Supporting Information for

Trapping an unprecedented Ti₃C₃ unit into the icosahedral C₈₀ fullerene: A crystallographic survey

Pengyuan Yu[‡], WangqiangShen[‡], Lipiao Bao[‡], Changwang Pan, Zdenek Slanina, and Xing Lu*

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, P. R. China

Table of Contents

SnCl₄ treatment and HPLC Separation of Ti₃C₃@I_h-C₈₀.

Scheme S1. The process of separation of Ti-EMFs with SnCl₄.

Figure S1. The first stage HPLC separation of $Ti_3C_3@I_h-C_{80}$.

Figure S2. The second stage HPLC separation of $Ti_3C_3@I_h-C_{80}$.

Figure S3. HPLC chromatogram of purified Sc₃N@I_h-C₈₀ and Ti₃C₃@I_h-C₈₀.

Figure S4. X-band EPR spectrum of $Ti_3C_3@I_h-C_{80}$.

Figure S5. Drawings of disordered titanium and carbon atoms in $Ti_3C_3@I_h-C_{80}$.

Table S1. The occupancy values of the titanium atoms inside $Ti_3C_3@I_h-C_{80}$.

Table S2. Bond lengths in Ti_3C_3 cluster and Ti-cage contact in $Ti_3C_3@I_h$ -C₈₀.

Figure S6. The isosurface of eletronic density of $Ti_3C_3@I_h-C_{80}$.

Figure S7. HOMO and LUMO of Ti₃C₃@I_h-C₈₀.

SnCl₄ treatment HPLC separation of Ti₃C₃@I_h-C₈₀. Ten drops of SnCl₄ was added to 500 mL carbon disulfide solution containing empty fullerenes and endohedral metallofullerenes. After stirring for 6 hours, the precipitate was collected. Then the resulting sample was completely recovered with deionized water. Finally, the obtained solid was dissolved in chlorobenzene and subjected to following multi-stage HPLC separation. The first stage of HPLC separation was performed on a 5PBB column (20 mm × 250 mm, Cosmosil Nacalai Tesque) with chlorobenzene as mobile phase. Figure S1 shows the corresponding chromatogram and the mass spectrum of the collected **Fo-7** fraction. Then fraction **Fo-7** was injected in a Buckyprep column (10mm × 250 mm) with toluene as the mobile phase for the second stage separation, and Ti₃C₈₃ was finally obtained (Figure S2). The purity of the isolated Ti₃C₈₃ was checked by the LDI-TOF mass spectrometry in a positive linear mode (Figure S2b), along with the HPLC chromatogram on a Buckyprep column (4.6 mm×250 mm, Cosmosil Nacalai Tesque) with toluene at a flow rate of 1.0 mL/min (Figure S3).

Scheme S1. The process of separation of Ti-EMFs with SnCl₄.

Figure S1. (a) The first stage HPLC chromatogram of **Fo** obtained by SnCl₄ treatment. Conditions: 5PBB column, $\Phi = 20 \text{ mm} \times 250 \text{ mm}$, eluent = chlorobenzene, flow rate = 9.99 mL/min, detection wavelength = 330 nm, room temperature, and (b) mass-spectrum of fraction **Fo-7** containing Ti₃C₃@I_h-C₈₀

Figure S2. (a) The second stage HPLC chromatogram of fraction Fo-7. Conditions: Buckyprep column, $\Phi = 10 \text{ mm} \times 250 \text{ mm}$, eluent = toluene, flow rate = 4 mL/min, detection wavelength = 330 nm, room temperature, and (b) mass-spectrum of purified Ti₃C_{83.}

Figure S3. HPLC chromatogram of purified $Sc_3N@I_h-C_{80}$ and $Ti_3C_3@I_h-C_{80}$. Conditions: Buckyprep column, 20 μ L injection volume, $\Phi = 4.6 \text{ mm} \times 250 \text{ mm}$, eluent = toluene, flow rate = 1 mL/min, detection wavelength = 330 nm, temperature = 40 °C.

Figure S4. X-band EPR spectrum of Ti₃C₃@I_h-C₈₀ recorded in toluene at 100 K.

Figure S5. Perspective drawings showing the disordered titanium and carbon atoms of the internal Ti_3C_3 cluster in $Ti_3C_3@I_h-C_{80}$.

Table S1. The occupancy values of the titanium atoms inside $Ti_3C_3@I_h-C_{80}$.^a

Metal site	Ti1/Ti1A	Ti2	Ti3/Ti3A	Ti4/Ti4A	Ti5/Ti5A	Ti6/Ti6A
Occupancy	0.5056	0.5049	0.2082	0.1268	0.2476	0.1573

a. The atoms labelled 'A' are generated by the crystallographic operation.

Ti ₃ C ₃ cluster structure parameters	Bond distance	Ti-cage contacts	Bond length	
C81-Ti1	2.014(4)	Til-C17A	2.060(4)	
C81-Ti1A	2.014(4)	Til-C18A	2.181(5)	
C81-Ti2	1.979(6)		2.12	
C82-Til	2.193(4)	Average		
C82-TilA	2.193(4)	TilA-C17	2.060(4)	
C82-Ti2	2.463(6)	TilA-C18	2.181(5)	
C83-Til	2.109(8)		2 1 2	
C83-Ti1A	3.090(6)	Average	2.12	
C83-Ti2	1.838(7)	Ti2-C35	2.129(4)	
C81-C82	1.474(8)	Ti2-C35A	2.129(4)	
C81-C83	1.470(9)		2.13	
C82-C83	1.195(8)	Average		

Table S2. Bond Distances^a (Å) within the major Ti_3C_3 site and the closest Ti-cage contacts^bin $Ti_3C_3@I_h-C_{80}$ (Å).

a. Measured by X-ray crystallographic study. b. The Ti-cage contact was based on the major site of the Ti_3C_3 cluster.

Figure S6. The $Ti_3C_3@I_h-C_{80}$ isosurface of electron density of 0.086 a.u. at the B3LYP/3-21G~SDD level (colored blue and gray, partially transparent and with cut cage, for better visibility).

Figure S7. (a) HOMO and (b) LUMO orbitals of $Ti_3C_3@I_h-C_{80}$.