Supplementary information

Exciplex Emissions Derived from Exceptionally Long-Distanced Donor and Acceptor Molecules

Yong-Jin Pu^{*1,2}, Yuki Koyama^{1,2}, Daisuke Otsuki², Minjun Kim¹, Hiroya Chubachi², Yuki Seino¹, Kazushi Enomoto¹, Naoya Aizawa^{1,3}

¹RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.
 ²Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510 Japan.

³JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan.

*E-mail: yongjin.pu@riken.jp

Materials. TAPC and CBP were purchased from e-Ray. MTDATA, B3PyPB, and B4PyMPm were purchased from Lumtec. NPD, TCTA, and DNTPD were purchased from Chemipro Kasei. PMA was purchased from Aldrich. PEDOT:PSS was purchased from Clevious. DMA and DCA was synthesized by general Suzuki coupling methods.

Measurements of physical properties. UV-vis absorption spectra were recorded on a Shimadzu UV-3150 spectrometer. The HOMO levels were measured by photoelectron yield spectroscopy, and the LUMO levels were estimated from the HOMO levels and the optical energy gaps determined from the absorption spectra. PL spectra were measured using a Horiba Fluoromax-4 fluorometer. PL decay curves were measured using a Horiba Fluorolog–3. Fluorescence lifetimes were extracted from the transient PL decay curves by performing two- or three-exponential decay fitting and deconvolution with the instrument response function IRF(t). The fitting function is expressed as the equation S1:

$$I(t) = IRF(t) \otimes \sum_{i=1}^{n} A_i \exp\left(-\frac{t}{\tau_i}\right)$$
(S1)

where I(t) is the PL intensity, A_i is the exponential pre-factor of each exponential decay component, and τ_i is the fluorescence lifetime of each exponential decay component, n is the number of exponential decay components. The time-integrated fluorescence intensity of each exponential decay component $I_{i,int}(t)$ is

$$I_{i,\text{int}}(t) = \int_0^\infty A_i \exp\left(-\frac{t}{\tau_i}\right) dt = A_i \tau_i$$
(S2)

The relative time-integrated fluorescence intensity of each exponential decay component to the sum of the intensity for all components Φ_i is

$$\Phi_{i} = \frac{I_{i,\text{int}}(t)}{\sum_{i=1}^{n} I_{i,\text{int}}(t)} = \frac{A_{i}\tau_{i}}{\sum_{i=1}^{n} A_{i}\tau_{i}}$$
(S3)

The intensity-weighted average fluorescence lifetime $\langle \tau \rangle$ is

$$\left\langle \tau \right\rangle = \frac{\sum_{i=1}^{n} \tau_{i} I_{i,\text{int}}(t)}{\sum_{i=1}^{n} I_{i,\text{int}}(t)} = \frac{\sum_{i=1}^{n} A_{i} \tau_{i}^{2}}{\sum_{i=1}^{n} A_{i} \tau_{i}}$$
(S4)

Device fabrication and characterization. All devices were grown on glass substrates pre-coated with a 130 nm thick layer of indium tin oxide (ITO) with a sheet resistance of 15 Ω /square. The substrates were cleaned with ultra-purified water and organic solvents and then by exposure to a UV-ozone atmosphere. The organic compounds were successively deposited onto the ITO substrate under vacuum (~10⁻⁵ Pa). LiF and Al were patterned using a shadow mask with an array of openings (2 mm × 2 mm) without breaking the vacuum. All devices were encapsulated under a nitrogen atmosphere immediately after preparation using epoxy glue and glass lids. EL spectra were collected using an optical multichannel analyser (Hamamatsu Photonics PMA-12). The current density-voltage and luminance-voltage characteristics were measured using a Keithley 2400 source measurement unit and a Minolta CS200 luminance-meter respectively. The transient EL decay was measured using a function generator (33220A, Agilent), an oscilloscope (DPO 3052, Tektronix), and a Si photodetector (H7826, Hamamatsu Photonics).

