Facile Triflic Acid-Catalyzed α -1,2-*Cis*-Thiol Glycosylations: Scope and Applications to the Synthesis of *S*-Linked Oligosaccharides, Glycolipids, Sublancin Glycopeptide and T_N/T_F Antigens

Authors: Sanyong Zhu,¹ Ganesh Samala,¹ Eric T. Sletten,² Jennifer L. Stockdill^{1*} and Hien M. Nguyen^{1*}

Affiliations:

¹Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States

² Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States

*Correspondence to: stockdill@wayne.edu and hmnguyen@wayne.edu

Contents

1. Supporting Figure S1	S2
2 General Information	\$2
3. Optimization Studies	S4
4. Preparation of Glycosyl Donors	S6
5. Preparation of Thiol Nucleophiles	S15
6. Scope of Glycosylation	S21
7. Synthesis of Sublancin Glycopeptide Fragment 22	S36
8. Synthesis of S-linked TN and TF Glycopeptide Fragments 24 and 25	S37
9. References	S38
10. Spectral Data	S39

1. Supporting Figure

Figure S1. ¹H NMR Analysis of Glycosylation of Cysteine Amino acid Nucleophile 2 with *N*-Phenyl Trifluoroacetimidate Electrophile 1

The crude mixture resulted from the coupling of cysteine amino acid nucleophile 2 with *N*-phenyl trichloroacetimidate electrophile 1 was first analyzed by ¹H NMR spectroscopy. The crude mixture was purified by silica gel flash chromatography to separate the desired product 4 from the undesired elimination product 4E. The result indicated the electrophile 1 was fully converted to the desired product 4 as exclusive α -isomer accompanied with the elimination product 4E.

2. General Information

Methods and Reagents. All reactions were performed in oven-dried flasks fitted with septa under a positive pressure of nitrogen atmosphere. Organic solutions were concentrated using a Buchi rotary evaporator below 40 °C at 25 torr. Analytical thin-layer chromatography was routinely utilized to monitor the progress of the reactions and performed using pre-coated glass plates with 230-400 mesh silica gel impregnated with a fluorescent indicator (250 nm). Visualization was then achieved using UV light, iodine, or ceric ammonium molybdate. Flash column chromatography was performed using 40-63 µm silica gel (SiliaFlash F60 from Silicycle). Dry solvents were obtained from a SG Waters solvent system utilizing activated alumina columns under an argon pressure. All other commercial reagents were used as received from Sigma Aldrich, Alfa Aesar, Acros Organics, TCI, and Combi-Blocks, unless otherwise noted.

Instrumentation. All new compounds were characterized by Nuclear Magnetic Resonance (NMR) spectroscopy and High-Resolution Mass spectrometry (HRMS). All ¹H NMR spectra were recorded on either Agilent 400 or 600 MHz spectrometers. All ¹³C NMR spectra were recorded on either Agilent 100 or 150 MHz spectrometer. Chemical shifts are expressed in parts per million (δ scale) referenced to the residual proton in the NMR solvent (CDCl₃: δ 7.26 ppm, δ 77.16 ppm). Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and bs = broad singlet), integration, and coupling constant in hertz (Hz).

High resolution mass spectra (HRMS) were recorded using a Micromass LCT Premier XE instrument (Waters) and were determined by electrospray ionization (ESI).

3. Optimization Studies

Table S1. Reaction Development^[a]

AcO- AcO- AcO- 1	O NO CF ₃	CF ₃	$\frac{\text{NHR}}{\text{CO}_2\text{Me}} \frac{\text{Cond}}{\text{CH}_2}$ 2: R = Cbz 3: R = Fmoc	$\frac{\text{tions}}{\text{Cl}_2}$		$\begin{array}{c} 0 \\ NHR \\ \overline{} \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 7$
entry	1 (equiv.)	2 3 or 3	catalyst	temp	time	4 or 5 vield (^{α:} β)
	(090.11)	(09017.)				yiola (P)
1	1	2 ^(1.5)	15 mol% Ni(OTf) ₂	35	16	4 : 66% (>20:1)
2	1	2 ^(1.5)	5 mol% TfOH	35	1	4 : 64% (>20:1)
3	1	2 ^(1.5)	5 mol% TfOH	25	2	4 : 68% (>20:1)
4	1	2 ^(1.5)	1 mol% TfOH	25	20	4 : 67% (>20:1)
5	1.5	2 ^(1.0)	3 mol% TfOH	25	3	4 : 76% (>20:1)
6	2	2 ^(1.0)	3 mol% TfOH	25	3	4 : 81% (>20:1)
7	2	2 ^(1.0)	5 mol% TfOH	25	1	4 : 80% (>20:1)
8	2	3 ^(1.0)	5 mol% TfOH	25	1	5 : 78% (>20:1)

[a] The reaction was conducted with 0.1 – 0.2 mmol of 1. Yields of isolated product averaged two runs. The (α/β) ratios were determined by ¹H NMR analysis.

Procedure for Thiol Glycosylations Opitimization:

A 10 mL Schlenk flask was charged with *N*-phenyl trifluoroacetimidate glycosyl donor **1** (0.1 – 0.2 mmol, 1 – 2 equiv.), cysteine acceptor **2** or **3** (0.1 – 0.15 mmol, 1 – 1.5 equiv.) and dichloromethane (1 mL). The resulting solution was stirred at room temperature for 5 min under a nitrogen atmosphere before the catalyst (1 – 15 mol% with respect to donor **1**) was added. After the TLC shows completion of the reaction, it was quenched with 1 drop of Et₃N and concentrated. A crude ¹H NMR was taken to determine the (α/β) ratio. Further purification by silica gel column chromatography (ethyl acetate/hexane: $1/4 \rightarrow 1/2$) was performed to give the desired product.

¹**H** NMR (CDCl₃, 600 MHz): δ 8.59 (d, J = 2.1 Hz, 1H), 8.18 (d, J = 7.7 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.40 – 7.29 (m, 5H), 5.92 (d, J = 8.5 Hz, 1H), 5.48 (t, J = 9.7 Hz, 1H), 5.29 (d, J = 5.6 Hz, 1H), 5.10 (dd, J = 15.9, 6.0 Hz, 3H), 4.73 – 4.64 (m, 1H), 4.51 (dd, J = 10.1, 3.1 Hz, 1H), 4.36 (dd, J = 12.4, 4.9 Hz, 1H), 4.17 (d, J = 10.9 Hz, 1H), 3.89 (dd, J = 10.0, 5.6 Hz, 1H), 3.73 (s, 3H), 3.20 (dd, J = 14.2, 5.4 Hz, 1H), 2.99 (dd, J = 14.2, 4.2 Hz, 1H), 2.08 (s, 3H), 2.03 (s, 3H), 1.85 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ = 171.02, 170.59, 169.85, 169.59, 160.37, 155.74, 136.09, 133.03, 132.27, 130.90, 129.07, 128.50, 128.20, 128.11, 125.48, 125.45, 85.18, 71.97, 71.33, 68.56, 68.52, 67.11, 62.09, 53.93, 53.75, 52.63, 33.42, 20.66, 20.64, 20.34.

HRMS (ESI): calc. for C₃₂H₃₅F₃N₂O₁₁SNa (M+Na)⁺: 735.1806; found: 735.1818.

¹**H NMR** (**CDCl**₃, **600 MHz**): δ 8.62 (d, *J* = 1.9 Hz, 1H), 8.19 (d, *J* = 7.7 Hz, 1H), 7.75 (t, *J* = 7.8 Hz, 2H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.63 – 7.56 (m, 3H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.34 – 7.27 (m, 2H), 6.00 (d, *J* = 8.6 Hz, 1H), 5.49 (t, *J* = 9.7 Hz, 1H), 5.27 (d, *J* = 5.6 Hz, 1H), 5.14 – 5.06 (m, 1H), 4.74 – 4.69 (m, 1H), 4.52 (dd, *J* = 10.1, 3.0 Hz, 1H), 4.42 (qd, *J* = 10.6, 7.3 Hz, 2H), 4.28 (dd, *J* = 12.3, 5.1 Hz, 1H), 4.24 – 4.19 (m, 2H), 3.92 (dd, *J* = 10.0, 5.6 Hz, 1H), 3.74 (s, 3H), 3.20 (dd, *J* = 14.3, 5.5 Hz, 1H), 2.99 (dd, *J* = 14.3, 4.1 Hz, 1H), 2.06 (s, 3H), 2.03 (s, 3H), 1.87 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.96, 170.55, 169.85, 169.57, 160.36, 155.72, 143.64, 141.31, 141.28, 132.26, 130.90, 129.05, 127.71, 127.69, 127.06, 127.03, 125.49, 125.46, 125.03, 119.97, 119.94, 85.43, 72.03, 71.33, 68.64, 68.63, 67.03, 62.21, 54.05, 52.63, 47.11, 33.77, 20.65, 20.60, 20.33.

HRMS (ESI): calc. for C₃₉H₃₉F₃N₂O₁₁SNa (M+Na)⁺: 823.2119; found: 823.2116.

4. Preparation of Glycosyl Donors

Glycosyl donors **1**, **6** and **7** were synthesis according to our former literature.^[1]

4.1 Preparation of glycosyl donor 8

To a solution of **8i** (3.18 g, 8.46 mmol) in CH₃CN (80 mL) were added benzaldehyde dimethyl acetal (1.9 mL, 12.67 mmol) and *p*-TSA (161 mg, 0.846 mmol). After the reaction mixture was stirred at room temperature for overnight, it was quenched with Et₃N and concentrated. The residue was subjected to flush silica gel column chromatography (1:1.5, EtOAc–hexane) to give **8ii** (3.34 g, 85%) as a white foam. R_f 0.30 (1:1.5, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.62 (d, J = 8.1 Hz, 2H), 7.54 – 7.48 (m, 2H), 7.46 – 7.39 (m, 5H), 7.36 (t, J = 7.4 Hz, 2H), 7.30 (d, J = 7.3 Hz, 1H), 7.07 (d, J = 7.9 Hz, 2H), 5.54 (s, 1H), 4.79 (d, J = 10.6 Hz, 1H), 4.70 (d, J = 10.6 Hz, 1H), 4.57 (d, J = 9.5 Hz, 1H), 4.38 (dd, J = 12.4, 1.3 Hz, 1H), 4.17 (d, J = 3.6 Hz, 1H), 4.00 (dd, J = 12.4, 1.4 Hz, 1H), 3.78 (dd, J = 9.0, 3.6 Hz, 1H), 3.62 (t, J = 9.3 Hz, 1H), 3.45 (s, 1H), 2.35 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 138.38, 137.71, 133.26, 129.65, 129.28, 128.88, 128.38, 128.20, 128.11, 127.78, 126.61, 101.37, 86.34, 77.10, 75.76, 75.23, 74.38, 69.75, 69.28, 21.19. HR ESI-TOF MS (m/z): calcd for C₂₇H₂₈O₅SNa [M + Na]⁺, 487.1550; found, 487.1555.

A solution of **8ii** (2.0 g, 4.31 mmol) in 50 mL anhydrous pyridine was added acetic anhydride (814 μ L, 8.62 mmol) and stirred at room temperature for 3 h. The reaction mixture was concentrated under reduced pressure, and the residue was subjected to flush silica gel column chromatography (1:3, EtOAc–hexane). The obtained intermediate was dissolved in 50 mL anhydrous CH₂Cl₂, PhBCl₂ (1.12 mL, 8.62 mmol) and Et3SiH (1.37 mL, 8.62 mmol) were added at -78 °C under a N₂

atmosphere. 15 min later, the reaction was quenched by addition of CH₃OH and Et₃N. The mixture was concentrated and purified by silica gel column chromatograpgy (1:2, EtOAc–hexane) to afford the intermediate product as syrup. It was dissolved in pyridine (50 mL) again, followed by addition of acetic anhydride (814 μ L, 2.21 mmol). After the reaction mixture was stirred at room temperature for 3 h, it was concentrated and the residue was subjected to flush silica gel column chromatography (1:4, EtOAc–hexane) to give **8iii** (1.85 g, 78% for 3 steps) as a serup. *R_f* 0.50 (1:3, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.48 (d, *J* = 8.1 Hz, 2H), 7.39 – 7.28 (m, 10H), 7.06 (d, *J* = 7.9 Hz, 2H), 4.96 (dd, *J* = 9.7, 2.9 Hz, 1H), 4.87 (d, *J* = 11.0 Hz, 1H), 4.68 (d, *J* = 11.5 Hz, 1H), 4.65 – 4.52 (m, 3H), 4.30 (dd, *J* = 11.1, 6.7 Hz, 1H), 4.10 (dd, *J* = 11.2, 6.3 Hz, 1H), 3.98 – 3.89 (m, 2H), 3.71 (t, *J* = 6.5 Hz, 1H), 2.33 (s, 3H), 2.02 (s, 3H), 1.94 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 170.40, 170.29, 138.06, 137.69, 137.63, 132.46, 129.71, 129.60, 128.38, 128.34, 127.99, 127.96, 127.88, 127.77, 88.05, 77.00, 75.59, 75.38, 75.36, 74.85, 74.13, 62.60, 21.12, 20.90, 20.78. HR ESI-TOF MS (m/z): calcd for C₃₁H₃₄O₇SNa [M + Na]⁺, 573.1917; found, 573.1911.

To a solution of **8iii** (1.5 g, 2.73 mmol) in acetone-H₂O (v/v, 50/1, 30 mL) were added NIS (1.23 g, 5.45 mmol) and AgOTf (140 mg, 0.545 mmol). After the reaction mixture was stirred at room temperature for 15 min, it was quenched with Et₃N, and concentrated. The residue was subjected to flush silica gel column chromatography (1:2, EtOAc–hexane) to give a hemiacetal. To a solution of this hemiacetal in anhydrous acetone (30 mL) was added 2,2,2-Trifluoro-*N*-phenyl-ethanimidoyl chloride (1.31 mL, 8.19 mmol) and K₂CO₃ (752 mg, 5.45 mmol) under N₂ protection. After 2 days of stirring under reflux, the mixture was filtered and concentrated in vacuum, and the residue was purified by Et₃N-neutralized silica gel column with EtOAc and hexanes (1:4) as the eluent to afford compound **8** (1.09 g, 65% for 2 steps) as a syrup.

