Cu-Catalyzed C-C Bond Formation of Vinylidene Cyclopropanes with Carbon Nucleophiles

Jichao Chen, Shang Gao and Ming Chen*

Department of Chemistry and Biochemistry

Auburn University

E-mail: mzc0102@auburn.edu

Supporting Information: Experimental Procedures, Tabulated Spectroscopic Data, ¹H and

¹³C Spectra of New Compounds

General Experimental Details. All reaction solvents were purified before use. Tetrahydrofuran, diethyl ether and toluene were purified by passing through a solvent column composed of activated A-1 alumina. Unless indicated otherwise, all reactions were conducted under an atmosphere of argon using flame-dried or oven-dried (120 °C) glassware. The term "concentrated under reduced pressure" refers to the removal of solvents and other volatile materials using a rotary evaporator with the water bath temperature below 30 °C, followed by the removal of residual solvents at high vacuum (< 0.2 mbar).

Proton nuclear magnetic resonance (¹H NMR) spectra were acquired on commercial instruments (400 and 600 MHz) at Auburn University NMR facility. Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were acquired at 101 and 151 MHz. The proton signal for the residual non-deuterated solvent (δ 7.26 for chloroform and δ 2.05 for acetone) was used as an internal reference for ¹H NMR spectra. For ¹³C NMR spectra, chemical shifts are reported relative to the resonance of chloroform (δ 77.36) and acetone (δ 29.84). Coupling constants are reported in Hz. High-resolution mass spectra were recorded on a commercial high-resolution mass spectrometer via the Micro Mass/Analytical Facility operated by the College of Chemistry and Biochemistry, Auburn University.

Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F254 glass plates precoated with a 0.25 mm thickness of silica gel. The TLC plates were visualized with UV light and/or by staining with Hanessian solution (ceric sulfate and ammonium molybdate in aqueous sulfuric acid) or KMnO₄. Column chromatography was generally performed using Kieselgel 60 (230-400 mesh) silica gel, typically using a 50-100:1 weight ratio of silica gel to crude product.

1-Pentynylboronic acid pinacol ester, 3-methoxy-1-propyn-1-ylboronic acid pinacol ester and diethyl malonate were purchased from Sigma Aldrich. Benzyl *tert*-butyl malonate, *tert*-butyl ethyl malonate, 2-((*tert*-butyldimethylsilanyl)-ethynyl) boronic acid pinacol ester, 2-phenyl-1-ethynylboronic acid pinacol ester, 5-chloropent-1-ynylboronic acid pinacol ester, dibenzyl malonate were purchased from Combi-Blocks. Dipropyl malonate was purchased from TCI America. Dimethyl malonate was purchased from Oakwood. Diisopropyl malonate was purchased from Arctom. Di-*tert*-Butyl malonate was purchased from Ark Pharm. KOMe was purchased from Alfa Aesar. CuCl, LiO'Bu, NaO'Bu, KO'Bu, LiOMe, NaOMe were purchased from Strem.

General procedure I for the synthesis of vinylidene cyclopropanes 1a-h: To a 10 mL reaction vial was added malonate (1 mmol, 1.0 equiv), 1,4-dibromo-2-butyne¹ (1 mmol, 1.0 equiv) and THF (5 mL). Cs_2CO_3 (2.5 mmol, 2.5 equiv) and KI (0.1 mmol, 10 mol %) were added to the vial and the mixture was stirred at 70 °C for 12 h. The reaction mixture was filtered through a pad of Celite and the solution was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product 1a-h.

MeO₂C₁CO₂Me Dimethyl 2-vinylidenecyclopropane-1,1-dicarboxylate (1a)

Prepared according to the general procedure. ¹H NMR (600 MHz, CDCl₃) δ 5.22 (t, J = 4.9 Hz, 2H), 3.77 (s, 6H), 2.46 (t, J = 4.9 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.7, 167.9, 83.7, 83.5, 53.4, 35.5, 20.3. The spectroscopic data for this compound were in agreement with previously reported data.²

EtO₂C, CO₂Et Diethyl 2-vinylidenecyclopropane-1,1-dicarboxylate (1b)

Prepared according to general procedure. ¹H NMR (400 MHz, CDCl₃) δ 5.19 (t, J = 5.0 Hz, 2H), 4.22 (q, J = 7.1 Hz, 4H), 2.41 (t, J = 5.0 Hz, 2H), 1.27 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 167.5, 83.32, 83.30, 62.2, 35.9, 20.1, 14.3. HRMS (ESI⁺): m/z for C₁₁H₁₅O₄ [M+H]⁺ calcd. 211.0970, found 211.0974.

<code>"PrO2C, CO2"Pr Dipropyl 2-vinylidenecyclopropane-1,1-dicarboxylate (1c)</code>

Prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 5.19 (t, J = 5.0 Hz, 2H), 4.13 (t, J = 6.6 Hz, 4H), 2.43 (t, J = 5.0 Hz, 2H), 1.67 (tq, J = 6.7, 7.3 Hz, 4H), 0.94 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 167.6, 83.5, 83.3, 67.8, 36.0, 22.2, 20.2, 10.6. HRMS (ESI⁺): m/z for C₁₃H₁₈O₄Na [M+Na]⁺ calcd. 261.1103, found 261.1114.

Bn0₂c, co₂Bn Dibenzyl 2-vinylidenecyclopropane-1,1-dicarboxylate (1d)

Prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃ δ 7.28 - 7.36 (m, 10H), 5.19 - 5.21 (m, 6H), 2.49 (t, *J* = 5.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 167.2, 135.7, 128.9, 128.6, 128.3, 83.7, 83.6, 67.8, 35.8, 20.5. HRMS (ESI⁺): m/z for C₂₁H₁₈O₄Na [M+Na]⁺ calcd. 357.1103, found 357.1103.

Diisopropyl 2-vinylidenecyclopropane-1,1-dicarboxylate (1e)

Prepared according to the general procedure. ¹H NMR (400 MHz, CDCl₃) δ 5.17 (t, *J* = 5.0 Hz, 2H), 5.06 (hept, *J* = 6.3 Hz, 2H), 2.36 (t, *J* = 5.0 Hz, 2H), 1.252 (d, *J* = 6.3 Hz, 6H), 1.248 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 193.9, 167.1, 83.1, 82.9, 69.8, 36.4, 22.0, 21.9, 19.9. HRMS (ESI⁺): m/z for C₁₃H₁₉O₄ [M+H]⁺ calcd. 239.1283, found 239.1295.

¹Bu0₂C_C_{CO2}¹Bu Di-tert-butyl 2-vinylidenecyclopropane-1,1-dicarboxylate (1f)

Prepared according to the general procedure. ¹H NMR (600 MHz, CDCl₃) δ 5.17 (t, *J* = 4.8 Hz, 2H), 2.28 (t, *J* = 4.8 Hz, 2H), 1.47 (s, 18H). ¹³C NMR (151 MHz, CDCl₃) δ 193.8, 166.8, 82.8, 82.6, 82.5, 38.0, 28.2, 19.6. HRMS (ESI⁺): m/z for C₁₅H₂₂O₄Na [M+Na]⁺ calcd. 289.1416, found 289.1418.

EtO₂C, CO₂'Bu 1-(*Tert*-butyl) 1-ethyl 2-vinylidenecyclopropane-1,1-dicarboxylate (1g)

Prepared according to the general procedure. ¹H NMR (600 MHz, CDCl₃) δ 5.19 (t, *J* = 4.6 Hz, 2H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.33 – 2.37 (m, 2H), 1.46 (s, 9H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 193.7, 167.9, 166.5, 83.1, 83.0, 82.8, 62.2, 36.9, 28.2, 19.9, 14.4. HRMS (ESI⁺): m/z for C₁₃H₁₈O₄Na [M+Na]⁺ calcd. 261.1103, found 261.1110.

BnO₂C CO₂'Bu H-Benzyl 1-(*tert*-butyl) 2-vinylidenecyclopropane-1,1-dicarboxylate (1h) Prepared according to the general procedure. ¹H NMR (600 MHz, CDCl₃) δ 7.33 – 7.36 (m, 5H), 5.18 – 5.22 (m, 4H), 2.36 – 2.41 (m, 2H), 1.39 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 193.8, 167.7, 166.3, 135.7, 128.8, 128.6, 128.5, 83.20, 83.17, 82.9, 67.7, 36.9, 28.1, 20.1. HRMS (ESI⁺): m/z for C₁₈H₂₀O₄Na [M+Na]⁺ calcd. 323.1259, found 323.1270.

General procedure II for the synthesis of vinylidene cyclopropanes 1: To a solution of malonate (12 mmol, 1.2 equiv) and 2-(4-chloro-2-butynyloxy)-tetrahydropyran³ (1.9 g,

10 mmol, 1.0 equiv) in CH₃CN (50 mL) was added K_2CO_3 (2.8 g, 20 mmol, 2.0 equiv). The mixture was stirred at 80 °C for 12 h. The reaction mixture was filtered through a pad of Celite and the solution was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product **SI-1**.

