Supramolecular Assembly of Bent Dinuclear Amphiphilic Alkynylplatinum(II) Terpyridine Complexes: Diverse Nanostructures Through Subtle Tuning of the Mode of Molecular Stacking

Sam Ka-Ming Leung, Alan Kwun-Wa Chan, Sammual Yu-Lut Leung, Ming-Yi Leung, and Vivian Wing-Wah Yam\*

Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road (Hong Kong)

E-mail: wwyam@hku.hk

**Electronic Supplementary Information (ESI)** 

#### **Photophysical Measurements and Instrumentation**

<sup>1</sup>H NMR spectra were recorded on a Bruker AVANCE 400 (400 MHz) or a Bruker Ascend 500 (500 MHz) Fourier-transform NMR spectrometer with chemical shifts relative to tetramethylsilane (Me<sub>4</sub>Si). Positive electron ionization (EI) mass spectra were recorded by using a Thermo Scientific DFS high-resolution magnetic sector mass spectrometer. Positiveion electrospray ionization (ESI) mass spectra were recorded on a Bruker maXis II highresolution ESI-QTOF mass spectrometer. The UV-visible absorption spectra were recorded on a Varian Cary 50 UV-visible spectrophotometer with the monitoring of temperature using the Varian Cary single-cell Peltier thermostat. The emission spectra were recorded on a Spex Fluorolog-3 model FL3-211 fluorescence spectrofluorometer equipped with an R2658P PMT detector. All solutions for the photophysical studies were degassed on a high-vacuum line in a two-compartment cell consisting of a 10 mL Pyrex bulb and a 1 cm-path length quartz cuvette and sealed from the atmosphere by a Bibby Rotaflo HP6 Teflon stopper. The solutions were rigorously degassed with at least four successive freeze-pump-thaw cycles. Transient absorption spectra were obtained using an Edinburgh Instrument LP980KS transient absorption spectrometer. Emission lifetimes were measured on Edinburgh Instrument LP980KS spectrometer. The excitation source is a Spectra-Physics Quanta-Ray Q-switched Lab-150 pulsed Nd:YAG laser (10 Hz) with a 355-nm output (third harmonic, 8 ns). The emission decay signals were captured by a Hamamatsu R928 PMT which was connected to a Tektronix Model TDS-3012C (100 MHz, 1.25 GS s<sup>-1</sup>) digital oscilloscope and analyzed using the exponential fit (tail-fit data analysis) with the model  $I(t) = I_0 \exp(-t/\tau)$ , where I(t) and  $I_0$  stand for the luminescence intensities at times t and 0. Luminescence quantum yields in solution were measured by the optical dilute method described by Demas and Crosby<sup>1</sup> with a degassed aqueous solution of  $[Ru(bpy)_3]Cl_2$  (excitation wavelength = 436 nm,  $\Phi_{em} = 0.042$ ) as reference and corrected for the refractive index of the solution.<sup>2</sup> Transmission electron microscopy (TEM) experiments were conducted on a Philips Tecnai G2 20 S-TWIN or on a Philips CM100 Transmission Electron Microscope with an accelerating voltage of 200 kV. Pure carbon TEM grid, which does not have formvar layers, was employed in these studies in order to ensure the morphologies formed were solely due to the solutions themselves, not solvation of the formvar layer by dichloromethane. Scanning electron microscopy (SEM) experiments were conducted on a Hitachi S4800 FEG Scanning Electron Microscope. AFM topographical images and phase images were obtained using an Asylum MFP3D Atomic Force Microscope with an ARC2 SPM Controller under constant temperature and atmospheric pressure. The PXRD data were recorded on a Bruker AXS D8 ADVANCE (Philips PW1830) powder X-ray diffractometer in Bragg-Brentano ( $\theta/2\theta$ ) reflection mode with a graphite monochromatized Cu–K $\alpha$  radiation ( $\lambda = 1.54178$  Å) and nickel filter.

#### **Temperature-dependent Nucleation–Elongation Model in Curve Fitting**

Temperature-dependent nucleation–elongation model, developed by Meijer and co-workers,<sup>3</sup> was applied to fit the experimental data in the variable-temperature UV–vis spectroscopic studies in DMSO solutions. All cooling curves obtained were performed at a slow cooling rate of 0.5 K min<sup>-1</sup> to ensure the self-assembly processes were under thermodynamic control.<sup>3</sup>

The nucleation regime and the elongation regime are governed by equations (1) and (2) respectively:

$$\phi_{\rm n} = K_{\rm a}^{1/3} \exp\left[ (2/3 K_{\rm a}^{-1/3} - 1) \frac{h_e}{RT_e^2} (T - T_e) \right] \tag{1}$$

$$\phi_{\rm n} = \phi_{\rm SAT} \left( 1 - exp \left[ -\frac{h_e}{RT_e^2} (T - T_e) \right] \right)$$
(2)

where  $\phi_n$  is the degree of aggregation,  $\phi_{SAT}$  is a factor introduced to the equation such that  $\phi_n/\phi_{SAT}$  does not exceed unity,  $h_e$  is the molecular enthalpy released due to non-covalent interactions during elongation process,  $T_e$  is the elongation temperature,  $K_a$  is the dimensionless equilibrium constant of the nucleation process at  $T_e$ , and R is the universal gas constant.