For α anomer: R_f 0.55 (1:3, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.39 – 7.22 (m, 12H), 7.09 (t, J = 7.5 Hz, 1H), 6.74 (s, 2H), 6.54 (s, 1H), 5.30 (d, J = 10.0 Hz, 1H), 4.70 (dd, J = 26.1, 11.6 Hz, 3H), 4.53 (d, J = 11.3 Hz, 1H), 4.20 (d, J = 7.4 Hz, 3H), 4.10 (d, J = 8.1 Hz, 2H), 2.05 (s, 3H), 2.04 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 170.32, 170.30, 137.68, 137.31, 128.70, 128.51, 128.43, 128.11, 127.90, 127.60, 119.34, 75.29, 74.51, 73.27, 72.91, 72.11, 70.65, 62.38, 20.96, 20.72. HR ESI-TOF MS (m/z): calcd for C₃₁H₃₅N₃O₇SNa [M + Na]⁺, 616.2093; found, 616.2088. For β anomer: R_f 0.50 (1:3, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ: 7.42 – 7.27 (m, 12H), 7.11 (t, *J* = 7.5 Hz, 1H), 6.82 (d, *J* = 7.6 Hz, 2H), 5.70 (s, 1H), 4.97 (s, 1H), 4.84 (d, *J* = 11.5 Hz, 1H), 4.69 (d, *J* = 11.4 Hz, 2H), 4.55 (d, *J* = 11.5 Hz, 1H), 4.27 (dd, *J* = 11.0, 6.6 Hz, 1H), 4.16 – 4.02 (m, 2H), 3.94 (s, 1H), 3.75 (s, 1H), 1.99 (s, 3H), 1.98 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ: 170.25, 170.24, 143.33, 137.67, 137.31, 128.70, 128.50, 128.42, 128.25, 128.11, 128.02, 127.96, 124.30, 119.14, 97.03, 75.48, 75.04, 75.02, 74.61, 73.47, 72.89, 61.99, 20.83, 20.68. HR ESI-TOF MS (m/z): calcd for C₃₂H₃₂F₃NO₈Na [M + Na]⁺, 638.1972; found, 638.1976.

4.2 Preparation of glycosyl donor 9

To a solution of **9i** (4.5 g, 12.03 mmol) in CH₂Cl₂ (70 mL) was added 4-Methoxyphenol (4.475 g, 36.09 mmol) and boron trifluoride diethyl etherate (2.97 mL, 24.06 mmol) at room temperature. After the reaction mixture was stirred under reflux for 1 day, it was diluted with CH₂Cl₂ and washed with 1 N NaOH and brine, dried over anhydrous Na₂SO₄, and concentrated. The residue was subjected to flush silica gel column chromatography (1:3, EtOAc–hexane) to give **9ii** (4.85 g, 92%) as an inseparable α/β mixture. R_f 0.50 (1:2, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.04 (dd, J = 9.0, 1.4 Hz, 5H), 6.92 – 6.76 (m, 5H), 5.57 (dd, J = 11.1, 3.2 Hz, 1.7H), 5.51 (dd, J = 4.6, 2.2 Hz, 3H), 5.37 (d, J = 3.3 Hz, 1H), 4.84 (dd, J = 10.9, 3.4 Hz, 1H), 4.79 (d, J = 8.1 Hz, 1H), 4.39 (t, J = 6.6 Hz, 1.7H), 4.21 (dd, J = 11.3, 6.9 Hz, 1H), 4.17 – 4.04 (m, 5.5H), 4.00 – 3.90 (m, 1.7H), 3.84 – 3.68 (m, 8.5H), 2.17 (s, 3H), 2.16 (s, 5H), 2.08 (s, 5H), 2.07 (s, 3H), 2.04 (s, 3H), 1.98 (s, 5H). ¹³C NMR (150 MHz, CDCl₃) δ : 170.26, 170.01, 169.96, 169.78, 169.73, 155.91, 155.63, 150.78, 150.19, 118.71, 118.21, 114.67, 114.58, 101.89, 97.94, 70.92, 68.13, 67.48, 67.37, 66.18, 61.49, 61.25, 60.62, 60.34, 57.35, 55.62, 20.63, 20.58, 20.57. HR ESI-TOF MS (m/z): calcd for C₁₉H₂₃N₃O₉Na [M + Na]⁺, 460.1327; found, 460.1328.

To a solution of **9ii** (4.2 g, 9.59 mmol) in CH₃OH/CH₂Cl₂ (v/v, 3/1, 80 mL) was added CH₃ONa (259 mg, 4.79 mmol). After the reaction mixture was stirred at room temperature for 3 h, it was quenched with Amberlyst 15 hydrogen resin, and concentrated. The obtained residue was dissolved in CH₃CN (80 mL), benzaldehyde dimethyl acetal (2.16 mL, 14.39 mmol) and *p*-TSA (182 mg, 0.959 mmol) were added. After the reaction mixture was stirred at room temperature for overnight, it was quenched with Et₃N and concentrated. The residue was subjected to flush silica gel column chromatography (1:2, EtOAc–hexane) to give **9iii** (3.07 g, 80% for 2 steps) as a white solid.

For α anomer: R_f 0.55 (1:2, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.55 – 7.48 (m, 2H), 7.44 – 7.35 (m, 3H), 7.12 – 7.02 (m, 2H), 6.88 – 6.81 (m, 2H), 5.60 (s, 1H), 5.58 (d, J = 3.3 Hz, 1H), 4.39 (dd, J = 10.5, 3.7 Hz, 1H), 4.37 – 4.33 (m, 1H), 4.27 (dd, J = 12.7, 1.4 Hz, 1H), 4.06 (dd, J = 12.7, 1.7 Hz, 1H), 3.88 (d, J = 0.9 Hz, 1H), 3.78 (s, 3H), 3.70 (dd, J = 10.5, 3.3 Hz, 1H), 2.60 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 155.28, 150.52, 137.21, 129.40, 128.35, 126.20, 117.56, 114.72, 101.27, 98.14, 75.35, 69.14, 67.39, 63.36, 60.49, 55.65. HR ESI-TOF MS (m/z): calcd for C₃₁H₃₅N₃O₇SNa [M + Na]⁺, 616.2093; found, 616.2088.

For β anomer: R_f 0.20 (1:2, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.52 (dd, J = 6.6, 3.0 Hz, 2H), 7.42 – 7.34 (m, 3H), 7.11 – 7.04 (m, 2H), 6.87 – 6.79 (m, 2H), 5.57 (s, 1H), 4.74 (d, J = 8.1 Hz, 1H), 4.36 (dd, J = 12.5, 1.4 Hz, 1H), 4.22 – 4.17 (m, 1H), 4.08 (dd, J = 12.6, 1.7 Hz, 1H), 3.87 (dd, J = 10.2, 8.1 Hz, 1H), 3.78 (s, 3H), 3.61 (dd, J = 10.2, 3.8 Hz, 1H), 3.50 (d, J = 1.1 Hz, 1H), 2.66 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 155.68, 151.06, 137.24, 129.41, 128.31, 126.41, 118.90, 114.53, 101.79, 101.44, 74.33, 71.34, 68.92, 66.63, 63.74, 55.63. HR ESI-TOF MS (m/z): calcd for C₂₀H₂₁N₃O₆Na [M + Na]⁺, 422.1323; found, 422.1313.

To a stirred mixture of donor **9iv** (4.06 g, 8.25 mmol), acceptor **9iii** (2.2 g, 5.5 mmol), and freshly activated MS 4Å (5 g), in anhydrous CH₂Cl₂ (100 mL) was added TMSOTf (99.4 μ L, 0.55 mmol) under N₂ protection at 0 °C. After the reaction mixture was stirred for another 30 min, it was neutralized with Et₃N, filtered, and concentrated. The residue was subjected to silica gel column chromatography with EtOAc and hexanes (1:2) as the eluent to afford the **9v** (3.53 g, 88%) as a syrup. R_f 0.45 (1:1, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.59 – 7.52 (m, 2H), 7.42 – 7.31 (m, 3H), 7.10 – 7.01 (m, 2H), 6.88 – 6.80 (m, 2H), 5.60 (d, *J* = 3.3 Hz, 1H), 5.58 (s, 1H), 5.44 – 5.40 (m, 1H), 5.32 (dd, *J* = 10.4, 7.9 Hz, 1H), 5.06 (dd, *J* = 10.4, 3.5 Hz, 1H), 4.86 (d, *J* = 7.9 Hz, 1H), 4.46 (d, *J* = 3.1 Hz, 1H), 4.32 (dd, *J* = 10.8, 3.3 Hz, 1H), 4.24 (ddd, *J* = 17.8, 11.9, 3.9 Hz, 2H), 4.14 (dd, *J* = 10.0, 5.3 Hz, 1H), 4.04 (dd, *J* = 12.5, 1.2 Hz, 1H), 3.97 (ddd, *J* = 14.4, 9.1, 5.0 Hz, 2H), 3.84 (s, 1H), 3.77 (s, 3H), 2.17 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 1.99 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 170.27, 170.24, 170.12, 169.41, 155.33, 150.46, 137.54, 128.89, 128.13, 126.09, 117.61, 114.72, 102.52, 100.60, 98.32, 75.79, 75.67, 71.03, 70.91, 69.07, 68.68, 66.97, 63.67, 61.40, 58.74, 55.63, 20.71, 20.70, 20.68, 20.54. HR ESI-TOF MS (m/z): calcd for C₃₄H₃₉N₃O₁₅Na [M + Na]⁺, 752.2273; found, 752.2278.

Compound **9v** (3.3 g, 4.52 mmol) was dissolved in mixed solvent of acetic acid/H₂O (4:1, 50 mL). After the reaction mixture was stirred at 80 °C for 5 h, it was concentrated and the residue was subjected to silica gel column chromatography with acetone and hexanes (1:2) as the eluent to afford the **9vi** (2.03 g, 70%) as a syrup. R_f 0.50 (1:1, acetone–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.06 – 6.98 (m, 2H), 6.85 – 6.78 (m, 2H), 5.46 (d, J = 3.5 Hz, 1H), 5.40 (d, J = 2.7 Hz, 1H), 5.29 (dd, J = 10.5, 8.0 Hz, 1H), 5.05 (dd, J = 10.5, 3.4 Hz, 1H), 4.78 (d, J = 8.0 Hz, 1H), 4.27 (d, J = 1.7 Hz, 1H), 4.22 (dd, J = 10.5, 3.1 Hz, 1H), 4.17 (dd, J = 11.5, 7.3 Hz, 1H), 4.10 (dd, J = 11.5, 5.5 Hz, 1H), 4.03 (t, J = 5.6 Hz, 1H), 3.98 (t, J = 6.6 Hz, 1H), 3.88 (dd, J = 11.7, 5.6 Hz, 1H), 3.80 (dd, J = 11.7, 5.1 Hz, 1H), 3.77 – 3.73 (m, 4H), 2.15 (s, 3H), 2.09 (s, 3H), 2.04 (s, 3H), 1.98 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 170.44, 170.11, 170.04, 169.63, 155.50, 150.40, 118.28, 114.72, 101.98, 98.40, 78.16, 71.29, 70.66, 69.93, 69.23, 68.39, 66.99, 62.44, 61.55, 58.42, 55.61,

20.63, 20.58, 20.56, 20.50. HR ESI-TOF MS (m/z): calcd for $C_{27}H_{35}N_3O_{15}Na$ [M + Na]⁺, 664.1960; found, 664.1969.

To a solution of **9vi** (1.8 g, 2.80 mmol) in pyridine (30 mL) was added acetic anhydride (1.06 mL, 11.21 mmol) and DMAP (34.2 mg, 0.28 mmol). After the reaction mixture was stirred at room temperature for 5 h, it was concentrated and the residue was subjected to flush silica gel column chromatography (1:2, EtOAc–hexane) to give **9vii** (1.85 g, 91%) as a serup. R_f 0.50 (1:1, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.04 – 6.97 (m, 2H), 6.83 – 6.78 (m, 2H), 5.51 (d, J = 3.2 Hz, 1H), 5.44 (d, J = 3.5 Hz, 1H), 5.36 – 5.34 (m, 1H), 5.19 (dd, J = 10.5, 7.8 Hz, 1H), 5.01 (dd, J = 10.5, 3.4 Hz, 1H), 4.75 (d, J = 7.8 Hz, 1H), 4.30 – 4.26 (m, 2H), 4.15 (dt, J = 11.0, 5.2 Hz, 2H), 4.08 (dd, J = 7.0, 4.2 Hz, 1H), 3.99 – 3.90 (m, 2H), 3.78 – 3.72 (m, 4H), 2.13 (s, 3H), 2.12 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 1.96 (s, 3H), 1.93 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 170.36, 170.33, 170.19, 170.02, 169.64, 169.47, 155.62, 150.20, 149.05, 136.57, 118.43, 114.61, 101.56, 98.02, 74.73, 70.84, 70.77, 69.32, 68.77, 68.13, 66.78, 62.54, 61.06, 59.40, 55.59, 20.69, 20.62, 20.60, 20.59, 20.50. HR ESI-TOF MS (m/z): calcd for C₃₁H₃₉N₃O₁₇Na [M + Na]⁺, 748.2172; found, 748.2162.

To a solution of **9vii** (2.5 g, 3.44 mmol) in acetonitrile/H₂O (1:1, 60 mL) was added cerium ammonium nitrate (5.66 g, 10.33 mmol) at 0 °C. After the reaction mixture was stirred at the same temperature for 1 h, it was diluted with ethyl acetate and washed with aqueous NaHCO₃ and brine, dried over anhydrous Na₂SO₄, and concentrated. The residue was subjected to flush silica gel column chromatography (1.5:1, EtOAc–hexane) to give **9ix** (1.75 g, 82%) as a α/β mixture. *R*_f 0.30 (1.5:1, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 5.48 (d, *J* = 2.9 Hz, 1.1H), 5.40 (d, *J* = 3.4 Hz, 1.1H), 5.37 – 5.32 (m, 2.3H), 5.16 (ddd, *J* = 15.2, 10.5, 7.8 Hz, 1.8H), 5.00 (dd, *J* = 10.4, 3.4 Hz, 1.7H), 4.71 (dd, *J* = 12.0, 7.8 Hz, 1.8H), 4.60 (d, *J* = 6.9 Hz, 1H), 4.37 – 4.32 (m, 1.1H), 4.22 – 4.05 (m, 7.4H), 3.98 (ddd, *J* = 20.8, 11.7, 7.4 Hz, 2.1H), 3.89 (dt, *J* = 16.9, 6.5 Hz, 1.9H),

3.81 – 3.76 (m, 1.3H), 3.73 (dd, J = 10.6, 3.5 Hz, 1.2H), 3.55 (p, J = 10.3 Hz, 1.7H), 3.24 (s, 1.3H), 2.15 (d, J = 0.4 Hz, 4.6H), 2.13 (d, J = 3.2 Hz, 4.4H), 2.08 (s, 2.2H), 2.06 (d, J = 0.4 Hz, 6.7H), 2.05 (d, J = 1.3 Hz, 4.4H), 2.04 (s, 1.9H), 1.97 (d, J = 2.3 Hz, 4.5H). ¹³C NMR (150 MHz, CDCl₃) δ : 101.45, 101.42, 96.35, 92.32, 77.35, 74.40, 71.70, 70.84, 70.81, 70.77, 70.63, 69.52, 68.81, 68.77, 68.12, 67.47, 66.80, 66.75, 64.49, 62.76, 62.58, 61.06, 60.97, 60.39, 60.16, 20.77, 20.73, 20.66, 20.62, 20.60, 20.52. HR ESI-TOF MS (m/z): calcd for C₂₄H₃₃N₃O₁₆Na [M + Na]⁺, 642.1753; found, 642.1759.

