
Supporting Information

Ryan-Rhys Griffiths∗,† and José Miguel Hernández-Lobato∗,‡,¶,§

†Cavendish Laboratory, Department of Physics, University of Cambridge

‡Department of Engineering, University of Cambridge

¶Alan Turing Institute, London, United Kingdom

§Microsoft Research, Cambridge, United Kingdom

E-mail: rrg27@cam.ac.uk; jmh233@cam.ac.uk

Toy Experiment: The Branin-Hoo Function

The Branin-Hoo function is a toy problem on which to test the functionality of the algo-

rithmic implementation for constrained Bayesian optimization. The particular variant of

the Branin-Hoo optimization of interest here is the constrained formulation of the prob-

lem as featured in.1 This Branin-Hoo function has three global minima at the coordinates

(−π, 12.275), (π, 2.275) and (9.42478, 2.475). In order to formulate the problem as a con-

strained optimization problem, a disk constraint on the region of feasible solutions is in-

troduced. In contrast to the formulation of the problem in,1 the disk constraint is coupled

in this scenario in the sense that the objective and the constraint will be evaluated jointly

at each iteration of Bayesian optimization. In addition, the observations of the black-box

objective function will be assumed to be noise-free. The minima of the Branin-Hoo function

as well as the disk constraint are illustrated in Figure 1.

The disk constraint eliminates the upper-left and lower-right solutions, leaving a unique

global minimum at (π, 2.275). Given that our implementation of constrained Bayesian opti-

mization relies on the use of a sparse GP as the underlying statistical model of the black-box
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objective and as such is designed for scale as opposed to performance, the results will not

be compared directly against those of1 who use an exact GP to model the objective. It will

be sufficient to compare the performance of the algorithm against random sampling. Both

the sequential Bayesian optimization algorithm and the parallel implementation using the

Kriging-Believer algorithm are tested.

Implementation

A Sparse GP featuring the FITC approximation, based on the implementation of2 is used to

model the black-box objective function. The kernel choice is exponentiated quadratic with

ARD lengthscales. The number of inducing points M was chosen to be 20 in the case of

sequential Bayesian optimization, and 5 in the case of parallel Bayesian optimization using

the Kriging-Believer algorithm. The sparse GP is trained for 400 epochs using Adam3 with

the default parameters and a learning rate of 0.005. The minibatch size is chosen to be 5. The

jitter is chosen to be 0.00001. A Bayesian Neural Network (BNN), adapted from the MNIST

digit classification network of4 is trained using black-box alpha divergence minimization to

model the constraint.

(a) Minima Locations (b) Disk Constraint

Figure 1: Constrained Bayesian optimization of the 2D Branin-Hoo Function.

The network has a single hidden layer with 50 hidden units, Gaussian activation functions

and logistic output units. The mean parameters of q, the approximation to the true posterior,

are initialized by sampling from a zero-mean Gaussian with variance 2
din+dout

according to the

method of,5 where din is the dimension of the previous layer in the network and dout is the
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dimension of the next layer in the network. The value of α is taken to be 0.5, minibatch sizes

are taken to be 10 and 50 Monte Carlo samples are used to approximate the expectations

with respect to q in each minibatch. The BNN adapted from4 was implemented in the

Theano library.6 The LBFGs method7 was used to optimize the EIC acquisition function in

all experiments.

Results

The results of the sequential constrained Bayesian optimization algorithm with EIC are

shown in Figure 2. The algorithm was initialized with 50 labeled data points drawn uni-

formly at random from the grid depicted. 40 iterations of Bayesian optimization were carried

out.

(a) Collected Data Points (b) Objective Predictive Mean (c) Pr(C(x) ≥ 0)

Figure 2: a) Data points collected over 40 iterations of sequential Bayesian optimization. b)
Contour plot of the predictive mean of the sparse GP used to model the objective function.
Lighter colours indicate lower values of the objective. c) The contour learned by the BNN
giving the probability of constraint satisfaction.

The figures show that the algorithm is correctly managing to collect data in the vicinity

of the single feasible minimum. Figure 3 compares the performance of parallel Bayesian

optimization using the Kriging-Believer algorithm against the results of random sampling.

Both algorithms were initialized using 10 data points drawn uniformly at random from the

grid on which the Branin-Hoo function is defined and were run for 10 iterations of Bayesian

optimization. At each iteration a batch of 5 data points was collected for evaluation.
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Figure 3: Performance of Parallel Bayesian Optimization with EIC against Random Sam-
pling.

After 10 iterations, the minimum feasible value of the objective function was 0.42 for parallel

Bayesian optimization with EIC using the Kriging-Believer algorithm and 2.63 for random

sampling. The true minimum feasible value is 0.40.

Discussion

The Branin-Hoo experiment is designed to yield some visual intuition for the constrained

Bayesian Optimization implementation in two dimensions before moving to higher dimen-

sional molecular space. The results demonstrate that the implementation of constrained

Bayesian optimization is behaving as expected in so far as the constraint in the problem is

recognized and the search procedure outperforms random sampling.

It could be worth performing some investigation into how much worse the sparse GP

performs relative to the exact GP in the constrained setting. Another aspect that could be

explored is the impact of the initialization.

4



References

(1) Gelbart, M. A.; Snoek, J.; Adams, R. P. Bayesian optimization with unknown con-

straints. Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence.

2014; pp 250–259.

(2) Bui, T. D.; Yan, J.; Turner, R. E. A Unifying Framework for Sparse Gaussian Process

Approximation using Power Expectation Propagation. arXiv preprint arXiv:1605.07066

2016,

(3) Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 2014,

(4) Hernández-Lobato, J. M.; Li, Y.; Rowland, M.; Bui, T.; Hernández-Lobato, D.;

Turner, R. E. Black-Box Alpha Divergence Minimization. Proceedings of The 33rd In-

ternational Conference on Machine Learning. New York, New York, USA, 2016; pp

1511–1520.

(5) Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural

networks. Proceedings of the Thirteenth International Conference on Artificial Intelli-

gence and Statistics. Chia Laguna Resort, Sardinia, Italy, 2010; pp 249–256.

(6) Theano Development Team, Theano: A Python framework for fast computation of math-

ematical expressions. arXiv e-prints 2016, abs/1605.02688 .

(7) Liu, D. C.; Nocedal, J. On the limited memory BFGS method for large scale optimization.

Mathematical programming 1989, 45, 503–528.

5