To a solution of **SI-1** (7 mmol, 1.0 equiv) in MeOH (40 mL) was added TsOH-H₂O (120 mg, 0.7 mmol, 10 mol %). The mixture was stirred at ambient temperature for 12 h. The reaction mixture was concentrated under reduced pressure and purification of the resulting crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product **SI-2**.

To a solution of triphenylphosphine (2.2 g, 8.4 mmol, 1.4 equiv) and imidazole (0.57 g, 8.4 mmol, 1.4 equiv) in anhydrous CH_2Cl_2 (60 mL) was added iodine (2.13 g, 8.4 mmol, 1.4 equiv). The mixture was stirred at ambient temperature for 15 min. A solution of **SI-2** (6 mmol, 1.0 equiv) in $CH_2Cl_2(12 \text{ mL})$ was added and the mixture was stirred at ambient temperature for 30 min. Then the reaction mixture was diluted with $CH_2Cl_2(100 \text{ mL})$ and washed sequentially with saturated Na_2SO_3 (3 x 50 mL) and brine (50 mL). The organic layer was dried over anhydrous Na_2SO_4 , filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product **SI-3**.

To a solution of SI-3 (1 mmol, 1.0 equiv) in THF (10 mL) was added a solution of TBAF·H₂O (2 mmol, 2.0 equiv) in THF (2 mL). The mixture was kept stirring at ambient temperature for 10 min. The solution was concentrated under reduced pressure till ~2 mL solution left in the flask and Et₂O (30 mL) was added. The solution was filtered through a pad of silica gel (to remove most of TBAF) and the filtrate was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product 1. Compounds 1a and 1b were also synthesized using this route.

Diethyl 2-(4-((tetrahydro-2*H***-pyran-2-yl)oxy)but-2-yn-1-yl)malonate (SI-1b)** Prepared according to the general procedure to give compound **SI-1b** as colorless oil in 73% yield (2.28 g). ¹H NMR (400 MHz, CDCl₃) δ 4.74 (t, *J* = 3.3 Hz, 1H), 4.11 – 4.24 (m, 6H), 3.75 – 3.81 (m, 1H), 3.52 (t, *J* = 7.8 Hz, 1H), 3.45 – 3.51 (m, 1H), 2.78 (dt, *J* = 7.7, 2.1 Hz, 2H), 1.65 – 1.81 (m, 2H), 1.45 – 1.60 (m, 4H), 1.24 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 96.8, 82.2, 78.3, 62.2, 62.0, 54.6, 51.6, 30.5, 25.6, 19.3, 19.1, 14.3. **Diethyl 2-(4-hydroxybut-2-yn-1-yl)malonate (SI-2b)** Prepared according to the general procedure to give compound **SI-2b** as colorless oil in 90% yield (1.44 g). ¹H NMR (400 MHz, CDCl₃) δ 4.16 – 4.22 (m, 6H), 3.51 (t, J = 7.7 Hz, 1H), 2.77 (dt, J = 7.7, 2.1 Hz, 2H), 2.41 (t, J = 5.5 Hz, 1H), 1.24 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 81.7, 80.9, 62.1, 51.5, 51.2, 19.0, 14.3.

Diethyl 2-(4-iodobut-2-yn-1-yl)malonate (SI-3b) Prepared according to the general procedure to give compound **SI-3b** as light yellow oil in 87% yield (1.76 g). ¹H NMR (400 MHz, CDCl₃) δ 4.19 – 4.24 (m, 4H), 3.63 (t, *J* = 2.4 Hz, 2H), 3.51 (t, *J* = 7.7 Hz, 1H), 2.78 (dt, *J* = 7.7, 2.4 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 82.0, 79.3, 62.1, 51.3, 19.4, 14.4, -17.9.

EID₂C **CO**₂**EI Diethyl 2-vinylidenecyclopropane-1,1-dicarboxylate (1b)** Prepared according to the general procedure II to give compound **1b** as colorless oil in 66% yield (139 mg). ¹H NMR (400 MHz, CDCl₃) δ 5.19 (t, *J* = 5.0 Hz, 2H), 4.22 (q, *J* = 7.1 Hz, 4H), 2.41 (t, *J* = 5.0 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 193.8, 167.5, 83.3, 83.3, 62.2, 35.9, 20.1, 14.3. HRMS (ESI⁺): m/z for C₁₁H₁₅O₄ [M+H]⁺ calcd. 211.0970, found 211.0974.

Procedure for the synthesis of vinylidene cyclopropane 1i:

6-((*tert*-Butyldimethylsilyl)oxy)hex-4-yn-3-ol (SI-4) To a solution of propargyl alcohol TBS ether (1.7 g, 10 mmol, 1.0 equiv) in anhydrous THF (25 mL) was added a solution of ethyl magnesium bromide (3 M in Et₂O, 3.4 mL, 10 mmol, 1.0 equiv) at ambient temperature. The resulting mixture was stirred for 2 h and

cooled to 0 °C in an ice/water bath, and a solution of propionaldehyde (0.87 g, 15 mmol, 1.5 equiv) in THF (5 mL) was added via cannula. The reaction mixture was warmed to ambient temperature and stirred for 6 h. Water (0.5 mL) was added and the resulting mixture was filtered through a pad of silica gel. The solution was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product **SI-4** as colorless oil in 72% yield (1.65 g). ¹H NMR (600 MHz, CDCl₃) δ 4.35 (*app.* s, 3H), 1.84 (d, *J* = 5.1 Hz, 1H), 1.68 – 1.75 (m, 2H), 1.00 (t, *J* = 7.4 Hz, 3H), 0.90 (s, 9H), 0.11 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 85.8, 83.8, 64.1, 52.1, 31.0, 26.1, 18.7, 9.8, -4.8. The spectroscopic data for this compound were in agreement with previously reported data.⁴

THEO tert-Butyldimethyl((4-((tetrahydro-2*H*-pyran-2-yl)oxy)hex-2-yn-1-yl)o **xy**)silane (SI-5) To a solution of SI-4 (1.65 g, 7.2 mmol, 1.0 equiv) and dihydropyran (8.5 mL, 9.4 mmol, 1.3 equiv) in anhydrous CH_2Cl_2 (20 mL) was added pyridinium *p*-toluenesulfonate (181 mg, 0.72 mmol, 10 mol %). The mixture was stirred at ambient temperature for 12 h. After the reaction is complete, the reaction mixture was diluted with CH_2Cl_2 (100 mL) and washed sequentially with saturated NaHCO₃ (2 x 30 mL) and brine (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to obtain crude product SI-5 for next step without further purification.

4-((Tetrahydro-2*H*-pyran-2-yl)oxy)hex-2-yn-1-ol (SI-6) To a solution of crude SI-5 in THF (15 mL) and H₂O (0.5 mL) was added a solution of TBAF·H₂O (4.5 g, 14.4 mmol) in THF (5 mL). The mixture was stirred at ambient temperature for 3 h. The reaction mixture was concentrated till ~ 5 mL left. Et₂O (50 mL) was added and the mixture was filtered through a pad of silica gel. The filtrate was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product SI-6 as colorless oil.

2-((6-Iodohex-4-yn-3-yl)oxy)tetrahydro-2H-pyran (SI-7) To a solution of triphenylphosphine (2.2 g, 8.4 mmol, 1.4 equiv) and imidazole (571 mg, 8.4 mmol, 1.4 equiv) in anhydrous CH_2Cl_2 (50 mL) was added iodine (2.13 g, 8.4 mmol, 1.4 equiv). The mixture was stirred at ambient temperature for 15 min. A solution of **SI-6** (6 mmol, 1.0 equiv) in CH_2Cl_2 (10 mL) was added and the mixture was stirred at ambient temperature for 30 min. Then the reaction mixture was diluted with CH_2Cl_2 (100 mL) and washed sequentially with saturated Na₂SO₃ (3 x 50 mL) and brine (50 mL). The organic

layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product **SI-7** as light yellow oil.

Dimethyl 2-(4-((tetrahydro-2*H***-pyran-2-yl)oxy)hex-2-yn-1-yl)malonate (SI-8)** To a solution of SI-7 (5 mmol, 1.0 equiv) and dimethyl malonate (792 mg, 6 mmol, 1.2 equiv) in CH₃CN (30 mL) was added K₂CO₃ (1.38 g, 10 mmol, 2.0 equiv) and the mixture was stirred at 70 °C for 12 h. Then the reaction mixture was filtered through a pad of silica gel and the solution was concentrated under reduced pressure to obtain crude product SI-8 without further purification for next step.

