Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Supplementary Information for IMPRESSION - Prediction of NMR Parameters for 3-dimensional chemical structures using Machine Learning with near quantum chemical accuracy

Will Gerrard, Lars Andersen Bratholm, Martin Packer, Adrian Mulholland, David Glowacki, Craig Butts

Contents

S1 Methods	2
S1.1 Kernel ridge regression	2
S1.2 Training and test data	2
S1.3 Correction of DFT NMR parameter predictions for comparison to experiment	3
S1.4 Adaptive sampling	3
S1.5 Hyper-parameter optimisation	3
	-
S2 IMPRESSION performance using Molecular Mechanics geometries	4
S2.1 DFT trained model	4
S2.2 MMFF94 trained model	5
S2.3 Computational timings	6
S3 Structure revision examples	7
S3.1 Geometric mean for diastereomer discrimination	7
S3.2 Crithmifolide	7
S3.3 Caespitenone	8
S3.4 Secoafricane	9
S3.5 Grandilobalide B	10
S3.6 Toluene dioxide	11
S4 Diastereotopic proton assignment in Strychnine	12
S5 Strychnine diastereomers	14
S6 Large errors	18
S6.1 ¹ H chemical shifts	18
S6.2 ¹³ C chemical shifts	19
S6.3 ${}^{1}J_{CH}$ coupling constant	20
S7 Gaussian input files	21
S8 CSD structures	22
SO Full Gaussian reference	27
57 run Gaussian reference	4/

S1 Methods

S1.1 Kernel ridge regression

Kernel Ridge Regression¹ (KRR) provides a systematic way to map geometric features of a chemical environment (i.e. the chemical identity and geometry of atoms in the environment surrounding atoms of interest) to a target observable (in this case scalar coupling constants or chemical shifts), effectively interpolating between known data points. The observable of interest (y_i) for a given environment (\mathbf{E}_i) is estimated as a linear combination of it's similarity to the environments (\mathbf{E}_i), for which the corresponding observable is known:

$$y_i^{\text{pred}} = \sum_j^N \alpha_j k\left(\mathbf{E}_i, \mathbf{E}_j\right),\tag{1}$$

Here N is the number of chemical environments in the training data set and k is a kernel function that computes the similarity between two environments. The kernel function typically takes a value of 1 for identical environments and approaches asymptotically 0 when environments become increasingly different. The regression parameters α are regression coefficients that can be fitted to the training data by regularized least-squares optimization:

minimise
$$\sum_{i}^{N} \left(y_{i}^{\exp} - y_{i}^{\operatorname{pred}} \right)^{2} + \lambda \sum_{i}^{N} \alpha_{i}^{2},$$
 (2)

where y_i^{pred} is given by equation (1). λ controls the strength of the l_2 -regularization, which is a penalty term to the loss function that favours the regression coefficients to be more uniform and to take smaller values. This effectively reduces overfitting and if properly tuned can improve transferability to new chemical environments.

Several functional forms of the kernel similarity measure has been proposed in recent years. In this work we compare three different kernel functions. The atomic Coulomb Matrix² was one of the early successful vector representations of the chemical environment around an atom and includes two-body interactions (distances) between a given atom and all atoms within a specified cutoff radius. The Atomic Spectral London Axilrod-Teller-Muto³ (aSLATM) representation is a separate approach that also includes three-body interactions (angles). Both representations generate a vector (\mathbf{x}) per environment, where the kernel similarity can computed with a laplacian kernel:

$$k\left(\mathbf{E}_{i},\mathbf{E}_{j}\right) = \exp\left(-\frac{\|\mathbf{x}_{i}-\mathbf{x}_{j}\|_{1}}{\sigma}\right),\tag{3}$$

where the kernel width σ determines how quickly the similarity measure converges towards 0. FCHL⁴ (acronym derived from the authors surnames) also includes three-body terms, but generates the kernel similarity directly, rather than through an intermediate vector representation step.

Since the above kernel similarity measure indicates how similar the chemical environment around two *atoms* are, we chose to use the product of the kernel similarity between the two hydrogens and the two carbons to represent ${}^{1}J_{CH}$ environments:

$$k\left(\mathbf{E}_{i}^{\mathrm{CH}},\mathbf{E}_{j}^{\mathrm{CH}}\right) = k\left(\mathbf{E}_{i}^{\mathrm{H}},\mathbf{E}_{j}^{\mathrm{H}}\right)k\left(\mathbf{E}_{i}^{\mathrm{C}},\mathbf{E}_{j}^{\mathrm{C}}\right),\tag{4}$$

where $\mathbf{E}_{i}^{\text{CH}}$ is the joint set of chemical environments around the hydrogen and carbon atom involved in the scalar coupling. Alternatively just the kernel similarity between hydrogen atoms could be used, but we found an improvement in performance by also including the carbon similarity.

All representations and kernels as well as optimisation of the regression parameters were performed with the QML python $library^5$.

S1.2 Training and test data

The KRR machine was trained using 17,222 coupling environments from 882 chemical structures selected by adaptive sampling (active learning)^{6–8} from the Cambridge structural database (filtering first for structures that contain only C, H, N, O and F elements, see section S1.4 for details) then optimising the structures and calculating the DFT NMR parameters (see next paragraph for details). The test set contained an independent set of 7832 environments from 410 chemical structures from the randomly selected CSD-500 test set reported by Emsley et al⁹. All DFT calculations were carried out using the Gaussian09 Rev. D software package¹⁰ (See section S7 for example input files). The 3-dimensional chemical structures were each optimised with *mPW1PW91*¹¹/6-311g(d,p)^{12,13} using tight optimisation criteria and ultrafine integral grids were used to minimise molecular orientation affecting geometries and energies (see reference¹⁴ and references therein for a discussion of this) and the resulting optimised structures were used to compute NMR parameters with $\omega b97xd^{15}/6-311g(d,p)$. The NMR computations used gauge independent atomic orbitals and were conducted with an uncontracted basis set for coupling calculations¹⁶, called with the 'mixed' option within the Gaussian09 software. The scalar coupling values obtained from the calculations included all terms calculated: Fermi contact, spin-dipolar, paramagnetic spin-orbit and diamagnetic spin orbit terms are all included in the total nuclear spin-spin coupling produced in the output files. Some DFT structure optimisations failed to converge to an energy minima and these were excluded from the final datasets.