To a solution of **9ix** (1.7 g, 2.74 mmol) in CH_2Cl_2 (30 mL) was added zinc powder (5.35 g, 82.25 mmol) and acetic acid (4.7 mL, 82.25 mmol). After the reaction mixture was stirred at room temperature for 1 h, it was filtered and concentrated. The obtained residue was dissolved in pyridine/CH₂Cl₂ (1:10, 30 mL), 2-(Trifluoromethyl) benzaldehyde (433 μ L, 3.29 mmol) was added. After the reaction mixture was stirred under reflux for overnight, it was concentrated. The residue was subjected to flush silica gel column chromatography (2:1, EtOAc-hexane) to give 9x (1.3 g, 63% for 2 steps) as a α/β mixture. R_f 0.30 (2:1, EtOAc-hexane); ¹H NMR (600 MHz, CDCl₃) δ : 8.83 (d, J = 16.1 Hz, 2.2H), 8.32 (dd, J = 21.5, 7.4 Hz, 2.2H), 7.86 (d, J = 7.2 Hz, 2.3H), 7.77 (t, J = 7.3 Hz, 1H), 7.75 – 7.65 (m, 3.5H), 5.66 (s, 1H), 5.58 (s, 1.6H), 5.44 (s, 2.2H), 5.34 (s, 1H), 5.17 (dd, J = 12.3, 5.9 Hz, 2.2H), 5.05 – 4.96 (m, 3.6H), 4.73 (d, J = 7.4 Hz, 2.2H), 4.67 (s, 1H), 4.58 (d, J = 10.3 Hz, 1H), 4.44 – 4.37 (m, 2.5H), 4.34 – 4.13 (m, 11H), 4.09 (d, J = 3.6 Hz, 1.7H), 4.04 - 3.96 (m, 3H), 3.80 (s, 1H), 3.69 (t, J = 8.3 Hz, 1.6H), 2.28 (d, J = 13.7 Hz, 13H), 2.25 - 2.16 (m, 15H), 2.03 (d, J = 1.3 Hz, 5.4H), 1.62 (d, J = 11.0 Hz, 5.4H). ¹³C NMR (150 MHz, $CDCl_3$ δ : 170.66, 170.39, 170.38, 170.28, 170.06, 170.02, 168.77, 161.72, 161.48, 133.49, 132.11, 131.99, 131.00, 130.75, 129.27, 128.46, 128.23, 125.84, 124.80, 122.98, 100.68, 95.41, 94.16, 77.43, 74.07, 73.72, 71.84, 70.83, 70.77, 70.63, 70.61, 70.25, 68.93, 68.85, 68.69, 67.95, 67.83, 66.72, 66.68, 63.03, 63.01, 60.98, 60.94, 60.37, 20.98, 20.81, 20.77, 20.76, 20.72, 20.64, 20.59, 20.43, 19.87. HR ESI-TOF MS (m/z): calcd for $C_{32}H_{38}F_3NO_{16}Na [M + Na]^+$, 772.2035; found, 772.2041.

To a solution of 9x (1.04 g, 1.39 mmol) in anhydrous acetone (12 mL) was added 2,2,2-Trifluoro-*N*-phenyl-ethanimidoyl chloride (443 µL, 2.77 mmol) and K₂CO₃ (382 mg, 2.77 mmol) under N₂ protection. After overnight stirring at room temperature, the mixture was filtered and concentrated in vacuum, and the residue was purified by Et₃N-neutralized silica gel column with EtOAc and hexanes (1:1) as the eluent to afford compound **9** (0.96 g, 75%) as a yellow solid.

For α anomer: R_f 0.65 (1.5:1, EtOAc–hexane); ¹H NMR (400 MHz, CDCl₃) δ : 8.69 (s, 1H), 8.26 (d, J = 7.7 Hz, 1H), 7.74 (d, J = 7.7 Hz, 1H), 7.67 (t, J = 7.5 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.14 (t, J = 7.7 Hz, 2H), 7.02 (t, J = 7.4 Hz, 1H), 6.59 (d, J = 6.9 Hz, 2H), 6.25 (s, 1H), 5.61 (d, J = 2.3 Hz, 1H), 5.32 (d, J = 3.3 Hz, 1H), 5.04 (dd, J = 10.4, 7.9 Hz, 1H), 4.87 (dd, J = 10.4, 3.4 Hz, 1H), 4.61 (d, J = 7.8 Hz, 1H), 4.52 – 4.40 (m, 2H), 4.28 (dd, J = 11.7, 4.7 Hz, 1H), 4.19 – 3.98 (m, 4H), 3.89 (t, J = 6.6 Hz, 1H), 2.16 (s, 3H), 2.13 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 1.89 (s, 3H), 1.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.47, 170.40, 170.23, 170.01, 169.80, 168.79, 161.70, 133.39, 132.07, 131.02, 128.96, 128.61, 128.35, 125.83, 124.23, 119.76, 119.27, 100.60, 70.88, 70.83, 70.37, 68.98, 68.51, 68.04, 66.80, 62.62, 61.14, 20.72, 20.59, 20.58, 20.45, 19.90. HR ESI-TOF MS (m/z): calcd for C₄₀H₄₂F₆N₂O₁₆Na [M + Na]⁺, 943.2331; found, 943.2338.

For β anomer: R_f 0.55 (1.5:1, EtOAc–hexane); ¹H NMR (400 MHz, CDCl₃) δ: 8.71 (d, J = 1.4 Hz, 1H), 8.17 (d, J = 7.7 Hz, 1H), 7.64 (ddd, J = 28.0, 21.1, 7.6 Hz, 3H), 7.23 (dd, J = 14.8, 7.0 Hz, 2H), 7.05 (t, J = 7.4 Hz, 1H), 6.70 (d, J = 7.7 Hz, 2H), 5.83 (s, 1H), 5.46 (d, J = 2.9 Hz, 1H), 5.30 (d, J = 3.2 Hz, 1H), 5.02 (dd, J = 10.4, 7.9 Hz, 1H), 4.83 (dd, J = 10.5, 3.4 Hz, 1H), 4.59 (d, J =7.8 Hz, 1H), 4.28 – 3.93 (m, 6H), 3.85 (t, J = 6.7 Hz, 2H), 2.16 (s, 3H), 2.11 (s, 3H), 2.03 (s, 3H), 2.01 (s, 3H), 1.87 (s, 3H), 1.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 170.46, 170.32, 170.21, 169.99, 169.88, 168.73, 162.52, 143.25, 133.28, 132.06, 131.03, 129.73, 129.42, 128.65, 128.22, 125.97, 125.91, 125.19, 124.29, 122.46, 119.05, 100.78, 95.27, 77.16, 72.64, 71.48, 70.74, 70.70, 68.82, 67.65, 66.70, 62.26, 61.03, 20.67, 20.63, 20.62, 20.56, 20.40, 19.86. HR ESI-TOF MS (m/z): calcd for C₄₀H₄₂F₆N₂O₁₆Na [M + Na]⁺, 943.2331; found, 943.2336.

4.3 Preparation of glycosyl donor 18

To a solution of **18i** (1.3 g, 3.48 mmol) in THF (20 mL) was added 7 N NH₃/CH₃OH (3 mL). After the reaction mixture was stirred at room temperature for 1 h, it was diluted with ethyl acetate and washed with 1 N HCl and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated. The obtained residue was dissolved in anhydrous acetone (20 mL), 2,2,2-Trifluoro-*N*-phenyl-ethanimidoyl chloride (1.11 mL, 6.96 mmol) and K₂CO₃ (960 mg, 6.96 mmol) were added under N₂ protection. After 5 h stirring at room temperature, the mixture was filtered and concentrated in vacuum, and the residue was purified by Et₃N-neutralized silica gel column with EtOAc and hexanes (1:4) as the eluent to afford **18** (1.26 g, 72%) as a α/β mixture. *R_f* 0.50 (1:2, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.32 (td, *J* = 7.9, 4.2 Hz, 2.5H), 7.14 (dt, *J* = 11.4, 5.7 Hz, 1.3H), 6.84 (t, *J* = 8.2 Hz, 2.6H), 6.48 (s, 1H), 5.62 (s, 1H), 5.50 (t, *J* = 9.9 Hz, 0.6H), 5.14 (t, *J* = 9.7 Hz, 1H), 5.06 (s, 1H), 4.36 – 4.22 (m, 1H), 4.20 – 4.03 (m, 1.5H), 3.87 – 3.65 (m, 2.3H), 2.11 (s, 3H), 2.10 (s, 2H), 2.09 (s, 3H), 2.07 (s, 2H), 2.06 (s, 3H), 2.02 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ : 170.44, 170.39, 169.77, 169.56, 169.48, 142.79, 128.83, 124.70, 119.19, 119.09, 95.23, 92.95, 72.70, 72.49, 70.59, 70.03, 67.74, 62.78, 61.37, 60.44, 20.61, 20.59, 20.52, 20.50. HR ESI-TOF MS (m/z): calcd for C₂₀H₂₁F₃N₄O₈Na [M + Na]⁺, 525.1204; found, 525.1213.

4.4 Preparation of glycosyl donor 19

Compound **19** (678 mg, 75%) was prepared from **19i** (672 mg, 1.8 mmol) by the same procedure as the synthesis of **18**. R_f 0.55 (1:2, EtOAc–hexane); ¹H NMR (400 MHz, CDCl₃) of α/β anomers δ : 7.36 – 7.27 (m, 4.2H), 7.13 (t, J = 7.5 Hz, 2H), 6.84 (d, J = 7.8 Hz, 4H), 6.47 (s, 0.5H), 5.60 (s, 0.5H), 5.53 (s, 1H), 5.41 – 5.30 (m, 2H), 4.87 (d, J = 8.9 Hz, 1H), 4.31 (d, J = 6.0 Hz, 0.8H), 4.19 – 4.05 (m, 5H), 3.96 (dd, J = 24.4, 10.4 Hz, 3H), 2.18 (s, 3.4H), 2.16 (s, 2.7H), 2.08 (s, 2.7H), 2.07 (s, 3.4H), 2.05 (s, 2.7H), 2.00 (s, 3.4H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.21, 169.91, 169.58, 142.87, 128.83, 124.66, 119.23, 119.07, 95.47, 93.32, 71.75, 71.13, 69.10, 68.61, 66.83, 66.03,

61.20, 60.90, 59.86, 56.90, 20.58, 20.54, 20.52. HR ESI-TOF MS (m/z): calcd for $C_{20}H_{21}F_3N_4O_8Na$ [M + Na]⁺, 525.1204; found, 525.1217.

5. Preparation of Thiol Nucleophiles

5.1 Preparation of cysteine-containing acceptors

General procedure for peptide coupling:

To a stirred solution of *N*-protected amino acid in dry DMF (0.5 M) was added HATU (1.1 eq), DIPEA (3.0 eq) followed by *C*-protected amino acid (1.05 eq) at room temperature under nitrogen atmosphere. The reaction mixture was stirred at same temperature for 3 to 6 h (TLC control). The reaction mixture was quenched with water and extracted with EtOAc ($3\times$). The combined organic layer was dried over anhydrous Na₂SO₄ and evaporated to dryness. The obtained crude product was purified by flash chromatography.

General procedure for the removal of trityl protection:

The peptide was dissolved in dry dichloromethane (0.1 M) and purged with was argon gas for few minutes, then was added TIPS (2.0 eq) followed TFA (10.0 eq) dropwise under argon atmosphere at room temperature. The reaction mixture was allowed to stir at same temperature for 1-2 hours (TLC control). The reaction mixture was evaporated, to the obtained crude gummy crude product was added diethyl ether (10 vol). The solids precipitated were filtered using sintered funnel and washed again with diethyl ether to get pure product (no column purification required).

¹**H NMR (CDCl₃, 400 MHz):** δ 7.77 (d, *J* = 7.5 Hz, 2H), 7.59 (d, *J* = 7.3 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 2H), 6.71 (d, *J* = 5.2 Hz, NH), 5.90 (ddt, *J* = 16.0, 10.6, 5.6 Hz, 1H), 5.72 (s, NH), 5.30 (dd, *J* = 26.5, 13.7 Hz, 2H), 4.70 – 4.53 (m, 3H), 4.53 – 4.32 (m, 3H), 4.23 (t, *J*

= 6.7 Hz, 1H), 3.12 – 2.98 (m, 1H), 2.74 (bs, 1H), 1.69 (t, *J* = 7.2 Hz, SH), 1.45 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 172.1, 169.1, 143.6, 141.3, 141.30, 131.3, 127.8, 127.1, 125.0, 120.0, 120.0, 119.1, 67.2, 66.2, 56.0, 48.5, 47.1, 27.1, 18.2.

HRMS (ESI): calc. for C₂₄H₂₆N₂O₅SNa [M+Na]⁺: 477.1455; found: 477.1454.