Dimethyl 2-(4-hydroxyhex-2-yn-1-yl)malonate (SI-9) To a solution of crude **SI-8** in MeOH (40 mL) was added TsOH+H₂O (120 mg, 0.7 mmol) and the mixture was stirred at ambient temperature for 12 h. The reaction mixture was concentrated under reduced pressure and purification of the resulting crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product **SI-9** as colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 4.23 – 4.26 (m, 1H), 3.75 (s, 6H), 3.58 (t, *J* = 7.7 Hz, 1H), 2.80 (dd, *J* = 7.7, 1.2 Hz, 2H), 2.23 (s, 1H), 1.58 – 1.70 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.75, 168.74, 83.6, 80.8, 63.9, 53.2, 51.3, 31.1, 19.0, 9.6.

Dimethyl 2-(4-iodohex-2-yn-1-yl)malonate (SI-10) To a solution of MeO₂C triphenylphosphine (1.13 g, 4.3 mmol, 1.4 equiv) and imidazole (292 MeO₂C mg, 4.3 mmol, 1.4 equiv) in anhydrous CH₂Cl₂ (30 mL) was added iodine (1.09 g, 4.3 mmol, 1.4 equiv). The mixture was stirred at ambient temperature for 15 min. A solution of SI-9 (700 mg, 3.1 mmol, 1.0 equiv) in CH₂Cl₂ (6 mL) was added and the mixture was stirred at ambient temperature for 30 min. Then the reaction mixture was diluted with CH₂Cl₂ (50 mL) and washed sequentially with saturated Na₂SO₃ (3 x 30 mL) and brine (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product SI-10 as light yellow oil in 87% yield (911 mg). ¹H NMR (600 MHz, CDCl₃) δ 4.48 (*app.* t, J = 6.2 Hz, 1H), 3.77 (s, 6H), 3.59 (t, J = 7.8 Hz, 1H), 2.82 (dd, J = 7.7, 1.9 Hz, 2H), 1.87 (dq, J = 7.2, 7.2 Hz, 2H), 1.00 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.65, 168.63, 83.9, 82.8, 53.3, 51.0, 34.8, 19.5, 14.0, 13.5.

Dimethyl 2-(but-1-en-1-ylidene)cyclopropane-1,1-dicarboxylate (1i) To a solution of **SI-10** (500 mg, 1.48 mmol, 1.0 equiv) in THF (15 mL) was slowly added a solution of TBAF·H₂O (932 mg, 2.96 mmol, 2.0 equiv) in

THF (3 mL). Upon completion of the addition, the mixture was kept stirring at ambient temperature for 30 min. Then the solution was concentrated under reduced pressure till ~3 mL left. Et₂O (30 mL) was added and the resulting mixture was filtered through a pad of silica gel. The filtrate was concentrated under reduced pressure and purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product **1i** as colorless oil in 81% yield (252 mg). ¹H NMR (600 MHz, CDCl₃) δ 5.74 (tt, *J* = 5.2, 5.2 Hz, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 2.44 (d, *J* = 4.5 Hz, 2H), 2.14 (dq, *J* = 6.8, 6.8 Hz, 2H), 1.01 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 188.2, 168.3, 102.9, 85.8, 53.3, 53.2, 34.9, 22.7, 20.0, 13.0. HRMS (ESI⁺): *m/z* for C₁₁H₁₅O₄ [M+H]⁺ calcd. 211.0970, found 211.0978.

General procedure for the synthesis of vinylidene cyclopropanes 1j-l:

To a solution of freshly distilled aldehyde (20 mmol, 1.0 equiv) in anhydrous DMSO (20 mL) containing 3Å molecular sieves was added piperidine (0.4 mL, 4 mmol, 20 mol %), and the solution was kept stirring at ambient temperature for 15 min. Dimethyl malonate (2.64 g, 20 mmol, 1.0 equiv) was added and the resulting mixture was stirred at ambient temperature for 12 h. The precipitate and molecular sieves were removed by filtration. Water (50 mL) was added and the resulting mixture was extracted with Et₂O (3 x 50 mL). The combined organic extracts were washed with water (2 x 30 mL) and brine (30 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product **SI-11**.

To a solution of propargyl alcohol TBS ether (10 mmol, 1.0 equiv) in anhydrous THF (30 mL) at ambient temperature was added a solution of ethylmagnesium bromide (3 M in Et₂O, 3.4 mL, 10 mmol, 1.0 equiv). The resulting mixture was stirred for 2 h and then cooled to 0 °C in an ice/water bath. CuCl (50 mg, 0.5 mmol, 5 mol %) was added followed by addition of a solution of **SI-11** (10 mmol, 1.0 equiv) in THF (10 mL). The mixture was warmed to ambient temperature and stirred for 30 min. The reaction mixture was diluted with $Et_2O(100 \text{ mL})$ and filtered through a pad of silica gel. The filtrate was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product **SI-12**.

To a solution of SI-12 (7 mmol, 1.0 equiv) in THF (20 mL) and H₂O (0.5 mL) was added a solution of TBAF·H₂O (4.4 g, 14 mmol, 2.0 equiv) in THF (5 mL), and the mixture was kept stirring at ambient temperature for 1 h. The reaction mixture was concentrated under reduced pressure till ~ 5 mL left in the flask. Et₂O (50 mL) was added and the mixture was filtered through a pad of silica gel. The filtrate was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product SI-13.

To a solution of triphenylphosphine (1.83 g, 7 mmol, 1.4 equiv) and imidazole (476 mg, 7 mmol, 1.4 equiv) in anhydrous CH_2Cl_2 (50 mL) was added iodine (1.77 g, 7 mmol, 1.4 equiv). The mixture was stirred at ambient temperature for 15 min. A solution of **SI-13** (5 mmol, 1.0 equiv) in CH_2Cl_2 (10 mL) was added and the mixture was stirred at ambient temperature for 30 min. The reaction mixture was diluted with CH_2Cl_2 (50 mL) and washed sequentially with saturated Na_2SO_3 (3 x 50 mL) and brine (50 mL). The organic layer was dried over anhydrous Na_2SO_4 , filtered, and concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product **SI-14**.

To a solution of SI-14 (1 mmol, 1.0 equiv) in THF (10 mL) was slowly added a solution of TBAF·H₂O (2 mmol, 2.0 equiv) in THF (2 mL). Upon completion of the addition, the mixture was kept stirring at ambient temperature for 10 min. Then the solution was concentrated under reduced pressure till \sim 3 mL left in the flask. Et₂O (30 mL) was added. The resulting mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product 1j-I.

Dimethyl 2-hexylidenemalonate (SI-11k) Prepared according to general procedure. The crude mixture was purified with column chromatography to give compound **SI-11k** as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.03 (t, *J* = 7.9 Hz, 1H), 3.82 (s, 3H), 3.77 (s, 3H), 2.28 (dt, *J* = 7.7, 7.4 Hz, 2H), 1.48 (*apps.* p, *J* = 7.2 Hz, 2H), 1.26 – 1.31 (m, 4H), 0.88 (t, *J* = 6.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.3, 164.8, 151.0, 128.2, 52.6, 52.5, 31.7, 30.1, 28.3, 22.7, 14.2.

MeO₂C Dimethyl 2-(1-((*tert*-butyldimethylsilyl)oxy)non-2-yn-4-yl)malon **ate** (SI-12k) Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound SI-12k as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.28 (d, J = 1.6 Hz, 2H), 3.743 (s, 3H), 3.737 (s, 3H), 3.47 (d, J = 9.5 Hz, 1H), 3.16 (br, 1H), 1.53 – 1.57 (m, 1H), 1.40 – 1.50 (m, 3H), 1.23 – 1.29 (m, 4H), 0.86 – 0.89 (m, 12H), 0.09 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 168.3, 84.3, 82.1, 56.7, 53.0, 52.9, 52.1, 32.8, 32.3, 31.7, 27.1, 26.1, 22.8, 18.6, 14.4, -4.8.

^{MeO₂C} ^{MeO₂C} ^{Pentyl} Dimethyl 2-(1-hydroxynon-2-yn-4-yl)malonate (SI-13k) Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound SI-13k as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 4.22 (s, 2H), 3.76 (s, 3H), 3.75 (s, 3H), 3.47 (d, *J* = 9.1 Hz, 1H), 3.16 (*br*, 1H), 1.73 (s, 1H), 1.37 – 1.54 (m, 4H), 1.28 – 1.30 (m, 4H), 0.88 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.4, 168.3, 85.5, 81.9, 56.6, 53.03, 53.01, 51.5, 32.8, 32.3, 31.7, 27.1, 22.8, 14.3.

^{MeO₂C} ^{MeO₂C} ^{Pentyl} Dimethyl 2-(1-iodonon-2-yn-4-yl)malonate (SI-14k) Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound SI-14k as light yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 3.79 (s, 3H), 3.75 (s, 3H), 3.67 (d, J = 2.3 Hz, 2H), 3.45 (d, J = 9.3 Hz, 1H), 3.15 – 3.18 (m, 1H), 1.47 – 1.52 (m, 2H), 1.38 – 1.45 (m, 2H), 1.23 – 1.32 (m, 4H), 0.89 (t, J = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.24, 168.17, 85.6, 80.5, 56.3, 53.2, 53.1, 32.7, 32.5, 31.6, 27.0, 22.8, 14.4, -17.6.