Synthesis

General reagent information: 2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolan, 9,10-dibromoanthracene, tetrakis(triphenylphosphine)palladium(0), 9,10-bis(4,4,5,5,-tetramethyl-1,3,2-diocaborolan-2-yl)anthracene were purchased from TCI. Potassium carbonate, toluene, ethanol, anhydrous MgSO₄ were purchased from Kanto Chemical. Tris(dibenzylideneacetone)dipalladium(0), and 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl were purchased from Aldrich. 5-Bromo-1,3-benzenedicarbonitrile (>98%) was purchased from BOC Sciences. All reagents and solvents were used as received without further purification. General analytical information: All compounds were characterized by ¹H-NMR, ¹³C-NMR, matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) and elemental analysis. ¹H- and ¹³C-NMR spectra were recorded on JASTEC JNM-AL400 (400 MHz) spectrometer. Chemical shifts are given in ppm relative chloroform. Mass spectrum was performed on a Bruker Daltonics Ultraflex spectrometer by using dithranol as the matrix.

9,10-Bis(3,5-dimethoxyphenyl)anthracene (DMA)

$$H_{3}CO \qquad H_{3}CO \qquad H_{3$$

2-(3,5-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.36 8.93 mmol), g, 9,10-dibromoanthracene (1.20 g, 3.57 mmol), potassium carbonate (1.23 g, 8.93 mmol), toluene (60 mL), ethanol (30 mL) and water (30 mL) were added to a three-neck flask, and nitrogen passed through the mixture for 1 h. Then, tetrakis(triphenylphosphine)palladium(0) (0.120 g, 0.110 mmol) was added and the resulting mixture was vigorously stirred for 24 hours at reflux temperature under nitrogen. The resulting mixture was cooled to room temperature. Then, water was added to the mixture, and the organic layer was extracted with toluene, washed with water. The organic layer was separated, dried over anhydrous MgSO₄, and evaporated. The small amount of solution was purified by silica gel flash chromatography (EtOAc/hexane = 1:5 v/v). Then, recrystallization was performed by toluene and ethanol to afford DMA as an off-white solid (1.66 g, 86%): ¹H-NMR (400 MHz, CDCl₃): δ 7.7 5 (dd, 4H, J = 6.8 Hz, J = 3.6 Hz), 7.34 (dd, 4H, J = 6.8 Hz, J = 3.2 Hz), 6.67–6.61 (m, 6H), 3.83 (s, 12H) ppm. ¹³C-NMR (100 MHz, CDCl₃): δ 161.1, 141.2, 137.7, 129.8, 127.1, 125.6, 109.0, 100.1, 55.6. MS (MALDI-TOF, m/z): Calcd for C₃₀H₂₆O₄: 450.18; found: 450.10. Elemental Anal.: Calcd for C₃₀H₂₆O₄: C 79.98, H 5.82; found: C 80.12, H 5.72.

9,10-Bis(3,5-dicyanophenyl)anthracene (DCA)

9,10-Bis(4,4,5,5,-tetramethyl-1,3,2-diocaborolan-2-yl)anthracene (1.00 g, 2.32 mmol), 5-bromo-1,3-benzenedicarbonitrile (1.44 g, 6.96 mmol), potassium carbonate (0.962 mg, 6.96 mmol), toluene (50 mL), ethanol (25 mL) and water (25 mL) were added to a three-neck flask, and

nitrogen passed through the mixture for 1 h. Then, tris(dibenzylideneacetone)dipalladium(0) (0.106 g, 0.116 mmol) and 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.100 g, 0.243 mmol) were added and the resulting mixture was vigorously stirred for 24 hours at 75 °C under nitrogen. The resulting mixture was cooled to room temperature. Then, water was added to the mixture, and the organic layer was extracted with toluene, washed with water. The organic layer was separated, dried over anhydrous MgSO₄, and evaporated. The small amount of solution was purified by silica gel flash chromatography (Dichloromethane/hexane = 7:3 v/v) to afford DCA as a light-yellow solid (0.342 g, 34%): ¹H-NMR (400 MHz, CDCl₃): δ 8.17 (s, 2H), 8.00 (s, 4H), 7.52–7.41 (m, 8H) ppm. ¹³C-NMR (100 MHz, CDCl₃): δ 141.9, 138.6, 134.8, 133.2, 129.5, 127.1, 125.8, 116.5, 114.8. MS (MALDI-TOF, *m/z*): Calcd for C₃₀H₁₄N₄:430.12; found: 429.80. Elemntal Anal.: Calcd for C₃₀H₁₄N₄: C 83.71, H 3.28, N 13.02; found: C 83.86, H 3.42, N 12.78.