S1.3 Correction of DFT NMR parameter predictions for comparison to experiment

The DFT calculated magnetic shielding tensors were converted to chemical shifts using a linear scaling method and reference compounds reported by Tantillo *et al*^{17,18}. The results of this linear scaling are shown in figure S1.

Figure S1 Calculation of tantillo regression scaling factors for a) δ^{1} H and b) δ^{13} C

For the ${}^{1}J_{CH}$ data used in this work, a clear linear offset was found upon comparison of the DFT values to experimentally measured data. As a result, the offset (10.91Hz) was applied to the DFT values in both the training and test datasets.

S1.4 Adaptive sampling

The training set was obtained via an adaptive sampling approach. An initial set of 100 structures were chosen at random from the CSD-500 test set already obtained from the work by Emsley et al⁹. 5 subsets of 80 structures each were then used to train separate models to predict ${}^{1}J_{CH}$ coupling constants, ${}^{1}H$ and ${}^{13}C$ chemical shifts for all organic structures in the Cambridge Structural Database containing only H/C/N/O/F atoms. The variance in the predictions of the five models (pre-prediction variance) is a measure of how confident one can be in a given prediction. 300 structures containing the environments with the highest variance were selected to be added to the training set (100 each based on the ${}^{1}J_{CH}$, ${}^{1}H$ and ${}^{13}C$ variance). Structure optimizations and NMR computations were performed for these to build the training set. The initial random set of 100 structures was discarded after the first round, and the process was repeated four times. Some structures failed to optimise in each round and were discarded leading to a training set consisting of 882 structures.

S1.5 Hyper-parameter optimisation

The following hyper-parameters were optimized for the machine learning procedure: the cutoff radius, the kernel width and the l2-regularisation factor. The optimal combination of these three variables was found through a cross-validated gaussian-process led search using the python module BayesianOptimization¹⁹. The optimal parameters were determined as those with the lowest average mean absolute deviation across a five-fold cross-validation using the training set environments.

S2 IMPRESSION performance using Molecular Mechanics geometries

Whilst the focus of this work is to develop a machine learning method to replace the DFT calculation of NMR parameters, the geometry optimisation used in preparing the structures in all datasets still accounts for 26% of the total CPU time. The effect of replacing the DFT geometry optimisation step with a molecular mechanics based optimisation was investigated through two methods.

S2.1 DFT trained model

Firstly, the existing models (trained using DFT optimised geomtries) were used to make predictions on structures optimised through the MMFF94 forcefield²⁰. The result was a decrease in accuracy of all three models but especially so for $1_{J_{CH}}$ and δ^{13} C. The error distributions in figure S2 show a reduction in the quality of the predictions on all three parameters.

	MAE	RMSE	MaxE	Variance Cutoff	Envs removed
$\delta^1 H$	0.26ppm	0.38ppm	5.55ppm	0.1ppm	1
δ^{13} C	3.30ppm	4.63ppm	37.42ppm	5ppm	949
$^{1}J_{\rm CH}$	2.30Hz	3.00Hz	20.44Hz	1Hz	5009

Figure S2 Error distributions for IMPRESSION predictions of molecular mechanics structures, using IMPRESSION models trained using DFT geometries. Variance filters applied: $\delta^{1}H = 0.1$ ppm, $\delta^{13}C = 5$ ppm, ${}^{1}J_{CH} = 1$ Hz.

S2.2 MMFF94 trained model

Additionally, new models were trained based on molecular mechanics optimised training structures. The entire set of training and testing structures were reoptimised using the MMFF94²⁰ forcefield. These structures were associated with the previously calculated DFT NMR parameters and used to train and test new models. The model hyper-parameters were optimised using the same method as the DFT trained models and achieved an accuracy which was up to 50% worse than the models trained using DFT optimised structures.

	MAE	RMSE	MaxE	Variance Cutoff	Envs removed
$\delta^1 \mathrm{H}$	0.28ppm	0.40ppm	5.20ppm	0.1ppm	3
δ^{13} C	2.31ppm	3.48ppm	39.92ppm	5ppm	952
$^{1}J_{\rm CH}$	1.19Hz	1.75Hz	20.40Hz	5Hz	143

Figure S3 Error distributions for models trained using MMFF94 geometries predicting on structures with MMFF94 geometries, compared to the original DFT models from the main text. Variance filters applied: δ^{1} H = 0.1ppm, δ^{13} C = 5ppm, ${}^{1}J_{CH}$ = 1Hz.

S2.3 Computational timings

To highlight the value of replacing the NMR calculation with a machine learning solution, the distributions of CPU cost for all calculations in producing the training set are included here in figure S4. The 'mixed' option which uses an uncontracted basis set for calculating the fermi contact term is only relevant for coupling calculations so this has been removed from figure S4b. The mean CPU time for an optimisation was 15 hours across all 882 structures, whilst the mean CPU time for a DFT NMR calculation was 42 hours (or 22 hours without mixed). The use of a machine learning model to replace the NMR calculation therefore represents a significant time saving.

Figure S4 Distribution of CPU time for DFT calculations on the training dataset. Mean time for optimisation = 15 Hours. a) with mixed option: Mean time for NMR calculation = 42 Hours. b) without mixed option: Mean time for NMR calculation = 22 Hours.

S3 Structure revision examples

To further demonstrate the applicability of the IMPRESSION predictions to structural elucidation problems, 5 examples of proposed natural product structure revisions from the literature were investigated²¹. No ${}^{1}J_{CH}$ values were reported for these compounds, so we can only make comparisons using the chemical shift models.

For the 5 compounds, Cartesian coordinates for the original and revised structures were obtained from the literature along with the experimental δ^{1} H and δ^{13} C assignments. The Cartesian coordinates were optimised, NMR parameters were computed and IMPRESSION predictions were made for each structure. The mean absolute error between the IMPRESSION predictions and experiment were compared to the corresponding MAE between the DFT calculations and the experimental values. Variance cutoffs of 1Hz, 0.1ppm, and 5ppm were used for ${}^{1}J_{CH}$, δ^{1} H, and δ^{13} C respectively.