Dimethyl 2-isopropyl-3-vinylidenecyclopropane-1,1-dicarboxylate (1j) Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **1j** as colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 5.20 (dd, J = 10.8, 4.5 Hz, 1H), 5.14 (dd, J = 10.5, 4.7 Hz, 1H), 3.77 (s, 3H), 3.75 (s, 3H), 2.60 (ddd, J = 10.0, 5.0, 4.8 Hz, 1H), 1.43 – 1.51 (m, 1H), 1.06 (d, J = 10.6 Hz, 3H), 1.05 (d, J = 10.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 193.5, 168.4, 167.0, 86.0, 82.5, 53.4, 53.1, 41.2, 39.6, 29.5, 22.3, 21.7. The spectroscopic data for this compound were in agreement with previously reported data.²

MeO_2C CO_2Me Dimethyl 2-pentyl-3-vinylidenecyclopropane-1,1-dicarboxylate (1k) Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **1k** as colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 5.21 (dd, J = 10.8, 4.9 Hz, 1H), 5.15 (dd, J = 10.8, 4.8 Hz, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 2.78 – 2.82 (m, 1H), 1.69 (ddt, J = 13.6, 6.8, 6.6 Hz, 1H), 1.44 – 1.47 (m, 2H), 1.35 – 1.41 (m, 1H), 1.28 – 1.29 (m, 4H), 0.87 (*app.* s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 193.7, 168.5, 167.0, 86.6, 82.7, 53.4, 53.2, 40.7, 32.7, 31.5, 28.7, 28.5, 22.8, 14.4. HRMS (ESI⁺): m/z for C₁₄H₂₁O₄ [M+H]⁺ calcd. 253.1440, found 253.1448. ¹H NMR (600 MHz, CDCl₃) δ 5.21 (dd, J = 10.8, 4.9 Hz, 1H), 1.65 – 1.72 (m, 1H), 1.42 – 1.50 (m, 2H), 1.35 – 1.42 (m, 1H), 1.22 – 1.35 (m, 4H), 0.87 (*app.* s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 193.7, 168.5, 167.0, 86.6, 82.7, 53.4, 53.2, 40.7, 32.7, 31.5, 28.7, 28.5, 22.8, 14.4. HRMS (ESI⁺): m/z for C₁₄H₂₁O₄ [M+H]⁺ calcd. 253.1440, found 253.1448. ¹H NMR (600 MHz, CDCl₃) δ 5.21 (dd, J = 10.8, 4.9 Hz, 1H), 1.65 – 1.72 (m, 1H), 1.42 – 1.50 (m, 2H), 1.35 – 1.42 (m, 1H), 1.22 – 1.35 (m, 4H), 0.87 (*app.* s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 193.7, 168.5, 167.0, 86.6, 82.7, 53.4, 53.2, 40.7, 32.7, 31.5, 28.7, 28.5, 22.8, 14.4. HRMS (ESI⁺): m/z for C₁₄H₂₁O₄ [M+H]⁺ calcd. 253.1440, found 253.1448.

Dimethyl 2-phenyl-3-vinylidenecyclopropane-1,1-dicarboxylate (11) Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound 11 as colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.26 –7.31 (m, 5H), 5.43 (dd, J = 11.3, 4.9 Hz, 1H), 5.32 (dd, J = 11.3, 4.8 Hz, 1H), 4.08 (dd, J = 4.8, 4.7 Hz, 1H), 3.82 (s, 3H), 3.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 195.6, 167.8, 165.5, 133.3, 128.8, 128.6, 128.3, 84.8, 83.5, 53.6, 52.8, 43.7, 36.1. The spectroscopic data for this compound were in agreement with previously reported data.²

General procedure for the synthesis of homopropargylic boronate 3: In an Ar-filled glove box, to a reaction vial containing a Teflon-coated magnetic stirring bar were added CuCl (0.01 mmol, 10 mol %), NaOMe (0.1 mmol, 1.0 equiv, NaO'Bu was used in the case of 3d), and THF (0.5 mL). The resulting mixture was stirred for 15 min at ambient temperature. Bisboryl methane 2 (0.11 mmol, 1.1 equiv) was added to the vial, and the mixture was stirred for 5 min. Then vinylidene cyclopropane 1 (0.1 mmol, 1.0 equiv) was added, and the reaction mixture was stirred for 6 – 12 h at ambient temperature. Upon complete consumption of vinylidene cyclopropane 1, the reaction mixture was filtered through a pad of silica gel, and the solution was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product 3. (An Ar glove box is not required. The reaction conducted using air-free Schlenk technic provided the product in a similar yield. However, the reaction needs to be protected from exposure to air.)

Dimethyl 2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-yn-1-yl)malonate (3a) Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **3a** as colorless oil in 87% yield (28 mg). ¹H NMR (600 MHz, CDCl₃) δ 3.75 (s, 6H), 3.54 (t, *J* = 7.8 Hz, 1H), 2.72 – 2.73 (m, 2H), 2.21 (t, *J* = 7.6 Hz, 2H), 1.24 (s, 12H), 0.98 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 169.0, 84.6, 83.6, 74.9, 53.1, 51.8, 25.1, 19.2, 13.7, 11.6. HRMS (ESI⁺): m/z for C₁₆H₂₅BO₆Na [M+Na]⁺ calcd. 347.1642, found 347.1667. 1 mmol scale reaction gave compound **3a** in 75% yield (243 mg).

EtO₂c **B**pin **Diethyl 2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2yn-1-yl)malonate (3b)** Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **3b** as colorless oil in 77% yield (27 mg). ¹H NMR (600 MHz, CDCl₃) δ 4.19 – 4.23 (m, 4H), 3.49 (t, *J* = 7.8 Hz, 1H), 2.71 – 2.72 (m, 2H), 2.21 (t, *J* = 7.6 Hz, 2H), 1.23 – 1.28 (m, 18H), 0.98 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 84.4, 83.6, 75.1, 62.0, 52.1, 25.1, 19.1, 14.4, 13.7, 11.5. HRMS (ESI⁺): m/z for C₁₈H₂₉BO₆Na [M+Na]⁺ calcd. 375.1955, found 375.1974. ^{**P**}PrO₂C ^{**P**}PrO₂C ^{**P**}PrO₂C **Dipropyl 2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent- 2-yn-1-yl)malonate** (**3c**) Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **3c** as colorless oil in 68% yield (26 mg). ¹H NMR (600 MHz, CDCl₃) δ 4.07 – 4.14 (m, 4H), 3.52 (t, *J* = 7.8 Hz, 1H), 2.71 – 2.73 (m, 2H), 2.20 (t, *J* = 7.6 Hz, 2H), 1.66 (tq, *J* = 6.9, 7.2 Hz, 4H), 1.24 (s, 12H), 0.98 (t, *J* = 7.7 Hz, 2H), 0.93 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 168.7, 84.3, 83.6, 75.1, 67.5, 52.1, 25.1, 22.2, 19.2, 13.7, 10.7. HRMS (ESI⁺): m/z for C₂₀H₃₃BO₆Na [M+Na]⁺ calcd. 403.2268, found 403.2298.

Dibenzyl 2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-yn-1-yl)malonate (3d) Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **3d** as colorless oil in 55% yield (26 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.32 (m, 10H), 5.16 (s, 4H), 3.63 (t, *J* = 7.8 Hz, 1H), 2.76 – 2.77 (m, 2H), 2.17 (t, *J* = 7.6 Hz, 2H), 1.23 (s, 12H), 0.95 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 168.3, 135.5, 128.9, 128.7, 128.5, 84.7, 83.6, 74.9, 67.6, 52.1, 25.1, 19.2, 13.7. HRMS (ESI⁺): m/z for C₂₈H₃₃BO₆Na [M+Na]⁺ calcd. 499.2268, found 499.2314.

ⁱPrO₂C Bpin **Diisopropyl 2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-yn-1-yl)malonate (3e)** Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **3e** as colorless oil in 76% yield (29 mg). ¹H NMR (600 MHz, CDCl₃) δ 5.05 (hept, J = 6.0 Hz, 2H), 3.41 (t, J = 7.8 Hz, 1H), 2.69 (*app.* d, J = 7.8 Hz, 2H), 2.20 (t, J = 7.7 Hz, 2H), 1.24 (*app.* s, 24H), 0.98 (t, J = 7.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 168.2, 84.2, 83.6, 75.2, 69.4, 52.4, 25.1, 22.0, 21.9, 19.0, 13.7, 11.7. HRMS (ESI⁺): m/z for C₂₀H₃₃BO₆Na [M+Na]⁺ calcd. 403.2268, found 403.2258.