¹H-NMR spectrum of DMA (400 MHz, CDCl₃)

¹³C-NMR spectrum of DMA (100 MHz, CDCl₃)

¹H-NMR spectrum of DCA (400 MHz, CDCl₃)

¹³C-NMR spectrum of DCA (100 MHz, CDCl₃)

Table S1 PL quantum yields (η_{PL}) for neat film: TAPC, DMA, DCA, CBP, and co-evaporated mixed films: TAPC:DMA, DMA:DCA, TAPC:DCA, TAPC:CBP, CBP:DCA.

emitter	η _{PL} (%)	emitter	η _{PL} (%)
TAPC	5.1	TAPC:DMA	9.8
DMA	14	DMA:DCA	39
DCA	35	TAPC:DCA	0.5
CBP	27	TAPC:CBP	9.3
		CBP:DCA	42

Table S2 Transient PL properties for neat films of TAPC, DMA, and DCA at 297 K in vacuum, detected at each emission peak.

sample	τ ₁ (ns)	A_1	Φ_1 (%)	τ_2 (ns)	A_2	Φ2 (%)	$\langle \tau_{1,2} \rangle$ (ns)
TAPC	0.10	0.514	74.5	1.27	0.0142	25.5	0.40
DMA	0.66	0.089	87.4	3.23	0.0026	12.6	0.98
		8			3		
DCA	0.92	0.835	89.4	5.64	0.0016	10.6	0.98
					1		

Table S3 Transient PL properties for co-evaporated mixed films of TAPC:DMA, DMA:DCA, and TAPC:DCA at 297 K in vacuum, detected at each emission peak.

sample	τ ₁ (ns)	A_1	Φ_1 (%)	τ_2 (ns)	A_2	$\Phi_{2}(\%)$	τ ₃ (ns)	<i>A</i> ₃	Φ3 (%)
TAPC:DMA	1.40	2.29	8.4	88.9	0.110	25.7	284	0.0884	65.9
DMA:DCA	4.55	0.796	20.3	32.3	0.294	53.1	125	0.0382	26.7
TAPC:DCA	2.25	1.17	4.1	95.2	0.226	33.7	299	0.133	62.2

spacer	spacer distance	$\eta_{\rm ext}$	luminance	current density	voltage
spacer	(nm)	(%)	(cd/m^2)	(mA/cm^2)	(V)
DMA	0	0.14	388	104	6.6
DMA	10	0.43	293	30.7	5.2
DMA	20	0.37	24	3.3	4.2
DMA	30	0.33	65	8.5	5.2
DMA	40	0.42	716	94.4	8.4
DMA	50	0.48	360	41.0	7.8
DMA	60	0.69	361	37.9	8.2
DMA	70	0.86	418	40.0	8.8
CBP	0	0.14	388	104	6.6
CBP	1	0.33	659	89.1	6.6
CBP	5	0.55	589	45.9	5.6
CBP	10	0.72	389	22.8	5.2
CBP	15	1.6	724	38.4	6.6
CBP	20	3.0	16.8	0.59	4.0

Table S4 Maximum external quantum efficiency (η_{ext}) of the exciplex OLEDs using the spacer.

Table S5 Temperature dependence of the transient PL properties for neat film of DMA in vacuum,detected at the emission peak.

temp. (K)	τ ₁ (ns)	A_1	$\Phi_{1}(\%)$	τ ₂ (ns)	A_2	$\Phi_{2}(\%)$	τ ₃ (ns)	<i>A</i> ₃	$\Phi_{3}(\%)$
297	0.845	0.199	47.6	1.74	0.103	50.5	9.54	0.000719	1.9
257	1.01	0.213	54.4	2.54	0.0650	41.9	12.6	0.00116	3.7
207	1.50	0.186	53.6	5.80	0.0303	33.9	20.1	0.00323	12.5
157	1.72	0.143	29.7	8.99	0.0386	41.9	31.8	0.00739	28.4
107	1.88	0.111	17.4	11.0	0.0493	45.5	33.6	0.0132	37.2
77	2.20	0.0917	16.6	11.0	0.0522	47.1	32.7	0.0135	36.3

