This version of the ESI published 09/02/2022 replaces the previous version published 25/09/2019. Formula EAPbBr₃ is replaced with the correct version EA₂PbBr₄ throughout.

Electronic Supplementary Information

Hybrid blue perovskite@metal-organic gel (MOG) nanocomposite: dramatic improvement of luminescence property and stability

Samraj Mollick,^{a†} Tarak Nath Mandal,^{a†} Atanu Jana,^b Sahel Fajal^a and Sujit K. Ghosh*^{ac}

^aDepartment of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India.

^bCenter for Super functional Materials, Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea.

^cCentre for Energy Science, IISER Pune, Pune 411008, India.

[†]These authors contributed equally to this work.

Corresponding author. E-mail: sghosh@iiserpune.ac.in

Figure S1. Synthesis of MOG presence of different metal ions and reactants.

a) MOG formed with Al(III) metal ions. b) MOG was not formed with Pb(II) metal ions. c) MOG was formed presence perovskite precursors. TEA represent triethylamine base.

Figure S2. Comparison of PXRD patterns of MIL-100 (Al) and metal-organic gal (MOG).

Figure S3. FT-IR spectra of pristine MOG. Highlighted peak indicates the characteristics peaks of MOG host matrix.

Figure S4. FESEM image of pristine MOG. The pristine MOG has sponge type morphology.

Figure S5. XPS spectra of MOG. (a) Al 2p; (b) C 1s (O-C=O) and C-C; (c) O 1s; (d) N 1s and π - π *.

Figure S6. N₂ sorption study at 77 K for pristine MOG.

Figure S7. PXRD patterns for confirmation of water stability of pristine MOG.

Figure S8. Photographs of Pristine MOG and EA₂PbBr₄@MOG at ambient conditions and under UV light (365 nm). Toluene solvent was used for dispersion of EA₂PbBr₄@MOG composite.

Figure S9. Photographs of Pristine MOG and MAPbBr₃ NCs and MAPbBr₃@MOG at ambient conditions and under UV light (365 nm). Toluene solvent was used for dispersion of MAPbBr₃@MOG composite.

Figure S10. FESEM image. a) MOG, b) EA₂PbBr₄ NCs and c) EA₂PbBr₄@MOG composite.

Table S1. EDX analysis from FESEM experiment of EA₂PbBr₄@MOG composite.

Element	Weight %	Atomic %
СК	36.34	59.37
O K	20.18	24.75
NK	4.63	5.31
AI K	4.76	3.46
Br L	17.86	5.57
Pb M	16.23	1.54
Total	100.00	100.00

Table S2. Pb/Br ratio of MAPbBr₃@ZIF-8 composite is 3.62. Higher ratio of Br than Pb indicates the formation of EA₂PbBr₄ perovskite NPs in composite material.

Element	Molar Ratio			
Pb	1.54			
Br	5.57			

Figure S11. Elemental mapping of $EA_2PbBr_4@MOG$ composite. Elemental mapping analysis shows that Pb and Br are present throughout the composite which indicates the homogeneous formation of perovskite NCs in composite.

Figure S12. PXRD patterns of MOG and EA₂PbBr₄@MOG composite. Star represent the peak position of EA₂PbBr₄ NPs, representing formation of EA₂PbBr₄ NCs in composite material.

Figure S13. Comparison of PXRD patterns of MIL-101 (Al), MOG and MAPbBr₃@MOG composite. Star represent the peak position of MAPbBr₃ NCs, indicating formation of MAPbBr₃ NCs in composite material.

Figure S14. Large area TEM image EA₂PbBr₄@ MOG nanocomposite.

Figure S15. FT-IR spectra of MOG and $EA_2PbBr_4@MOG$. Highlighted peaks indicate the characteristic peaks for EA_2PbBr_4 perovskite material, representing formation of EA_2PbBr_4 NCs in composite material.

Figure S16. FT-IR spectra of MOG and MAPbBr₃@MOG. Highlighted peaks indicate the characteristic peaks for MAPbBr₃ perovskite material, representing formation of MAPbBr₃ NCs in composite material.

Figure S17. N₂ sorption study of MOG, MAPbBr₃@MOG and EA₂PbBr₄@MOG composites at 77 K.

Figure S18. XPS spectra of EA₂PbBr₄@MOG. (a) Pb $4f_{5/2}$ and Pb $4f_{7/2}$; (b) Br $3d_{5/2}$ and Br 3d $_{3/2}$; (c) N 1s (EA), N 1s (OA) and π - π *; (d) O 1s.

