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Materials

Reagents purchased from Energy Chemical Ltd., Fisher Scientific, VWR, and Sigma-Aldrich were used without further purification.
Solvents for extraction or chromatographic purification purposes, including: CHzClz, EtOAc, MeOH and petroleum ether were
purchased from Titan Chemical and Fisher Scientific and used without further purification. Silica gel (300 mesh) was purchased
from Jiangyou Silica Gel production Ltd and from Fisher Scientific. HyClone DMEM + 4.00 mM L-glutamine, +4500 mg/L glucose,
+ sodium pyruvate; L-15 Leibovitz Medium + 2.05 mM L-glutamine; and DPBS + 1 g/L D-glucose and 36 mg/L sodium pyruvate
were supplied by Thermo Scientific. HBSS modified with 10 mM HEPES came from STEMCELL Technologies and Kreb’s Ringer
Bicarbonate Buffer with 1.8 g/L D-glucose from Zen-Bio. Fetal bovine serum (FBS) was purchased from Gibco via Life
Technologies and bovine calf serum (BCS) from ATCC. 0.05% Trypsin-EDTA was supplied by Gibco via Life Technologies. SNAP
was supplied by Molecular Probes via Life Technologies. Lipopolysaccharides from Escherichia coli 0111:B4, y-irradiated, came
from Sigma. Interferon-gamma (IFN-y) was obtained from Peprotech (Cat # 200-02). 384-well black clear-bottom plates were
from Greiner Bio-One (Cat # 781091). L-N%-monomethyl Arginine acetate (L-NMMA) was from Cayman Chemicals (Cat #

10005031).

Equipment
All tH-NMR and 13C-NMR spectra were acquired in either CDCI3 or DMSO-ds on a Bruker AV-400 spectrometer or a Varian 400.

Chemicals shifts are referenced to the residual solvent peaks and given in ppm. HRMS were acquired on a Micromass GCT
spectrometer or Agilent. Absorption spectra were acquired on a Cary 100-Bio UV-vis spectrophotometer. Fluorescence excitation
and emission spectra were acquired on a PTI-QM4 steady-state fluorimeter with a 75 W Xenon arc-lamp and a R928 photo
multiplier tube (PMT). The excitation and emission slits were both set to 2 nm. All emission spectra are corrected with respect to
the PMT sensitivity. Cell images were acquired on an inverted Zeiss Axiovert 135 fluorescence microscope equipped with an
ORCA-Flash 2.8 scientific-grade complementary metal oxide semiconductor camera from Hamamatsu, which was controlled with
HCImage Live software. DAPI, FITC, and TRITC filter sets were Zeiss 02, 09, and 43, respectively. A 10x objective (NeoFluar, 0.5
NA) and a 40x (0.95 NA) objective were used for imaging. IN Cell Analyzer 2200 (GE Healthcare) was used to obtain images of

RAW264.7 cells producing endogenous NO (20x objective).
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General Methods

Solutions of DHA, NaN02, NaNO3, H202, 0%, Cl0, ONOO:, HO, and 102 for interference studies were prepared according to

literature procedures.!

NO-saturated DPBS: Nitric oxide is quite toxic and has a chlorine-like smell; it was produced and manipulated in a well-ventilated
hood. A three-neck 100 mL round-bottom flask was charged with 3.45 g NaNO: (50 mmol) in 20 mL distilled water. A pressure-
equalizing funnel was placed on the central neck and filled with 30 mL 6 M H250+ (180 mmol). A side neck was connected via
needle and plastic tubing to the inlet of a bubbler filled with 10 M aqueous NaOH, and the bubbler outlet was connected with
needle and tubing to a 10 mL round-bottom flask containing 7 mL of DPBS. Nitrogen gas, passed through layers of NaOH and
DryRite, was bubbled into both sulfuric acid and sodium nitrite solutions for at least twenty minutes to sparge the whole system
free of dissolved O: that can oxidize NO. The sulfuric acid solution was added dropwise to the sodium nitrite solution, resulting
in a light aqua reaction mixture with a brown vapor directly above. Once the rate of gas evolution became strong, the nitrogen
sparging inlet line was removed from the system. The dropwise rate of addition was controlled to produce approximately one
bubble per second through the bubbler. Before the sodium nitrite solution had fully reacted (before the bubbling rate decreased
significantly), the clear NO-saturated DPBS solution was removed from the system and the septum was wrapped with parafilm.
It was stored at -20 °C, for a maximum of three days prior to use. The reaction and NaOH solutions, as well as tubing, needles,

septa, glassware, and solutions were left open to the air in the hood overnight to allow all NO to dissipate.

NO Concentration Measurements: A saturated solution of NO in H20 (1.9 mM) was prepared by bubbling pure NO gas into oxygen-
free water for 15 min. The solubility of NO in pure H20 is 1.9 mM, which is widely cited data and no reference is further provided
herein. An aliquot of this NO stock solution was transferred with an air-tight microsyringe (Milipore product) into the probe
solution in a septum capped fluorescence cuvette (Starna product). The final concentration of the NO in the solution is calculated

with the following equation:

[NO]final = ([NO]stockxVstock)/(VProbe solution + Vstock)
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Synthetic Procedures and characterizations

General Procedures for Suzuki-Miyaura coupling reactions to synthesize probes 1-6, 8-9, 11-12, 14-15.

Aryl bromide (1eq), boronic acid or boronate ester (1.1 eq), and NazCOsz (1.1 eq) were dissolved in Hz0, EtOH, and benzene (v/v
3:3:10). The resulting mixture was deoxygenated by sparging with argon for 15 min before addition of Pd(PPhsz)+ (0.01 eq). The
reaction was heated to 80°C with constant stirring under argon for 8 h. After the mixture cooled to room temperature, it was
diluted with CH:Clz and washed with water. The organic layer was collected, dried over MgS04, and concentrated under reduced

pressure. The residue was purified via flash chromatography with a mixture of petroleum ether:EtOAc (typically 20:1 v/v).

3'-Methoxy-5-methyl-[1,1"-biphenyl]-2-amine (1) Commercially available 2-bromo-4-methylaniline (2.00 g, 10.87 mmol), 3-
methoxyphenylboronic acid (1.82 g, 11.97 mmol), and NazC0s (3.46 g, 32.61 mmol) gave 1 as a white solid (1.37 g, 59%). 'H-NMR
(400 MHz, CDCl3) § 7.53 (t, 1H, ] = 8.0 Hz), 7.27-7.25 (m, 2H), 7.20 (s, 1H), 7.17 (d, 1H, ] = 8.4 Hz), 7.09 (d, 1H, ] = 8.0 Hz), 6.83 (d,
1H, ] = 8.0 Hz), 3.98 (s, 3H), 3.84 (s, 2H), 2.51 (5, 3H). 3C-NMR (100 MHz, CDCl3) § 159.7, 141.1, 141.0, 130.6, 129.6, 128.9, 127.3,
127.2,121.2,115.7,114.4, 112.6, 54.9, 20.2. ESI-MS calculated for C14H1sNO [M]* 213.1, found 213.1.
3'-Hydroxy-5-methyl-[1,1"-biphenyl]-2-amine (2) 2-bromo-4-methylaniline (870 mg, 4.67 mmol), 3-hydroxyphenylboronic
acid (700 mg, 5.15 mmol) and NazC0z (540 mg, 5.15 mmol) gave 2 as a white solid (670 mg, 73%). Probe 2 may also be prepared
alternatively via demethylation of probe 1 with BBrs. 'TH-NMR (400 MHz, DMSO-ds) 6 9.41 (s, 1H), 7.22 (t, 1H, ] = 8.0 Hz), 6.84 (d,
1H, ] = 8.0 Hz), 6.80-6.78 (m, 3H), 6.71 (d, 1H, ] = 8.0 Hz), 6.64 (d, 1H, ] = 8.0 Hz), 4.50 (s, 2H), 2.17 (s, 3H). 3C-NMR (100 MHz,
DMSO0-ds) § 157.5, 142.2, 141.0, 130.1, 129.6, 128.5, 125.9, 124.9, 119.2, 115.4, 115.3, 113.7, 20.0. ESI-MS calculated for C13H13NO
[M]* 199.1, found 199.1.

N3,N3,5-trimethyl-[1,1"-biphenyl]-2,3'-diamine  (3) 2-bromo-4-methylaniline (1.00 g, 543 mmol), 3-(N,N-
dimethylamino)phenylboronic acid (DMAPBA, 0.98 g, 5.94 mmol), and NazC0s (1.73 g, 16.30 mmol) gave 3 as a white solid (1.02
g, 82%). 'H-NMR (400 MHz, CDCl3) § 7.42 (t, 1H, | = 8.0 Hz), 7.13 (s, 1H), 7.08 (d, 1H, ] = 8.0Hz), 6.93-6.91 (m, 2H), 6.84 (d, 1H, ] =
8.0 Hz), 6.77 (d, 1H, ] = 8.0 Hz), 3.77 (s, 2H), 3.08 (s, 6H), 2.41 (s, 3H). 3C-NMR (100 MHz, CDCl3) § 150.9, 141.1, 140.5, 130.8,
129.4, 128.8, 128.6, 127.5, 117.3, 115.7, 113.3, 111.3, 40.6, 20.5. ESI-HRMS calculated for CisHisN2 [M+H]* 227.1543, found
227.1546.