¹BuO₂C ¹Bu **EtO**₂C **B**_{pin} **1-(***Tert***-butyl) 3-ethyl 2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborol-an-2-yl)pent-2-yn-1-yl)malonate (3g)** Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **3g** as colorless oil in 74% yield (28 mg). ¹H NMR (600 MHz, CDCl₃) δ 4.15 – 4.25 (m, 2H), 3.39 (t, *J* = 7.9 Hz, 1H), 2.66 – 2.67 (m, 2H), 2.21 (t, *J* = 7.6 Hz, 2H), 1.45 (s, 9H), 1.24 – 1.28 (m, 15H), 0.99 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 169.0, 167.7, 84.1, 83.6, 82.4, 75.3, 61.7, 52.9, 28.2, 25.1, 19.1, 14.5, 13.7, 11.7. HRMS (ESI⁺): m/z for C₂₀H₃₃BO₆Na [M+Na]⁺ calcd. 403.2268, found 403.2271.

BnO₂C Bpin 1-Benzyl 3-(*tert***-butyl) 2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaboro-lan-2-yl)pent-2-yn-1-yl)malonate** (**3h**) Prepared according to the general procedure to give compound **3h** as colorless oil in 68% yield (30 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.32 – 7.36 (m, 5H), 5.22 (d, $J_{A,B} = 12.3$ Hz, 1H), 5.15 (d, $J_{A,B} = 12.3$ Hz, 1H), 3.46 (t, J = 7.8 Hz, 1H), 2.68 – 2.70 (m, 2H), 2.19 (t, J = 7.7 Hz, 2H), 1.38 (s, 9H), 1.24 (s, 12H), 0.98 (t, J = 7.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 168.8, 167.4, 135.8, 128.8, 128.62, 128.57, 84.3, 83.6, 82.5, 75.2, 67.3, 52.9, 28.1, 25.1, 19.1, 13.7, 11.6. HRMS (ESI⁺): m/z for C₂₅H₃₅BO₆Na [M+Na]⁺ calcd. 465.2424, found 465.2404.

MeO₂C

Dimethyl-2-(4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)met hyl)-hex-2-yn-1-yl)malonate (3i) Prepared according to the general

procedure to give compound **3i** as colorless oil in 85% yield (30 mg). ¹H NMR (600 MHz, CDCl₃) δ 3.75 (s, 6H), 3.55 (t, *J* = 7.8 Hz, 1H), 2.74 (dd, *J* = 7.9, 1.4 Hz, 2H), 2.38 – 2.46 (m, 1H), 1.41 – 1.48 (m, 1H), 1.31– 1.39 (m, 1H), 1.24 (s, 12H), 0.91 – 1.00 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 169.0, 87.4, 83.5, 76.0, 53.1, 51.9, 30.8, 29.2, 25.2, 25.0, 19.3, 18.6, 12.1. HRMS (ESI⁺): *m/z* for C₁₈H₂₉BO₆Na [M+Na]⁺ calcd. 375.1955, found 375.1960.

Dimethyl-2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dec-3 -yn-5-yl)malonate (3k) Prepared according to the general procedure. The crude mixture was purified by column chromatography to give

compound **3k** as colorless oil in 86% yield (34 mg). ¹H NMR (600 MHz, CDCl₃) δ 3.75 (s, 3H), 3.73 (s, 3H), 3.41 (d, J = 9.8 Hz, 1H), 3.05 – 3.11 (m, 1H), 2.22 (*app.* t, J = 7.0 Hz, 2H), 1.51 – 1.56 (m, 1H), 1.40 – 1.47 (m, 1H), 1.32 – 1.40 (m, 2H), 1.26 – 1.30 (m, 4H), 1.24 (s, 12H), 0.98 (t, J = 7.7 Hz, 2H), 0.87 (t, J = 6.7 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.6, 168.5, 85.5, 83.5, 78.4, 57.2, 53.00, 52.98, 33.1, 32.4, 31.7, 27.1, 25.12, 25.11, 22.9, 14.4, 13.7, 11.9. HRMS (ESI⁺): m/z for C₂₁H₃₅BO₆Na [M+Na]⁺ calcd. 417.2424, found 417.2422.

Dimethyl-2-(1-phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-yn-1-yl)malonate (3l) Prepared according to the general procedure. The crude mixture was purified by column

chromatography to give compound **31** as colorless oil in 72% yield (29 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.36 (d, J = 7.6 Hz, 2H), 7.28 (dd, J = 7.7, 7.4 Hz, 2H), 7.23 (dd, J = 7.0, 6.9 Hz, 1H), 4.34 (*app.* d, J = 10.6 Hz, 1H), 3.79 (s, 3H), 3.72 (d, J = 10.6 Hz, 1H), 3.50 (s, 3H), 2.26 (td, J = 7.7, 1.5 Hz, 2H), 1.20 (s, 12H), 1.01 (t, J = 7.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 168.0, 167.5, 138.9, 128.8, 128.5, 127.8, 86.7, 83.6, 77.9, 60.0, 53.2, 52.9, 38.3, 25.08, 25.07, 13.8, 11.7. HRMS (ESI⁺): m/z for C₂₂H₂₉BO₆Na [M+Na]⁺ calcd. 423.1955, found 423.1973.

General procedure for the synthesis of skipped diynes 5: In an Ar-filled glove box, to a reaction vial containing a Teflon-coated magnetic stirring bar were added CuCl (0.01 mmol, 10 mol %), NaO'Bu (0.11 mmol, 1.1 equiv) and THF (0.5 mL). The mixture was stirred for 15 min at ambient temperature. Alkynyl boronate 6 (0.11 mmol, 1.1 equiv) was added, and the mixture was stirred for 5 min. Then vinylidene cyclopropane 1 (0.1 mmol, 1.0 equiv) was added, and the mixture was stirred for 1 – 24 h at ambient temperature. Upon complete consumption of vinylidene cyclopropane 1, the reaction mixture was filtered through a pad of silica gel and the solution was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (hexane/ethyl acetate) to give product 7.

EtO₂C

^tBuO₂C

Dimethyl 2-(nona-2,5-diyn-1-yl)malonate (5a)

MeO₂C⁻ Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **5a** as colorless oil in 76% yield (19 mg). ¹H NMR (600 MHz, CDCl₃) δ 3.77 (s, 6H), 3.59 (t, J = 7.8 Hz, 1H), 3.09 – 3.10 (m, 2H), 2.77 (dt, J = 7.7, 2.2 Hz, 2H), 2.11 – 2.13 (m, 2H), 1.50 (tq, J = 7.3, 7.3 Hz, 2H), 0.96 (t, J = 7.3 Hz, 3H). ¹³C NMR (151 MHz, Acetone- d_6) δ 169.0, 80.6, 77.6, 76.4, 75.0, 52.8, 51.6, 22.8, 20.9, 19.1, 13.7, 9.6. HRMS (EI⁺): m/z for C₁₄H₁₈O₄ [M]⁺ calcd. 250.1205, found 250.1192.

Diethyl 2-(nona-2,5-diyn-1-yl)malonate (5b)

END₂C Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **5b** as colorless oil in 65% yield (18 mg). ¹H NMR (600 MHz, CDCl₃) δ 4.22 (q, J = 6.6 Hz, 4H), 3.53 (t, J = 7.8 Hz, 1H), 3.09 – 3.10 (m, 2H), 2.75 – 2.77 (m, 2H), 2.10 – 2.12 (m, 2H), 1.50 (tq, J = 7.2, 7.2 Hz, 2H), 1.28 (t, J = 7.1 Hz, 6H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (151 MHz, Acetone- d_6) δ 168.6, 80.6, 77.5, 76.5, 75.0, 62.0, 51.8, 22.8, 20.9, 19.0, 14.3, 13.7, 9.6. HRMS (EI⁺): m/z for C₁₆H₂₂O₄ [M]⁺ calcd. 278.1518, found 278.1514.

Diisopropyl 2-(nona-2,5-diyn-1-yl)malonate (5c) Prepared according to the general procedure give compound **5c** as colorless oil in 81% yield (25 mg). ¹H NMR (600 MHz, CDCl₃) δ 5.07 (hept, J = 6.3Hz, 2H), 3.46 (t, J = 7.8 Hz, 1H), 3.09 (*app.* s, 2H), 2.73 (*app.* d, J = 7.7 Hz, 2H), 2.10 – 2.12 (m, 2H), 1.49 (tq, J = 7.2, 7.2 Hz, 2H), 1.25 (d, J = 6.0 Hz, 6H), 1.24 (d, J = 5.9 Hz, 6H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.0, 80.9, 77.0, 76.3, 74.2, 69.5, 52.0, 22.4, 22.0, 21.9, 21.0, 18.9, 13.9, 10.1. HRMS (EI⁺): m/z for C₁₈H₂₆O₄ [M]⁺ calcd. 306.1831, found 306.1824.