S3.1 Geometric mean for diastereomer discrimination

As we combine different types of data to gather evidence for a given diastereomer, we take the geometric mean of mean absolute errors for each of the parameters:

$$MAE_{combined} = \sqrt[3]{MAE_{J_{CH}}MAE_{\delta^{1}H}MAE_{\delta^{13}C}}$$
(5)

or in the case where ${}^{1}J_{CH}$ values are not avalable:

$$MAE_{combined} = \sqrt[2]{MAE_{\delta^1 H} MAE_{\delta^{13} C}}$$
(6)

S3.2 Crithmifolide

Comparing the results from our DFT method to that used in the original work, the predictions for the ¹H chemical shifts do not show the same improvement in accuracy between the original and revised structures. In the original work an improvement of 0.08ppm RMSE was reported, whereas comparisons using our DFT method found an increase in MAE of 0.03ppm (and RMSE of 0.01ppm). Pleasingly the IMPRESSION results mirror this discrepancy and match the DFT method on which the model was trained.

The ¹³C chemical shift results from our DFT method agree with the literature, showing an improvement in fit from the original to the revised structure. The indecisive results from the geometric mean comparison reflect this discrepancy between the two chemical shift comparisons.

Figure S5 Original and revised structures for Crithmifolide.

Figure S6 Change in the fit between prediction and experiment for both DFT and IMPRESSION for Crithmifolide. a) δ^{1} H. b) δ^{13} C. c) Geometric mean across both parameters.

S3.3 Caespitenone

The results for Caespitenone show good agreement between IMPRESSION, our DFT method, and the previously published results. Large deviations (>5ppm) were reported in the ¹³C chemical shift results, and the DFT method used in this work reproduces this. The IMPRESSION predictions show the same change in the fit to experiment.

The methods used in this work also showed a significant improvement in fit for the ¹H chemical shifts, resulting in a reduction in error of over 50% for both our DFT method and IMPRESSION.

Figure S7 Original and revised structures for Caespitenone

Figure S8 Change in the fit between prediction and experiment for both DFT and IMPRESSION for Caespitenone. a) δ^{1} H. b) δ^{13} C. c) Geometric mean across both parameters.

S3.4 Secoafricane

The reported values in the original work show a significant improvement in fit between experiment and calculation for both ${}^{1}H$ and ${}^{13}C$ chemical shifts. The results from our DFT method show a smaller but still significant improvement in fit for both parameters, and IMPRESSION mimics these results, but with a smaller change in MAE for the ${}^{13}C$ comparison.

Figure S9 Original and revised structures for Secoafricane.

Figure S10 Change in the fit between prediction and experiment for both DFT and IMPRESSION for Secoafricane. a) δ^{1} H. b) δ^{13} C. c) Geometric mean across both parameters.

S3.5 Grandilobalide B

The literature results for Grandilobalide B show a large improvement in fit for ¹³C chemical shift, which is not reproduced in our results. The results for ¹H chemical shifts are reproduced, in the literature a small decrease in the fit to experiment from 0.27ppm RMSE to 0.33ppm RMSE is reported. Both IMPRESSION and our DFT method show a small but significant reduction in fit for the revised structure.

Figure S11 Original and revised structures for Grandilobalide B.

Figure S12 Change in the fit between prediction and experiment for both DFT and IMPRESSION for Grandilobalide B. a) δ^{1} H. b) δ^{13} C. c) Geometric mean across both parameters.

S3.6 Toluene dioxide

In the original work, a large improvement in the fit to experiment for both ¹³C and ¹H chemical shift was reported. The results from our DFT method were inconclusive for both parameters in this case. Pleasingly IMPRESSION mimics the DFT results, irrespective of the DFT methods fit to the reported results.

Figure S13 Original and revised structures for Toluene Dioxide

Figure S14 Change in the fit between prediction and experiment for both DFT and IMPRESSION for Toluene Dioxide. a) δ^{1} H. b) δ^{13} C. c) Geometric mean across both parameters.

S4 Diastereotopic proton assignment in Strychnine

Further analysis was performed to see if the ${}^{1}J_{CH}$ IMPRESSION predictions could be used to assign the diastereotopic protons in strychnine. The ${}^{1}J_{CH}$ values for the 3 sets of diastereotopic protons for diastereomer 1 were compared across the three data sources: IMPRESSION predictions, DFT calculations and experimental measurements.

Figure S15 Identification of the diastereotopic protons in Strychnine

The results show that in cases where there is the three methylenes were there is any significant (>2Hz) difference in the experimental ${}^{1}J_{CH}$ values (figures S16a, S16b, S16c) the DFT method and IMPRESSION predictions can distinguish between the diastereotopic protons and correctly assign them. Where the difference in experimental values is small (Figure S17, both DFT and IMPRESSION are not reliable for assignment.

Figure S16 Comparison of ${}^{1}J_{CH}$ values across all data sources for diastereotopic protons showing significant experimental difference. a) 11a/b. b)18a/b. c)23a/b.

Figure S17 Comparison of ${}^{1}J_{CH}$ values across all data sources for diastereotopic protons showing small experimental difference. a) 15a/b. b) 17a/b. c) 20a/b.