6-Amino-3'-(dimethylamino)-[1,1'-biphenyl]-3-carbonitrile (4) 4-amino-3-bromobenzonitrile (2.05 mmol), 3-(N,N-
dimethylamino)phenylboronic acid (DMAPBA, 2.25 mmol), and NazCOz (652 mg, 6.15 mmol) gave 4 as a white solid (382 mg,
78%). 1H-NMR (400 MHz, CDCl3) § 7.41-7.38 (m, 2H), 7.32 (t, 1H, ] = 8.0 Hz), 6.75 (d, 1H, ] = 8.4 Hz), 6.72-6.70 (m, 2H), 6.67 (s,
1H), 4.31 (s, 2H), 2.99 (s, 6H). 13C-NMR (100 MHz, CDCls) 6 151.2, 147.9, 138.1, 134.4, 132.5, 130.0, 128.5, 120.4, 116.6, 115.0,
112.7,112.2,100.3, 40.6. ESI-MS calculated for C1sH1sNs [M]* 237.1, found 237.1.
4-Methyl-2-(1-methyl-1,2,3,4-tetrahydroquinolin-7-yl)aniline (5) 2-bromo-4-methylaniline (1.00 mmol), compound 23

(0.66 mmol), and NazCO03 (276 mg, 2.60 mmol) gave 5 as a white solid (145 mg, 86%). 'H-NMR (400 MHz, CDCl3) 6 7.06-7.03 (m,
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2H),6.98 (d, 1H,] = 8.0 Hz), 6.72 (s, 1H), 6.69 (d, 2H, ] = 6.4 Hz), 3.75 (s, 2H), 3.29 (t, 2H, ] = 5.6 Hz), 2.93 (s, 3H), 2.84 (t, 2H, ] = 6.4
Hz), 2.32 (s, 3H), 2.09-2.02 (m, 2H). 13C-NMR (100 MHz, CDCl3) § 147.0, 141.2, 138.5,130.9, 129.2,128.8,128.7,127.6,121.8,116.8,

115.7,111.7, 51.4, 39.3,27.7, 22.5, 20.6. ESI-HRMS calculated for C17Hz1Nz [M+H]* 253.1699, found 253.1705.

2-(1,2,3,5,6,7-Hexahydropyrido[3,2,1-ij]Jquinolin-8-yl)-4-methylaniline (6) 2-bromo-4-methylaniline (500 mg, 2.70 mmol),
compound 24 (899 mg, 3.00 mmol), and Na:C0O3 (859mg, 8.10 mmol) gave 6 as a white solid (270 mg, 73%). 'H-NMR (400 MHz,
CDCls) 6 6.95 (dd, 1H, | = 8.0, 1.6 Hz), 6.86-6.84 (m, 2H), 6.66 (d, 1H, | = 8.0 Hz), 6.41 (d, 1H, | = 8.0 Hz), 3.44 (s, 2H), 3.18 (t, 2H, ]
=5.6 Hz), 3.13 (t, 2H, ] = 5.6 Hz), 2.83-2.79 (m, 2H), 2.49 (t, 2H, ] = 6.8 Hz), 2.25 (s, 3H), 2.05-1.98 (m, 2H), 1.92-1.86 (m, 2H). 13C-
NMR (100 MHz, DMSO-ds) 6 143.3, 141.2, 136.6, 130.6, 128.4, 128.3,127.2, 127.0, 120.9, 120.4, 117.5, 115.0, 50.4, 50.0, 27.9, 25.3,

22.2,22.1, 20.5. ESI-HRMS calculated for C19Hz3N: [M+H]* 279.1856, found 279.1858.

2-(3-(Dimethylamino)phenyl)naphthalen-1-amine (8) 2-bromonaphthylamine (220 mg, 0.99 mmol), 3-(N,N-
dimethylamino)phenylboronic acid (DMAPBA, 220 mg, 1.09 mmol), and NazC0z (316 mg, 2.99 mmol) gave 8 as a white solid (260
mg, 85%). 'H-NMR (400 MHz, CDCl3) 6 7.92-7.86 (m, 2H), 7.53-7.51 (m, 2H), 7.44-7.40 (m, 3H), 6.94-6.92 (m, 2H), 6.81 (d, 1H, ] =
9.2 Hz), 4.42 (s, 2H), 3.04 (s, 6H). 13C-NMR (100 MHz, CDCl3) 6 151.1, 141.0, 138.6, 133.7, 129.7, 128.7, 128.6, 125.7, 125.3, 123.7,
123.2,121.3,118.4,117.8,113.7, 111.4, 40.7. ESI-HRMS calculated for C1sH1oN:2 [M+H]* 263.1543, found 263.1548.
2-(1-Methyl-1,2,3,4-tetrahydroquinolin-7-yl)naphthalen-1-amine (11) 2-bromonaphthylamine (359 mg, 1.62 mmol),
compound 23 (300 mg, 1.01 mmol), and NazCOs3 (424 mg, 4.00 mmol) gave 11 as a white solid (299 mg, 64%). 'H-NMR (400 MHz,
CDCI3) § 7.89 (d, 1H, ] = 7.2 Hz), 7.83 (d, 1H, ] = 6.4Hz), 7.49-7.47 (m, 2H), 7.37 (s, 2H), 7.09 (d, 1H, ] = 7.2 Hz), 6.77 (d, 1H,] = 7.2
Hz), 6.74 (s, 1H), 4.41 (s, 2H), 3.30 (t, 2H, ] = 5.6 Hz), 2.93 (s, 3H), 2.86 (t, 2H, ] = 6.4 Hz), 2.09-2.03 (m, 2H). 13C-NMR (100 MHz,
CDCl3) 6 147.1, 138.9, 138.6, 133.6, 129.4, 128.8, 128.6, 125.7, 125.2, 123.8, 123.3, 121.9, 121.3, 1184, 117.4, 112.1, 51.4, 39.3,
27.2,22.6. EI-HRMS calculated for C20Hzo0N2 [M]* 288.1626, found 288.1627.
5-Amino-6-(1-methyl-1,2,3,4-tetrahydroquinolin-7-yl)-1-naphthonitrile (12) 2-bromo-5-amino-1-naphthonitrile (100 mg,
0.41 mmol), compound 23 (122 mg, 0.45 mmol), and NazCO3 (129 mg, 1.22 mmol) gave 12 as a white solid (70 mg, 55%). 1H-
NMR (400 MHz, CDCl3) 6 8.12 (d, 1H,] =8.4 Hz), 7.87 (d, 1H,] = 6.8 Hz), 7.72 (d, 1H, ] = 8.4 Hz), 7.54 (d, 1H, ] = 8.4 Hz), 7.48 (t, 1H,
J=8.0Hz),7.07(d, 1H,] =72 Hz), 6.71 (d, 1H,] = 7.2 Hz), 6.67 (s, 1H), 4.50 (s, 2H), 3.29 (t, 2H, ] = 3.6 Hz), 2.92 (s, 3H), 2.84 (t, 2H,
J = 6.0 Hz), 2.06-2.03 (m, 2H). 13C-NMR (100 MHz, CDCl3) § 147.3, 139.6, 137.9, 132.7, 132.3, 131.6, 129.5, 126.8, 125.0, 123.9,
123.4,122.4, 1184, 117.0, 1152, 111.7, 110.5, 51.4, 39.3, 27.8, 22.5. ESI-HRMS: calculated for C21H20N3 [M+H]* 314.1652, found
314.1657.

2-(1,2,3,5,6,7-Hexahydropyrido[3,2,1-ij]lquinolin-8-yl)naphthalen-1-amine (14) 2-bromonaphthylamine (204 mg, 0.92
mmol), compound 24 (330 mg, 1.10 mmol), and NazCOz (293 mg, 2.76 mmol) gave 14 as a white solid (217 mg, 75%). 1H-NMR
(400 MHz, CDCl3) 6 7.81-7.76 (m, 2H), 7.42-7.40 (m, 2H), 7.29 (d, 1H, ] = 8.0 Hz), 7.17 (d, 1H, ] = 8.0 Hz), 6.87 (d, 1H, ] = 7.6 Hz),
6.47 (d, 1H, ] = 7.6 Hz), 4.06 (s, 1H), 3.16 (t, 2H, ] = 5.6 Hz), 3.10 (t, 2H, ] = 5.6 Hz), 2.81-2.79 (m, 2H), 2.45 (t, 2H, ] = 5.6 Hz), 2.03-
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1.97 (m, 2H), 1.86-1.80 (m, 2H). 13C-NMR (100 MHz, CDCI3) § 143.5, 138.6, 136.8, 133.6, 128.6, 128.5, 127.2, 125.4, 124.9, 123.5,
122.6,121.2, 121.0, 120.8, 118.0, 117.7, 50.3, 50.0, 27.9, 25.4, 22.2, 22.1. EI-HRMS calculated for Cz2Hz:Nz [M]* 314.1783, found
314.1789.