Table S6 Temperature dependence of the transient PL properties for a co-evaporated mixed film ofTAPC:DCA in vacuum, detected at the emission peak.

temp. (K)	τ ₁ (ns)	A_1	Φ_1 (%)	τ_2 (ns)	A_2	$\Phi_{2}(\%)$	τ ₃ (ns)	A3	Φ3 (%)
297	1.62	2.18	8.4	104	0.127	31.5	317	0.0799	60.2
257	1.66	2.25	8.6	127	0.0957	28.1	383	0.0714	63.3
207	1.88	1.78	6.6	155	0.101	30.8	467	0.0685	62.6
157	1.78	1.98	6.6	155	0.0928	27.0	518	0.0681	66.4
107	1.96	1.78	7.2	146	0.0823	24.8	547	0.0602	68.0
77	1.93	1.79	6.5	156	0.0831	24.3	592	0.0622	69.2

Table S7 Temperature dependence of the transient PL properties for a stacked film of TAPC (2 nm)/DMA (10 nm)/DCA (2 nm) in vacuum, detected at 550 nm for the exciplex emission of TAPC and DCA.

temp. (K)	τ_1 (ns)	A_1	$\Phi_{1}(\%)$	τ_2 (ns)	A_2	Φ_2 (%)	τ ₃ (ns)	A3	$\Phi_{3}(\%)$
297	0.949	0.589	22.5	12.1	0.0323	15.8	152	0.0100	61.7
257	0.830	0.676	21.8	10.6	0.0332	13.7	170	0.00976	64.5
207	1.30	0.459	18.1	24.2	0.0203	14.9	194	0.0114	67.0
157	1.40	0.434	15.0	25.9	0.0301	19.2	209	0.0128	65.9
107	1.28	0.436	14.5	20.2	0.0314	16.6	198	0.0133	68.9
77	1.36	0.420	14.6	20.7	0.0319	17.0	202	0.0132	68.5

Table S8 Transient PL properties for stacked film of TAPC (2 nm)/DMA (x nm)/DCA (2 nm) in

vacuum.

distance (nm)	λ _{em} (nm)	τ_1 (ns)	A_1	Φ_1 (%)	τ_2 (ns)	A_2	$\Phi_{2}(\%)$	τ ₃ (ns)	A3	Φ3 (%)
0	550	1.32	1.15	28.0	17.9	0.0490	16.2	160	0.0190	55.8
10	550	0.986	0.573	22.3	13.2	0.0305	15.9	160	0.00974	61.8
20	550	2.83	1.30	21.0	42.9	0.114	27.8	253	0.0355	51.3
30	550	5.23	0.910	23.0	62.4	0.108	32.5	292	0.0316	44.6
50	550	3.58	1.09	23.5	42.1	0.116	29.5	242	0.0320	46.9
70	550	2.34	1.37	31.5	28.0	0.0942	25.8	232	0.0188	42.7
10	440	0.839	0.689	73.1	5.46	0.0216	18.1	33.8	0.00206	8.8

Table S9 Transient PL properties for stacked film of TAPC (2 nm)/CBP (x nm)/DCA (2 nm) in vacuum.

distance (nm)	λ_{em} (nm)	τ_1 (ns)	A_1	Φ_1 (%)	τ_2 (ns)	A_2	$\Phi_{2}(\%)$	τ ₃ (ns)	A3	Φ3 (%)
0	550	1.32	1.15	28.0	17.9	0.0490	16.2	160	0.0190	55.8
5	550	1.33	0.419	20.0	18.0	0.0277	17.8	162	0.0107	62.1
10	550	1.40	0.392	24.5	13.1	0.0415	24.3	145	0.00788	51.2
15	550	2.00	0.308	33.6	12.9	0.0517	36.3	111	0.00497	30.2
20	550	1.81	0.318	32.4	11.3	0.0636	40.5	84.9	0.00567	27.1
10	400	0.118	27.3	94.9	3.05	0.0328	3.0	16.1	0.00456	2.2