S5 Strychnine diastereomers

MAE values for each of the parameters across each of the 14 strychnine structures compared to experiment:

Structure	Parameters	MAE [IMP-EXP]	MAE [DFT-EXP]
1a	$\delta^1 \mathrm{H}$	0.28ppm	0.25ppm
1b	$\delta^1 \mathrm{H}$	0.73ppm	0.56ppm
2	$\delta^1 \mathrm{H}$	0.23ppm	0.19ppm
3	$\delta^1 \mathrm{H}$	0.37ppm	0.35ppm
4	$\delta^1 \mathrm{H}$	0.69ppm	0.52ppm
5	$\delta^1 \mathrm{H}$	0.44ppm	0.32ppm
6	$\delta^1 \mathrm{H}$	0.42ppm	0.35ppm
7	$\delta^1 \mathrm{H}$	0.77ppm	0.54ppm
8	$\delta^1 \mathrm{H}$	0.71ppm	0.53ppm
9	$\delta^1 \mathrm{H}$	0.70ppm	0.66ppm
10	$\delta^1 \mathrm{H}$	0.48ppm	0.49ppm
11	$\delta^1 \mathrm{H}$	0.55ppm	0.49ppm
12	$\delta^1 \mathrm{H}$	0.57ppm	0.36ppm
13	$\delta^1 \mathrm{H}$	0.73ppm	0.45ppm

Structure	Parameters	MAE [IMP-EXP]	MAE [DFT-EXP]
1a	δ^{13} C	2.26	1.87
1b	δ^{13} C	4.54	3.84
2	δ^{13} C	2.75	2.94
3	δ^{13} C	4.34	3.98
4	δ^{13} C	7.69	7.11
5	δ^{13} C	3.44	2.99
6	δ^{13} C	4.77	3.63
7	δ^{13} C	7.77	8.09
8	δ^{13} C	7.21	7.41
9	δ^{13} C	8.47	7.73
10	δ^{13} C	3.98	3.98
11	δ^{13} C	4.80	4.22
12	δ^{13} C	5.05	3.79
13	δ^{13} C	5.53	3.84

Structure	Parameters	MAE [IMP-EXP]	MAE [DFT-EXP]
1a	$^{1}J_{\mathrm{CH}}$	1.83Hz	1.29Hz
1b	$^{1}J_{\mathrm{CH}}$	4.11Hz	4.06Hz
2	$^{1}J_{\mathrm{CH}}$	2.98Hz	2.22Hz
3	$^{1}J_{\mathrm{CH}}$	3.72Hz	3.64Hz
4	$^{1}J_{\mathrm{CH}}$	5.34Hz	4.94Hz
5	$^{1}J_{\mathrm{CH}}$	3.53Hz	2.98Hz
6	$^{1}J_{\mathrm{CH}}$	2.26Hz	1.83Hz
7	$^{1}J_{\mathrm{CH}}$	6.86Hz	4.45Hz
8	$^{1}J_{\mathrm{CH}}$	5.08Hz	4.73Hz
9	$^{1}J_{\mathrm{CH}}$	8.12Hz	5.24Hz
10	$^{1}J_{\mathrm{CH}}$	3.21Hz	3.04Hz
11	$^{1}J_{\mathrm{CH}}$	2.78Hz	3.26Hz
12	$^{1}J_{\mathrm{CH}}$	4.34Hz	4.26Hz
13	$^{1}J_{\mathrm{CH}}$	3.32Hz	3.58Hz

Structure	Parameters	MAE [IMP-EXP]	MAE [DFT-EXP]
1a	$\delta^{1}H + \delta^{13}C$	0.80ppm	0.68ppm
1b	$\delta^{1}H + \delta^{13}C$	1.83ppm	1.47ppm
2	$\delta^{1}H + \delta^{13}C$	0.80ppm	0.75ppm
3	$\delta^{1}H + \delta^{13}C$	1.27ppm	1.18ppm
4	δ^{1} H + δ^{13} C	2.30ppm	1.92ppm
5	δ^{1} H + δ^{13} C	1.24ppm	0.98ppm
6	$\delta^{1}H + \delta^{13}C$	1.41ppm	1.13ppm
7	$\delta^{1}H + \delta^{13}C$	2.45ppm	2.09ppm
8	$\delta^{1}H + \delta^{13}C$	2.27ppm	1.99ppm
9	δ^{1} H + δ^{13} C	2.43ppm	2.25ppm
10	$\delta^{1}H + \delta^{13}C$	1.39ppm	1.40ppm
11	$\delta^{1}H + \delta^{13}C$	1.62ppm	1.43ppm
12	$\delta^{1}H + \delta^{13}C$	1.58ppm	1.17ppm
13	δ^{1} H + δ^{13} C	1.78ppm	1.32ppm

Structure	Parameters	MAE [IMP-EXP]	MAE [DFT-EXP]
1a	$\delta^1 H + \delta^{13} C + {}^1 J_{CH}$	1.05	0.84
1b	$\delta^1 \mathrm{H} + \delta^{13} \mathrm{C} + {}^1 J_{\mathrm{CH}}$	2.39	2.06
2	$\delta^1 \mathrm{H} + \delta^{13} \mathrm{C} + {}^1 J_{\mathrm{CH}}$	1.24	1.08
3	δ^{1} H + δ^{13} C + $^{1}J_{CH}$	1.82	1.72
4	$\delta^1 \mathrm{H} + \delta^{13} \mathrm{C} + {}^1 J_{\mathrm{CH}}$	3.04	2.63
5	$\delta^1 \mathrm{H} + \delta^{13} \mathrm{C} + {}^1 J_{\mathrm{CH}}$	1.75	1.42
6	δ^{1} H + δ^{13} C + $^{1}J_{CH}$	1.65	1.33
7	$\delta^1 \mathrm{H} + \delta^{13} \mathrm{C} + {}^1 J_{\mathrm{CH}}$	3.45	2.69
8	$\delta^1 \mathrm{H} + \delta^{13} \mathrm{C} + {}^1 J_{\mathrm{CH}}$	2.97	2.65
9	δ^{1} H + δ^{13} C + $^{1}J_{CH}$	3.64	2.98
10	$\delta^1 \mathrm{H} + \delta^{13} \mathrm{C} + {}^1 J_{\mathrm{CH}}$	1.84	1.81
11	$\delta^1 \mathrm{H} + \delta^{13} \mathrm{C} + {}^1 J_{\mathrm{CH}}$	1.94	1.89
12	δ^{1} H + δ^{13} C + $^{1}J_{CH}$	2.21	1.80
13	$\delta^1 \mathrm{H} + \delta^{13} \mathrm{C} + {}^1 J_{\mathrm{CH}}$	2.19	1.84

Figure S18 The 13 Energetically viable Strychnine diastereomers used for the IMPRESSION validation²²

S6 Large errors

The largest 5 individual errors between DFT and machine learning for the test set are shown here, for each of the parameters δ^{13} C, δ^{1} H, and $^{1}J_{CH}$.