5-Amino-6-(1,2,3,5,6,7-hexahydropyrido[3,2,1-ijJquinolin-8-yl)-1-naphthonitrile (15) 2-bromo-5-amino-1-naphthonitrile
(270 mg, 1.10 mmol), compound 24 (361 mg, 1.21 mmol), and Na:CO3 (350 mg, 3.30 mmol) gave 15 as a white solid (298 mg,
80%). 'H-NMR (400 MHz, CDCl3) § 8.10 (d, 1H, ] = 8.4 Hz), 7.87 (d, 1H, | = 7.6 Hz), 7.71 (d, 1H, | = 8.4 Hz), 7.47 (t, 1H, | = 8.4, 7.6
Hz), 7.40 (d, 1H,] = 8.4 Hz), 6.91 (d, 1H, ] = 7.6 Hz), 6.46 (d, 1H, ] = 7.6 Hz), 4.22 (s, 2H), 3.22 (t, 2H, ] = 5.6 Hz), 3.16 (t, 2H, 5.6 Hz),
2.86-2.82 (m, 2H), 2.46-2.42 (m, 2H), 2.07-2.01 (m, 2H), 1.91-1.85 (m, 2H). 13C-NMR (100 MHz, CDCl3) 6 143.7, 139.7,135.8, 132.8,
132.3,131.5,127.5,126.7, 124.4,123.7,123.2,121.5, 120.5, 118.4,117.4, 115.0, 110.6, 50.4, 50.1, 28.1, 25.5, 22.2, 22.1. ESI-HRMS

calculated for C23H22N3 [M+H]* 340.1808, found 340.1811.

General Procedure for preparations of probes 7, 10 and 13.

NH, DMAPBA, 23-24
2 Pd(PPhy), O j
OO Br Na,CO, N” PAICH

Benzene/ O L. ,'J MeOH,

EtOH/H,0

NO; 16 80°C, 8 hrs. NO;  17-19 7,10, 13

2-Bromo-5-nitronaphthalen-1-amine (16) To a solution of 5-nitronaphthalen-1-amine* (3.5 g , 18.86 mmol) in 20 mL CH:Cl:
was added N-bromosuccinimide (3.6 g , 20.22 mmol) slowly at room temperature. The reaction mixture was stirred for 3 hours
before removing solvent under reduced pressure. Crude product was purified by a silica gel chromatography as a white solid (4.5
g, 90%). tTHNMR (400 MHz, CDCl3) 6 8.11 (d, 1H,] =8.0 Hz), 8.04 (d, 1H,] =8.0 Hz), 7.73 (d, 1H,] = 9.2 Hz), 7.64 (d, 1H, ] = 9.2 Hz),
7.47 (t, 1H,] =9.2 Hz), 4.74 (s, 2H). 13CNMR (100 MHz, CDCl3) 6 147.5, 140.3,133.3,127.1,125.1, 124.8,123.9, 123.8, 113.8, 106.0.

MS (EI) calculated for C10H7BrN202 [M]* 266.0, found 266.0.

2-(3-(Dimethylamino)phenyl)-5-nitronaphthalen-1-amine (17) Compound 16 (320 mg, 1.20 mmol) and 3-(N,N-
dimethylamino)phenylboronic acid (DMAPBA, 200 mg, 1.00 mmol) were reacted according to the general Suzuki-Miyaura
coupling procedure to give 17 as a white solid (270 mg, 88%). THNMR (400 MHz, CDCl3) 6 8.16 (d, 1H,] =84 Hz), 8.11 (d, 1H, ] =
7.6 Hz), 7.95 (d, 1H, ] = 9.2 Hz), 7.55 (d, 1H, ] = 9.2 Hz), 7.46 (t, 1H, ] = 8.4, 7.6 Hz), 7.38 (t, 1H, ] = 8.4, 7.6 Hz), 6.85-6.79 (m, 3H),
4.51 (s, 2H), 3.01 (s, 6H). 13CNMR (100 MHz, CDCl3) 6 151.1, 147.3, 139.7, 139.5, 132.2, 129.9, 127.6, 125.3, 124.9, 124.7, 123.4,
123.0,117.3,113.2,112.7, 111.8, 40.6. EI-HRMS: calculated for C1sH17N302 [M]* 307.1321, found 307.1320.
2-(1-Methyl-1,2,3,4-tetrahydroquinolin-7-yl)-5-nitronaphthalen-1-amine (18) Compound 16 (100 mg, 0.38 mmol) and
compound 23 (103 mg, 0.38 mmol) were reacted according to the general Suzuki-Miyaura coupling procedure to give 18 as a
white solid (80 mg, 64%). 'THNMR (400 MHz, CDCI3) 6 8.18 (d, 1H, ] = 8.4 Hz), 8.13 (d, 1H,] = 7.6 Hz), 7.94 (d, 1H, ] = 8.8 Hz), 7.55

(d, 1H,] = 8.8 Hz), 7.50 (t, 1H, ] = 8.4, 7.6 Hz), 7.08 (d, 1H, ] = 7.6 Hz), 6.71 (dd, 1H, ] = 7.6, 1.2 Hz), 6.67 (d, 1H, ] = 1.2 Hz), 4.50 (s,
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2H),3.30(t, 2H,] = 6.0 Hz), 2.92 (s, 3H), 2.84 (t, 2H, ] = 6.8 Hz), 2.08-2.02 (m, 2H). 3 CNMR (100 MHz, CDCl3) 6 147.5, 147.3,139.4,
137.7,132.3,129.6,127.6,125.4,125.1,125.0, 123.3,123.0, 122.5, 116.9, 112.9, 111.7, 51.4, 39.3, 27.8, 22.5. EI-HRMS: calculated
for C20H19N302 [M]* 333.1477, found 333.1479.

2-(1,2,3,5,6,7-Hexahydropyrido[3,2,1-ij]quinolin-8-yl)-5-nitronaphthalen-1-amine (19) Compound 16 (2.0 g, 6.69 mmol)
and compound 24 (1.5 g, 5.64 mmol) were reacted according to the general Suzuki-Miyaura coupling procedure to give 19 as a
white solid (1.1 g 54%). 'THNMR (400 MHz, CDCl3) 5 8.16 (d, 1H, ] = 8.4 Hz), 8.12 (d, 1H, ] = 7.6 Hz), 7.93 (d, 1H, ] = 8.8 Hz), 7.47 (t,
1H,] = 8.0 Hz), 7.42 (d, 1H, | = 8.8 Hz), 6.91 (d, 1H, ] = 7.6 Hz), 6.46 (d, 1H, | = 7.6 Hz), 4.24 (s, 2H), 3.22 (t, 2H, ] = 6.0 Hz), 3.16 (¢,
2H, ] = 5.6 Hz), 2.91-2.78 (m, 2H), 2.51-2.39 (m, 2H), 2.07-2.01 (m, 2H), 1.91-1.85 (m, 2H). 13CNMR (100 MHz, CDCls) § 147.4,
143.7,139.6, 135.6, 132.2, 127.5, 127.4, 125.3, 124.8, 124.3, 123.2, 122.8, 121.5, 120.4, 117.2, 112.4, 50.4, 50.0, 28.0, 25.4, 22.1,

22.0. ESI-MS: calculated for C22H21N302 [M]* 359.2, found 359.2.

2-(3-(Dimethylamino)phenyl)naphthalene-1,5-diamine (20). A solution of compound 17 in 20mL MeOH:DCM (v/v 1:1) was
stirred under hydrogen atmosphere (60 psi) with catalytic amount of 10% Pd/C for two hours. The reaction mixture was filtered
through a celite pad, and solvents were removed under reduced pressure. Pure product was obtained in near quantitative yield
after purification with silica gel flash chromatography. lTHNMR (400 MHz, DMSO-ds) 6 7.38 (d, 1H, ] = 8.4 Hz), 7.32-7.28 (m, 2H),
7.14 (t 1H, ] = 8.0 Hz), 7.08 (d, 1H, | = 8.4 Hz), 6.76-6.72 (m, 3H), 6.65 (d, 1H, ] = 7.2 Hz), 5.51 (s, 2H), 5.04 (s, 2H), 2.94 (s, 6H).
I3CNMR (100 MHz, DMSO-ds) 6 151.3,145.1,141.5,140.1,129.8,126.6,125.6,124.5,123.2,121.0,117.4,113.5,111.4,111.3,110.7,
108.0, 40.6. ESI-HRMS: calculated for C1sHisN3 [M]* 277.1579, found 277.1577.
2-(1-Methyl-1,2,3,4-tetrahydroquinolin-7-yl)naphthalene-1,5-diamine (21). Prepared analogously to compound 20 from
18. '"HNMR (400 MHz, DMSO-ds) 6 7.35 (d, 1H, ] = 88 Hz), 7.27 (d, 1H, ] =84 Hz), 7.12 (t, 1H,] = 84, 7.6 Hz), 7.05 (d, 1H, ] = 8.8
Hz), 6.99 (d, 1H,] = 7.6 Hz), 6.62 (m, 3H), 5.48 (s, 2H), 5.00 (s, 2H), 3.23 (t, 2H, ] = 5.6 Hz), 2.85 (s, 3H), 2.74 (t, 2H, ] = 6.4 Hz), 1.96-
1.90 (m, 2H). 3CNMR (100 MHz, DMSO-ds) 6 147.3, 145.0, 140.1, 139.4, 129.4, 126.6, 125.6, 124.5, 123.2, 121.3, 121.2, 117.0,
111.9,111.3,110.7,108.0, 51.1, 39.2, 27.5, 22.4. ESI-HRMS: calculated for C20H2:1N3 [M]* 303.1735, found 303.1737.
2-(1,2,3,5,6,7-Hexahydropyrido[3,2,1-ij]Jquinolin-8-yl)naphthalene-1,5-diamine (22). Prepared analogously to compound
20 from 19. 'THNMR (400 MHz, DMSO0-ds) 6 7.31 (d, 1H,] = 8.0 Hz), 7.24 (d, 1H, ] = 8.8 Hz), 7.10 (t, 1H, ] = 8.0, 7.6 Hz), 6.86 (d, 1H,
] =88Hz),6.80 (d, 1H, ] = 7.6 Hz), 6.62 (d, 1H, ] = 8.0 Hz), 6.30 (d, 1H, ] = 8.0 Hz), 5.46 (s, 2H), 4.64 (s, 2H), 3.15 (t, 2H, ] = 5.6 Hz),
3.09 (t, 2H,] =56 Hz), 2.73 (t, 2H, ] = 6.4 Hz), 2.40-2.31 (m, 2H), 1.96-1.89 (m, 2H), 1.80-1.74 (m, 2H). 13CNMR (100 MHz, DMSO-
ds) 6 144.6, 143.1, 139.6, 137.0, 126.7, 125.9, 124.9, 123.8, 122.7, 120.3, 120.0, 119.9, 117.1, 110.5, 110.1, 107.3, 49.6, 49.2, 27.3,