Fig. S2 a) EL spectra of the devices at 25 mA/cm². b) Transient EL decay at 50 mA/cm². The applied voltages are 7.19 V for D/S device, 5.50 V for S/A device, 5.97 V for D/A device, and 6.89 V for D/S/A device. The device configurations are the followings: D/S: ITO/ PEDOT:PSS (30 nm)/ TAPC (20 nm)/ DMA (30 nm)/ B3PyPB (40 nm)/ LiF (1 nm)/ Al S/A: ITO/ MoO₃ (5 nm)/ DMA (30 nm)/ DCA (10 nm)/ B3PyPB (40 nm)/ LiF (1 nm)/ Al D/A: ITO/ PEDOT:PSS (30 nm)/ TAPC (20 nm)/ DCA (10 nm)/ B3PyPB (40 nm)/ LiF (1 nm)/ Al D/S/A: ITO/ PEDOT:PSS (30 nm)/ TAPC (20 nm)/ DCA (10 nm)/ B3PyPB (40 nm)/ LiF (1 nm)/ Al D/S/A: ITO/ PEDOT:PSS (30 nm)/ TAPC (20 nm)/ DCA (10 nm)/ B3PyPB (40 nm)/ LiF (1 nm)/ Al

Fig. S3 AFM images and schematic film configurations of a) ITO/PEDOT: PSS (30 nm)/TAPC (20 nm), b) ITO/PEDOT: PSS (30 nm)/TAPC (20 nm)/DMA (30 nm), and c) ITO/PEDOT: PSS (30 nm)/TAPC (20 nm)/DMA (30 nm)/DCA (10 nm). The dashed lines in the schematics are the measured surfaces.

Fig. S4 Hole- and electron-only devices for DMA and DCA. a) Chemical structure of B4PyMPm and PMA. b) Device structures. c) Current density-voltage plots of the devices. Hole-only device: ITO/ PMA (10 nm)/ DMA or DCA (200 nm)/ TAPC (20 nm)/ Al (80 nm) Electron-only device: ITO/ PEDOT:PSS (30 nm)/ B4PyMPM (20 nm)/ DMA or DCA (200 nm)/ B4PyMPM (10 nm)/ LiF (1 nm)/ Al (80 nm)

Fig. S5 TAPC electromer. a) EL spectra at 25 mA/cm², superimposed on Fig. 2b for comparison. b) Transient EL decay at 50 mA/cm², superimposed on Fig. 2c. c) PL spectrum of the co-evaporated film TAPC:B3PyPB (λ_{ex} 330 nm) and the transient PL decay (λ_{ex} 280 nm, λ_{em} 435 nm). The device structure: ITO/ PEDOT:PSS (30 nm)/ TAPC (15 nm)/ B3PyPB (60 nm)/ LiF (1 nm)/ Al (80 nm).

Fig. S6 Energy shift of the exciplex emission in the PL spectra (λ_{ex} 380 nm for D/S/A film and λ_{ex} 400 nm for D/A and D:A films).

Fig. S7 a) PL spectra of TAPC (2 nm)/ DCA(2 nm) layers (λ_{ex} 380 nm) in air (dashed line) and vacuum (solid line). The numbers indicate the measurement order. b) PL intensities of TAPC (2 nm)/ DCA(2 nm) layers (λ_{ex} 380 nm) at 550 nm as a function of the measurement order. c) PL spectra of TAPC (2 nm)/ DMA (10 nm)/ DCA(2 nm) layers (λ_{ex} 380 nm) in air (dashed line) and vacuum (solid line). The numbers indicate the measurement order. d) PL intensities of TAPC (2 nm)/ DMA (10 nm)/ DCA(2 nm) at 550 nm (solid circle) and 437 nm (open triangle) as a function of the measurement order.

Fig. S8 Temperature dependence of the PL spectra and transient PL decay. a) TAPC (2 nm)/DMA (10 nm)/ DCA (2 nm) (λ_{ex} 380 nm for PL; λ_{ex} 370 nm and λ_{em} 550 nm for transient PL). b) TAPC: DCA (20 nm) (λ_{ex} 400 nm for PL; λ_{ex} 370 nm and λ_{em} 550 nm for transient PL). c) DMA (20 nm) (λ_{ex} 360 nm for PL; λ_{ex} 370 nm and λ_{em} 440 nm for transient PL).