Mol ID	Atom ID	Error [ppm]	DFT [ppm]	ML [ppm]	Variance [ppm]
YEHWUD	36	11.22	-4.27	6.96	0.63
BEDFUM	6	3.22	3.21	6.42	0.18
IQIKOI	21	2.15	5.34	7.50	0.0023
AROKUN	19	2.01	6.83	8.84	0.0025
WAWQUH	37	1.94	0.76	2.70	0.014

S6.1 ¹H chemical shifts

(a) YEHWUD

(b) BEDFUM

(c) IQIKOI

(e) WAWQUH

(d) AROKUN

Figure S19 Biggest errors in ¹H prediction.

S6.2 ¹³C chemical shifts

Mol ID	Atom ID	Error [ppm]	DFT [ppm]	ML [ppm]	Variance [ppm]
DOVWAM	4	-63.33	217.35	154.02	353.15
QUFCEZ	15	42.92	60.82	103.75	45.22
RACGEJ	10	-37.87	180.27	142.40	2.02
BEHWER	5	35.31	115.95	151.26	2.89
QOMVUK	1	32.90	92.98	125.37	8.41

(a) DOVWAM

(b) QUFCEZ

(c) RACGEJ

(d) BEHWER

(e) QOMVUK

Figure S20 Biggest errors in 13 C prediction.

S6.3 $^{1}J_{CH}$ coupling constant

Mol ID	¹ H Atom ID	¹³ C Atom ID	Error [Hz]	DFT [Hz]	ML [Hz]	Variance [Hz]
YEHWUD	10	36	24.63	116.31	140.94	365.70
JOTKIM01	50	51	24.40	194.51	218.91	8.52
ZEYLAS	61	70	-18.31	182.64	164.35	3.49
IDURIJ	13	14	-13.37	171.56	158.19	0.13
FEMXOK	7	19	12.13	144.21	156.35	1.01

(d) IDURIJ

(e) FEMXOK

Figure S21 Biggest errors in ${}^{1}J_{CH}$ prediction.

S7 Gaussian input files

Example input files for the Gaussian09 software are included here.

%Chk=Mol00001_OPT %NoSave %mem=26GB %NProcShared=8 # opt=tight mpw1pw91/6-311g(d,p) integral=ultrafine MaxDisk=50GB Mol00001 OPT 01 С -0.03886 1.59169 0.09099 С -0.05003 0.06176 -0.01881 0 0.67385 -0.53818 1.05146 С -1.48763 -0.47708 -0.00138 0 -1.98929 -0.21555 1.30848 С 0.65858 -0.42520 -1.30698 0 -0.00173 0.02276 -2.45802 С 2.11254 0.00797 -1.33359 0 2.55982 -2.27613 0.61959 н 0.97884 0.26194 1.95353 н -0.42422 2.04115 -0.82812 н -0.66421 1.91188 0.92773

Figure S22 Gaussian Optimisation Input File

н

0.07032

%mem=26GB NProcShared=8 #T nmr(giao,spinspin,mixed)wb97xd/6-311g(d,p) maxdisk=50GB

-0.53935

1.80579

Mol00001 NMR

0 1			
С	-0.03886	1.59169	0.09099
С	-0.05003	0.06176	-0.01881
0	0.67385	-0.53818	1.05146
С	-1.48763	-0.47708	-0.00138
0	-1.98929	-0.21555	1.30848
С	0.65858	-0.42520	-1.30698
0	-0.00173	0.02276	-2.45802
С	2.11254	0.00797	-1.33359
0	2.55982	0.61959	-2.27613
н	0.97884	1.95353	0.26194
н	-0.42422	2.04115	-0.82812
н	-0.66421	1.91188	0.92773
Н	0.07032	-0.53935	1.80579

Figure S23 Gaussian NMR Calculation Input File

Training Data CSD Reference Names

ABIVIQ ABOTOC	BOPKAS BOTMUT	CUDSAX CUGLIA	EFUMUP EGAXAL	Fofqog Fogbin
ACALIZ	BOVCEW	CUKCAM21	EGOTAW	FOGKIW
ACTOLD05	BOVJOL	CUKSEG	EGUQAY	FOLQUT
	BUBPAQ	CUSFEC		FOMZUD
				FOUNDV
AFIFAX01	BUGKIX01	CYTOSM13	EKAHOO01	FOVVIV01
AFIGIG	BUGMOG	DAFLIH	ELENEQ	FOWPOW
AFIHOO	BULHIZ	DAJXUI	ELOKIB	FRANAC04
AFUNAR	BULKID	DAQJOV	ELUGOI	FUCVOO
AGAVOU	BUYZUQ01	DAWYEI	EMAQEQ	FUGXIO
AHMVAL	BZCPRO	DEBDIX04	ENIJIV	FULJON
AHUHUH	BZPHAN01	DEBGIB	EREVUS	FULZIV
	CACWAG	DEGREM	ERISII	FUMIOY
			ESTILOUS ESUIOOZ	
	CANPEM		ESUB0Z	FUTWALL
AMUVIP	CASTEV	DEVCIR	ETIROQ	GAMLOV
ANIZUT	CATKAL	DEYTIL01	EVAWEE	GAQLOB
APUREI01	CAXLIX	DIBENZ13	EVAWIJ	GASNEU03
AQUWOY	CBUDCX02	DIBNEH	EVICUJ	GATVED
ARIWAB	CEBKEZ	DICRUD	EVIMUR	GAZPII
ATEZOO	CEBKEZUG	DIFQEP	EVOGOM	GEFLEK
				GEFQIS GEHXEZ
AVALAM	CEGREL	DISJEW	EXOQEO	GELDEI01
AWIZUB	CEHZIY	DIZMOQ	EYIKUS	GENFUA
AWOTAH	CEKPIR	DLALNI14	EYOGEG	GEYTIN
AXADAF	CEKYAS	DLHTDA10	EZUJIU	GICCEA
AXADUZ	CELRAP	DLTYRS	EZUTIC	GILKIW01
	CEMBED		FABVUC	GIMGIU
			FACQUV	GIVHOJ
AZIWUD	CIESIV	DODWOI	FAFXUF	GOCCOS
BAFDIV	CIGJUX	DOFGEK	FAHPAH	GODSOH
BAJYOB	CIKBUU	DOKVUV01	FAMFII	GOJVUY
BANJOQ	CIPBAF	DOPSAC	FASZOP	GUFXOV
BAPQOA	CIQHOA	DOQDET	FATBEI	GUHXOY01
BAPYAU		DUSZES		
BASHIIA	CISXOT	DOVGUR	FACALED	GUMMOZ01
BATVEY	CITQAY	DOYVUK	FFFYFX	GUYBOR01
BAVZEE	CIXGOF	DUCWAA	FEGFIG	HAFDIC
BAYZUW	CMXMCH	DUDDOV	FEHLEL	HAHVIY
BEDJOM	COCPAN	DUDKUJ	FEKDUU	HAKWUN
BEFJAY	COFGUA	DUFVEG	FEQFIT	HALNEP
	COGMOR		FERION	
BEMZAV	COLVIN	DUNSAH	FESOAX	HATXI.I
BEXNUO	COMXOR	DUNTOV	FEVHEV	HAWTEF
BEZREF	CONNUP	DUSJAD	FEWSEH	HDPDXZ
BIBXIT02	COTMEE	DUSWIY	FICLEK	HELYOM01
BICVIS01	COWLUX	DUTTAN10	FICTOC	HEQWOQ
BIFFAZ	COXREO	ERIMED		
	COVSIS			
BOCHIL	CTOGBS20	ECMPCA	FIYBEU	HIFPIX
BOGFUA	CTPROL10	EDEKOQ	FNPEYO	HIFQET
BOMBEK	CUDDUB	EFIKOT01	FOCBEF	HIGCIK