¹**H NMR (CDCl₃, 400 MHz):** δ 7.74 (d, *J* = 7.5 Hz, 2H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.34 – 7.12 (m, 7H), 6.89 (d, *J* = 26.1 Hz, NH), 5.87 (ddt, *J* = 16.4, 10.9, 5.8 Hz, 1H), 5.42 – 5.19 (m, 2H, NH), 4.68 – 4.45 (m, 5H), 4.43 – 4.27 (m, 2H), 4.17 (t, *J* = 6.9 Hz, 1H), 3.21 – 2.95 (m, 3H), 2.73 – 2.61 (m, 1H), 1.63 (t, *J* = 7.2 Hz, SH), 1.38 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz): δ 171.9, 170.9, 168.7, 143.6, 141.3, 135.9, 131.4, 129.2, 128.9, 128.8, 127.8, 127.3, 127.1, 124.9, 120.0, 118.8, 67.2, 66.1, 56.3, 54.2, 48.4, 47.0, 38.1, 26.6, 17.9. HRMS (ESI): calc. for C₃₃H₃₅N₃O₆SNa [M+Na]⁺: 624.2139; found: 624.2134.

¹**H NMR** (**CDCl**₃, **400 MHz**): δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.61 (d, *J* = 7.4 Hz, 2H), 7.54 (d, *J* = 6.7 Hz, NH), 7.39 (t, *J* = 7.5 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 2H), 6.92 (bd, NH), 6.12 (m, NH), 5.94 – 5.80 (m, 1H), 5.36 – 5.18 (m, 2H), 4.87 (td, *J* = 12.5, 4.9 Hz, 1H), 4.64 (d, *J* = 4.9 Hz, 2H), 4.44 – 4.34 (m, 2H), 4.33 – 4.06 (m, 5H), 3.88 (ddd, *J* = 34.4, 16.8, 5.3 Hz, 1H), 3.08 – 2.98 (m, 2H), 2.05 – 1.93 (m, 1H), 1.84 – 1.69 (m, 1H), 1.65 – 1.50 (m, 2H), 1.33 (s, 9H), 1.21 – 1.04 (m, 4H), 1.04 – 0.86 (m, 6H).

¹³C NMR (CDCl₃, 100 MHz): δ 171.7, 170.4, 170.1, 169.5, 156.1, 143.8, 143.62, 141.3, 131.3, 131.3, 127.7, 127.0, 125.1, 120.1, 119.2, 76.0, 67.2, 66.9, 66.4, 59.3, 58.4, 54.1, 47.2, 43.2, 36.3, 28.2, 26.6, 25.04, 16.8, 15.8, 11.4.

HRMS (ESI): calc. for C₃₇H₅₁N₄O₈S [M+H]⁺: 711.3432; found: 711.3435.

¹H NMR (CDCl₃, 400 MHz): δ 8.22 (s, NH), 7.94 (s, NH), 7.74 (d, *J* = 7.4 Hz, 2H), 7.57 (d, *J* = 7.2 Hz, 2H), 7.37 (t, *J* = 7.3 Hz, 2H), 7.27 (d, *J* = 9.6 Hz, 2H), 7.05 (s, NH), 6.12 (s, NH), 5.90 – 5.73 (m, 1H), 5.21 (dd, *J* = 26.3, 13.8 Hz, 2H), 5.06 (s, 1H), 4.83 – 4.73 (m, 1H), 4.65 – 4.51 (m, 3H), 4.45 – 4.15 (m, 3H), 4.08 – 3.87 (m, 3H), 3.09 – 2.98 (m, 1H), 2.87 – 2.72 (m, 1H), 2.02 (dd, *J* = 12.9, 6.6 Hz, 1H), 1.65 (t, *J* = 7.4 Hz, SH), 1.37 (d, *J* = 7.1 Hz, 3H), 1.25 (s, 9H), 1.05 (d, *J* = 5.5 Hz, 3H), 0.93 (d, *J* = 6.3 Hz, 6H).

¹³C NMR (CDCl₃, 100 MHz): δ 172.2, 170.8, 169.6, 169.3, 168.9, 156.7, 143.8, 141.2, 131.5, 127.7, 127.0, 125.1, 119.9, 118.7, 75.4, 67.3, 66.1, 61.5, 58.1, 57.6, 53.7, 48.2, 47.0, 44.4, 32.1, 29.3, 28.3, 19.0, 18.5, 18.1.

HRMS (ESI): calc. for C₃₉H₅₄N₅O₉S [M+H]⁺: 768.5.

5.2 Preparation of glucosyl acceptor 14

To a solution of **14i** (2.7 g, 5.82 mmol) in 30 mL of anhydrous pyridine was added MsCl (901 µL, 11.64 mmol) under N₂ protection at 0 °C. After 2 hours of stirring at the same temperature, the reaction mixture was quenched with methanol and concentrated. The residue was subjected to silica gel column chromatography with EtOAc and hexanes (1:3) as the eluent to afford compound **26** (3.03 g, 96%) as a syrup. R_f 0.45 (1:2, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.43 – 7.21 (m, 1H), 5.01 (d, J = 10.9 Hz, 1H), 4.91 (d, J = 10.8 Hz, 1H), 4.81 (dd, J = 21.3, 11.5 Hz, 1H), 4.70 – 4.54 (m, 1H), 4.36 (qd, J = 11.0, 3.2 Hz, 1H), 4.02 (t, J = 9.2 Hz, 1H), 3.84 (ddd, J = 10.1, 4.1, 2.2 Hz, 1H), 3.56 – 3.45 (m, 1H), 3.38 (s, 1H), 2.97 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 138.48, 137.92, 137.73, 128.51, 128.50, 128.43, 128.07, 128.06, 128.00, 127.97, 127.89, 127.69, 98.16, 81.79, 79.76, 76.93, 75.75, 75.11, 73.46, 68.62, 68.39, 55.45, 37.51. HR ESI-TOF MS (m/z): calcd for C₂₉H₃₄SO₈Na [M + Na]⁺, 565.1867; found, 565.1878.

To a solution of **14ii** (3.3 g, 6.09 mmol) in ethanol (60 mL) was added KSAc (2.08 g, 18.27 mmol). After it was stirred under reflux for 5 h, it was diluted with ethyl acetate and washed with aqueous NaHCO₃ and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was subjected to flush silica gel column chromatography (1:6, EtOAc–hexane) to give an intermediate. To the obtained syrup in THF (60 mL) was added LiAlH₄ (1.85 g, 48.7 mmol) at 0 °C. After it was stirred at rt for 45 min, it was quenched with addition of ethyl acetate. The mixture was diluted with CH₂Cl₂ and washed with 1 N HCl and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was subjected to flush silica gel column chromatography (1:8, EtOAc–hexane) to give **14** (2.4 g, 82%) as a syrup. *R*_f 0.65 (1:4, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.44 – 7.16 (m, 1H), 5.01 (d, *J* = 10.8 Hz, 1H), 4.92 (d, *J* = 11.1 Hz, 1H), 4.86 – 4.77 (m, 1H), 4.71 – 4.56 (m, 1H), 4.00 (t, *J* = 9.2 Hz, 1H), 3.73 (ddd, *J* = 9.7, 7.1, 2.6 Hz, 1H), 3.53 (dd, *J* = 9.6, 3.6 Hz, 1H), 3.45 (t, *J* = 9.3 Hz, 1H), 3.41 (s, 1H), 2.87 (ddd, *J* = 13.8, 8.7, 2.7 Hz, 1H), 2.65 – 2.57 (m, 1H), 1.52 (t, *J* = 8.3 Hz, 1H).

^{127.86}, 127.63, 97.93, 81.99, 80.13, 79.67, 75.72, 75.07, 73.37, 70.69, 55.21, 26.39. HR ESI-TOF MS (m/z): calcd for $C_{28}H_{32}SO_5Na [M + Na]^+$, 503.1863; found, 503.1859.

5.3 Preparation of glucosyl acceptor 15

To a solution of **15i** (1.6 g, 3.45 mmol) in toluene (60 mL) were added I₂ (1.75 g, 6.9 mmol), imidazole (703 mg, 10.35 mmol) and Ph₃P (2.71 g, 10.35 mmol). After it was stirred under reflux for 2 h, it was filtered and concentrated. The residue was subjected to flush silica gel column chromatography (1:10, EtOAc–hexane) to give **15ii** (3.34 g, 76%) as a syrup. R_f 0.70 (1:3, EtOAc–hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.54 – 7.12 (m, 1H), 4.86 (d, *J* = 12.0 Hz, 1H), 4.75 (d, *J* = 11.6 Hz, 1H), 4.71 – 4.52 (m, 1H), 3.85 (dd, *J* = 9.5, 3.8 Hz, 1H), 3.64 (dd, *J* = 9.6, 6.0 Hz, 1H),

3.52 (dd, J = 9.6, 6.4 Hz, 1H), 3.39 (s, 1H), 3.31 (t, J = 6.1 Hz, 1H), 3.21 (dd, J = 9.5, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 138.34, 137.93, 137.80, 128.43, 128.39, 128.35, 128.12, 127.81, 127.78, 127.75, 127.68, 99.04, 77.84, 75.71, 74.18, 73.96, 73.74, 71.24, 67.08, 55.34, 41.23. HR ESI-TOF MS (m/z): calcd for C₂₈H₃₁IO₅Na [M + Na]⁺, 597.1108; found, 597.1106.

To a solution of **15ii** (1.5 g, 2.61 mmol) in DMF (30 mL) was added KSAc (1.19 g, 10.45 mmol). After it was stirred at 60 °C for 5 h, it was diluted with ethyl acetate and washed with H₂O and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was subjected to flush silica gel column chromatography (1:6, EtOAc–hexane) to give **15iii** (1.17 g, 86%) as a syrup. R_f 0.40 (1:4, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.39 – 7.17 (m, 1H), 4.93 (d, J = 11.1 Hz, 1H), 4.79 (d, J = 12.0 Hz, 1H), 4.73 – 4.62 (m, 1H), 4.52 (s, 1H), 3.93 – 3.88 (m, 1H), 3.84 (dd, J = 10.6, 9.5 Hz, 1H), 3.68 (t, J = 11.1 Hz, 1H), 3.65 – 3.58 (m, 1H), 3.41 (s, 1H), 2.24 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 193.42, 138.63, 138.07, 138.03, 128.44, 128.23, 128.19, 128.10, 127.91, 127.71, 127.63, 127.50, 127.42, 98.33, 97.44, 80.93, 78.34, 75.93, 73.45, 73.35, 69.87, 69.82, 55.39, 45.80, 30.61. HR ESI-TOF MS (m/z): calcd for C₃₀H₃₄SO₆Na [M + Na]⁺, 545.1968; found, 545.1963.

To a solution of **15iii** (590 mg, 1.13 mmol) in THF (20 mL) was added LiAlH₄ (344 mg, 9.04 mmol) at 0 °C. After it was stirred at rt for 30 min, it was quenched with addition of ethyl acetate. The mixture was diluted with CH₂Cl₂ and washed with 1 N HCl and brine. The organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was subjected to flush silica gel column chromatography (1:7, EtOAc–hexane) to give **15** (515 mg, 95%) as a syrup. R_f 0.45 (1:4, EtOAc–hexane); ¹H NMR (600 MHz, CDCl₃) δ : 7.54 – 7.21 (m, 1H), 4.99 (d, J = 10.6 Hz, 1H), 4.82 (dd, J = 24.7, 11.3 Hz, 1H), 4.72 – 4.61 (m, 1H), 4.52 (d, J = 12.1 Hz, 1H), 3.80 (dd, J = 10.7, 3.9 Hz, 1H), 3.72 (ddd, J = 19.2, 12.0, 5.9 Hz, 1H), 3.55 (dd, J = 9.3, 3.5 Hz, 1H), 3.41 (s, 1H), 3.09 (td, J = 10.5, 6.7 Hz, 1H), 1.67 (d, J = 6.7 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 138.41, 138.05,

137.95, 128.46, 128.40, 128.34, 128.19, 128.10, 127.94, 127.76, 127.73, 127.65, 98.53, 81.81, 80.64, 76.29, 73.56, 73.20, 72.30, 69.49, 55.39, 41.89. HR ESI-TOF MS (m/z): calcd for $C_{28}H_{32}SO_5Na [M + Na]^+$, 503.1863; found, 503.1857.

5.4 Preparation of thiol-Farnesol acceptor 16

To a solution of **trans,trans-Farnesol** (0.4 mL, 1.58 mmol) in dry toluene (5 mL) was added Lawesson's reagent (0.42 g, 0.95 mmol). After it was stirred at 80 °C for 2 h, it was cooled down, filtered and concentrated. The residue was subjected to flush silica gel column chromatography (hexane) to give **16** (316 mg, 84%) as a colorless oil. R_f 0.25 (hexane); ¹H NMR (600 MHz, CDCl₃) δ : 5.34 (td, J = 7.8, 1.1 Hz, 1H), 5.12 – 5.06 (m, 2H), 3.16 (t, J = 7.4 Hz, 2H), 2.12 – 1.94 (m, 8H), 1.68 (s, 3H), 1.66 (s, 2H), 1.60 (s, 5H), 1.39 (t, J = 7.1 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 137.47, 135.27, 131.26, 124.31, 124.25, 124.09, 123.72, 123.61, 123.28, 39.67, 39.37, 26.70, 26.27, 25.67, 22.09, 17.66, 16.00, 15.75. HR ESI-TOF MS (m/z): calcd for C₁₅H₂₆SNa [M + Na]⁺, 261.1647; found, 261.1648.

6. Scope of Glycosylation

General Procedure for Triflic Acid-Catalyzed Thiol Glycosylation:

A 10 mL Schlenk flask was charged with *N*-phenyl trifluoroacetimidate glycosyl donor **1**, **6** – **9**, **18**, **19** (0.2 mmol, 1 – 2 equiv.), thiol acceptor **10-17** (0.1 mmol, 1 equiv.) and dichloromethane (1 mL). The resulting solution was stirred at room temperature for 2 min under a nitrogen atmosphere before the TfOH (5 mol%) was added. After 1 h of stirring at room temperature, the reaction was quenched with 1 drop of Et₃N and concentrated. A crude ¹H NMR was taken to determine the (α/β) ratio. Further purification by silica gel column chromatography (ethyl acetate/hexane: $1/4 \rightarrow 1/2$) was performed to give the desired product.