Di-tert-butyl 2-(nona-2,5-diyn-1-yl)malonate (5d)

^{YBuO₂C⁻ Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **5d** as colorless oil in 69% yield (23 mg). ¹H NMR (600 MHz, CDCl₃) δ 3.33 (t, *J* = 7.8 Hz, 1H), 3.10 (*app.* s, 2H), 2.65 (*app.* d, *J* = 7.8 Hz, 2H), 2.10 – 2.12 (m, 2H), 1.46 – 1.52 (m, 20H), 0.95 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.9, 82.2, 80.8, 76.7, 76.6, 74.3, 53.4, 28.2, 22.4, 21.0, 18.9, 13.9, 10.0. HRMS (ESI⁺): m/z for C₂₀H₃₀O₄Na [M+Na]⁺ calcd. 357.2042, found 357.2049.}

Dibenzyl 2-(nona-2,5-diyn-1-yl)malonate (5e)

^{BnO₂C</sub> Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **5e** as colorless oil in 82% yield (33 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.29 – 7.33 (m, 10H), 5.17 (s, 4H), 3.66 (t, J = 7.7 Hz, 1H), 3.01 – 3.02 (m, 2H), 2.80 – 2.81 (m, 2H), 2.10 – 2.12 (m, 2H), 1.49 (tq, J = 7.3, 7.3 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (151 MHz, Acetone- d_6) δ 168.4, 136.7, 129.3, 129.0, 128.8, 80.7, 77.8, 76.5, 75.0, 67.6, 52.0, 22.8, 21.0, 19.2, 13.7, 9.7. HRMS (ESI⁺): m/z for C₂₆H₂₆O₄Na [M+Na]⁺ calcd. 425.1729, found 425.1723.}

MeO₂C

1-(Tert-butyl) 3-ethyl 2-(nona-2,5-diyn-1-yl)malonate (5f)

^{**b**u0₂c⁻} Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **5f** as colorless oil in 72% yield (22 mg). ¹H NMR (600 MHz, CDCl₃) δ 4.16 – 4.25 (m, 2H), 3.43 (t, *J* = 7.8 Hz, 1H), 3.09 (*app.* s, 2H), 2.70 (*app.* d, *J* = 7.4 Hz, 2H), 2.10 – 2.12 (m, 2H), 1.47 – 1.52 (m, 2H), 1.46 (s, 9H), 1.27 (t, *J* = 7.1 Hz, 3H), 0.95 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.8, 167.6, 82.6, 80.9, 76.9, 76.4, 74.3, 61.8, 52.5, 28.2, 22.4, 21.0, 19.0, 14.4, 13.9, 10.1. HRMS (ESI⁺): m/z for C₁₈H₂₆O₄Na [M+Na]⁺ calcd. 329.1729, found 329.1724.

Dimethyl 2-(6-phenylhexa-2,5-diyn-1-yl)malonate (5g)

^{MeO₂c</sub> Ph Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **5g** as colorless oil in 53% yield (15 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.42 (m, 2H), 7.29 – 7.30 (m, 3H), 3.77 (s, 6H), 3.62 (t, *J* = 7.7 Hz, 1H), 3.35 (*app.* s, 2H), 2.79 – 2.81 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 168.8, 132.0, 128.6, 128.4, 123.3, 83.9, 80.8, 76.6, 76.4, 53.3, 51.3, 19.1, 10.8. HRMS (EI⁺): m/z for C₁₇H₁₆O₄ [M]⁺ calcd. 284.1049, found 284.1070.}

Diisopropyl 2-(6-phenylhexa-2,5-diyn-1-yl)malonate (5h)

^{**p**ro₂c **P**h Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **5h** as colorless oil in 56% yield (19 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.41 (m, 2H), 7.28 – 7.29 (m, 3H), 5.07 (hept, J = 6.1 Hz, 2H), 3.49 (t, J = 7.8 Hz, 1H), 3.35 (*app.* s, 2H), 2.75 – 2.77 (m, 2H), 1.24 – 1.25 (m, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 168.0, 132.0, 128.5, 128.4, 123.3, 84.0, 80.8, 76.9, 76.0, 69.6, 51.9, 22.0, 21.9, 18.9, 10.8. HRMS (EI⁺): m/z for C₂₁H₂₄O₄ [M]⁺ calcd. 340.1675, found 340.1660.}

Dimethyl 2-(9-chloronona-2,5-diyn-1-yl)malonate (5i)

Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **5i** as

colorless oil in 74% yield (21 mg). ¹H NMR (600 MHz, CDCl₃) δ 3.77 (s, 6H), 3.64 (t, *J* = 6.3 Hz, 2H), 3.58 (t, *J* = 7.7 Hz, 1H), 3.08 – 3.09 (m, 2H), 2.77 – 2.78 (m, 2H), 2.34 – 2.36 (m, 2H), 1.93 (tt, *J* = 6.5 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 168.8, 79.0, 77.0, 76.2, 75.3, 53.2, 51.3, 44.1, 31.6, 19.1, 16.4, 10.1. HRMS (EI⁺): m/z for C₁₄H₁₇ClO₄ [M]⁺ calcd. 284.0815, found 284.0828.

Diisopropyl 2-(9-chloronona-2,5-diyn-1-yl)malonate (5j)

Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **5**j

as colorless oil in 82% yield (28 mg). ¹H NMR (600 MHz, CDCl₃) δ 5.07 (hept, J = 6.0 Hz, 2H), 3.64 (t, J = 6.3 Hz, 2H), 3.46 (t, J = 7.8 Hz, 1H), 3.08 (*app.* s, 2H), 2.73 (*app.* d, J = 7.7 Hz, 2H), 2.33 – 2.35 (m, 2H), 1.93 (tt, J = 6.5 Hz, 2H), 1.25 (d, J = 6.0 Hz, 6H), 1.24 (d, J = 5.8 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 168.0, 78.9, 76.6, 76.5, 75.3, 69.6, 51.9, 44.1, 31.6, 22.0, 21.9, 18.9, 16.4, 10.1. HRMS (EI⁺): m/z for C₁₈H₂₅ClO₄ [M]⁺ calcd. 340.1441, found 340.1454.

ⁱPrO₂C ⁱPrO₂C ⁱPrO₂C ⁱPrO₂C ⁱPrO₂C ⁱDiisopropyl 2-(7-methoxyhepta-2,5-diyn-1-yl)malonate (5k) Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound 5k as colorless oil in 78% yield (24 mg). ¹H NMR (600 MHz, CDCl₃) δ 5.07 (hept, *J* = 6.1 Hz, 2H), 4.07 (*app.* s, 2H), 3.46 (t, *J* = 7.7 Hz, 1H), 3.36 (s, 3H), 3.16 (*app.* s, 2H), 2.73 (*app.* d, *J* = 7.7 Hz, 2H), 1.25 (d, *J* = 6.2 Hz, 6H), 1.24 (d, *J* = 6.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 168.0, 81.1, 76.9, 76.4, 75.8, 69.6, 60.3, 58.0, 51.9, 22.0, 21.9, 18.9, 10.2. HRMS (ESI⁺): *m/z* for C₁₇H₂₅O₅ [M+H]⁺ calcd. 309.1702, found 309.1717.

Diisopropyl-2-(6-(*tert***-butyldimethylsilyl)hexa-2,5-diyn-1-yl) malonate (5l)** Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **5l** as colorless oil in 87% yield (33 mg). ¹H NMR (600 MHz, CDCl₃) δ 5.07 (hept, J = 6.1 Hz, 2H), 3.45 (t, J = 7.8 Hz, 1H), 3.16 (*app.* s, 2H), 2.72 – 2.74 (m, 2H), 1.25 (d, J = 6.0 Hz, 6H), 1.24 (d, J = 5.8 Hz, 6H), 0.91 (s, 9H), 0.07 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 168.0, 100.8, 83.3, 76.7, 75.9, 69.6, 51.9, 26.4, 22.0, 21.9, 18.9, 16.9, 11.2, -4.3. HRMS (ESI⁺): *m/z* for C₂₁H₃₄O₄SiNa [M+Na]⁺ calcd. 401.2124, found 401.2135.

Dimethyl-2-(8-(*tert*-butyldimethylsilyl)-2-methylocta-4,7-diy n-3-yl)malonate (5m) Prepared according to the general

procedure to give compound **5m** as colorless oil in 68% yield (25 mg). ¹H NMR (600 MHz, CDCl₃) δ 3.76 (s, 3H), 3.74 (s, 3H), 3.54 (d, *J* = 10.8 Hz, 1H), 3.13 – 3.17 (m, 3H), 1.69 – 1.73 (m, 1H), 1.02 (d, *J* = 6.6 Hz, 3H), 0.92 – 0.93 (m, 12H), 0.07 (s, 6H). ¹³C NMR (151 MHz, Acetone-*d*₆) δ 168.4, 168.3, 102.4, 82.9, 79.0, 78.0, 55.3, 52.9, 52.8, 39.3, 29.6, 26.3, 22.0, 17.0, 16.9, 10.7, -4.5. HRMS (ESI⁺): *m/z* for C₂₀H₃₃O₄Si [M+H]⁺ calcd. 365.2148, found 365.2148.