Training Data CSD Reference Names

HIYHAY	KADDIE	MAMKAO	NEFHOY	PENBUH
HIVICINSP				
				PEPGEW
		MATRIC		
HOOSIO			NEWREN	
HOVELIT	KEMHAI	MECZID	NEXMOT	PHTHAC06
HOWWOH	KESTAD	MEDI EN	NIFBE.I	PIBGOX
HOZBII	KIBKAJ	MEGNES	NIFJOB	PIGROM01
HOZGAG	KIGQIA	MEHPIB	NIFRAX	PIGTAC
HURLAI	KIHXUW	MELVAA	NIHNEY	PINVOX
HXMTAM10	KIMSUU01	MENNAV	NIJKEX	PINYIW
HXOCTM	KINGUJ	MENSEE	NINWEO	PIPINE01
IBUYIQ	KIXROA	MEQFAS	NIPYAZ	PIPINE11
ICAPOR07	KIZVEV	MESYIS	NISMAD	PITQIS01
ICEMIO01	KOCKETUT	METAMI02	NIVJAE	POBDER
				POBSAB
	KORRAS			
IHANAG	KOTJAE	MEYWOC	NOOBLIO	POBBOE
IHOOUT	KOVEUW	METHEG	NOVDOR	POSJAI
IJIHOA	KOWCAC	MIDXIH	NUBLOL	POVJAL
ILAJIQ	KOXBEE	MIHZUZ	NUHFEB	POZWUW
ILIMEV02	KUGKAZ	MIMREG	NUKJIO	PUDDUP
IMUXOF	KUKCUP	MIMTAE	NUKXEX	PUQNUK
INACET03	KUQFUY	MINGAR	NUPQEU	PUQTAW
IQIDIV	KUVBEI	MIPYAL	NUQHIR	PUYTAE
IQIZAK	KUVKES	MIQNEF	NUYWIP	QACVAT
	KUVWON01	MIVIUG	OBOWOU	QAHSOI
	KUWZUS		OCEHIPUT	QAJBUZ
ITUVOI	LACVAM	MORXAC	OHIWLIX	
IVAKAS	LAFHFH	MOECOA	O.JAQOH	QANQUE
IVEREH	LAVCET	MOGYIR	OLOJAB	QAPJIA
IVIDAS	LEGXUS	MOLQUB	OLOREM	QAPNAZ
IVIHAY	LEHJAM	MOYKUG	OMCHDO	QAPVOT
IXOYEA	LEMVEH	MTHPRG	OMOMOS	QATVIS
IYASUW	LEPPIF	MTYROS01	ONILAZ	QAZMIP
JABKUV	LERJAV	MUGDID	OPOZAW	QEBBUW
JAPBIO	LESCEI	MUHZUM	OQUHEP	QECHEO
				QEPNUW
		MUVCAL	OYOFMB	
JEGTUN		MVAHIV	OZICAC	QIQYIA
JEXBOE	LIWFEC	NACGOP	PABBIF	QIRLUA
JINHET	LIYPEO	NADVIX	PADTIX	QIWGEJ
JOCDAG	LOCVEE	NAFHOR	PADXOJ	QIWMUG
JONQOU	LOKDEW	NAMZAC	PAFGUA	QOVREZ01
JOTBAV	LOMHOK	NAMZEG	PAGLEO	QUDREM
JOYGEJ	LOMNUY	NAPHTA23	PAGWIG	QUVPOO
JOZYUU	LOSMOW	NAPTYR11	PAJDOU	QUWJOJ
JUSOUI		NAYPAF	PAY.IFH	RAMZEI
KABHED	LURVUR	NAYZOD	PEFSID	RAYXEU
KACNIN	LUVPEX	NEDYEA	PEGLUL	RAYXOH

