Supplementary information for:

Investigation of mixed-metal (oxy)fluorides as a new class of water oxidation electrocatalysts

Kévin Lemoine,¹ Jérôme Lhoste,¹ Annie Hémon-Ribaud,¹ Nina Heidary,² Vincent Maisonneuve,¹ Amandine Guiet,^{1*} Nikolay Kornienko^{2*}

¹Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France ²Department of Chemistry, Université de Montréal, Roger-Gaudry Building, Montreal, Quebec, H3C 3J7, Canada

* corresponding authors - amandine.guiet@univ-lemans.fr and nikolay.kornienko@umontreal.ca

Figure S1: Rietveld refinement of the X-ray patterns of a) NiFe₂F₈(H₂O)₂, b) and c) $CoFe_2F_8(H_2O)_2$ using the structural model of $Fe_3F_8(H_2O)_2$ (ICSD-38366). Vertical markers give Bragg peak positions of the C2/m space group.

Figure S2: TGA analysis under dry air of a) $Ni^{2+}Fe^{3+}{}_2F_8(H_2O)_2$ and b) $Co^{2+}Fe^{3+}{}_2F_8(H_2O)_2$

Phases	Temperature domain		
	Crystallized phase	Amorphous phase	Oxide, formula
NiFe ₂ F ₈ (H ₂ O) ₂	$T < 340^{\circ}C$	$340 \le T \le 380$	$380^{\circ}\mathrm{C} < \mathrm{T}, NiFe_2O_4$
$CoFe_2F_8(H_2O)_2$	$T < 300^{\circ}C$	$300 \le T \le 340$	$340^{\circ}C < T, CoFe_2O_4$

Table S1: Summary of temperature domains for $M^{2+}M^{3+}{}_2F_8(H_2O)_2$ phases (M= Ni and Co).

Figure S3: SEM images of a) $Ni^{2+}Fe^{3+}_2F_8(H_2O)_2$ and b) $Co^{2+}Fe^{3+}_2F_8(H_2O)_2$ powders before (a), c)) and after calcination (b), d)) under air. On the right: Corresponding EDS mapping on the calcined powders.

Figure S4: O1s a) and F1s b) XPS of the investigated (oxy)fluorides.

Figure S5: Example of EIS Fitting performed using a Randles circuit for (oxy)fluorides except for NiFe₂F₈(H₂O)₂, which needed an extra constant phase and resistive element, indicating that charge transfer through the material was, in part, limiting the system performance. R = resistive element, C = capacitive element, Q = constant phase element.

Figure S6: TEM micrographs of a), b) NiFe₂F_{4.4}O_{1.8} and d), e) CoFe₂F_{6.6}O_{0.7} after catalysis. c) and f) Corresponding SAED.

Figure S7: Cyclic voltammograms of (oxy)fluorides in 1.0 M KOH without (dotted lines) and with the addition of 10 mM methanol.

Figure S8: Electrodeposition of CoSx HER catalyst, depicted in current vs voltage a), current vs. time b) and voltage vs. time c).

Figure S9: Cyclic voltammetry experiments were repeated without the use of a nation binder (dotted line) and compared to those performed with nation in the catalyst in (normal line) for NiFe₂F_{4.4}O_{1.8} and a), CoFe₂F_{6.6}O_{0.7} (b), NiFe₂F₈(H₂O)₂ (c) and CoFe₂F₈(H₂O)₂ (d)