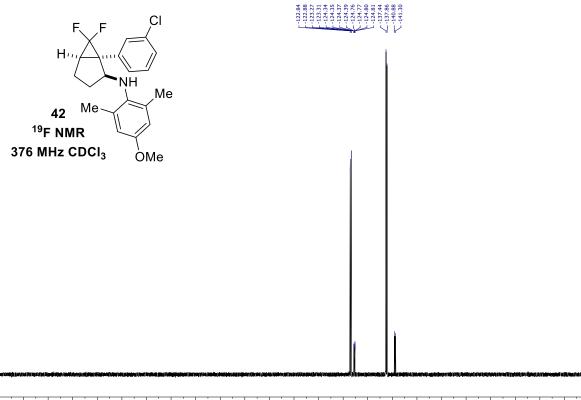


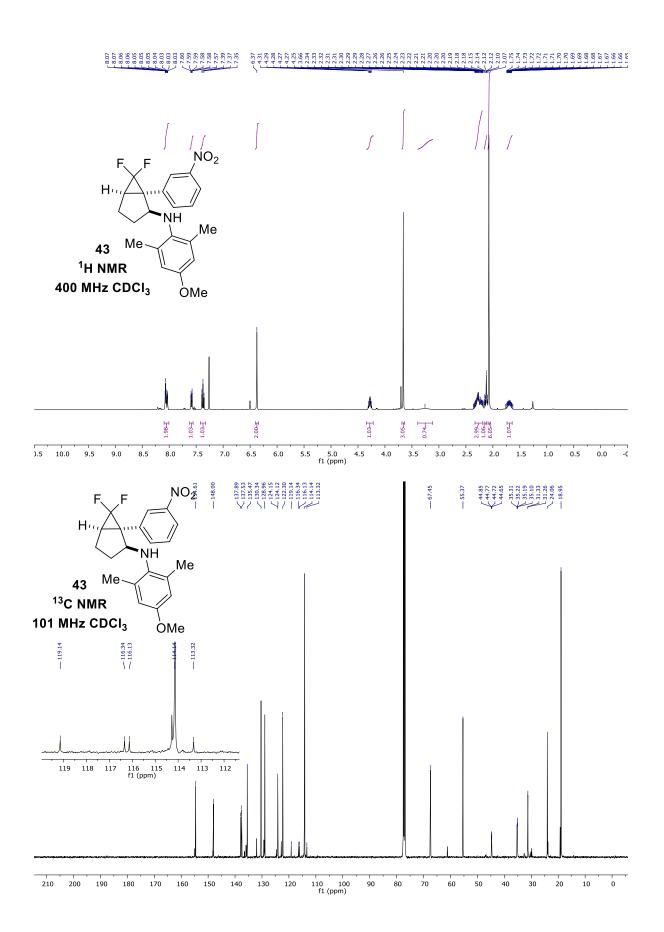


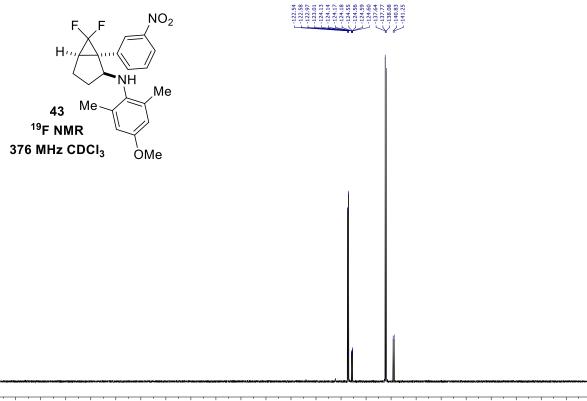


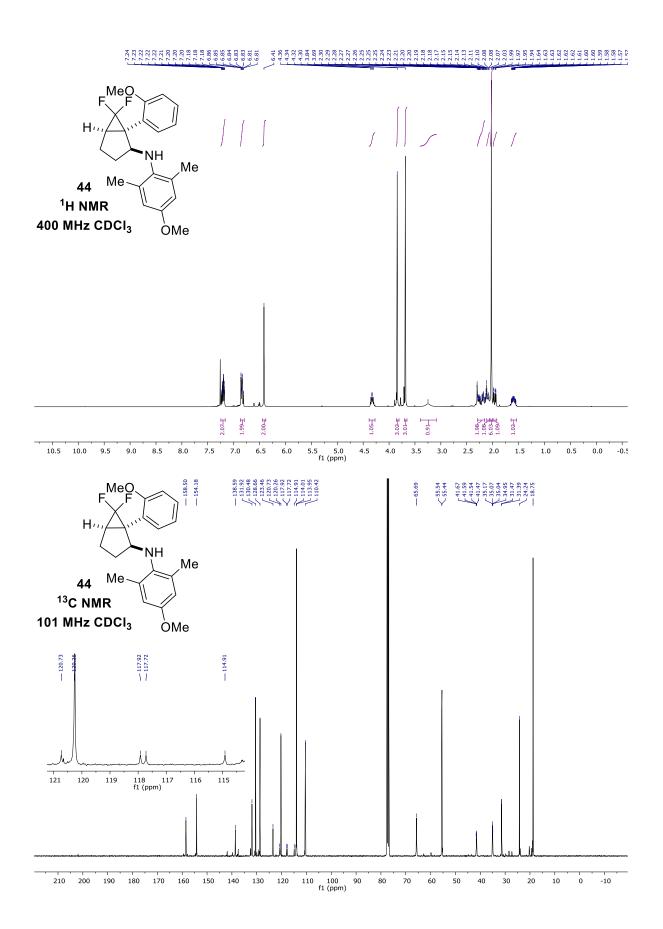


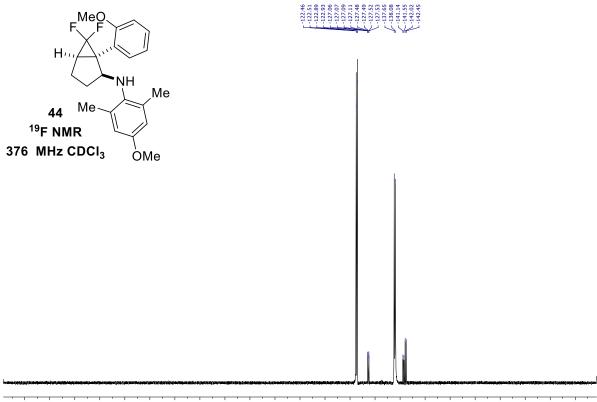