24.8,21.6, 21.5. ESI-MS: calculated for C22Hz3N3 [M]* 329.2, found 329.2.
N-(5-Amino-6-(3-(dimethylamino)phenyl)naphthalen-1-yl)acetamide (7). To a solution of compound 20 (124 mg, 0.45
mmol) in 10 mL CH:Clz was added excess acetic anhydride (3 equiv) dropwise. The mixture was stirred at room temperature for

2 h before evaporating to dryness under reduced pressure. Pure product (270 mg, 55%) was obtained by a flash chromatography
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with silica gel. 'H-NMR (400 MHz, DMSO-ds) 6 9.77 (s, 1H), 7.99 (d, 1H, ] = 8.4 Hz), 7.62 (d, 1H, ] = 7.2 Hz), 7.40-7.37 (m, 2H), 7.31
(t 1H,] =8.0Hz), 7.23 (d, 1H, ] = 8.4 Hz), 6.76-6.74 (m, 3H), 5.31 (s, 2H), 2.94 (s, 6H), 2.17 (s, 3H). 13*C-NMR (100 MHz, DMSO-ds)
§6169.2,151.3,141.0,140.7,134.1,129.9,128.7,128.5,124.2,124.1,121.9,121.2,120.4,117.4,113.4,111.6, 111.4, 23.9. ESI-HRMS
calculated for C20H21N30 [M]* 319.1685, found 319.1683.
N-(5-amino-6-(1-methyl-1,2,3,4-tetrahydroquinolin-7-yl)naphthalen-1-yl)acetamide (10). Prepared analogously to 7
from compound 21. 'H-NMR (400 MHz, DMSO-ds) § 9.77 (s, 1H), 7.97 (d, 1H, ] = 8.4 Hz), 7.60 (d, 1H, ] = 7.2 Hz), 7.40-7.36 (m, 2H),
7.21(d, 1H, ] = 8.8 Hz), 7.00 (d, 1H, ] = 7.2 Hz), 6.62-6.60 (m, 2H), 5.28 (s, 2H), 3.23 (t, 2H, ] = 5.6 Hz), 2.85 (s, 3H), 2.75 (t, 2H, | =
6.4 Hz), 2.16 (s, 3H), 1.96-1.90 (m, 2H). 13C-NMR (100 MHz, DMSO-ds) 6 169.3, 147.3, 140.6, 139.0, 134.0, 129.5, 128.8, 1284,
124.2,124.1,121.8,121.6,121.4, 1204, 117.0,111.8, 111.4, 51.1, 39.2, 27.5, 23.9, 22.4. ESI-HRMS: calculated for C22H23N30 [M]*
345.1841, found 345.1843.

N-(5-amino-6-(1,2,3,5,6,7-hexahydropyrido[3,2,1-ijJquinolin-8-yl)naphthalen-1-yl)acetamide (13). Prepared
analogously to probe 7 from compound 22. 'H-NMR (400 MHz, DMSO-ds) 6 9.74 (s, 1H), 7.94 (d, 1H, ] = 8.4 Hz), 7.60 (d, 1H, ] =
7.2 Hz), 7.38-7.34 (m, 2H), 7.04 (d, 1H, | = 8.8 Hz), 6.82 (d, 1H, ] = 7.6 Hz), 6.31 (d, 1H, ] = 7.6 Hz), 4.94 (s, 2H), 3.15 (t, 2H, ] = 4.8
Hz), 3.12-3.05 (m, 2H), 2.74 (t, 2H, ] = 6.4 Hz), 2.40-2.28 (m, 2H), 2.16 (s, 3H), 1.96-1.89 (m, 2H), 1.80-1.74 (m, 2H). 3C-NMR (100
MHz, DMSO-ds) § 168.7, 143.1, 140.2, 136.5, 133.6, 128.1, 128.0, 126.8, 123.5, 123.4,121.2,120.5, 120.2,119.8, 117.0, 110.5, 64.9,

49.6,49.2,27.4, 24.8, 23.4, 21.6, 21.5. ESI-HRMS: calculated for C24H26N30 [M+H]* 372.2070, found 372.2072.
Synthesis of precursors for Suzuki couplings:
Bopin,,
m Pd(dPPN:Cl: | o
B N
Br N"  KOAc, DMF %( o

' ) o +._J
RO 80°C 23-24

1-Methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,4-tetrahydroquinoline (23). 7-Bromo-1-methyl-1,2,3,4-
tetrahydroquinoline (710 mg , 3.15 mmol), bis(pinacolato)diboron (962 mg , 3.78 mmol) and KOAc (928 mg , 9.47 mmol) were
dissolved in anhydrous DMF (15 mL) and deoxygenated by sparging with argon for 15 min before adding PdCl:dppf (26 mg , 0.03
mmol). The reaction mixture was heated at 80 °C under argon for 8 h. Upon cooling, the reaction mixture was diluted with 300
mlL of H20 and extracted with CH:Clz. The organic layer was collected, dried over MgSO4+ and concentrated under reduced pressure
to give a brown residue, which was purified by a flash chromatography to afford 23 as colorless oil (540 mg, 62%). 1H-NMR (400
MHz, CDCl3) § 7.10 (d, 1H, ] = 7.2 Hz), 7.05 (s, 1H), 6.98 (d, 1H, ] = 7.2 Hz), 3.23 (t, 2H, ] = 5.2 Hz), 2.95 (s, 3H), 2.79 (t, 2H, ] = 6.4
Hz), 2.00-1.97 (m, 2H), 1.35 (s, 12H). 13C-NMR (100 MHz, CDCl3) § 146.4, 128.4, 126.6, 123.2, 117.0, 83.5, 51.5, 39.4, 28.2, 24.9,
22.5. ESI-HRMS calculated for C16HzsBNOz [M+H]* 274.1973, found 274.1971.

8-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij|quinolone (24). Compound 24 was

prepared analogously to compound 23, with the aryl bromide as 8-bromo-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolone. 1H-
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NMR (400 MHz, CDCl3) § 7.28 (d, 1H, ] = 7.2Hz), 7.01 (d, 1H, ] = 7.2 Hz), 3.32-3.29 (m, 6H), 2.98 (t, 2H, ] = 6.4 Hz), 2.21-2.16 (m,
4H), 1.54 (s, 12H). 13C-NMR (100 MHz, CDCls) & 142.8, 128.3, 126.1, 124.8, 123.9, 82.8, 50.4,49.9, 28.1, 27.2, 24.7, 22.2, 22.0. ESI-

HRMS calculated for Ci1sHz2sBNO: [M+H]* 300.2129, found 300.2123.
General procedure for diazotization of probes to produce their cinnoline products:

A solution of probe (1-15) in 1M HCl was cooled in an ice/brine bath to 0 °C. NaNO: (1.05 equivalents) in ice-cold H20 was added
dropwise while maintaining the reaction mixture below 0 °C. The mixture was stirred for 30 min before neutralizing with
saturated sodium bicarbonate solution and extracting with CHzCl.. The organic layer was dried over MgSO+ and concentrated
under reduced pressure to give crude product, which was purified by a flash chromatography with a mixture of CHzClz and MeOH

as the mobile phase.

2-Methoxy-9-methylbenzo[c]cinnoline (from 1) 'H-NMR (400 MHz, DMSO-ds) § 8.72 (s, 1H), 8.53 (d, 1H, ] = 9.2 Hz), 8.48 (d,
1H,] =84 Hz), 816 (d, 1H,] = 2.4 Hz), 7.81 (d, 1H, ] = 84 Hz), 7.56 (dd, 1H, ] = 9.2, 2.4 Hz), 4.08 (s, 3H), 2.66 (s, 3H). 13C-NMR
(100 MHz, DMSO-ds) § 161.5, 143.5, 141.6, 141.4, 132.2, 131.5, 129.8, 122.5, 121.7, 120.7, 120.4, 101.5, 56.2, 21.7. ESI-MS

calculated for C14H12N20 [M]* 224.1, found 224.1.