¹**H** NMR (CDCl₃, 600 MHz): δ 8.61 (d, *J* = 2.0 Hz, 1H), 8.20 (d, *J* = 7.7 Hz, 1H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.64 – 7.51 (m, 4H), 7.40 (dd, *J* = 14.0, 7.0 Hz, 2H), 7.31 (dd, *J* = 15.2, 7.6 Hz, 2H), 6.01 (d, *J* = 8.6 Hz, 1H), 5.87 (ddd, *J* = 16.5, 11.2, 5.9 Hz, 1H), 5.49 (t, *J* = 9.7 Hz, 1H), 5.25 (ddd, *J* = 17.4, 11.5, 9.1 Hz, 3H), 5.10 (dd, *J* = 10.1, 9.6 Hz, 1H), 4.78 – 4.70 (m, 1H), 4.64 (d, *J* = 5.8 Hz, 2H), 4.52 (dd, *J* = 10.2, 3.2 Hz, 1H), 4.42 (p, *J* = 10.6 Hz, 2H), 4.25 (ddd, *J* = 12.5, 11.2, 6.2 Hz, 3H), 3.92 (dd, *J* = 10.0, 5.6 Hz, 1H), 3.23 (dd, *J* = 14.2, 5.4 Hz, 1H), 3.01 (dd, *J* = 14.3, 4.0 Hz, 1H), 2.05 (s, 3H), 2.03 (s, 3H), 1.87 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.50, 169.87, 169.73, 155.69, 143.85, 143.62, 141.31, 137.07, 131.26, 128.51, 128.14, 127.79, 127.73, 127.71, 127.04, 125.07, 124.98, 119.99, 119.97, 119.34, 85.32, 76.11, 72.50, 71.86, 68.41, 67.07, 66.43, 62.07, 54.18, 47.05, 34.58, 20.73, 20.61, 20.58.
HRMS (ESI): calc. for C₄₁H₄₁F₃N₂O₁₁SNa [M + Na]⁺, 849.2275; found: 849.2278.

¹**H** NMR (CDCl₃, 600 MHz): δ 8.59 (d, *J* = 1.9 Hz, 1H), 8.18 (d, *J* = 7.7 Hz, 1H), 7.76 (d, *J* = 7.5 Hz, 2H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.63 – 7.51 (m, 4H), 7.40 (dd, *J* = 13.5, 7.0 Hz, 2H), 7.36 – 7.27 (m, 8H), 6.05 (d, *J* = 8.6 Hz, 1H), 5.46 (t, *J* = 9.7 Hz, 1H), 5.16 (dd, *J* = 12.4, 3.4 Hz, 3H), 5.10 – 5.04 (m, 1H), 4.80 – 4.73 (m, 1H), 4.43 (ddt, *J* = 17.3, 13.7, 6.8 Hz, 3H), 4.28 – 4.16 (m, 3H), 3.85 (dd, *J* = 10.0, 5.6 Hz, 1H), 3.23 (dd, *J* = 14.3, 5.2 Hz, 1H), 2.99 (dd, *J* = 14.3, 4.0 Hz, 1H), 2.04 (s, 3H), 2.01 (s, 3H), 1.87 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.55, 169.84, 169.56, 160.34, 155.73, 143.63, 141.27, 134.86, 132.28, 130.90, 129.09, 128.62, 128.59, 128.57, 127.71, 127.69, 127.06, 127.03, 125.49, 125.04, 119.97, 119.94, 85.35, 72.02, 71.29, 68.63, 67.65, 67.07, 62.18, 54.15, 53.77, 47.10, 33.77, 20.66, 20.59, 20.33.

HRMS (ESI): calc. for C₄₅H₄₃F₃N₂O₁₁SNa [M + Na]⁺, 899.2432; found: 899.2433.

¹**H NMR** (**CDCl₃, 600 MHz**): δ 8.62 (d, *J* = 1.7 Hz, 1H), 8.18 (d, *J* = 7.6 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 2H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.54 (ddd, *J* = 24.2, 15.3, 7.5 Hz, 4H), 7.38 (dd, *J* = 12.8, 7.2 Hz, 2H), 7.30 (ddd, *J* = 16.4, 7.6, 1.0 Hz, 2H), 6.84 (d, *J* = 5.7 Hz, 1H), 5.88 (ddd, *J* = 16.3, 11.0, 5.7 Hz, 1H), 5.71 (s, 1H), 5.52 (t, *J* = 9.7 Hz, 1H), 5.41 (s, 1H), 5.36 – 5.29 (m, 1H), 5.24 (dd, *J* = 10.5, 1.1 Hz, 1H), 5.11 (t, *J* = 9.8 Hz, 1H), 4.67 – 4.50 (m, 4H), 4.43 (dt, *J* = 17.0, 10.2 Hz, 3H), 4.25 (ddd, *J* = 24.6, 13.0, 5.8 Hz, 3H), 3.91 (dd, *J* = 9.9, 5.6 Hz, 1H), 3.14 – 3.06 (m, 1H), 2.93 – 2.85 (m, 1H), 2.06 (s, 3H), 2.02 (s, 3H), 1.86 (s, 3H), 1.38 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 171.96, 170.69, 169.87, 169.58, 160.45, 155.90, 143.69, 143.59, 141.29, 141.26, 133.05, 132.21, 131.44, 130.89, 129.09, 129.04, 127.75, 127.72, 127.10, 127.06, 125.50, 125.46, 125.00, 124.91, 119.98, 119.96, 118.81, 85.36, 71.99, 71.47, 68.82, 68.45, 67.19, 66.01, 62.16, 55.00, 48.39, 47.07, 33.38, 20.72, 20.65, 20.34, 18.00.

HRMS (**ESI**): calc. for C₄₄H₄₆F₃N₃O₁₂SNa [M + Na]⁺, 920.2647; found: 920.2643.

¹**H** NMR (CDCl₃, 600 MHz): δ 8.63 (s, 1H), 8.19 (d, *J* = 7.7 Hz, 1H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.58 (ddd, *J* = 33.7, 14.2, 7.5 Hz, 4H), 7.40 (dd, *J* = 13.5, 7.0 Hz, 2H), 7.32 (dt, *J* = 15.0, 7.6 Hz, 2H), 5.96 (d, *J* = 8.5 Hz, 1H), 5.92 – 5.82 (m, 1H), 5.48 (s, 1H), 5.40 – 5.27 (m, 3H), 5.20 (d, *J* = 10.5 Hz, 1H), 4.72 – 4.60 (m, 3H), 4.40 (d, *J* = 7.1 Hz, 2H), 4.26 – 4.06 (m, 4H), 3.22 (dd, *J* = 14.0, 5.4 Hz, 1H), 3.00 (dd, *J* = 14.0, 4.0 Hz, 1H), 2.21 (s, 3H), 2.04 (s, 3H), 1.87 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.46, 170.03, 169.62, 160.33, 155.67, 143.67, 141.29, 132.22, 131.30, 130.77, 129.03, 127.69, 127.04, 125.04, 119.96, 119.11, 85.43, 69.13, 67.62, 67.12, 66.79, 66.36, 62.18, 54.10, 47.07, 32.99, 29.67, 20.75, 20.61, 20.33.

HRMS (ESI): calc. for $C_{41}H_{41}F_3N_2O_{11}SNa [M + Na]^+$, 849.2275; found: 849.2273.

¹**H NMR** (**CDCl**₃, **600 MHz**): δ 8.63 (d, *J* = 1.9 Hz, 1H), 8.18 (d, *J* = 7.7 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 2H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.62 – 7.48 (m, 4H), 7.39 (dd, *J* = 15.2, 7.6 Hz, 2H), 7.36 – 7.28 (m, 2H), 6.97 (d, *J* = 6.0 Hz, 1H), 5.94 – 5.76 (m, 2H), 5.48 (d, *J* = 2.4 Hz, 2H), 5.31 (ddd, *J* = 56.3, 24.8, 6.8 Hz, 3H), 4.67 – 4.50 (m, 4H), 4.40 (dd, *J* = 31.9, 5.9 Hz, 3H), 4.21 (t, *J* = 6.9 Hz, 1H), 4.16 (d, *J* = 6.0 Hz, 2H), 4.10 (dd, *J* = 10.4, 5.5 Hz, 1H), 3.15 (dd, *J* = 13.5, 5.7 Hz, 1H), 2.93 – 2.85 (m, 1H), 2.19 (s, 3H), 2.00 (s, 3H), 1.87 (s, 3H), 1.38 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 172.00, 170.56, 170.08, 169.66, 169.60, 160.40, 155.90, 143.73, 143.61, 141.29, 141.27, 133.32, 132.18, 131.44, 130.74, 129.15, 129.04, 128.94, 127.74, 127.72, 127.09, 127.05, 125.48, 125.44, 125.01, 124.96, 123.15, 119.98, 119.97, 118.79, 85.31, 69.47,

69.24, 67.44, 67.11, 67.03, 66.84, 65.98, 62.22, 53.78, 48.35, 47.06, 32.54, 20.76, 20.63, 20.34, 18.08.

HRMS (ESI): calc. for C₄₄H₄₆F₃N₃O₁₂SNa [M + Na]⁺, 920.2647; found: 920.2641.

¹**H NMR** (**CDCl**₃, **600 MHz**): δ 8.63 (d, J = 1.7 Hz, 1H), 8.16 (d, J = 7.6 Hz, 1H), 7.74 (dd, J = 17.5, 5.8 Hz, 2H), 7.66 (d, J = 7.5 Hz, 1H), 7.55 – 7.46 (m, 4H), 7.39 (dd, J = 13.4, 6.9 Hz, 2H), 7.33 – 7.23 (m, 5H), 7.18 (s, 2H), 6.92 (s, 1H), 6.81 (s, 1H), 5.93 – 5.83 (m, 1H), 5.46 (dd, J = 9.3, 3.8 Hz, 2H), 5.32 (ddd, J = 9.6, 9.0, 2.2 Hz, 3H), 5.24 (dd, J = 10.5, 1.1 Hz, 1H), 4.66 – 4.41 (m, 7H), 4.31 – 4.12 (m, 4H), 4.05 (dd, J = 10.5, 5.5 Hz, 1H), 3.07 (d, J = 36.9 Hz, 3H), 2.87 (d, J = 13.3 Hz, 1H), 2.16 (s, 3H), 2.04 (s, 3H), 1.85 (s, 3H), 1.35 (d, J = 7.0 Hz, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 171.90, 170.68, 170.09, 169.59, 169.07, 160.44, 143.72, 141.25, 133.56, 132.18, 131.49, 130.74, 129.30, 129.18, 129.03, 128.78, 127.72, 127.21, 127.05, 124.97, 119.97, 119.94, 118.76, 84.73, 69.23, 67.46, 67.15, 67.02, 66.72, 65.96, 62.11, 53.77, 48.38, 47.04, 31.47, 29.25, 20.73, 20.71, 20.32, 17.89.

HRMS (ESI): calc. for $C_{53}H_{55}F_3N_4O_{13}SNa [M + Na]^+$, 1067.3331; found: 1067.3337.

¹**H NMR (CDCl₃, 600 MHz):** δ 7.76 (dd, *J* = 7.5, 0.7 Hz, 2H), 7.59 (dd, *J* = 19.0, 7.5 Hz, 2H), 7.40 (q, *J* = 7.4 Hz, 2H), 7.35 – 7.26 (m, 5H), 6.06 (d, *J* = 8.7 Hz, 1H), 5.91 (ddd, *J* = 16.5, 11.2, 5.9 Hz, 1H), 5.34 (d, *J* = 17.2 Hz, 1H), 5.24 (ddd, *J* = 19.2, 9.9, 2.1 Hz, 3H), 4.98 – 4.90 (m, 1H), 4.78 – 4.70 (m, 1H), 4.64 (dd, *J* = 22.9, 9.0 Hz, 3H), 4.55 (d, *J* = 12.2 Hz, 1H), 4.40 (dd, *J* = 7.0,

1.7 Hz, 2H), 4.35 – 4.26 (m, 1H), 4.24 – 4.12 (m, 3H), 3.80 (dd, *J* = 10.0, 5.5 Hz, 1H), 3.25 (dd, *J* = 14.5, 5.0 Hz, 1H), 2.90 (dd, *J* = 14.5, 3.8 Hz, 1H), 2.02 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H). ¹³C NMR (CDCl3, 150 MHz): δ 170.50, 169.94, 169.87, 169.73, 155.69, 143.85, 143.62, 141.31, 137.07, 131.26, 128.51, 128.14, 127.79, 127.73, 127.71, 127.04, 125.07, 124.98, 119.99, 119.97, 119.34, 85.32, 76.11, 72.50, 71.86, 68.41, 67.07, 66.43, 62.07, 54.18, 47.05, 34.58, 20.73, 20.61, 20.58.

HRMS (**ESI**): calc. for C₄₀H₄₃NO₁₂SNa [M + Na]⁺, 784.2398; found: 784.2392.

¹**H NMR** (**CDCl**₃, **600 MHz**): δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.59 (dd, *J* = 18.7, 7.5 Hz, 2H), 7.46 – 7.23 (m, 14H), 6.12 (d, *J* = 8.8 Hz, 1H), 5.17 (dt, *J* = 23.4, 5.9 Hz, 4H), 4.92 (t, *J* = 9.8 Hz, 1H), 4.76 (dt, *J* = 8.6, 4.2 Hz, 1H), 4.59 (d, *J* = 12.3 Hz, 1H), 4.51 (d, *J* = 12.3 Hz, 1H), 4.40 (dd, *J* = 6.9, 4.2 Hz, 2H), 4.31 – 4.08 (m, 4H), 3.76 (dd, *J* = 10.0, 5.6 Hz, 1H), 3.26 (dd, *J* = 14.5, 4.9 Hz, 1H), 2.88 (dd, *J* = 14.5, 3.7 Hz, 1H), 2.03 (s, 3H), 2.01 (s, 3H), 1.97 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.50, 170.11, 169.86, 169.72, 155.71, 143.87, 143.62, 141.31, 141.27, 137.08, 134.84, 128.70, 128.65, 128.64, 128.51, 128.14, 127.80, 127.73, 127.71, 127.05, 125.08, 124.98, 119.99, 119.97, 85.30, 72.50, 71.82, 68.42, 68.39, 67.72, 67.08, 62.06, 54.20, 47.05, 34.68, 20.73, 20.63, 20.54.

HRMS (ESI): calc. for C₄₄H₄₅NO₁₂SNa [M + Na]⁺, 834.2555; found: 834.2565.