Training Data CSD Reference Names

REBXON REDYAB REGFER REGKIX01 REGYEJ RELCUH REYCII REZJUC RIFBUE RIGVEJ RIQWIZ RIWNEQ RIXXOM RIZWUS ROLVEV	SUPKET SUSYAI01 SUVCUJ SUXCAQ SUXROS SUZJAZ TABBOQ TABNIV TACRIB02 TAHMOE TALHAR TALNAV01 TAMLID TANBEP TANTEK	URAWEQ URESOB USUZUF UTAGAZ UTEJIO UTIHOV UVIMES UWACEB UXICAH UYIREB UYUDUO UZUHED VACLAM02 VAJVOU VAPCEW	WOBLAA WOBWUF01 WOGQEO WOJGUX WOJHAG WOKPER05 WOLNIW WOZPUW WUCJOV WUKLAP WUSQUY WUWMEG WUYMUZ XAKLUR XAVMUE	YEXZIM01 YIDPEG YIDPIM YIFWAM YIGSUE YIHHON16 YILYOJ YOGSIY YOKYOO YONBOT YOPLIY10 YOWRAF YOXGIB YUCQUJ YUDLAM
ROSLAO	TAPCIW	VAWJAG	XAVZOJ	YUDMOZ
RUCFAX	TARGEB	VAXLAJ	XAXHOW	YUDPAQ
RUGCED	TARGUO	VEBWEH	XAYDIK	YUFYED
RUGQOA				YUHTEA03
RUISAS	TEGVIIW	VESHUX	XERYLIA	YUNTOR
RURRAY	TEJREG	VEXCUW	XEDNAX	YUNYIR
RUVSAC	TEKSOR	VEZNOF	XEDTEG	YUQCUJ
RUWJAU	TELKAZ	VIBZUB	XEHTUZ	YUQMED
RUWMAX	TENMIK	VIDFEV	XEMDAX	ZAJHOH
RUWQIK		VIGVVUY	ΧΕΙΝΔΑΕ	
SADJEM	TICBUD	VIHBIZ	XEVCEH	ZEWPUM
SADXOL	TIHBAO	VOFSEP	XEWNES	ZIFKEG
SAGQUO	TIMHED	VOKXOJ	XEXQOH01	ZILQOA01
SAHCOV	TIQNIQ	VOLKIS	XEYRIE	ZIYSIL
SAHZAF	TIQWOG	VUDKIP	XEZYIK	ZODXEV
		VUFGEIUT	XIJFEB	
SAPHALI	TOHVIW	VUEWAV	XIM.IAF	ZONYUY
SARJED	TOPROG	VUKFOY	XINJIN	ZOZTOX
SAWHUV	TOPSEW	VUNFUF	XISHOY	ZUPGIA10
SAWJUX	TOVSUS02	VUPHIZ	XIVVAA	ZUPGUM
SAYTAN	TPHETY01	VUTBUI	XIWREA02	ZUPHAT
SAYWOG	TUCJEI			
SAZLAN	TUUIEP	WARTALI	XOGWAN	ZZZLUK03
SEDMOD		WACZUX	XOMJIS	ZZZIMDOUZ
SEHNAW01	TUNCOW	WADGEO01	XOWDAQ	
SEJWOT	TUNTUT	WADQID	XUHPIB	
SELKEB	TUSQUU	WAGBEO	XUPYIR	
SEQREN	TUWCEU	WALNEC	XUVSUE	
SIQQEP				
SIVJOY		WAZMAI	YAMHID01	
SIWDEH	UCOQAE	WECXUZ	YAPBUO	
SIYYUU	UCUZOJ	WESVIZ	YAPZEU	
SOPLEO	UDEHER	WEWTUP	YAQWAR	
SOXHAQ	UFAGOY	WIBWIN	YARDUQ	
SUCACE12 SUCANH12				
SUCROS47	LIPACLIK	WIPHAG	YEIPAG	
SUCTAN	UPADOG	WIVYUV	YEJZES	
SUFGAB	UQIMUE	WIYDUF	YEKVEQ	
SUHYIE	URAHIF	WIZZAI	YENLAF	

Testing Data CSD Reference Names

ACRDIN07	DAFTAF	GADSIO	KETYUF	OGIMIC
AFIQUC	DAJZEU	GADVAJ	KOFKAR	OHEWOP
AHATEK	DASNIV	GAQJUF	KOGWUZ	OJICUF
AHOWOL	DENXUP02	GASXON	KOJTOT	OMABEK
AHOXOL	DILDUZ	GAWFEQ	KOTMUB	OMSTER01
AJIXUM	DILKIT	GIDHUW	KUJZIY	ONBZAM
AKUBIT	DITZOX	GIXKOP	KUTKAL	OPIZAQ
ALEXEW	DIWWEN	GIZFEB	KUYWEH	OWIWUN
ALOSEZ	DIZWEQ	GIZRUE	KUZJIA	OXAROV
AMEXOH	DOHPEV	GOVQOX	KUZQIG	OXUJUN
AMUQOQ	DOLBIR10	GUCJUK	LADNEL	PACWAU
ANAHII	DOMNEY	GUFYOX	LAFHEH	PANLEZ10
ANOSAY	DORKOK	GUJGEX	LAVSIL	PEDHAJ
APODUG	DOTFOI	GUTZOM	LEVSIO	PEFGIS
APUPIK	DOVWAM	HABNED	LILDEP	PELXAG10
AQAGII	DUTKOU	HAMTIZ	LIXQEO	PEPLAX
AQEYAW	DUZLUF	HAXREE	LIZHEJ	PEIRAH
AROKUN		HECNOS		PEWNIQ
ARONOM	EABZBU	HESTOO	LUDZII	PEXPEN
ARUZUK	EBAXOW	HIMSUS	LUQDUS	PHBZACUI
	EBOVEX	HISINII		
		HOMKIE	MEHLER	
AZIDES	FKAHOP	HOMZUG	MEHNAP	
BAJCIY03		HONKEC	MEIDOLI	PLIMOEV
BAPPLIE	FKOGAO	HUDHEU	MEJOEY	PUNFAH
BAQNEM	FLAWIX	HUDYUA	MELAMI05	PUPBAD01
BASNOZ	EMEFOT	HUVWOL	MENDAL01	PUWNIG
BAWRAT	EMIPUM	HUYYOP	MESQOR	PYAZAC
BAYPAT	EMISUQ	IBEHII	MEYBIB	QAKDAJ
BEDFUM	EMODUG	IBOPIA	MISDAT	QAMKEW
BEDLEB01	ENIMET	IDUJEW	MOBNUM	QECNAP
BEGDIB01	EPHEDR01	IDURIJ	MODXUZ	QEPRIO
BEHWER	ESESEA	IJEZUS	MOSLAI	QEXKUA
BERSOG	EVIHUM02	INAVIC	MOTNUF	QIYLAM
BIKNUE	EVILEB	IPINIE	MUBBAN	QOMVUK
BIXQEF	EVINII	IQIKOI	MUJGEE	QQQAMS02
BOLGOZ	EVIQEF	IQIZEO	MUTWON	QUFCEZ
BOMSIH	EWOBIB	IQUBZA	NAJLUF	QUFJUY
BOPJAS	EXEWEJ		NANJIW	QUWFIZ
BUFNEVUT	EXEYUD		NAPIPR	RACGEJ
BUGQUQ	EXUVUP	ISIJIE	NASZAJ	RAKIOU
	ETASAZ			RAVFUK
CRMZPN21				RIMHEC
CIKSAO	FAIDEC	JESHIZ	NORFLIW	RIZBAE
CINCHO10	FFLDOR	JIPCUG10	NUKSAO	ROGRIQ
COCYAW	FEMGAE	JOOTUE	NUQLES	ROHJED
COLBAG	FEMXOK	JOTKIM01	NURZOP	ROJHOP
CORTPY	FEPTID	JULGOO	OCATOC	ROJXOD
COWPUZ	FEZLUT	KABKIJ	OCAWOF	RUCNOU
COYBOJ	FIHLEO	KAHJEK	OCIPAR	RUKTAU
CUTCUQ	FOSLEG	KAKHEL	ODOROO	RULDAF
CXMTUN	FUPWES	KEMFIS	OFEVOL	RULHOX