Dimethyl-2-(1-(*tert***-butyldimethylsilyl)undeca-1,4-diyn-6-yl) malonate (5n)** Prepared according to the general procedure. The crude mixture was purified by column chromatography to give compound **5n** as colorless oil in 82% yield (32 mg). ¹H NMR (600 MHz, CDCl₃) δ 3.76 (s, 3H), 3.74 (s, 3H), 3.45 (d, *J* = 9.6 Hz, 1H), 3.17 (d, *J* = 2.0 Hz, 2H), 3.10 – 3.14 (m, 1H), 1.53 – 1.55 (m, 1H), 1.37 – 1.48 (m, 3H), 1.24 – 1.30 (m, 4H), 0.92 (s, 9H), 0.88 (t, *J* = 6.8 Hz, 3H), 0.07 (s, 6H). ¹³C NMR (151 MHz, Acetone-*d*₆) δ 168.5, 168.4, 102.3, 82.9, 80.4, 77.7, 56.9, 52.8, 52.7, 33.2, 32.5, 32.0, 27.5, 26.3, 23.2, 17.0, 14.3, 10.7, -4.5. HRMS (ESI⁺): *m/z* for C₂₂H₃₇O₄Si [M+H]⁺ calcd. 393.2461, found 393.2453.

Dimethyl-2-(6-(butyldimethylsilyl)-4-ethylhexa-2,5-diyn-1-yl)malonate (50) Prepared according to the general procedure to give compound **50** as colorless oil in 83% yield (29 mg). ¹H NMR (600 MHz, CDCl₃) δ 3.76 (s, 6H), 3.59 (t, J = 7.8 Hz, 1H), 3.28 (*app.* t, J = 6.2 Hz, 1H), 2.78 (dd, J = 7.7, 1.3Hz, 2H), 1.67 (dq, J = 7.0, 7.0 Hz, 2H), 1.02 (t, J = 7.3 Hz, 3H), 0.91 (s, 9H), 0.079 (s, 3H), 0.076 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.9, 168.8, 105.2, 83.5, 80.8, 76.8, 53.2, 51.5, 29.6, 26.4, 25.9, 19.2, 16.9, 11.5, -4.3. HRMS (ESI⁺): *m/z* for C₁₉H₃₁O₄Si [M+H]⁺ calcd. 351.1992, found 351.1980

General procedure for the three-component reactions: In an Ar-filled glove box, to a reaction vial containing a Teflon-coated magnetic stirring bar were added CuCl (0.01 mmol, 10 mol %), NaO^tBu (0.11 mmol, 1.1 equiv) and THF (0.5 mL). The resulting mixture was stirred for 15 min at ambient temperature. Bis[(pinacolato)boryl]methane **2** or alkynyl boronate **4** (0.11 mmol, 1.1 equiv) was added, and the mixture was stirred for 5 min. Then vinylidene cyclopropane **1** (0.1 mmol, 1.0 equiv) and R³X (0.2 mmol, 2.0 equiv) were added sequentially and the mixture was stirred at ambient temperature. Upon complete consumption of vinylidene cyclopropane **1**, the reaction mixture was filtered through a short pad of silica gel and the solution was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product as colorless oil.

Dimethyl-2-methyl-2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-yn-1-yl)malonate (6) Prepared according to the general procedure from **1a** with iodomethane as the trapping agent. The crude mixture was purified by column chromatography to give compound **6** as colorless oil in 83% yield (28 mg).. ¹H NMR (600 MHz, CDCl₃) δ 3.72 (s, 6H), 2.72 (*app.* s, 2H), 2.20 – 2.23 (m, 2H), 1.52 (s, 3H), 1.24 (s, 12H), 0.99 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 172.0, 85.5, 83.6, 74.1, 53.8, 53.1, 26.5, 25.1, 20.3, 13.7. HRMS (ESI⁺): *m/z* for C₁₇H₂₈BO₆ [M+H]⁺ calcd. 339.1979, found 339.1978.

Dimethyl-2-allyl-2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-yn-1-yl)malonate (7) Prepared according to the general procedure from **1a** with allylic iodide as the trapping agent. The

crude mixture was purified by column chromatography to give compound 7 as colorless oil in 66% yield (24 mg). ¹H NMR (600 MHz, CDCl₃) δ 5.58 – 5.65 (m, 1H), 5.16 (d, *J* = 17.0 Hz, 1H), 5.10 (d, *J* = 10.0 Hz, 1H), 3.72 (s, 6H), 2.78 (d, *J* = 7.4 Hz, 2H), 2.73 (*app.* s, 2H), 2.22 (*app.* t, *J* = 7.6 Hz, 2H), 1.24 (s, 12H), 1.00 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 170.9, 132.3, 120.0, 85.7, 83.6, 73.7, 57.6, 53.1, 36.8, 25.1, 23.3, 13.7. HRMS (ESI⁺): *m/z* for C₁₉H₃₀BO₆ [M+H]⁺ calcd. 365.2135, found 365.2125.

1-Ethyl-2,2-dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hept-4-yne-1,2,2-tricarboxylate (8) Prepared according to the

general procedure from **1a** with ethyl bromoacetate as the trapping agent. The crude mixture was purified by column chromatography to give compound **8** as colorless oil in 80% yield (33 mg). ¹H NMR (600 MHz, CDCl₃) δ 4.12 (q, J = 7.0 Hz, 2H), 3.74 (s, 6H), 3.15 (s, 2H), 2.92 (*app.* s, 2H), 2.21 (*app.* t, J = 7.4 Hz, 2H), 1.24 – 1.25 (m, 15H), 0.98 (t, J = 7.6 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 170.9, 170.1, 86.1, 83.6, 73.6, 61.2, 55.5, 53.4, 37.3, 25.1, 24.4, 14.4, 13.7, 11.7. HRMS (ESI⁺): m/z for C₂₀H₃₁BO₈Na [M+Na]⁺ calcd. 433.2010, found 433.2034.

Dimethyl-2-methyl-2-(4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan -2-yl)methyl)hex-2-yn-1-yl)malonate (9) Prepared according to the general procedure from 1i with iodomethane as the trapping agent.

The crude mixture was purified by column chromatography to give compound **9** as colorless oil in 79% yield (29 mg). ¹H NMR (600 MHz, CDCl₃) δ 3.72 (s, 6H), 2.73 (d, *J* = 1.4 Hz, 2H), 2.39 – 2.46 (m, 1H), 1.52 (s, 3H), 1.41 – 1.48 (m, 1H), 1.31 – 1.39 (m, 1H), 1.24 (s, 12H), 0.92 – 1.01 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 172.0, 88.2, 83.5, 75.2, 53.9, 53.1, 30.8, 29.2, 26.6, 25.1, 25.0, 20.3, 18.8, 12.1. HRMS (ESI⁺): *m/z* for C₁₉H₃₁BO₆Na [M+Na]⁺ calcd. 389.2111, found 389.2101.

Eto₂c **D** = **C**O₂Me **D** = **C**O₂Me **T** = **S 1,2,2-tricarboxylate (10)** Prepared according to the general procedure from **1a** and alkynyl boronate **4e** with ethyl bromoacetate as the trapping agent. The crude mixture was purified by column chromatography to give compound **10** as colorless oil in 73% yield (30 mg). ¹H NMR (600 MHz, CDCl₃) δ 4.13 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 6H), 3.15 (*app.* s, 4H), 2.97 (*app.* s, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 0.92 (s, 9H), 0.08 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 170.8, 169.9, 100.7, 83.5, 77.8, 75.2, 61.2, 55.3, 53.5, 37.3, 26.3, 24.3, 16.9, 14.4, 11.3, -4.4. HRMS (ESI⁺): *m/z* for C₂₁H₃₂O₆SiNa [M+Na]⁺ calcd. 431.1866, found 431.1880.

Methyl 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hept-4-ynoate (11) To a reaction vial containing a Teflon-coated magnetic stirring bar were sequentially added compound **3a** (0.06 mmol, 1.0 equiv), LiCl (0.12 mmol, 2.0 equiv), H₂O (0.12 mmol, 2.0 equiv) and DMSO (0.2 mL). The resulting mixture was stirred at 140 °C for 4 h, and then cooled to ambient temperature. Water (0.5 mL) was added, and the mixture was extracted with Et₂O (3 x 1 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (hexane/ethyl acetate) to give product **11** as colorless oil in 81% yield (13 mg). ¹H NMR (600 MHz, CDCl₃) δ 3.68 (s, 3H), 2.48 – 2.51 (m, 2H), 2.43 – 2.45 (m, 2H), 2.23 (*app.* t, *J* = 7.4 Hz, 2H), 1.24 (s, 12H), 1.00 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (151 MHz, Acetone-*d*₆) δ 172.7, 83.7, 82.9, 78.3, 51.7, 34.2, 25.0, 15.0, 13.9, 12.0. HRMS (ESI⁺): *m/z* for C₁₄H₂₄BO₄ [M+H]⁺ calcd. 267.1768, found 267.1767.