¹**H NMR (CDCl₃, 600 MHz):** δ 7.76 (dd, J = 7.5, 2.2 Hz, 2H), 7.59 (t, J = 8.0 Hz, 2H), 7.40 (dd, J = 13.1, 7.3 Hz, 2H), 7.30 (qdd, J = 20.3, 10.7, 6.6 Hz, 7H), 6.86 (d, J = 6.4 Hz, 1H), 5.96 – 5.79 (m, 2H), 5.47 (d, J = 5.3 Hz, 1H), 5.39 – 5.20 (m, 3H), 4.95 (t, J = 9.8 Hz, 1H), 4.73 – 4.48 (m, 5H), 4.47 – 4.34 (m, 3H), 4.34 – 4.26 (m, 1H), 4.26 – 4.17 (m, 2H), 4.12 (dd, J = 14.2, 7.1 Hz,

1H), 3.83 (dd, *J* = 9.0, 5.2 Hz, 1H), 3.11 (d, *J* = 9.6 Hz, 1H), 2.81 (dd, *J* = 13.6, 4.9 Hz, 1H), 2.02 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H), 1.37 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 171.92, 170.58, 169.85, 169.73, 169.40, 155.86, 143.69, 143.58, 141.31, 141.28, 136.96, 131.49, 128.57, 128.51, 128.26, 128.17, 128.01, 127.91, 127.77, 127.75, 127.65, 127.59, 127.11, 127.08, 125.00, 120.01, 119.99, 118.81, 85.20, 76.21, 72.70, 72.14, 68.52, 68.43, 67.16, 66.01, 62.06, 54.94, 48.42, 47.06, 33.95, 20.75, 20.68, 20.61, 17.92.

HRMS (ESI): calc. for $C_{43}H_{48}N_2O_{13}SNa [M + Na]^+$, 855.2769; found: 855.2764.

¹**H NMR** (**CDCl**₃, **600 MHz**): δ 7.75 (d, *J* = 7.5 Hz, 2H), 7.50 (dd, *J* = 13.9, 7.5 Hz, 2H), 7.42 – 7.36 (m, 2H), 7.36 – 7.22 (m, 10H), 7.18 (s, 2H), 6.85 (d, *J* = 38.5 Hz, 2H), 5.94 – 5.84 (m, 1H), 5.56 (d, *J* = 4.3 Hz, 1H), 5.27 (ddd, *J* = 13.8, 12.1, 1.3 Hz, 4H), 4.95 (t, *J* = 9.7 Hz, 1H), 4.71 – 4.38 (m, 8H), 4.36 – 4.11 (m, 5H), 3.81 (dd, *J* = 9.9, 5.5 Hz, 1H), 3.18 – 2.96 (m, 3H), 2.88 – 2.77 (m, 1H), 2.05 (s, 3H), 2.01 (s, 3H), 1.99 (s, 3H), 1.34 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 171.79, 170.87, 170.68, 169.88, 169.73, 168.83, 143.68, 141.26, 136.97, 135.96, 131.53, 129.22, 128.82, 128.50, 128.14, 127.87, 127.72, 127.26, 127.08, 124.96, 119.97, 118.77, 84.81, 76.25, 72.66, 72.19, 68.61, 68.45, 67.11, 65.98, 61.92, 53.43, 48.45, 47.05, 38.05, 33.11, 20.74, 20.62, 17.70.

HRMS (ESI): calc. for $C_{38}H C_{52}H_{57}N_3O_{14}SNa [M + Na]^+$, 1002.3453; found: 1002.3458.

¹**H NMR (CDCl₃, 600 MHz):** δ 7.73 (d, *J* = 7.5 Hz, 2H), 7.60 (dd, *J* = 17.0, 7.5 Hz, 2H), 7.44 – 7.21 (m, 14H), 6.16 (d, *J* = 8.8 Hz, 1H), 5.97 – 5.83 (m, 1H), 5.40 – 5.20 (m, 3H), 5.07 (dd, *J* = 10.5, 2.9 Hz, 1H), 4.77 – 4.61 (m, 5H), 4.58 (d, *J* = 12.0 Hz, 1H), 4.52 (d, *J* = 11.2 Hz, 1H), 4.39

(td, J = 17.9, 10.5 Hz, 2H), 4.33 – 4.16 (m, 4H), 4.12 (dd, J = 11.3, 4.9 Hz, 1H), 3.98 (d, J = 1.6 Hz, 1H), 3.29 (dd, J = 14.5, 5.1 Hz, 1H), 2.88 (dd, J = 14.5, 3.7 Hz, 1H), 2.04 (s, 3H), 2.00 (s, 3H). ¹³**C NMR (CDCl3, 150 MHz):** δ 170.54, 170.20, 169.98, 155.75, 143.84, 143.71, 141.27, 141.24, 137.55, 137.41, 131.39, 128.52, 128.41, 128.18, 128.12, 127.93, 127.79, 127.65, 127.10, 127.05, 125.17, 125.08, 119.90, 119.11, 85.71, 75.29, 74.89, 73.35, 72.58, 72.49, 69.30, 67.06, 66.29, 62.88, 54.27, 47.06, 34.20, 20.95, 20.66.

HRMS (ESI): calc. for C₃₈H C₄₅H₄₇NO₁₁SNa [M + Na]⁺, 832.2762; found: 832.2761.

¹**H** NMR (CDCl₃, 600 MHz): α/β mixture, inseparable, δ 7.79 – 7.70 (m, 2H), 7.64 – 7.54 (m, 2H), 7.44 – 7.25 (m, 14H), 7.17 (d, J = 20.4 Hz, 0.2H), 6.97 (d, J = 6.8 Hz, 1H), 6.09 (d, J = 5.7 Hz, 0.2H), 5.97 (d, J = 6.7 Hz, 1H), 5.93 – 5.82 (m, 1H), 5.45 (s, 1H), 5.31 (d, J = 17.3 Hz, 1H), 5.23 (d, J = 10.4 Hz, 1H), 5.16 – 5.05 (m, 1H), 4.97 (d, J = 9.0 Hz, 0.2H), 4.86 (d, J = 10.8 Hz, 0.2H), 4.74 – 4.48 (m, 7H), 4.44 (d, J = 5.8 Hz, 2H), 4.37 (d, J = 5.3 Hz, 1H), 4.21 (dd, J = 18.3, 11.6 Hz, 4H), 4.12 – 3.94 (m, 3H), 3.84 (d, J = 10.1 Hz, 1H), 3.19 (dd, J = 32.9, 11.6 Hz, 1.2H), 2.97 (d, J = 8.1 Hz, 0.2H), 2.80 (d, J = 10.3 Hz, 1H), 2.04 (s, 3H), 1.95 (s, 3H), 1.38 (d, J = 6.9 Hz, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 171.99, 170.51, 170.17, 169.61, 155.98, 146.78, 143.73, 143.66, 141.31, 141.26, 137.48, 137.43, 135.83, 131.66, 131.53, 128.51, 128.45, 128.40, 128.38, 128.14, 128.09, 128.04, 127.98, 127.96, 127.90, 127.71, 127.70, 127.14, 127.08, 125.02, 124.96, 121.19, 119.95, 119.92, 118.71, 118.57, 85.41, 75.56, 75.12, 75.04, 74.56, 74.41, 73.50, 72.76, 72.52, 69.30, 66.98, 65.93, 65.84, 63.01, 62.72, 55.23, 54.62, 48.54, 48.35, 47.09, 33.68, 29.67, 20.97, 20.87, 20.66, 18.08, 17.93.

HRMS (ESI): calc. for $C_{38}H C_{48}H_{52}N_2O_{12}SNa [M + Na]^+$, 903.3133; found: 903.3136.

¹**H** NMR (CDCl₃, 600 MHz): δ 8.61 (s, 1H), 8.24 (d, *J* = 7.7 Hz, 1H), 7.81 – 7.68 (m, 3H), 7.65 – 7.52 (m, 4H), 7.40 (dd, *J* = 13.1, 7.2 Hz, 2H), 7.31 (dd, *J* = 16.3, 7.9 Hz, 2H), 5.90 (d, *J* = 8.5 Hz, 1H), 5.87 – 5.77 (m, 1H), 5.51 – 5.48 (m, 1H), 5.23 (ddd, *J* = 21.7, 14.4, 6.8 Hz, 4H), 5.01 (dd, *J* = 10.4, 7.9 Hz, 1H), 4.83 (dd, *J* = 10.5, 3.5 Hz, 1H), 4.60 (ddd, *J* = 30.9, 23.7, 6.4 Hz, 4H), 4.42 – 4.19 (m, 5H), 4.17 – 4.01 (m, 5H), 3.84 (t, *J* = 6.6 Hz, 1H), 3.16 (dd, *J* = 14.1, 5.7 Hz, 1H), 2.95 (dd, *J* = 14.1, 4.0 Hz, 1H), 2.17 (s, 3H), 2.12 (s, 3H), 2.05 (d, *J* = 6.8 Hz, 6H), 1.89 (s, 3H), 1.48 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 171.10, 170.53, 170.35, 170.25, 170.15, 170.04, 169.86, 168.76, 160.10, 155.66, 143.81, 143.64, 141.28, 133.56, 133.30, 132.28, 132.14, 131.23, 130.90, 129.04, 128.72, 127.70, 127.00, 125.73, 125.07, 119.99, 119.06, 100.65, 85.64, 75.21, 70.75, 70.70, 69.08, 68.84, 68.69, 68.47, 67.16, 67.11, 66.70, 66.31, 63.02, 60.98, 60.36, 54.06, 47.06, 32.95, 21.02, 20.76, 20.69, 20.67, 20.61, 20.46, 19.92.

HRMS (ESI): calc. for $C_{53}H_{57}F_3N_2O_{19}SNa [M + Na]^+$, 1137.3121; found: 1137.3125.

¹**H** NMR (CDCl₃, 600 MHz): δ 8.61 (s, 1H), 8.23 (d, *J* = 7.7 Hz, 1H), 7.80 – 7.66 (m, 3H), 7.52 (ddt, *J* = 30.9, 15.4, 7.6 Hz, 4H), 7.39 (dd, *J* = 14.6, 7.2 Hz, 2H), 7.34 – 7.20 (m, 6H), 7.15 (s, 2H), 6.93 (d, *J* = 6.7 Hz, 1H), 6.77 (s, 1H), 5.87 (ddd, *J* = 16.2, 11.0, 5.7 Hz, 1H), 5.46 (d, *J* = 3.0 Hz, 1H), 5.37 – 5.22 (m, 5H), 4.99 (dd, *J* = 10.4, 7.9 Hz, 2H), 4.80 (dd, *J* = 10.5, 3.3 Hz, 1H), 4.64 – 4.41 (m, 6H), 4.34 – 4.26 (m, 2H), 4.19 – 4.02 (m, 5H), 3.76 (d, *J* = 6.9 Hz, 1H), 3.07 (s, 2H), 2.96 (d, *J* = 6.8 Hz, 1H), 2.82 (d, *J* = 10.5 Hz, 1H), 2.13 (s, 3H), 2.10 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H), 1.88 (s, 3H), 1.43 (s, 3H), 1.33 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 171.99, 170.85, 170.82, 170.34, 170.24, 170.01, 169.96, 169.07, 168.74, 160.09, 143.65, 141.27, 141.23, 136.02, 133.34, 132.07, 131.46, 130.84, 129.26, 128.79, 128.72, 127.79, 127.75, 127.14, 127.08, 124.94, 120.02, 120.00, 118.71, 100.65, 84.97, 75.54, 70.75, 70.60, 68.92, 68.78, 68.49, 68.45, 67.11, 66.70, 65.92, 62.95, 60.93, 60.35, 55.94, 53.78, 48.33, 47.06, 30.89, 29.66, 29.24, 20.82, 20.77, 20.67, 20.63, 20.60, 20.45, 19.86, 17.86. **HRMS (ESI)**: calc. for C₆₅H₇₁F₃N₄O₂₁SNa [M + Na]⁺, 1355.4176; found: 1355.4182.

¹**H** NMR (CDCl₃, 600 MHz): α/β mixture, inseparable, δ 7.76 (d, J = 7.3 Hz, 4.4H), 7.60 (d, J = 5.5 Hz, 5H), 7.33 (dd, J = 33.0, 25.9 Hz, 9H), 6.04 (d, J = 8.4 Hz, 1.3H), 5.91 (d, J = 5.9 Hz, 2.6H), 5.69 – 5.50 (m, 3.6H), 5.48 – 5.09 (m, 9.2H), 5.00 (t, J = 9.6 Hz, 1.6H), 4.94 (t, J = 9.7 Hz, 1H), 4.70 (d, J = 41.2 Hz, 7H), 4.55 – 4.00 (m, 17H), 3.98 – 3.92 (m, 1H), 3.51 (d, J = 8.8 Hz, 1.6H), 3.35 – 3.21 (m, 2.6H), 3.04 (dd, J = 20.4, 9.2 Hz, 2.6H), 2.08 (s, 3H), 2.05 (s, 4.8H), 2.03 (s, 4.8H), 1.99 (s, 4.8H), 1.65 (s, 3H), 1.56 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.48, 170.30, 170.01, 169.69, 155.68, 143.84, 143.74, 141.26, 131.27, 131.18, 127.73, 127.69, 127.05, 125.14, 125.08, 124.91, 119.97, 119.47, 119.12, 92.28, 85.39, 71.64, 71.25, 68.80, 68.56, 67.97, 67.31, 66.75, 66.54, 66.44, 62.04, 61.95, 61.53, 61.14, 60.35, 54.22, 53.40, 47.17, 47.04, 35.49, 30.43, 29.78, 29.66, 29.24, 28.79, 20.67, 20.64, 20.60, 20.58, 20.55.

HRMS (ESI): calc. for $C_{33}H_{36}N_4O_{11}SNa [M + Na]^+$, 719.1993; found: 719.1998.

¹**H NMR (CDCl₃, 600 MHz):** α/β mixture, inseparable, δ 7.75 (t, J = 10.1 Hz, 5.2H), 7.61 (t, J = 8.8 Hz, 5.2H), 7.40 (dd, J = 12.1, 7.2 Hz, 5.5H), 7.36 – 7.29 (m, 5.4H), 6.07 (d, J = 8.5 Hz, 2H), 5.90 (ddd, J = 16.3, 10.5, 5.8 Hz, 2.8H), 5.66 (d, J = 8.3 Hz, 1H), 5.59 (d, J = 3.2 Hz, 1H), 5.46 –

5.23 (m, 11.2H), 5.03 (dd, J = 11.1, 2.8 Hz, 2H), 4.76 – 4.62 (m, 8H), 4.52 – 4.32 (m, 8H), 4.31 –
4.18 (m, 7H), 4.08 (dddd, J = 22.7, 18.2, 11.4, 6.4 Hz, 8H), 3.87 – 3.79 (m, 1H), 3.36 – 3.25 (m, 3H), 3.04 (td, J = 14.0, 5.3 Hz, 3H), 2.18 (s, 6H), 2.13 (s, 3H), 2.05 (d, J = 9.0 Hz, 6H), 1.99 (s, 6H), 1.64 (s, 3H), 1.56 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.34, 170.29, 170.04, 169.82, 169.70, 169.46, 155.66, 143.83, 143.76, 143.63, 141.35, 141.30, 141.26, 131.31, 131.23, 127.70, 127.68, 127.03, 127.00, 125.12, 125.03, 125.00, 119.95, 119.36, 119.07, 92.75, 85.63, 69.67, 69.17, 67.83, 67.50, 67.35, 66.97, 66.88, 66.49, 66.42, 61.76, 61.73, 60.35, 57.98, 57.75, 54.15, 47.12, 47.06, 34.90, 29.85, 21.01, 20.61, 20.55, 20.49.