Testing Data CSD Reference Names

RI IVPI.I	WIFOFI
SATPEI02	WIQZOL
SAIPUZ	WORKIN
SAVREN	WOKJOV
SAWVET	WUCVIB
SA7FOO	XARELIE
SEFNOG	XASHUW
SENKUR	XAZYIG
SEYCUU	XEZFUF
SIGSAD	XIMGAB
SIHCES	XINHII
SOGCUN	XIZVAD
Sorfiq	XOFFEF
SUHFEH	XOHMAI
SUKNIW02	XOW.IUP
	YI I KI K
	VUINOI
SUYYIV	XULINUI
TAJSOM	XUVBAT
TAVJAD	YAZDEI
TEMKAZ	YEGGIA
TESDOL	YEHWUD
	VEDTI701
	YIDTIQ
TIWZUV	VIMPOB
TOPRIB	YIPPOC
TOPXUT	YIXPUR
UBUXOG	YOCWUK
	VOLTOL
	TUFIUE
UKUROJ	YOWYOY02
UMUKUJ	YOXRIO
UNAMOL	YUNYUC
UNURIF	ZATDOP
	ZEDAUV
UQOLIW	ZEMNAG
UWEZED	ZEYLAS
UWOCAM	ZIGBAS
VAFPAV	7IKQIT
VANEEV	ZIWMOJ
VEQMUA	ZOFNUD
VETJIO	ZOSVEI
VEZCUY	ZOXYOA
VIDDAO	ZOYMOP07
	7778PV10
VILPUB	ZZZFFYUI
VUCHUR	
VOGDIE	
VONNOB	
VOXNOL	
WAFBIQ	
WAWQUH	
WECZEJ	
WEVVEZ	
· · · · · · · · · · · · · · · · · · ·	

S9 Full Gaussian reference

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

Notes and references

- [1] C. Saunders, A. Gammerman and V. Vovk, 1998.
- [2] M. Rupp, R. Ramakrishnan and O. A. Von Lilienfeld, J. Phys. Chem. Lett., 2015, 6, 3309–3313.
- [3] B. Huang and O. A. von Lilienfeld, arXiv preprint arXiv:1707.04146, 2017.
- [4] F. A. Faber, A. S. Christensen, B. Huang and O. A. von Lilienfeld, J. Chem. Phys., 2018, 148, 241717.
- [5] A. S. Christensen, L. A. Bratholm, S. Amabilino, J. C. Kromann, F. A. Faber, B. Huang, A. Tkatchenko, K. R. MÄijller and O. A. von Lilienfeld, QML: A Python Toolkit for Quantum Machine Learning, 2019, https://github.com/ qmlcode/qml.
- [6] H. S. Seung, M. Opper and H. Sompolinsky, Proc. 5th Ann. Work. Comp. Learn. Theory, New York, NY, USA, 1992, pp. 287–294.
- [7] M. Gastegger, J. Behler and P. Marquetand, Chem. Sci., 2017, 8, 6924-6935.
- [8] J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev and A. E. Roitberg, J. Chem. Phys., 2018, 148, 241733.
- [9] F. M. Paruzzo, A. Hofstetter, F. Musil, S. De, M. Ceriotti and L. Emsley, Nat. Commun., 2018, 9, 4501.
- [10] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson and s. S. S. o. S. I. others (for the full reference, *Wallingford, CT*, 2016.
- [11] C. Adamo and V. Barone, J. Chem. Phys., 1998, 108, 664-675.
- [12] A. McLean and G. Chandler, J. Chem. Phys., 1980, 72, 5639-5648.
- [13] R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650–654.
- [14] P. B. Wilson, M. Grootveld and S. C. L. Kamerlin, Magn. Reson. Chem., 2019.
- [15] J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, 128, 084106.
- [16] W. Deng, J. R. Cheeseman and M. J. Frisch, J. Chem. Theory Comput., 2006, 2, 1028–1037.
- [17] M. W. Lodewyk, M. R. Siebert and D. J. Tantillo, Chem. Rev., 2011, 112, 1839–1862.
- [18] R. Laskowski, P. Blaha and F. Tran, CHESHIRE Chemical Shift Repository, 2019 (accessed October 2nd, 2019).
- [19] F. Nogueira, A Python implementation of global optimization with gaussian processes, 2019, https://github.com/fmfn/BayesianOptimization.
- [20] T. A. Halgren, J. Comput. Chem., 1996, 17, 490-519.
- [21] A. G. Kutateladze, D. M. Kuznetsov, A. A. Beloglazkina and T. Holt, J. Org. Chem., 2018, 83, 8341-8352.
- [22] A. V. Buevich, J. Saurí, T. Parella, N. De Tommasi, G. Bifulco, R. T. Williamson and G. E. Martin, Chem. Commun., 2019, 55, 5781–5784.