9-Methylbenzo[c|cinnolin-2-ol (from 2) 'H-NMR (400 MHz, DMSO-ds) 6 8.49-8.45 (m, 3H), 7.93 (s, 1H), 7.78 (d, 1H, ] = 8.8 Hz),
747 (d, 1H, ] = 88 Hz), 2.64 (s, 3H). 13C-NMR (100 MHz, DMSO-ds) 6 160.5, 143.2, 141.4, 141.0, 132.7, 131.4, 129.8, 122.7, 121.3,

120.7,120.1, 103.8, 21.7. ESI-MS calculated for C13H10N20 [M]* 210.1, found 210.1.

N,N,9-trimethylbenzo[c]cinnolin-2-amine (from 3) 'H-NMR (400 MHz, CDCl3) 6 8.28 (d, 1H, ] = 8.4 Hz), 8.20 (d, 1H, ] = 9.2 Hz),
7.78 (s, 1H), 7.41 (d,1H, ] = 8.4 Hz), 6.95 (d,1H, | = 9.2 Hz), 6.81 (s, 1H), 2.92 (s, 6H), 2.45 (s, 3H). 13C-NMR (100 MHz, CDCls) &
150.9,143.7,139.9,139.9,131.8,130.3,129.9,122.8,120.6,120.3,115.8, 97.3, 40.0, 22.0. ESI-HRMS calculated for C1sHisN3 [M+H]*

238.1339, found 238.1343.

9-(Dimethylamino)benzo[c]cinnoline-2-carbonitrile (from 4) 1H-NMR (400 MHz, CDCl3) § 8.80 (s, 1H), 8.62 (d, 1H, ] = 8.4 Hz),
8.51(d 1H,]J=9.2Hz), 7.95(d, 1H,] =84 Hz), 7.39 (d, 1H, ] = 9.2 Hz), 7.29 (s, 1H), 3.29 (s, 6H). 13C-NMR (100 MHz, CDCl3) § 152.5,
145.2,141.2,133.3,131.9, 130.1, 128.1, 122.4, 121.0, 118.8, 117.5, 112.8, 97.5, 40.7. ESI-MS calculated for CisH12N4 [M]* 248.1,

found 248.1.

2,11-Dimethyl-8,9,10,11-tetrahydrobenzo[c]pyrido[2,3-g]cinnoline (from 5) 'H-NMR (400 MHz, CDCI3) § 841 (d, 1H, ] = 8.4
Hz), 8.15 (s, 1H), 8.13 (s, 1H), 7.58 (d, 1H, ] = 8.4 Hz), 7.18 (s, 1H), 3.50 (t, 2H, ] = 5.6 Hz), 3.18 (s, 3H), 3.03 (t, 2H, ] = 6.4 Hz), 2.64
(s, 3H), 2.10-2.04 (m, 2H). 13C-NMR (100 MHz, CDCl3) 6 148.9, 144.1, 140.8, 140.0, 130.4, 130.0, 127.8, 122.6, 121.0, 120.6, 96.0,
51.5,39.4,28.5, 22.4, 21.9. ESI-HRMS calculated for Ci7H1sN3 [M+H]* 264.1495, found 264.1499.
13-Methyl-1,2,3,5,6,7-hexahydrobenzo[c]quinolizino[1,9-fg]cinnoline (from 6) 'H-NMR (400 MHz, CDCl3) 6 841 (d, 1H, ] =

8.4 Hz), 8.26 (s, 1H), 8.01 (s, 1H), 7.53 (d, 1H, | = 8.4 Hz), 3.40-3.37 (m, 6H), 2.98 (t, 2H, ] = 6.4 Hz), 2.58 (s, 3H), 2.05-1.98 (m, 4H).
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13C-NMR (100 MHz, CDCl3) § 145.7, 145.3,140.7, 138.4, 130.4, 129.4, 129.3,126.3,125.8, 122.0,120.8, 111.7, 51.1, 49.7, 29.4, 28.8,
22.7,21.8, 21.3. ESI-HRMS calculated for C19Hz0N3 [M+H]* 290.1652, found 290.1657.

N-(9-(dimethylamino)dibenzo[c,h]cinnolin-1-yl)acetamide (from 7) 'H-NMR (400 MHz, DMSO-ds) 6 10.21 (s, 1H), 9.46 (d,
1H,]=8.0Hz), 876 (d, 1H,] = 9.2 Hz), 844 (d, 1H, ] = 9.2 Hz), 837 (d, 1H, ] = 9.2 Hz), 7.92 (d, 1H, ] = 8.0 Hz), 7.85 (t, 1H, ] = 8.0
Hz), 7.64-7.59 (m, 2H), 3.26 (s, 6H), 2.26 (s, 3H). 13C-NMR (100 MHz, DMSO-ds) § 169.7, 152.2, 142.2, 141.3, 134.9, 132.0, 131.6,
1281, 127.7, 126.2, 124.7, 123.7, 121.2, 120.1, 118.8, 118.5, 98.2, 49.1, 24.0. EI-HRMS calculated for C20H1sN+O [M]* 330.1481,

found 330.1479.

N,N-dimethyldibenzo[c,h]cinnolin-9-amine (from 8) 'H-NMR (400 MHz, CDCl3) 6 9.78 (d, 1H,] = 8.0 Hz), 8.53 (d, 1H, ] = 9.2Hz),
835(d 1H,]=88Hz), 808 (d, 1H, ] =88 Hz), 7.98 (d, 1H, ] = 8.0Hz), 7.85 (t, 1H, ] = 8.0 Hz), 7.75 (t, 1H, ] = 8.0 Hz), 7.39 (d, 1H, ]
=9.2Hz), 7.35 (s, 1H), 3.24 (s, 6H). 13C-NMR (100 MHz, CDCl3) § 151.1, 142.2, 141.7,133.0, 132.1,131.2, 130.9, 128.0, 127.9, 127.9,
124.6,123.9,118.9,118.7,117.3, 97.2, 40.4. ESI-HRMS calculated for C1sH1sN3 [M+H]* 274.1344, found 274.1346.

N-(11-methyl-8,9,10,11-tetrahydrobenzo[h]quinolino[6,7-c]cinnolin-1-yl)acetamide (from 10) 'H-NMR (400 MHz, DMSO-
ds) 610.91 (s, 1H), 9.42 (d, 1H,] =8.0 Hz), 8.70 (d, 1H,] = 9.2 Hz), 8.32 (d, 1H, ] = 9.2 Hz), 8.12 (s, 1H), 7.89 (d, 1H, ] = 8.0 Hz), 7.82
(t 1H,]=8.0Hz), 7.47 (s, 1H), 3.52 (t, 2H, ] = 6.0 Hz), 3.22 (s, 3H), 3.04 (t, 2H, ] = 6.0 Hz), 2.24 (s, 3H), 2.00-1.98 (m, ZH). 13C-NMR
(100 MHz, DMSO-ds) § 169.6, 149.5, 142.6, 141.2, 134.8, 131.6, 130.0, 129.1, 128.0, 125.9, 124.6, 123.1, 121.1, 120.2, 118.2, 96.1,

51.1,49.1, 28.3, 24.0, 21.4. EI-HRMS calculated for C2zHz20N40 [M]* 356.1637, found 356.1639.

11-Methyl-8,9,10,11-tetrahydrobenzo[h]quinolino[6,7-c]|cinnoline (from 11). 'H-NMR (400 MHz, CDCl3) § 9.74 (d,1H, ]=8.0
Hz), 824 (d, 1H,] =88 Hz), 8.13 (s, 1H), 8.00 (d, 1H, ] = 8.8 Hz), 7.95 (d, 1H, ] =8.0 Hz), 7.82 (t, 1H,] = 7.6 Hz), 7.71 (t, 1H, ] = 7.2
Hz), 7.09 (s, 1H), 3.45 (t, 2H, ] = 5.6 Hz), 3.11 (s, 3H), 3.00 (t, 2H, ] = 6.0 Hz), 2.07-2.01 (m, 2H). 13C-NMR (100 MHz, CDCl3) § 148.8,
142.7, 141.7, 132.9, 131.4, 130.7, 129.6, 128.9, 127.9, 127.9, 124.6, 123.4, 119.1, 118.7, 954, 51.4, 39.3, 28.6, 21.8. ESI-HRMS

calculated for C20H18N3 [M + H]* 300.1495, found 300.1500.