The number-averaged degree of polymerization averaged over all active species in the elongation regime at a temperature T,  $\langle N_n \rangle$ , is given by equation (3):

$$\langle N_n(T) \rangle = \frac{1}{\sqrt{K_a}} \frac{\phi_n}{\phi_{\text{SAT}} - \phi_n}$$
(3)

The number-averaged degree of polymerization averaged over all active nucleated species at  $T_e$  is given by equation (4):

$$< N_n(T_e) > = \frac{1}{\sqrt[3]{K_a}} \tag{4}$$

### Solvent-dependent Nucleation–Elongation Equilibrium Model in Curve Fitting

In the nucleation–elongation model for solvent-dependent self-assembly, reported by Meijer and co-workers,<sup>4</sup> the Gibbs free energy gain upon monomer addition,  $\Delta G^{\circ\prime}$ , is linearly correlated with the good solvent volume fraction *f*:

$$\Delta G^{\circ\prime} = \Delta G^{\circ} + m \cdot f$$

where  $\Delta G^{\circ}$  is the Gibbs free energy gain upon monomer addition in poor solvent and *m* is the parameter showing the dependence of  $\Delta G^{\circ}$  on *f*. The normalized degree of aggregation was deduced from the changes in UV–vis absorption band maxima:

Normalized degree of aggregation = 
$$\frac{Abs(f) - Abs(f=0)}{Abs(f=1) - Abs(f=0)}$$

The simulation and the curve-fitting with the equilibrium model were performed using Matlab R2013a under an isodesmic system.<sup>4</sup>

### **Crystal Structure Determination**

The X-ray diffraction data of **9** were collected on a Bruker D8 VENTURE Dual source X-ray Diffractometer, using Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å). The program *SAINT* V8.38A (Bruker AXS Inc., 2017) was used for the cell refinement and data reduction; XT, VERSION 2014/5 was used to solve the structure; SHELXL2018/3 (Sheldrick, 2018) was used to refine the structure.<sup>5</sup> All e.s.d.'s (except the e.s.d. in the dihedral angle between two least-squares (l.s.) planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Table S1 summarizes the crystallographic and structural refinement data. Table S2 shows selected bond lengths and angles of **9**. CCDC 1945676 contains the crystallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.

### **Computational Details**

Calculations were performed using the Gaussian 09 software package.<sup>6</sup> Density functional theory (DFT) with the M06 functional,<sup>7</sup> which is recommended for studies of transition metal thermochemistry and for properly considering noncovalent interactions,<sup>7,8</sup> was used to optimize the head-to-tail structure of the cationic model complex of **1**, in which the triethylene glycol substituent and all the octadecyloxy groups were replaced by methoxy groups, in conjunction with the solvation model density (SMD) continuum method<sup>9</sup> using dichloromethane as the solvent. Vibrational frequencies were then calculated at the same level of theory for the optimized geometries to verify that each was a minimum (NIMAG = 0) on the potential energy surface. The Stuttgart effective core potentials (ECPs) and the associated basis set were used to describe platinum<sup>10</sup> with two f-type polarization functions ( $\zeta = 0.70$  and 0.14),<sup>11</sup> whereas the 6-31G(d,p) basis set was employed to describe all other atoms.<sup>12–15</sup> All DFT calculations were performed with a pruned (99,590) grid for numerical integration. The Cartesian coordinates of the structures are shown in Tables S4–5.

### **Experimental Section**

## **Materials and Reagents**

 $Pt{tpy-C_6H_4-(OC_{18}H_{37})_2-3,5}Cl]OTf,$  $[Pt{tpy-C_6H_4-(OC_4H_9)_2-3,5}C1]OTf,$ [Pt{4',4",4"'-tri-*tert*-butyl-tpy}Cl]OTf and  $[Pt{tpy-C_6H_4-(OTEG)_2-3,5}Cl]OTf$ were synthesized according to previously reported literature.<sup>16</sup> Potassium tetrachloroplatinate(II) (K<sub>2</sub>[PtCl<sub>4</sub>]) (Chem. Pur., 98 %), 2-methyl-3-butyn-2-ol (Fluorochem Ltd., 95 %), (triisopropylsilyl)acetylene (GFS Chemical Co. Ltd, 97 %), triethylamine (Fluorochem Ltd., 99 %), triethylene glycol monomethyl ether (Sigma-Aldrich, 95 %), 1-bromododecane (Alfa Aesar, 98 %), 1-bromooctadecane (Alfa Aesar, 98 %), 3,5-dibromophenol (Combi-Blocks Inc., 98 %), 1,3,5-tribromobenzene (Combi-Blocks Inc., 98 %), 5-bromo-1,2,3-trimethoxybenzene (Combi-Blocks Inc., 98 %), bis(pinacolato)diboron (Combi-Blocks Inc., 97 %), ptoluenesulfonyl chloride (J&K Scientific, 99 %) and boron tribromide (J&K Scientific, 1.0 M solution in CH<sub>2</sub>Cl<sub>2</sub>) were purchased from the corresponding chemical companies. Dimethyl sulfoxide (99+ %, for spectroscopy) was purchased from Sigma-Aldrich. All other reagents and solvents were of analytical grade and were used as received.