HRMS (ESI): calc. for $C_{33}H_{36}N_4O_{11}SNa [M + Na]^+$, 719.1993; found: 719.1999.

¹**H NMR** (**CDCl**₃, **600 MHz**): δ 8.60 (d, *J* = 1.9 Hz, 1H), 8.21 (d, *J* = 7.6 Hz, 1H), 7.66 (d, *J* = 7.5 Hz, 1H), 7.53 (dd, *J* = 14.6, 7.4 Hz, 2H), 7.36 – 7.22 (m, 15H), 5.57 (t, *J* = 9.7 Hz, 1H), 5.42 (d, *J* = 5.6 Hz, 1H), 5.13 (t, *J* = 9.8 Hz, 1H), 4.93 (dd, *J* = 18.2, 10.9 Hz, 2H), 4.78 (d, *J* = 10.8 Hz, 1H), 4.70 (d, *J* = 12.0 Hz, 1H), 4.63 (d, *J* = 11.0 Hz, 1H), 4.59 – 4.53 (m, 2H), 4.51 (d, *J* = 3.5 Hz, 1H), 4.33 (dd, *J* = 12.3, 4.3 Hz, 1H), 4.02 (dd, *J* = 12.3, 2.0 Hz, 1H), 3.97 – 3.88 (m, 2H), 3.85 – 3.79 (m, 1H), 3.46 – 3.40 (m, 2H), 3.31 (s, 3H), 2.99 (dd, *J* = 13.7, 2.3 Hz, 1H), 2.63 (dd, *J* = 13.1, 8.2 Hz, 1H), 2.06 (s, 3H), 2.03 (s, 3H), 1.86 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.56, 169.89, 169.68, 169.63, 159.89, 138.61, 138.05, 138.01, 132.23, 130.92, 130.78, 129.09, 128.72, 128.59, 128.41, 128.40, 128.37, 127.99, 127.96, 127.88, 127.79, 127.74, 127.62, 97.76, 84.21, 81.88, 80.42, 80.17, 75.69, 75.14, 73.33, 73.22, 72.10, 71.75, 69.70, 68.70, 67.90, 62.10, 55.07, 30.53, 20.70, 20.66, 20.37.

HRMS (ESI): calc. for $C_{48}H_{52}F_3NO_{12}SNa [M + Na]^+$, 946.3055; found: 946.3063.

¹**H NMR** (**CDCl**₃, **600 MHz**): δ 8.62 (d, *J* = 2.0 Hz, 1H), 8.21 (d, *J* = 7.6 Hz, 1H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.54 (dt, *J* = 24.8, 7.4 Hz, 2H), 7.39 – 7.21 (m, 15H), 5.48 (dd, *J* = 8.1, 4.0 Hz, 2H), 5.42 (dd, *J* = 10.5, 3.3 Hz, 1H), 4.93 (dd, *J* = 24.2, 10.9 Hz, 2H), 4.81 – 4.56 (m, 5H), 4.52 (d, *J* = 3.5 Hz, 1H), 4.18 – 4.05 (m, 3H), 3.94 (t, *J* = 9.2 Hz, 1H), 3.86 – 3.78 (m, 1H), 3.46 – 3.40 (m, 2H), 3.29 (s, 3H), 3.00 (dd, *J* = 13.8, 2.3 Hz, 1H), 2.64 (dd, *J* = 13.8, 7.6 Hz, 1H), 2.18 (s, 3H), 1.98 (s, 3H), 1.86 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.30, 170.11, 169.68, 159.89, 138.61, 138.06, 138.02, 132.18, 130.65, 129.07, 128.42, 128.40, 128.37, 127.99, 127.97, 127.88, 127.81, 127.76, 127.62, 125.44, 97.72, 84.47, 81.91, 80.50, 80.18, 75.70, 75.18, 73.32, 69.74, 69.54, 67.19, 66.85, 61.97, 54.99, 30.23, 20.75, 20.66, 20.37.

HRMS (ESI): calc. for $C_{48}H_{52}F_3NO_{12}SNa [M + Na]^+$, 946.3055; found: 946.3061.

¹**H** NMR (CDCl₃, 600 MHz): δ 7.42 – 7.13 (m, 20H), 5.58 (d, *J* = 5.6 Hz, 1H), 5.30 (dd, *J* = 15.4, 5.7 Hz, 1H), 5.03 – 4.88 (m, 3H), 4.80 (dd, *J* = 30.1, 11.5 Hz, 2H), 4.68 – 4.58 (m, 3H), 4.53 (d, *J* = 3.5 Hz, 1H), 4.44 (d, *J* = 12.2 Hz, 1H), 4.39 (ddd, *J* = 10.2, 4.0, 2.1 Hz, 1H), 4.29 (dd, *J* = 12.4, 4.2 Hz, 1H), 4.00 (t, *J* = 9.2 Hz, 1H), 3.95 (dd, *J* = 12.4, 2.0 Hz, 1H), 3.90 – 3.85 (m, 1H), 3.78 (dd, *J* = 9.9, 5.6 Hz, 1H), 3.54 (t, *J* = 9.3 Hz, 1H), 3.48 (dd, *J* = 9.6, 3.6 Hz, 1H), 3.38 (s, 3H), 2.94 (dd, *J* = 13.9, 2.5 Hz, 1H), 2.67 (dd, *J* = 13.9, 6.7 Hz, 1H), 2.03 (s, 3H), 2.01 (s, 3H), 1.99 (s, 3H). ¹³C NMR (CDCl3, 150 MHz): δ ^z170.49, 169.90, 169.76, 138.64, 138.03, 137.97, 137.12, 128.45, 128.39, 128.08, 128.03, 127.96, 127.86, 127.83, 127.81, 127.77, 127.60, 98.05, 83.62, 81.88, 80.10, 128.03, 128.04, 128.03, 127.96, 127.86, 127.83, 127.81, 127.77, 127.60, 98.05, 83.62, 81.88, 80.10, 128.04, 127.84, 127.84, 127.77, 127.60, 98.05, 83.62, 81.88, 80.10, 128.04, 127.84, 127.77, 127.60, 98.05, 83.62, 81.88, 80.10, 128.04

79.94, 75.66, 75.55, 75.26, 73.41, 72.09, 71.62, 70.20, 68.40, 67.56, 61.93, 55.34, 30.39, 20.75, 20.68, 20.62.

HRMS (ESI): calc. for $C_{47}H_{54}O_{13}SNa [M + Na]^+$, 881.3177; found: 881.3178.

¹**H** NMR (CDCl₃, 600 MHz): δ 8.32 (d, *J* = 1.8 Hz, 1H), 8.23 (d, *J* = 7.8 Hz, 1H), 7.66 (d, *J* = 7.7 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.40 – 7.23 (m, 10H), 7.10 (t, *J* = 7.3 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 2H), 6.96 (d, *J* = 7.3 Hz, 2H), 5.82 (d, *J* = 5.8 Hz, 1H), 5.40 (t, *J* = 9.7 Hz, 1H), 5.06 (t, *J* = 9.8 Hz, 1H), 4.95 (d, *J* = 11.0 Hz, 1H), 4.74 (d, *J* = 12.1 Hz, 1H), 4.64 (ddd, *J* = 22.5, 16.1, 7.7 Hz, 5H), 4.40 – 4.33 (m, 1H), 4.21 (dd, *J* = 12.3, 3.9 Hz, 1H), 4.02 (t, *J* = 9.9 Hz, 1H), 3.90 – 3.76 (m, 4H), 3.71 (dd, *J* = 9.9, 5.7 Hz, 1H), 3.51 (dd, *J* = 9.5, 3.4 Hz, 1H), 3.41 (s, 3H), 3.02 (t, *J* = 10.5 Hz, 1H), 2.02 (d, *J* = 6.2 Hz, 6H), 1.82 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.49, 169.71, 169.68, 159.57, 138.21, 137.99, 137.96, 133.19, 132.16, 130.77, 128.92, 128.42, 128.40, 128.04, 127.92, 127.88, 127.69, 127.66, 127.23, 126.94, 125.43, 98.24, 84.83, 83.43, 80.72, 75.87, 73.65, 73.12, 72.01, 71.53, 70.05, 69.84, 68.41, 68.35, 61.82, 55.36, 43.99, 20.71, 20.66, 20.27.

HRMS (ESI): calc. for $C_{48}H_{52}F_3NO_{12}SNa [M + Na]^+$, 946.3055; found: 946.3052.

¹**H NMR (CDCl₃, 600 MHz):** δ 8.36 (d, *J* = 1.9 Hz, 1H), 8.23 (d, *J* = 7.8 Hz, 1H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.41 – 7.21 (m, 10H), 7.17 – 6.91 (m, 5H), 5.81 (d, *J* = 5.7 Hz, 1H), 5.36 (d, *J* = 2.4 Hz, 1H), 5.22 (dd, *J* = 10.6, 3.3 Hz, 1H), 4.95 (d, *J* = 11.1 Hz, 1H), 4.76 – 4.54 (m, 6H), 4.36 (t, *J* = 6.6 Hz, 1H), 4.06 – 3.73 (m, 7H), 3.51 (dd, *J* = 9.5, 3.4 Hz, 1H), 3.42 (s, 3H), 3.01 – 2.89 (m, 1H), 2.14 (s, 3H), 1.96 (s, 3H), 1.83 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.15, 170.12, 169.66, 159.60, 138.34, 138.10, 138.00, 133.46, 132.17, 130.67, 128.98, 128.41, 128.38, 128.03, 127.98, 127.88, 127.72, 127.64, 127.19, 127.00, 125.41, 98.15, 85.13, 83.56, 80.77, 75.85, 73.33, 73.07, 70.34, 69.79, 69.12, 67.14, 66.52, 61.92, 55.32, 43.94, 29.67, 20.74, 20.69, 20.29.

HRMS (ESI): calc. for C₄₈H₅₂F₃NO₁₂SNa [M + Na]⁺, 946.3055; found: 946.3058.

¹**H NMR** (**CDCl**₃, **600 MHz**): δ 7.40 – 7.13 (m, 18H), 6.94 (dd, *J* = 6.4, 2.7 Hz, 2H), 6.02 (d, *J* = 5.6 Hz, 1H), 5.20 (dd, *J* = 20.3, 10.8 Hz, 2H), 4.89 (dd, *J* = 10.7, 8.6 Hz, 2H), 4.75 – 4.66 (m, 2H), 4.64 – 4.55 (m, 3H), 4.40 (d, *J* = 12.3 Hz, 1H), 4.18 (ddd, *J* = 16.4, 11.2, 2.9 Hz, 2zH), 4.02 (t, *J* = 9.9 Hz, 1H), 3.97 (d, *J* = 12.3 Hz, 1H), 3.81 (ddd, *J* = 21.8, 10.2, 5.8 Hz, 4H), 3.63 (dd, *J* = 9.8, 5.6 Hz, 1H), 3.57 (dd, *J* = 9.4, 3.4 Hz, 1H), 3.40 (s, 3H), 3.03 (t, *J* = 10.8 Hz, 1H), 2.00 (d, *J* = 5.7 Hz, 6H), 1.91 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.44, 169.92, 169.59, 139.00, 137.96, 137.87, 137.07, 128.42, 128.39, 128.33, 128.17, 128.07, 127.91, 127.69, 127.67, 127.46, 127.11, 126.26, 98.10, 83.98, 82.41, 81.00, 75.51, 75.25, 73.65, 73.07, 71.89, 71.37, 70.04, 69.93, 68.19, 68.14, 61.75, 55.40, 44.21, 20.72, 20.71, 20.63.

HRMS (ESI): calc. for $C_{47}H_{54}O_{13}SNa [M + Na]^+$, 881.3177; found: 881.3173.

¹**H NMR (CDCl₃, 600 MHz):** δ 8.59 (d, J = 2.0 Hz, 1H), 8.21 (d, J = 7.8 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 5.58 (t, J = 9.6 Hz, 1H), 5.32 (d, J = 5.7 Hz, 1H), 5.23 (t, J = 7.7 Hz, 1H), 5.08 (ddd, J = 13.2, 8.3, 7.6 Hz, 3H), 4.63 (ddd, J = 10.2, 4.9, 2.0 Hz, 1H), 4.36 (dd, J = 12.2, 5.0 Hz, 1H), 4.14 (dd, J = 12.2, 2.0 Hz, 1H), 3.93 (dd, J = 9.9, 5.6

Hz, 1H), 3.29 (dd, *J* = 13.2, 8.9 Hz, 1H), 3.08 (dd, *J* = 13.2, 6.6 Hz, 1H), 2.13 – 1.99 (m, 12H), 1.97 – 1.91 (m, 2H), 1.86 (s, 3H), 1.67 (d, *J* = 6.0 Hz, 6H), 1.57 (d, *J* = 10.6 Hz, 6H). ¹³C NMR (CDCl3, 150 MHz): δ 170.62, 169.95, 169.62, 159.82, 139.93, 135.30, 133.26, 132.22, 131.27, 130.69, 129.15, 129.00, 125.39, 125.35, 124.24, 123.72, 119.12, 82.87, 72.15, 71.95, 69.00, 67.79, 62.47, 39.66, 39.60, 29.67, 26.78, 26.67, 26.38, 25.64, 20.74, 20.69, 20.37, 17.65, 15.95. HRMS (ESI): calc. for C₃₅H₄₆F₃NO₇SNa [M + Na]⁺, 704.2839; found: 704.2833.