Figure S19. XPS spectra of MAPbBr₃@MOG. (a) Pb $4f_{5/2}$ and Pb $4f_{7/2}$; (b) Br $3d_{5/2}$ and Br $3d_{3/2}$; (d) N 1s (EA) and π - π *; (c) O 1s.

Figure S20. PL spectra of MOG, EA₂PbBr₄ NCs and EA₂PbBr₄@MOG composite.

Figure S21. PL spectra of MAPbBr₃ NCs and MAPbBr₃@MOG composite.

Figure S22. Solid state UV plot of EA₂PbBr₄@MOG composite material.

Figure S23. Tauc plot of EA₂PbBr₄@MOG composite material showing bandgap (E_g) ~ 2.99 eV.

Figure S24. PL spectra of MOG and MAPbBr₃@MOG composite.

Figure S25. Solid state UV plot of MAPbBr₃@MOG composite material.

Figure S26. Tauc plot of MAPbBr₃@MOG composite showing bandgap (E_g) ~ 2.41 eV.

Figure S27. PL spectra of different batches of EA₂PbBr₄@MOG composite.

Figure S28. PL spectra of different batches of MAPbBr₃@MOG composite.

Figure S29. Time resolved PL spectra of EA₂PbBr₄ NCs.

Figure S30. Time resolved PL spectra of $EA_2PbBr_4@MOG$ nanocomposite. The average lifetime of composite larger than naked perovskite indicating confinement of EA_2PbBr_4 NCs inside MOG matrix.

Figure S31. Time resolved PL spectra of MAPbBr₃@MOG nanocomposite.

Compounds	$ au_1(ns)$	A ₁	$ au_2(ns)$	A ₂	χ²	τ _{avg} (ns)	<i>K</i> _r (ns)	<i>K</i> _{nr} (ns)	K _r :K _{nr}
EA2PbBr4NC	0.10	0.56	0.80	0.44	1.16	0.71	0.03	1.39	0.02
EA2PbBr4@MOG	0.32	0.67	3.53	0.33	1.12	3.03	0.18	0.16	1.13

Table S3. PL Decay parameters of EA₂PbBr₄ NCs and EA₂PbBr₄@MOG composite.

Table S4. PL Decay parameters of EA₂PbBr₄@MOG and MAPbBr₃@MOG composites.

Compounds	$ au_1(ns)$	A ₁	$ au_2(ns)$	A ₂	$ au_3(ns)$	A ₃	χ^2	$\tau_{avg}(\text{ns})$
EA2PbBr4@MOG	0.32	0.67	3.53	0.33	-	-	1.12	3.40
MAPbBr ₃ @MOG	3.25	0.44	10.30	0.35	40.55	0.21	1.07	22.41

Figure S32. Change in PL intensity of EA₂PbBr₄@MOG composite with time in open air for 120 days.

Figure S33. PXRD patterns of EA₂PbBr₄@MOG before and after 120 days kept in open air at RT.

Figure S34. Time dependent PL spectra of EA₂PbBr₄@MOG composite after dipping in water for various time of interval.

Figure S35. PXRD patterns of $EA_2PbBr_4@MOG$ composite before and after 12 hours of water immersion.

Figure S36. Time dependent PL spectra of $EA_2PbBr_4@MOG$, before and after keeping under UV light (365 nm) irradiation in dark condition upto 300 hours. Inset figure shows change in PL intensity of $EA_2PbBr_4@MOG$ composite with time under UV light (365 nm) irradiation in dark condition.

Figure S37. PXRD patterns of $EA_2PbBr_4@MOG$ before and after irradiation of UV light (365 nm).

Figure S38. Time dependent PL spectra of MAPbBr₃@MOG composite stored under several months in open air.

Figure S39. Time dependent PL spectra of MAPbBr₃@MOG in presence of water.

Figure S40. PXRD patterns of MAPbBr₃@MOG before and after immersion in water for 12 hours.

Figure S41. Time dependent PL spectra of MAPbBr₃@ZIF-8 composite under UV light (365 nm) irradiation for 300 h at dark condition. Inset figure shows change in PL intensity of MAPbBr₃@MOG composite with time under UV light.

Figure S42. PXRD patterns of MAPbBr₃@MOG before and after exposure to UV light.