Dimethyl 2-(5-hydroxypent-2-yn-1-yl)malonate (12) To a reaction vial containing a Teflon-coated magnetic stirring bar were added compound **3a** (0.1 mmol, 1.0 equiv) and THF (0.5 mL). An aqueous solution of NaBO₃·4H₂O (0.2 mmol, 2.0 equiv in 0.5 mL water) was added to the vial. The reaction mixture was stirred at ambient temperature for 16 h. The organic layer was separated and the aqueous layer was extracted with Et₂O (3 x 1 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (hexane/ethyl acetate) to give product **12** as colorless oil in 84% yield (18 mg). ¹H NMR (600 MHz, CDCl₃) δ 3.77 (s, 6H), 3.66 (t, *J* = 5.8 Hz, 2H), 3.58 (t, *J* = 7.5 Hz, 1H), 2.75 – 2.77 (m, 2H), 2.38 – 2.40 (m, 2H), 1.94 (br, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 168.9, 79.9, 78.2, 61.4, 53.3, 51.5, 23.4, 19.2. HRMS (ESI⁺): m/z for C₁₀H₁₄O₅Na [M+Na]⁺ calcd. 237.0739, found 237.0750.

Dimethyl-(Z)-2-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-en-1-yl)malon ate (13) In an Ar-filled glove box, to a reaction vial containing a Teflon-coated magnetic stirring bar were added CuCl (0.01 mmol, 10 mol %), IPr·HCl (0.01 mmol, 10 mol %), NaO^tBu (0.03 mmol, 30 mol %) and hexane (0.5 mL). The mixture was stirred for 15 min at ambient temperature. Compound **3a** (0.1 mmol, 1.0 equiv), HSi(OMe)₂Me (0.4 mmol, 4.0 equiv) and ^tBuOH (0.2 mmol, 2.0 equiv) were added to the mixture sequentially. The vial was sealed with a cap containing a PTFE-lined silicone septum and removed from the glove box stirring at 65 °C for 2 h. The reaction mixture was cooled to ambient temperature and filtered through a pad of silica gel. The solution was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (hexane/ethyl acetate) to give product 13 as colorless oil in 77% yield (25 mg). ¹H NMR (600 MHz, CDCl₃) δ 5.49 (dt, J = 9.2, 7.6 Hz, 1H), 5.23 (dt, J = 9.2, 7.7 Hz, 1H), 3.73 (s, 6H), 3.40 (t, J = 7.6 Hz, 1H), 2.66 (dd, J = 7.3, 7.3 Hz, 2H), 2.15 (dt, J = 7.4, 7.3 Hz, 2H), 1.24 (s, 12H), 0.83 (t, J = 7.6 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 169.9, 135.5, 123.8, 83.4, 52.9, 52.1, 27.0, 25.2, 22.0. HRMS (ESI⁺): m/z for $C_{16}H_{27}BO_6Na [M+Na]^+$ calcd. 349.1798, found 349.1801.

Dimethyl-(*Z***)-2-(2,3,5-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-en-1-yl**)malonate (14) In an Ar-filled glove box, $Pt(PPh)_4$ (0.0025 mmol, 5 mol %), B_2Pin_2 (0.15 mmol, 3 equiv), compound **3a** (0.05 mmol, 1.0 equiv), DMF (0.5 mL) and a Teflon-coated magnetic stirring bar were sequentially added into a 1-dram vial. The vial was sealed with a cap containing a PTFE-lined silicone septum and removed from the glove box stirring at 80 °C for 3 h. The mixture was cooled to ambient temperature and water (1 mL) was added. The reaction mixture was extracted with Et₂O (3 x 1 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (hexane/ethyl acetate) to give product **14** as colorless oil in 93% yield (27 mg). ¹H NMR (600 MHz, CDCl₃) δ 3.73 (t, *J* = 7.4 Hz, 1H), 3.69 (s, 6H), 2.82 (d, *J* = 7.4 Hz, 2H), 2.31 (t, *J* = 8.5 Hz, 2H), 1.28 (s, 12H), 1.25 (s, 12H), 1.23 (s, 12H), 0.83 (t, *J* = 8.4 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 170.3, 83.8, 83.7, 83.2, 52.6, 51.8, 29.4, 25.6, 25.4, 25.2. HRMS (ESI⁺): m/z for C₂₈H₄₉B₃O₁₀Na [M+Na]⁺ calcd. 601.3503, found 601.3485.

Dimethyl 2-((2Z,5Z)-nona-2,5-dien-1-yl)malonate (15) In an Ar-filled glove box, to a reaction vial containing a Teflon-coated magnetic stirring bar were added CuCl (0.01 mmol, 20 mol %), IPr·HCl (0.01 mmol, 20 mol %), NaO'Bu (0.03 mmol, 60 mol %) and hexane (0.5 mL). The mixture was stirred for 15 min at ambient temperature. Compound 7a (0.05 mmol, 1.0 equiv), HSi(OMe)₂Me (0.4 mmol, 8.0 equiv) and ^tBuOH (0.2 mmol, 4.0 equiv) were added to the mixture sequentially. The vial was sealed with a cap containing a PTFE-lined silicone septum and removed from the glove box stirring at 65 °C for 2 h. The reaction mixture was cooled to ambient temperature and filtered through a pad of silica gel. The solution was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (hexane/ethyl acetate) to give product 15 as colorless oil in 79% yield (10 mg). ¹H NMR (600 MHz, CDCl₃) δ 5.44 – 5.48 (m, 1H), 5.38 – 5.42 (m, 1H), 5.28 – 5.33 (m, 2H), 3.74 (s, 6H), 3.41 (t, J = 7.6 Hz, 1H), 2.81 (dd, J = 6.2, 5.9 Hz, 2H), 2.68 (dd, J = 7.3, 7.0 Hz, 2H), 2.03 (dt, J = 7.1, 6.3 Hz, 2H), 1.37 (tq, J = 7.3, 7.3 Hz, 2H), 0.90 (t, J = 7.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.8, 131.9, 130.8, 127.6, 124.9, 53.0, 51.9, 29.6, 27.0, 25.9, 23.1, 14.2. HRMS (ESI⁺): m/z for $C_{14}H_{22}O_4Na [M+Na]^+$ calcd. 277.1416, found 277.1414.

Dimethyl (*Z***)-2-(6-phenylhex-5-en-2-yn-1-yl)malonate (16)** In an Ar-filled glove box, to a reaction vial containing a Teflon-coated magnetic stirring bar were added Cu(OAc)₂ (0.01 mmol, 20 mol %) and Xantphos (0.01 mmol, 20 mol %), THF (0.3 mL) and hexane (0.3 mL). The mixture was stirred for 15 min at ambient temperature. Compound 7g (0.05 mmol, 1.0 equiv), HSi(OMe)₂Me (0.1 mmol, 2.0 equiv) and ^{*t*}BuOH (0.1 mmol, 2.0 equiv) were added sequentially to the vial, and the mixture was stirred for 6 h. The reaction mixture was then filtered through a pad of silica gel, and the solution was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (hexane/ethyl acetate) to give product **16** as colorless oil in 77% yield (11 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.36 (m, 2H), 7.23 – 7.28 (m, 3H), 6.49 (d, *J* = 11.3 Hz, 1H), 5.69 (dt, *J* = 11.1, 7.4 Hz, 1H), 3.76 (s, 6H), 3.59 (t, *J* = 7.7 Hz, 1H), 3.11 (d, *J* = 5.8 Hz, 2H), 2.78 (d, *J* = 7.6 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 168.9, 136.7, 130.7, 129.0, 128.6, 127.4, 127.0, 80.9, 76.2, 53.2, 51.6, 19.3, 18.9. HRMS (ESI⁺): m/z for C₁₇H₁₈O₄Na [M+Na]⁺ calcd. 309.1103, found 309.1096.

Reference:

- Iafe, R. G.; Kuo, J. L.; Hochstatter, D. G.; Saga, T.; Turner, J. W.; Merlic, C. A. Org. Lett. 2013, 15, 582.
- 2. Campbell, M. J.; Pohlhaus, P. D.; Min, G.; Ohmatsu, K.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 9180.
- 3. Trost, B. M.; Rudd. M. T. J. Am. Chem. Soc., 2005, 127, 4763
- Shinohara, R.; Ogawa, N.; Kawashima, H.; Wada, K.; Saito, S.; Yamazaki, T.; Kobayashi, Y. *Eur. J. Org. Chem.* 2019, 1461.