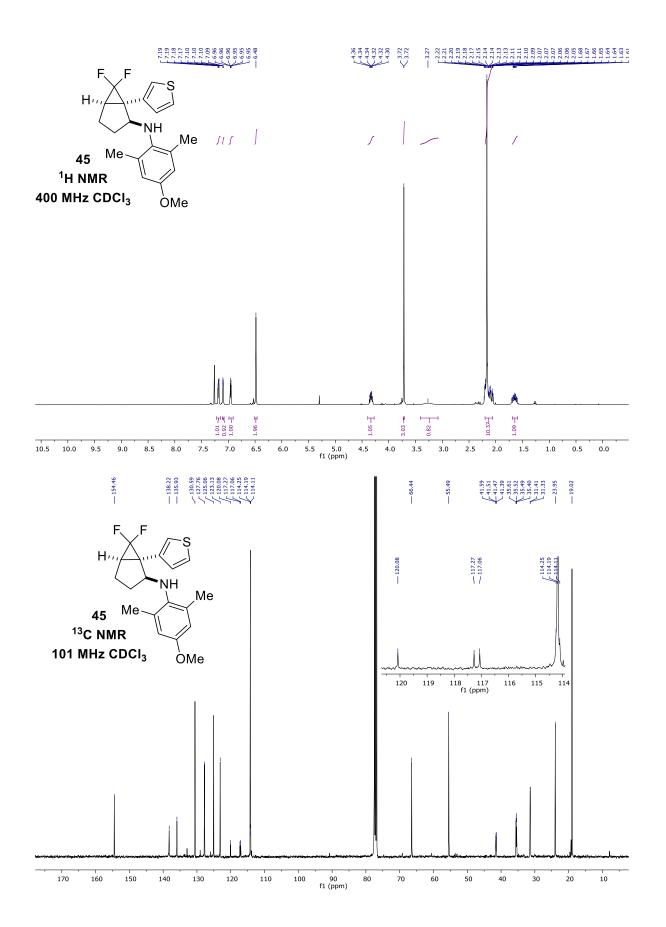


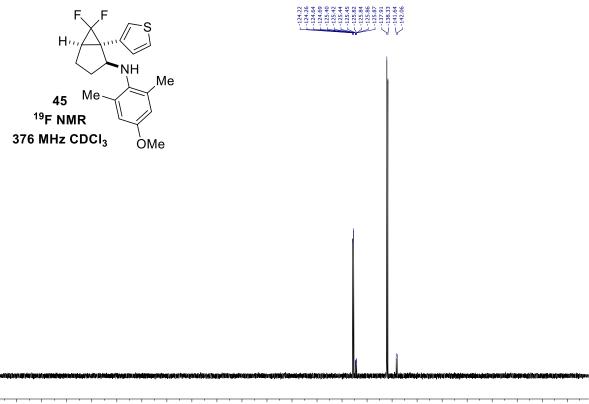


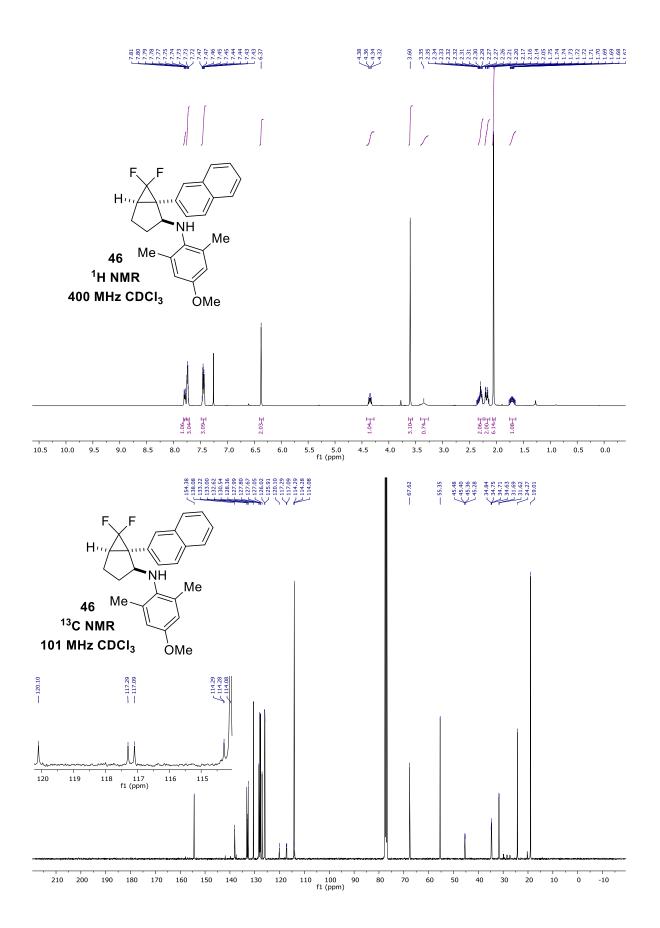











10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