Figure S43. Photographs of various sculptures of $EA_2PbBr_4@MOG$ at ambient condition and under 365 nm UV light.

Figure S44. Photographs shows the water stability of sculpture fabricating from $EA_2PbBr_4@MOG$.

Figure S45. Photographs of various shaped sculptures synthesis from MAPbBr₃@MOG composites materials. The photographs shows the color at ambient condition and under UV light (365 nm).

Figure S46. Different shaped sculptures were dipped in water under UV light (365 nm).

Figure S47. Photographs of water stability of thin film fabricated from MAPbBr₃@MOG composites under UV light (365 nm).

Figure S48. Photographs shows the thin film flexibility of MAPbBr₃@MOG composite under UV light (365 nm).

Table S5. Comparison of this work with other current related investigations of intense blue (λ_{max} <440 nm) hybrid perovskites.

Sustam	PL Peak	PLQY	PLQYFWHMAir(%)(nm)Stability		Air Photo		Dof
System	(nm)	(%)			Stability	Stability	Kei.
							TI :
EA ₂ PbBr ₄ @MOG	436	53	18.4	4 months	300 h	12 h	This
							work
(C ₆ H ₅ CH ₂ NH ₃).							
2PbBr ₄	411	63	20				[1]
exfoliated	411	(Average)	20	-	-	-	[1]
crystals							
MAPbCl ₃	404	5	15	-	-	-	[2]
MA ₃ Bi ₂ Br ₉	423	12	62	7 days	25 h	_	[3]
	122	54.1	4.1				[4]
CI-MA ₃ B ₁₂ Br ₉	422	54.1	41	-	-	-	[4]
$(C_6\Pi_5C\Pi_2\Pi\Pi_3).$	403	53	11		30 min		[5]
nanoplates	403	55	11	-	50 mm	-	[5]
nunopiacos							
(PEA) ₂ PbBr ₄	409	46.5	10.6	-	-	-	[6]
· · · · ·							
	100		10.0				
EAPbBr ₃	432	5	19.8	-	-	-	[7]

Abbreviations:

Phenylethylammonium (PEA).

Figure S49. Emission spectra of Mn (II) doped EA₂PbBr₄. Inset photographs shows the color of Mn(II) doped EA₂PbBr₄ NCs under UV light (365 nm).

Figure S50. Proper mixing of blue emitting EA₂PbBr₄@MOG, green emitting MAPbBr₃@MOG and red emitting Mn(II)@EA₂PbBr₄ produce white light emitting material. The photographs of diffrent colored perovskite materials and white light emitting materials are taken under UV light (365 nm).

Figure S51. CIE color space coordinates of as-fabricated WLEDs showing the wide color gamut (144 % NTSC).

Figure S52. Time dependent PL spectra of as-fabricated WLEDs stored under open air.

References:

[1] X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin; O. Bushuyev, M. Yuan, R. Comin, D. McCamant, S. O. Kelley, E. H. Sargent, *Nat. Mater.*, 2018, **17**, 550-556.

[2] M. Imran, V. Caligiuri, M. Wang, L. Goldoni, M. Prato, R. Krahne, L. D. Trizio, L. Manna, J. Am. Chem. Soc., 2018, 140, 2656-2664.

[3] M. Leng, Z. Chen, Y. Yang, Z. Li, K. Zeng, K. Li, G. Niu, Y. He, Q. Zhou, J. Tang, *Angew. Chem. Int. Ed.*, 2016, **55**, 15012-15016.

[4] M. Leng, Y. Yang, Z. Chen, W. Gao, J. Zhang, G. Niu, D. Li, H. Song, J. Zhang, S. Jin, J. Tang, *Nano Lett.*, 2018, **18**, 6076-6083.

[5] D. Liang, Y. Peng, Y. Fu, M. J. Shearer, J. Zhang, J. Zhai, Y. Zhang, R. J. Hamers, T. L. Andrew, S. Jin, *ACS Nano*, 2016, **10**, 6897-6904.

[6] S. Yang, W. Niu, A.-L. Wang, Z. Fan, B. Chen, C. Tan, Q. Lu, H. Zhang, *Angew. Chem. Int. Ed.*, 2017, **56**, 4252-4255.

[7] M. Mittal, A. Jana, S. Sarkar, P. Mahadevan, S. Sapra, J. Phys. Chem. Lett., 2016, 7, 3270-3277.