11-Methyl-8,9,10,11-tetrahydrobenzo[h]quinolino[6,7-c]cinnoline-1-carbonitrile (from 12). 'TH-NMR (400 MHz, CDCl3) 6
9.91(d, 1H,] =84 Hz), 827 (d, 1H,] =88 Hz), 8.20 (d, 1H, ] = 8.8 Hz), 8.08 (s, 1H), 8.02(d, 1H, ] = 7.2 Hz), 7.80 (t, 1H, ] =84, 7.2
Hz), 6.95 (s, 1H), 3.48 (t, 2H, ] = 5.2 Hz), 3.11 (s, 3H), 3.00 (t, 2H, ] = 5.6 Hz), 2.06-2.04 (m, 2H). 13C-NMR (100 MHz, CDCl3) 6 149.1,
142.9, 140.6, 133.4, 132.3, 131.3, 129.8, 129.6, 129.6, 127.0, 126.3, 122.9, 122.2, 118.8, 117.9, 110.0, 95.2, 51.4, 39.4, 28.5, 21.5.
ESI-HRMS calculated for C21H17N4 [M+H]* 325.1448, found 325.1455.
N-(8,9,10,12,13,14-hexahydronaphtho[1,2-c]quinolizino[1,9-fg]cinnolin-1-yl)acetamide (from 13). 'H-NMR (400 MHz,
DMSO0-ds) 6 10.14 (s, 1H), 9.45 (d, 1H, ] = 8.0 Hz), 8.60 (d, 1H, ] = 9.6 Hz), 8.22 (d, 1H, ] = 9.6 Hz), 8.02 (s, 1H), 7.88 (d, 1H, ] = 7.6
Hz), 7.80 (t, 1H,] = 8.0, 7.6 Hz), 3.48-3.43 (m, 6H), 3.03 (t, 2H, ] = 6.4 Hz), 2.23 (5, 3H), 1.98 (m, 4H). 13C-NMR (100 MHz, DMSO-ds)
6169.1, 145.9, 141.9, 141.8, 134.0, 131.2, 128.2, 128.0, 127.2, 126.6, 123.6, 121.1, 121.0, 118.3, 109.8, 50.4, 49.1, 28.6, 28.2, 23.4,
21.0, 20.5. ESI-HRMS calculated for Cz24H23N4+0 [M+H]* 383.1866, found 383.1872.
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8,9,10,12,13,14-Hexahydronaphtho[1,2-c]quinolizino[1,9-fg]cinnoline (from 14). 'H-NMR (400 MHz, CDCl3) § 9.75 (d, 1H, ]
=84 Hz), 836 (d, 1H,] =9.6 Hz), 8.00 (s, 1H), 7.88 (d, 1H, ] =84 Hz), 7.84 (d, 1H,] = 9.6 Hz), 7.78 (t, 1H, ] = 8.4 Hz), 7.68 (t, 1H, |
=84 Hz), 3.35-3.30 (m, 6H), 2.96 (t, 2H, ] = 6.0 Hz), 1.99-1.96 (m, 4H). 13C-NMR (100 MHz, CDCI3) § 145.6, 142.7, 142.5, 132.1,
131.2,128.8, 1284, 127.7, 1274, 127.2, 124.9, 123.8, 122.0, 119.3, 110.1, 51.0, 49.7, 29.4, 28.9, 21.6, 21.1. ESI-HRMS calculated
for C22Hz0N3 [M+H]* 326.1652, found 326.1660.

8,9,10,12,13,14-Hexahydronaphtho[1,2-c]quinolizino[1,9-fg]cinnoline-1-carbonitrile (from 15). 'H-NMR (400 MHz,
CDCI3) §9.96 (d, 1H, ] = 8.4 Hz), 8.55 (d, 1H, ] = 9.2 Hz), 8.16 (d, 1H, ] = 9.2 Hz), 8.04-8.02 (m, 2H), 7.78 (t, 1H, ] = 8.0 Hz), 3.44-3.34
(m, 6H), 3.01 (t, 2H, ] = 6.0 Hz), 2.06-2.02 (m, 4H). 13C-NMR (100 MHz, CDCl3) 6 146.3, 142.8, 141.9, 133.5, 131.6, 131.3, 130.3,
129.1, 1284, 126.9, 126.6, 124.4, 121.5, 119.7, 118.0, 110.1, 109.5, 51.2, 49.9, 29.4, 29.0, 21.5, 21.1. ESI-HRMS calculated for

C23H19N4 [M+H]* 351.1604, found 351.1608.
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Absorbance and Fluorescence Spectra of Probes 5, 10, 11, and 13
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Figure S1: Normalized absorbance (dotted lines) and fluorescence emission (solid lines) spectra of probes 5,10, 11, and 13 (blue)
and of their cinnoline products (red). The spectra were acquired in 1:4 DMSO / 50 mM phosphate buffer at pH 7.4. If there is
sufficient resolution of probe excitation (absorbance) from cinnoline excitation, with proper optical filters both probe and

cinnoline can be imaged independently from one another. For 13, probe and cinnoline excitation are not well resolved.
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Fluorescence Titrations
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Figure S2: Fluorescence titrations of probes 3, 5-15 with NO. al-11) Fluorescence emission spectra (black) of titrations

of 50 uM probe in 1:4 DMSO/50 mM phosphate buffer at pH 7.4 with NO at the specified excitation (Aex) and absorbance

spectra (blue) of 50 uM solutions of their corresponding cinnoline. a2-12) Plots of emission intensity of cinnoline, formed

upon addition of NO, at the specified wavelength (Aem) versus added equivalents of NO.
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DAPI and FITC Filter Transmission Spectra
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Figure S3: Percent transmittance versus wavelength graphs for DAPI (top), FITC (middle), and TRITC (bottom) filters.?
Excitation filter (blue), beam splitter (gray), and emission filter (red) parameters (listed in this order) for each set: DAPI (G 365,
FT 395, LP 420), FITC (BP 450-490, FT 510, LP 515), and TRITC (545/25, FT 570, BP 605/70). The absorbance spectrum for
probe 13 (Figure S1), poorly resolved from AZO-13, might fit better to the FITC filter than the DAPI filter. Purported cinnoline

fluorescence from the FITC channel would therefore have a contribution from unreacted probe fluorescence.
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Cellular Experiments

Cell Cultures

NIH 3T3 and RAW 264.7 cells (ATCC) were cultured in high-glucose Dulbecco’s Modified Eagle Medium (DMEM) or Leibovitz’s L-
15 Medium (L-15) with 10% BCS (NIH 3T3) or 10% FBS (RAW 264.7) added. For the bicarbonate-buffered DMEM medium, the
cells were incubated in a humidified environment at 37 °C under 5% CO/air, whereas for the phosphate-buffered L-15 medium,
no COz was added. Cells were passaged at least three times prior to any imaging experiments. For fluorescence microscopy, cells
were plated onto Lab-Tek Il Chambered #1.5 German Coverglass sterile 8-well plates in DMEM or L-15 medium supplemented
with 1% serum. For endogenous NO imaging, RAW264.7 cells were seeded in 384-well clear-bottom plates (Greiner Bio-One) in
DMEM without L-Arginine supplemented with 1% FBS. NO production was quantified in high content imaging instrument (INCell
2200, GE Healthcare), as described below.

Passaging Cells

DMEM + 10% BCS medium was removed from 70-90% confluent NIH 3T3 cells in T25 culture flasks, and 0.05% trypsin-EDTA
solution with phenol red was promptly added. The cells were incubated at 37 °C under 5% CO: for one minute so they would
detach, and then the cell suspension was transferred to a 15 mL centrifuge tube. The culture flask was rinsed with 3 mL DPBS,
and the cells were centrifuged to a pellet. The supernatant was discarded, and the cells were suspended in 1 mL DMEM + 10%
BCS. 80-100 uL of this suspension was added to a new culture flask containing 4 mL DMEM + 10% BCS, and the cells were
incubated at 37 °C under 5% CO: to complete the passage.

DMEM + 10% FBS was removed from 70-90% confluent RAW 264.7 cells, and 1 mL DPBS was added. The cells were detached
with a cell scraper, and the cell suspension was transferred to a 15 mL centrifuge tube. The culture flask was rinsed with 3 mL
DPBS, and the cell suspension was centrifuged. The cell pellet was suspended in 1 mL DMEM + 10% FBS, and an 80-100 uL aliquot
of this suspension was added to 4 mL DMEM + 10% FBS in a new culture flask. The cells were incubated at 37 °C under 5% CO:
to complete the passage.

Cell plating

Each well of a Nunc Lab-Tek Il Chambered Coverglass 8-well plate was charged with 500 uL. DMEM + 1% BCS (NIH 3T3) or FBS
(RAW 264.7). The centrifuged cell pellet obtained as described in the section above was suspended in 1 mL DMEM + 1% serum.

A 10-20 uL aliquot of this suspension was added to each well, and the cells were incubated at 37 °C under 5% CO..
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Probe loading evaluated by DAPI-filtered images

Figure §4: Pseudocolored DAPI-filtered images (40x magnification) of probes NOsso, NOs30, and NOssz in A) NIH 3T3 and B) RAW
264.7 cells. The DAPI filter (Figure S3 A) mostly captures unreacted probe emission. For the most part, probe loading is cytosolic

and non-nuclear.