¹**H NMR** (**CDCl**₃, **600 MHz**): δ 8.62 (d, J = 2.0 Hz, 1H), 8.20 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 5.50 (d, J = 2.4 Hz, 1H), 5.42 (dd, J = 10.5, 3.3 Hz, 1H), 5.36 (d, J = 5.7 Hz, 1H), 5.22 (t, J = 7.7 Hz, 1H), 5.06 (dt, J = 7.1, 3.8 Hz, 2H), 4.77 (t, J = 6.4 Hz, 1H), 4.18 (d, J = 6.4 Hz, 2H), 4.09 (dd, J = 10.4, 5.7 Hz, 1H), 3.31 (dd, J = 13.2, 9.1 Hz, 1H), 3.06 (dd, J = 13.2, 6.5 Hz, 1H), 2.19 (s, 3H), 2.12 – 1.99 (m, 9H), 1.98 – 1.91 (m, 2H), 1.86 (s, 3H), 1.67 (d, J = 9.1 Hz, 6H), 1.58 (t, J = 7.6 Hz, 6H).

¹³C NMR (CDCl3, 150 MHz): δ 170.43, 170.13, 169.66, 159.83, 139.81, 135.26, 133.52, 132.18, 131.25, 130.55, 129.13, 125.39, 125.35, 124.25, 123.76, 119.24, 83.07, 69.76, 67.22, 67.05, 66.80, 62.43, 39.65, 39.61, 29.67, 26.67, 26.54, 26.42, 25.64, 20.75, 20.72, 20.36, 17.64, 15.94, 15.91. HRMS (ESI): calc. for C₃₅H₄₆F₃NO₇SNa [M + Na]⁺, 704.2839; found: 704.2836.

17a: 85% α:_β > 20:1

¹**H NMR (CDCl₃, 600 MHz):** δ 8.65 (d, *J* = 1.7 Hz, 1H), 8.28 (d, *J* = 7.8 Hz, 1H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.40 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 5.64 (t, *J* = 9.7 Hz, 1H), 5.51 (d, *J* = 5.6 Hz, 1H), 5.13 (t, *J* = 9.8 Hz, 1H), 4.74 (ddd,

J = 10.2, 4.8, 1.8 Hz, 1H), 4.32 (dd, *J* = 12.3, 5.0 Hz, 1H), 4.14 – 4.06 (m, 2H), 4.02 – 3.93 (m, 2H), 3.79 – 3.68 (m, 2H), 3.43 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 1.88 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.57, 169.90, 169.65, 160.17, 158.83, 134.76, 133.23, 132.27, 130.81, 129.19, 129.05, 128.99, 128.18, 125.45, 125.41, 124.96, 123.46, 115.28, 87.38, 72.22, 71.71, 70.87, 68.87, 68.16, 67.32, 62.20, 59.18, 20.68, 20.36.

HRMS (ESI): calc. for $C_{29}H_{32}F_3NO_9SNa [M + Na]^+$, 650.1642; found: 650.1637.

¹**H NMR (CDCl₃, 600 MHz):** δ ¹H NMR (600 MHz, cdcl₃) δ 8.67 (d, *J* = 1.9 Hz, 1H), 8.27 (d, *J* = 7.8 Hz, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 1H), 7.42 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 5.51 (ddd, *J* = 13.8, 10.7, 4.5 Hz, 3H), 4.87 (t, *J* = 6.5 Hz, 1H), 4.18 – 4.00 (m, 5H), 3.79 – 3.68 (m, 2H), 3.43 (s, 3H), 2.17 (s, 3H), 1.99 (s, 3H), 1.88 (s, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 170.39, 170.10, 169.69, 160.17, 158.79, 135.00, 133.49, 132.24, 130.67, 129.17, 125.45, 125.41, 123.58, 115.18, 87.91, 70.88, 69.53, 67.37, 67.30, 67.16, 66.93, 62.02, 59.18, 20.72, 20.68, 20.36.

HRMS (ESI): calc. for $C_{29}H_{32}F_{3}NO_{9}SNa [M + Na]^{+}$, 650.1642; found: 650.1635.

¹**H NMR (CDCl₃, 600 MHz):** δ 7.42 – 7.26 (m, 7H), 6.86 (d, *J* = 8.7 Hz, 2H), 5.45 (d, *J* = 5.5 Hz, 1H), 5.35 (t, *J* = 9.6 Hz, 1H), 4.97 (t, *J* = 9.8 Hz, 1H), 4.71 (d, *J* = 12.2 Hz, 1H), 4.63 – 4.55 (m, 2H), 4.27 (dd, *J* = 12.3, 5.2 Hz, 1H), 4.14 – 4.07 (m, 2H), 3.98 (dd, *J* = 12.3, 2.0 Hz, 1H), 3.85 (dd, *J* = 9.9, 5.5 Hz, 1H), 3.76 – 3.70 (m, 2H), 3.44 (s, 3H), 2.04 – 2.01 (m, 9H).

¹³C NMR (CDCl3, 150 MHz): δ 170.50, 169.92, 169.79, 158.95, 137.20, 134.67, 128.47, 128.07, 127.88, 123.60, 115.33, 87.42, 76.29, 72.39, 72.14, 70.88, 68.69, 67.91, 67.36, 62.14, 59.20, 20.75, 20.67, 20.64.

HRMS (ESI): calc. for $C_{28}H_{34}O_{10}SNa [M + Na]^+$, 585.1765; found: 585.1768.

7. Synthesis of Sublancin Glycopeptide Fragment 22

¹**H** NMR (CDCl₃, 600 MHz): δ 7.81 (d, *J* = 6.6 Hz, 1H), 7.76 (d, *J* = 7.5 Hz, 2H), 7.60 (d, *J* = 7.3 Hz, 2H), 7.52 (d, *J* = 8.7 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.36 – 7.26 (m, 5H), 6.46 (dd, *J* = 7.4, 4.8 Hz, 1H), 6.35 (d, *J* = 6.5 Hz, 1H), 5.81 (ddd, *J* = 25.2, 15.0, 5.5 Hz, 2H), 5.37 – 5.09 (m, 4H), 5.03 – 4.91 (m, 2H), 4.69 (d, *J* = 12.3 Hz, 1H), 4.61 (dd, *J* = 12.5, 6.6 Hz, 1H), 4.47 (d, *J* = 12.3 Hz, 1H), 4.40 – 4.16 (m, 7H), 4.13 – 4.00 (m, 2H), 3.91 (dd, *J* = 13.0, 6.3 Hz, 1H), 3.83 (dd, *J* = 9.8, 5.6 Hz, 1H), 3.63 (dd, *J* = 17.0, 4.4 Hz, 1H), 3.14 (dd, *J* = 14.0, 4.3 Hz, 1H), 2.93 (dd, *J* = 14.0, 8.8 Hz, 1H), 2.02 (s, 3H), 2.01 (s, 3H), 1.98 (s, 3H), 1.31 (s, 9H), 1.14 (d, *J* = 6.4 Hz, 3H), 0.99 – 0.92 (m, 5H), 0.90 – 0.84 (m, 4H).

¹³C NMR (CDCl3, 150 MHz): δ 171.46, 170.81, 170.62, 170.49, 170.00, 169.76, 169.49, 168.97, 156.06, 143.84, 143.64, 141.24, 137.40, 131.08, 128.39, 128.37, 127.96, 127.88, 127.72, 127.56, 126.99, 125.16, 125.12, 120.01, 119.99, 119.27, 83.12, 81.74, 81.45, 75.55, 71.96, 71.36, 68.37, 67.91, 67.39, 67.01, 66.44, 61.89, 59.92, 58.13, 55.97, 53.72, 50.85, 47.09, 42.95, 36.59, 35.97, 31.91, 30.77, 29.69, 29.65, 29.35, 29.24, 28.12, 26.67, 25.25, 22.68, 20.77, 20.68, 20.65, 16.40, 15.58, 14.12, 11.12.

HRMS (ESI): calc. for $C_{56}H_{72}N_4O_{16}SNa [M + Na]^+$, 1111.4556; found: 1111.4562.

8. Synthesis of S-linked TN and TF Glycopeptide Fragments 24 and 25

24:

¹**H NMR** (**CDCl**₃, **600 MHz**): δ 8.60 (d, J = 1.7 Hz, 1H), 8.15 (d, J = 7.6 Hz, 1H), 7.75 (d, J = 7.5 Hz, 3H), 7.66 (d, J = 7.3 Hz, 1H), 7.62 – 7.49 (m, 3H), 7.39 (t, J = 7.4 Hz, 2H), 7.29 (t, J = 7.4 Hz, 2H), 6.69 (s, 1H), 5.84 (ddd, J = 22.8, 10.8, 5.7 Hz, 1H), 5.74 (s, 1H), 5.52 – 5.17 (m, 5H), 4.81 (s, 1H), 4.65 – 4.46 (m, 5H), 4.40 (dd, J = 19.9, 8.3 Hz, 3H), 4.26 – 3.87 (m, 8H), 3.11 (dd, J = 13.6, 6.6 Hz, 1H), 2.91 (dd, J = 13.6, 5.3 Hz, 1H), 2.17 (s, 3H), 2.10 – 2.00 (m, 4H), 1.84 (s, 3H), 1.31 (d, J = 7.2 Hz, 3H), 1.25 (s, 9H), 1.01 (d, J = 5.6 Hz, 3H), 0.92 (dd, J = 14.0, 6.8 Hz, 6H). ¹³C **NMR** (**CDCl3**, 150 **MHz**): δ 171.97, 170.61, 170.10, 169.62, 169.45, 169.29, 160.13, 156.68, 143.73, 141.24, 133.57, 133.31, 132.06, 131.53, 130.72, 128.99, 127.71, 127.05, 125.44, 125.02, 123.12, 119.98, 118.60, 83.95, 75.64, 69.27, 67.27, 67.21, 67.18, 66.69, 66.22, 65.84, 61.99, 57.57, 55.95, 53.77, 52.97, 48.26, 47.04, 44.50, 29.67, 29.25, 28.07, 20.74, 20.68, 20.34, 19.14, 18.03, 18.00.

HRMS (ESI): calc. for $C_{59}H_{73}F_3N_6O_{16}SNa [M + Na]^+$, 1233.4648; found: 1233.4656.

25:

¹**H NMR** (**CDCl**₃, **600 MHz**): δ 8.58 (s, 1H), 8.23 (d, J = 7.7 Hz, 1H), 7.76 (d, J = 7.5 Hz, 2H), 7.69 (d, J = 7.8 Hz, 1H), 7.62 – 7.51 (m, 3H), 7.39 (t, J = 7.4 Hz, 2H), 7.30 (t, J = 7.3 Hz, 2H), 7.23 (s, 1H), 6.67 (s, 1H), 5.83 (ddd, J = 16.2, 10.9, 5.7 Hz, 1H), 5.76 (s, 1H), 5.47 (s, 1H), 5.35 – 5.18 (m, 4H), 5.11 (s, 1H), 5.00 (dd, J = 10.4, 7.9 Hz, 1H), 4.81 (dd, J = 10.5, 3.4 Hz, 1H), 4.73 (d, J = 4.9 Hz, 1H), 4.60 – 4.46 (m, 5H), 4.45 – 4.34 (m, 3H), 4.34 – 4.20 (m, 3H), 4.17 – 4.01 (m, 5H), 3.93 (d, J = 4.7 Hz, 2H), 3.82 (t, J = 6.8 Hz, 1H), 3.02 (dd, J = 13.6, 6.7 Hz, 1H), 2.87 (dd, J = 13.5, 5.2 Hz, 1H), 2.18 – 2.15 (m, 1H), 2.14 (s, 3H), 2.11 (s, 3H), 2.04 (d, J = 3.0 Hz, 6H), 1.88 (s, 3H), 1.45 (s, 3H), 1.27 (d, J = 7.2 Hz, 3H), 1.25 (s, 9H), 0.98 (s, 3H), 0.91 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H).

¹³C NMR (CDCl3, 150 MHz): δ 171.99, 170.72, 170.65, 170.37, 170.25, 170.04, 169.96, 169.36, 169.21, 168.73, 159.88, 143.73, 141.24, 133.33, 132.03, 131.48, 130.83, 128.71, 127.73, 127.07, 125.03, 120.00, 118.61, 100.65, 84.10, 75.59, 75.57, 70.77, 70.58, 69.14, 68.81, 68.39, 68.31, 67.28, 66.64, 66.22, 65.82, 62.87, 60.87, 58.27, 57.41, 55.94, 53.76, 52.95, 48.23, 47.04, 44.52, 29.66, 29.24, 27.96, 20.77, 20.67, 20.61, 20.46, 19.90, 19.15, 17.99, 17.91.

HRMS (ESI): calc. for $C_{71}H_{89}F_3N_6O_{24}SNa [M + Na]^+$, 1521.5493; found: 1521.5498.

9. References

[1] E. T. Sletten, Y.-J. Tu, H. B. Schlegel, H. M. Nguyen, ACS Catal. 2019, 9, 2110.

10. Spectral Data

¹³C NMR, 150 MHz, CDCl₃

¹³C NMR, 150 MHz, CDCl₃

5.5

3.5

3.0 2.5 2.0

1.5

1.0 0.5 0.0 -0.5 -1.0

11.0 10.5 10.0 9.5 9.0

8.5 8.0

7.5

7.0

6.5

6.0

Т

200

¹³C NMR, 100 MHz, CDCl₃

10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											f1 (ppm)											

¹³C NMR, 100 MHz, CDCl₃

140 130 120 110 100 f1 (ppm) -1

170 160 150 140 130 120 110 100 f1 (ppm)

,,O^tBu 0 II 0 H N. FmocHN *°* I_{N} `N´ H `SH Ň Ĭ 0 0

¹H NMR 400 MHz CDCI 3

9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5 f1 (ppm)	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----------------	-----	-----	-----	-----	-----	-----	-----	-----	-----

O^tBu Ŷ FmocHN H ö ő SH

¹³C NMR, 100 MHz, CDCl₃

10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											f1 (ppm)											

¹³C NMR, 150 MHz, CDCl₃

14

¹³C NMR, 150 MHz, CDCl₃

¹³C NMR, 150 MHz, CDCl₃

T

 $<^{20.6807}_{20.3579}$

¹³C NMR, 150 MHz, CDCl₃

6 8

1.04-1 1.10 Å 1.00 Å н 8.0 ö 5.5 5.0 4.5 f1 (ppm) 7.5 4.0 3.5 3.0 1.5 1.0 L1.0 10.5 10.0 9.5 9.0 8.5 8.0 7.0 6.5 6.0 2.5 2.0 0.5 0.0 -0.5