Fig. S9 Arrhenius plots of the rate constants of reverse intersystem crossing (k_{RISC}) for a mixed TAPC:DCA film (20 nm) and a stacked TAPC (2 nm)/ DMA (10 nm)/ DCA (2 nm) film. The solid lines represent single exponential fits according to the Arrhenius model $k_{RISC} = A \exp(-E_a/k_BT)$, where A is a constant, E_a is the energy difference between the lowest-excited singlet and triplet states, k_B is the Boltzmann constant, and T is the temperature.

Fig. S10 Excitation light intensity dependence of a) the PL spectra of TAPC (2 nm) / DCA(2 nm) layers (λ_{ex} 380 nm), b) the PL intensity at 550 nm, c) the PL spectra of TAPC (2 nm) / DMA (10 nm) / DCA(2 nm) layers (λ_{ex} 380 nm), and d) the PL intensity at 550 nm.

Fig. S11 Spacer distance dependent EL in the device with CBP spacer. a) Chemical structure of CBP. b) PL spectra of the neat films and the co-evaporated (1/1 wt/wt) films. CBP (λ_{ex} 300 nm), TAPC:CBP (λ_{ex} 300 nm), CBP:DCA (λ_{ex} 380 nm). c) Transient PL decay of the neat films and the co-evaporated (1/1 wt/wt) films: TAPC (λ_{ex} 280 nm, λ_{em} 375 nm), CBP (λ_{ex} 290 nm, λ_{em} 380 nm), DCA (λ_{ex} 365 nm, λ_{em} 450 nm), TAPC:CBP (λ_{ex} 340 nm, λ_{em} 400 nm), CBP:DCA (λ_{ex} 365 nm, λ_{em} 365 nm, λ_{em} 550 nm or 450 nm). d) Device structure. e) EL at 25 mA/cm² with different spacer thicknesses. f) Transient EL decay at 50 mA/cm² with different spacer thicknesses. The applied voltages are 5.50 V for 0 nm, 5.68 V for 1 nm, 5.72 V for 5 nm, 6.11 V for 10 nm, 6.97 V for 15 nm, and 7.00 V for 20 nm.

Fig. S12 Spacer distance dependence of the stacked film PL. Excitation light was incident from the side of DCA layer. a) PL spectra of quartz/ TAPC (2 nm)/ DMA (*x* nm)/ DCA (2 nm) (λ_{ex} 380 nm) and neat film of DMA (λ_{ex} 360 nm). b) Transient PL decay with DMA spacer (λ_{ex} 370 nm and λ_{em} 550 nm for the spacer thickness from 0 nm to 70 nm; λ_{ex} 370 nm and λ_{em} 440 nm for the 10 nm spacer thickness). c) PL spectra of quartz/ TAPC (2 nm)/ CBP (*x* nm)/ DCA (2 nm) (λ_{ex} 330 nm) and neat film of CBP (λ_{ex} 290 nm). d) Transient PL decay with CBP spacer (λ_{ex} 370 nm and λ_{em} 550 nm for the spacer thickness from 0 nm to 20 nm; λ_{ex} 370 nm and λ_{em} 400 nm for the 10 nm spacer thickness from 0 nm to 20 nm; λ_{ex} 370 nm and λ_{em} 400 nm for the 10 nm spacer thickness). e) UV-vis absorption spectra of neat film of DCA, DMA, CBP, and TAPC.

Fig. S13 Current density and voltage dependence of EL spectra. a) Device with 30 nm DMA spacer. The applied voltages are 4.33 V for 2.5 mA/cm², 4.78 V for 5 mA/cm², 5.55 V for 12.5 mA/cm², 6.21 V for 25 mA/cm², 6.90 V for 50 mA/cm², 7.94 V for 125 mA/cm², and 8.87 V for 250 mA/cm². b) Device with 5 nm CBP spacer. The applied voltages are 3.63 V for 2.5 mA/cm², 3.87 V for 5 mA/cm², 4.35 V for 12.5 mA/cm², 4.89 V for 25 mA/cm², 5.72 V for 50 mA/cm², 7.26 V for 125 mA/cm², and 8.96 V for 250 mA/cm².