SNAP stimulus experiments

NIH 3T3 cells were plated into a Nunc 8-well plate in high-glucose DMEM + 1% BCS and incubated overnight at 37 °C under 5%
COz/air. The DMEM was then replaced with Hepes Hanks Buffered Saline Solution (HHBSS) + 1% BCS, and the cells were
incubated at 37°C for twenty minutes. 2 mM probe solutions of NOsso (9), NOs3o (10), or NOssz (13) in DMSO were diluted in
HHBSS + 1% BCS to give a 15 uM probe concentration, with 0.75% DMSO. The medium in a pair of wells was replaced with 15
UM probe loading solution - three probes, six wells total. To the no-probe pair of wells was added the same volume of DMSO
without probe to give 0.75% DMSO. The cells were incubated in this loading solution for two hours at 37 °C. The loading solution
was then replaced with HHBSS + 1% BCS. A 200 mM S-Nitroso N-acetyl D,L-penicillamine (SNAP) solution in DMSO was diluted
into the medium of four wells (stimulated), containing the three different probes and no probe, to give 1 mM SNAP, 1.23% DMSO.
The same volume of DMSO was diluted into the medium of the remaining wells (non-stimulated) to give 1.23% DMSO. The cells
were incubated for four hours at 37 °C. Brightfield and DAPI and FITC-filtered fluorescence images were acquired through 10x

and 40x objectives.

RAW 264.7 cells were plated into a Nunc 8-well plate high-glucose DMEM + 1% FBS and incubated overnight at 37 °C under 5%
COz/air. The DMEM was then replaced with Krebs-Ringer buffer (KRB) + 1% FBS. 2 mM probe solutions of 9, 10, or 13 in DMSO

were diluted in KRB + 1% FBS to a final concentration of 10 uM, 0.5% DMSO, and the medium over cells was replaced with this
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10 uM loading solution, two wells per probe, six wells total. A 25 mM SNAP solution in DMSO was diluted into the loading solution
of three wells (stimulated), each containing a different probe, to give 200 uM SNAP, 1.3% DMSO. The three remaining wells (non-
stimulated) were treated with the same volume of DMSO but without SNAP, to give 1.3% DMSO. The cells were incubated for
four hours at 37 °C. The medium in all wells was replaced with KRB + 1% FBS. Brightfield and DAPI and FITC-filtered fluorescence

images were acquired through 10x objective.

NO Solution Stimulus

To the wells containing NIH 3T3 cells - loaded with probes 9, 10, or 13 or with no probe at all - that had not been subjected to 1
mM SNAP (above) was added 1.9 mM aqueous NO solution to a final concentration of 250 uM. The cells were incubated at 37 °C
for 10 minutes, and then brightfield and DAPI and FITC-filtered fluorescence images of the four wells were acquired through 10x

and 40x objectives.

RAW 264.7 cells were plated into a Nunc 8-well plate high-glucose DMEM + 1% FBS and incubated overnight at 37 °C under 5%
COz/air. The DMEM was then replaced with DPBS + 1% FBS. 2 mM probe solutions of 9, 10, or 13 in DMSO were diluted in DPBS
+ 1% FBS to a final concentration of 10 uM, 0.5% DMSO, and the medium over cells was replaced with this 10 uM loading solution,
two wells per probe, six wells total. Two wells were left without probe, but DMSO was added to the medium to 0.5%. The cells
were incubated at 37 °C for 9 hours, and then the 10 uM loading solutions were replaced with DPBS + 1% FBS. A 1.8 mM aqueous
NO solution was diluted into the medium in three wells (stimulated), each containing a different probe, and one no-probe well
(also stimulated), to a final concentration of 300 uM NO. Nothing was added to the remaining four wells (non-stimulated). The
cells were incubated for ten minutes at 37 °C, and then brightfield and DAPI and FITC-filtered fluorescence images of all wells

were acquired through 10x and 40x objectives.

LPS screen

Lipopolysaccharides from Escherichia coli: 026:B6 (L2654), 055:B5 (L6529), 0111:B4 (L4391) and purified by phenol extraction
(L2630), and 0127:B8 (L4516) and from Salmonella enterica: serotype enteritidis (L7770), serotype Minnesota (L4641), and
serotype typhimurium (L6143) were purchased from Sigma (catalog numbers in parentheses). 1 mg of each LPS variant was
dissolved in 1 mL water sterilized by 0.2 um filtration. To seven wells (stimulated) of an 8-well plate that had been plated with
RAW 264.7 cells in DMEM + 1% FBS was added an appropriate aliquot of a different LPS variant so as to achieve a final
concentration of 1 ug/mlL LPS. No LPS was added to one well (non-stimulated). The cells were incubated for 90 minutes at 37
°C, 5% C02. A 1 mM solution of DAF-FM diacetate in DMSO was diluted to 2 uM in DMEM + 1% FBS, and the medium in all wells
was replaced with this 2 uM solution. After incubation at 37 °C, 5% COZ2 for 30 minutes, the medium was replaced with KRB, and

the cells were incubated for 5 minutes further at room temperature. They were then imaged through the FITC filter set. Cells

S17



stimulated with variant Escherichia coli 011:B4 (L4391) produced the greatest increase in DAF-FM brightness over the non-
stimulated cells, although the same variant purified by phenol extraction (L2630) also produced a greater increase than the

remaining variants.

Cell exposure to LPS

RAW 264.7 cells were plated into a Nunc 8-well plate in high-glucose DMEM + 1% FBS and incubated overnight at 37 °C under
5% COz/air. To four (stimulated) of the eight wells was added 1 mg/mL LPS in 0.2 um filtered water to a final concentration of
1 ug/mL. Nothing was added to the remaining four wells (non-stimulated). The cells were incubated at 37 °C, 5% CO: for 15
hours. The medium in all wells was replaced with L-15 + 1% FBS, and 1 mg/mL LPS solution was diluted to 1 ug/mL in the four
stimulated wells. The cells were incubated at 37 °C for another six hours. A 2 mM solution of probes 9, 10, and 13 in DMSO was
first diluted to 150 uM, 7% DMSO in L-15 + 1% FBS in order to avoid high localized concentrations of DMSO over the cells. Each
150 uM probe solution was further diluted to 15 uM, 0.7% DMSO into two wells, stimulated and non-stimulated, for a total of six
wells, and the cells were incubated at 37 °C for 2.5 hours. A 1 mM DAF-FM diacetate solution in DMSO was diluted to 10 uM in L-
15 + 1% FBS and then diluted further to 1 uM in the two remaining, one stimulated and one non-stimulated, wells. After 25
minutes at room temperature, the DAF-FM diacetate loading medium was replaced with L-15 + 1% FBS. The cells were left for
another ten minutes at room temperature for non-specific esterases to finish hydrolyzing the two acetate functionalities. (This
extra hydrolysis time must be counterbalanced with the propensity of the hydrolyzed form of DAF-FM to leak or get pumped out
of cells.) Brightfield and DAPI and FITC-filtered fluorescence images were acquired for all wells (starting with the two containing

the leakage-prone DAF-FM) through a 10x objective.

Analysis of endogenous NO production in RAW264.7 cells

RAW?Z264.7 cells were seeded in DMEM without L-Arginine supplemented with 1% FBS in 384 well clear-bottom plates (Greiner
Bio-One) at 10,000 cells per well. The cells were activated by overnight incubation with 100 ug/mL LPS and 200 EU/mL IFN-y.
On the next day, the media was replaced with HBSS with Ca** and Mg** (HBSS/Ca**/Mg**) and the cells were treated with
increasing concentrations of L-Arginine with or without pan-NO synthase competitive inhibitor L-NMMA. NO probes 10 uM NOs3o
or 1 uM DAF-FM DA were added simultaneously with L-Arginine titers and the cells were incubated for 30 minutes at 37 °C. At te
end of the incubation, cells were washed with HBSS/Ca**/Mg**. Hoechst 33342 (2 ug/mL) was used as a nuclear stain. Images of
cells were taken using INCell 2200 high content analyzer equipped with 20x objective. Images are uploaded at and can be

accessed via Creative Scientist’s website (www.cscientist.com).

Calcein Blue/Propidium lodide Cell Viability Assay
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The membrane-permeable acetoxymethyl ester derivative of Calcein Blue is non-fluorescent until non-specific esterases in viable
cells hydrolyze the esters to produce the membrane-impermeable blue fluorophore that remains in the cytosol of cells with intact
membranes. Propidium iodide becomes red fluorescent when it intercalates into DNA. The membrane-impermeable propidium
iodide cannot intercalate into the DNA of viable cells with intact membranes. Therefore, blue fluorescent cells are deemed viable,

whereas red fluorescent are not.

The DMEM + 1% FBS medium over RAW 264.7 cells was replaced with L-15 + 1% FBS; 4% DMSO in L-15 + 1% FBS; or 1.25, 2.5,
5,10, 20, or 40 uM 10 (diluted from 2 mM probe 10 in DMSO) in L-15 + 1% FBS. Cells were incubated at 37 °C for two hours. A
2 mM Calcein Blue (AM) solution in DMSO was diluted to 50 uM in DPBS. A 1.5 mM propidium iodide solution in 0.2 um-filtered
water was diluted to 50 uM in the 50 uM Calcein Blue (AM) solution. The medium in all wells was replaced with DPBS, and then
the 50 uM Calcein Blue (AM), 50 uM propidium iodide solution was diluted ten-fold into each well. Cells were incubated at 37 °C

for 30 minutes prior to imaging. Brightfield and DAPI, FITC, and TRITC-filtered fluorescence images were acquired for all wells.

a

..
..

Figure S5: Pseudo-colored, 10x magnification images of Calcein Blue (DAPI-filtered, live cells) and Propidium lodide (TRITC-

filtered, red, dead cells) in RAW 264.7 cells incubated for two hours with 1.25 (c), 2.5 (d), 5 (e), 10 (f), 20 (g), and 40 (h) uM NOss3o,

as well as cells incubated with nothing (a) or with only 0.25% DMSO (b) for two hours.
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Image processing

Images were saved as TIFFs. All images were processed with FIJI software, version 2.0.0-rc-65/1.52a.? Brightfield images (e.g.;
Figures S6a and S7a) were processed with the Subtract Background command, typically with a rolling ball radius of 10 pixels
and with smoothing disabled, followed by further processing with a variance filter set at a radius of 2-5 pixels (Figure S7b). A
threshold was applied to the background-subtracted and variance-filtered images to reduce them to 8-bit images from which a
selection could be created (Figures S6e and S7d). This selection was converted to a region of interest and served as a mask for
areas occupied by cells. The rolling ball radius values in the Subtract Background command and the radius values in the variance
filter were adjusted to achieve the best fit of the region of interest to the cells in the image (Figure S6b, c, and d). Each brightfield
image-derived mask was applied to the corresponding FITC and DAPI channel images to obtain the mean pixel intensity within
the mask, which was treated as intracellular signal (Figures S6g,h and S7e,f). An inverse of the selection produced a mask of the
region not occupied by cells (Figure S6f), and this mask was applied to the FITC and DAPI channel images to measure extracellular
signal. An image 960 x 720 pixels in size contains 691,200 pixels. Processing Figure S7e and f gave a mean intensity value of
1316 for FITC and 705 for DAPI over 138,173 pixels for the intracellular signal. The inverse of the selection produced a mean of
636 for FITC and 604 for DAPI over 553,027 pixels for the extracellular signal. The intracellular and extracellular pixels totaled

to 691,200 pixels.

These signals were corrected by subtracting the mean intracellular signal from cells not loaded with probe from those loaded
with probe for experiments with SNAP, NO solution, and LPS stimuli in NIH 3T3 and RAW 264.7 cells. For LPS stimuli experiments
in cells, images of cells not loaded with probes were not collected, so the lowest extracellular mean signal, no matter which probe
was loaded into cells, in a certain experiment was subtracted from the mean intracellular signals for all loaded probes.
Furthermore, if at any point the intracellular signal from cells not loaded with probe was greater than that for cells loaded with
probe, the lowest extracellular mean signal in the same experiment was subtracted from the mean intracellular signal for that

probe.
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Figure S6a: Sample processing of NIH 3T3 cell images at 10x magnification. a) brightfield image, b) region of interest (ROI)
after background and variance filter processing, c¢) improved ROI upon adjusting background subtraction and variance filter
parameters, d) optimal ROI, e) threshold mask for cells, f) inverse mask for extracellular region, g) cellular mask applied to DAPI-

filtered image, h) intracellular mask applied to FITC-filtered image

area

mean
138173 705.321

553027 604.164
138173 1316.318
553027 636.323

Figure S6b: Sample processing of RAW 264.7 cell images at 10x magnification. a) brightfield image, b) image after background
subtraction and variance filters, c) selection of region of interest (ROI), d) threshold mask for cells, e) cellular mask applied to
DAPI-filtered image, f) cellular mask applied to FITC-filtered image. Results: Area of cellular ROI is 138,173 pixels and of
extracellular ROI, 553,027 pixels. D and F are abbreviations for DAPI and FITC channels, respectively. The average intensity per

pixel within the region of interest is listed as the mean.
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H, *C, and HRMS spectra of NO probes
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Figure S8: The 13C-NMR spectrum of compound 1
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Figure S48: The 'H-NMR spectrum of compound 15
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Figure S54: The 'H-NMR spectrum of compound 17
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Figure S72: The 'H-NMR spectrum of compound 23
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Figure S73: The 13C-NMR spectrum of compound 23
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Figure S74: The HRMS spectrum of compound 23
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Figure S75: The H-NMR spectrum of compound 24
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Figure S76: The 13C-NMR spectrum of compound 24
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Figure S78: The 'H-NMR spectrum of the cinnoline product from 1

S58



— 30001
=1 QNQDO I~ —<TO 0N OO [=} ™
o FTaan oo o o o o s o L
e Fyyoeodgad e 8 g
) K) K) — 2500(
— 2000
(— 15000
— 1000¢
— 5000C
Iy g i
| | [
Lol , .
I I T I T I
150 100 50 0
PP (t1)
Figure S79: The 13C-NMR spectrum of the cinnoline product from 1
o |
T A —_— —_— —
11 Micromass GCT - |
‘20130782 177 (2.942) Cm (177-(16+31)) TOF MS El+ |
1004 2241 3.04e4|
| | ‘ '
|
N | |
|
| |
| |
|
| |
. \
i} |
| |
| ‘ | |
|
|| |
| |
1531
‘ | | 181.1 |
\ | ;
12251 |
| ‘r
| 1511“154.1 esq | 1821 ‘ | ‘
130 S0 630 760 gro e80 1120 MM yseq [ [ gy P50 12231 B ‘
| 20 40 60 80 100 10 1d B e e e e s ™
_ 40 B0 8 120 140 160 180 200 220 240 260

Figure S80: The MS spectrum of the cinnoline product from 1
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Figure S81: The 'H-NMR spectrum of the cinnoline product from 2
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Figure S82: The 13C-NMR spectrum of the cinnoline product from 2
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Figure S84: The 'H-NMR spectrum of the cinnoline product from 3

2251114

miz ‘
230

S61



o 0o o TonOT O
= Ug - ooNdo W N ) =
w O TFT O IANAN = I =] o
o sF 2EESCEE ) F |
| |
|
i
|
|
’ | I
| ! | ! | ! | !
200 150 100 50 0
ppM (11)

Figure S85: The 13C-NMR spectrum of the cinnoline product from 3
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Figure $88: The 13C-NMR spectrum of the cinnoline product from 4
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Figure S90: The 'H-NMR spectrum of the cinnoline product from 5
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Figure S91: The 13C-NMR spectrum of the cinnoline product from 5
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Figure S92: The HRMS spectrum of the cinnoline product from 5
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Figure S93: The 'H-NMR spectrum of the cinnoline product from 6
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Figure S94: The 13C-NMR spectrum of the cinnoline product from 6
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Figure S95: The HRMS spectrum of the cinnoline product from 6
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Figure S96: The 'H-NMR spectrum of the cinnoline product from 7
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Figure S97: The 13C-NMR spectrum of the cinnoline product from 7

[1-NH2-2-N=NNMe2-5-NHAC _ " Micromass GCT

TOF MS El+ |
|20131021 413 (6.885) Cm (413-(20+38)) 288.1376 1.13e4
100 | 3301479 ‘
\

\
‘ [ ‘
‘ i
‘
| | [ [
|
|
|
1
= ‘ ‘
‘ ‘ |
‘ \
‘ |289.1410 3311529 |
\ ( \
287.1307 | ‘
‘ ‘
‘ [ 3161330 | |
| ZWTBQZ [ r‘ I [
189.0709216.0819] 2451037 [
188.0582 04 0ot ) 2601210 2901426 3521580
232,1089 |
04 144.0682 | i [ | ! 51471
| sromsy 100008 ippouee o2 wmsosay 1l il 0l L Al My

N
S— T

L O e o 10 e 160 | 180 200 220 240 260 280 300 320 340 | |

Figure S98: The HRMS spectrum of the cinnoline product from 7
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Figure S99: The 'H-NMR spectrum of the cinnoline product from 8
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Figure S100: The 13C-NMR spectrum of the cinnoline product from 8
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Figure S101: The HRMS spectrum of the cinnoline product from 8
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Figure S102: The 'H-NMR spectrum of the cinnoline product from 10
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Figure S103: The '3C-NMR spectrum of the cinnoline product from 10
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Figure S104: The HRMS spectrum of the cinnoline product from 10
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Figure S105: The 'H-NMR spectrum of the cinnoline product from 11
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Figure S106: The 3C-NMR spectrum of the cinnoline product from 11
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Figure S107: The HRMS spectrum of the cinnoline product from 11
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Figure S108: The 'H-NMR spectrum of the cinnoline product from 12
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Figure S109: The 13C-NMR spectrum of the cinnoline product from 12
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Figure S110: The HRMS spectrum of the cinnoline product from 12
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Figure S111: The 'H-NMR spectrum of the cinnoline product from 13
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Figure S112: The 3C-NMR spectrum of the cinnoline product from 13
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Figure S113: The HRMS spectrum of the cinnoline product from 13
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Figure S114: The 'H-NMR spectrum of the cinnoline product from 14
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Figure S115: The 13C-NMR spectrum of the cinnoline product from 14
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Figure S116: The HRMS spectrum of the cinnoline product from 14
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Figure S117: The 'H-NMR spectrum of the cinnoline product from 15
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Figure S118: The 13C-NMR spectrum of cinnoline product from 15
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Figure S119: The HRMS spectrum of the cinnoline product from 15
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