Synthesis and Characterization of the meta-Phenylene Ethynylene (mPE) Ligands



Scheme S1 Structures of the *meta*-phenylene ethynylene (*m*PE) ligands and their precursors.

All reactions were carried out under an inert atmosphere of nitrogen using standard Schlenk techniques. L1,<sup>17</sup> L2,<sup>18</sup> L4,<sup>19</sup> L5,<sup>20</sup> L3'<sup>21–23</sup> and L6'<sup>24–26</sup> were synthesized according to previously reported literature.

**Synthesis of L3.** To a solution of **L3'** (1.02 g, 1.26 mmol) in degassed toluene was added NaOH (153 mg, 3.81 mmol). The solution was stirred for 1 hour at room temperature. The solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel using dichloromethane–acetone (5:1, v/v) as the eluent to give

**L3** as a yellow oil. Yield: 498 mg (57 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K,  $\delta$ /ppm):  $\delta$  = 3.12 (s, 2H,  $-C\equiv$ CH), 3.37 (s, 6H,  $-OCH_3$ ), 3.38 (s, 3H,  $-OCH_3$ ), 3.51–3.57 (m, 6H,  $-OCH_2-$ ), 3.62–3.69 (m, 12H,  $-OCH_2-$ ), 3.71–3.77 (m, 6H,  $-OCH_2-$ ), 3.82 (t, J = 5.1 Hz, 2H,  $-OCH_2-$ ), 3.87 (t, J = 5.1 Hz, 4H,  $-OCH_2-$ ), 4.19 (t, J = 5.1 Hz, 2H,  $-OCH_2-$ ), 4.23 (t, J = 5.1 Hz, 4H,  $-OCH_2-$ ), 6.77 (s, 2H, phenyl), 7.56 (t, J = 1.6 Hz, 1H, phenyl), 7.61 (d, J = 1.6 Hz, 2H, phenyl). Positive-ion HR-EI MS: calcd for C<sub>37</sub>H<sub>52</sub>O<sub>12</sub> m/z 688.3459; found m/z 688.3453 [M]<sup>+</sup>.

Synthesis of L6. The procedure was similar to that for L3, except L6' (570 mg, 1.13 mmol) was used in place of L3'. The crude product was purified by column chromatography on silica gel using dichloromethane as the eluent to give L6 as a yellow oil. Yield: 300 mg (60 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K,  $\delta$ /ppm):  $\delta$  = 1.12 (m, 21H, -Si{CH(CH<sub>3</sub>)<sub>2</sub>}<sub>3</sub>), 3.05 (s, 1H, -C=CH), 3.38 (s, 3H, -OCH<sub>3</sub>), 3.53–3.58 (m, 2H, -OCH<sub>2</sub>–), 3.63–3.70 (m, 4H, -OCH<sub>2</sub>–), 3.70–3.76 (m, 2H, -OCH<sub>2</sub>–), 3.84 (t, *J* = 4.8 Hz, 2H, -OCH<sub>2</sub>–), 4.12 (t, *J* = 4.8 Hz, 2H, -OCH<sub>2</sub>–), 6.99 (m, 2H, phenyl), 7.20 (t, *J* = 1.5 Hz, 1H, phenyl). Positive-ion HR-EI MS: calcd for C<sub>26</sub>H<sub>40</sub>O<sub>4</sub>Si *m*/z 444.2696; found *m*/z 444.2684 [M]<sup>+</sup>.

# Synthesis and Characterization of the Mono- and Dinuclear Alkynylplatinum(II) Terpyridine Complexes with the *m*PE Ligands

**Synthesis** of 1. To solution of L1 (45 0.16 a mg, mmol) and  $Pt{tpy-C_6H_4-(OC_{18}H_{37})_2-3,5}Cl]OTf (476 mg, 0.39 mmol) in degassed dichloromethane (30$ mL) containing triethylamine (5 mL) was added a catalytic amount of CuI. The solution was stirred overnight at room temperature. The solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel using dichloromethane–methanol (10:1, v/v) as the eluent. Recrystallization through a slow diffusion of diethyl ether vapor into a concentrated dichloromethane solution of 1 afforded an orange solid. Yield: 220 mg (53 %). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ , 353 K,  $\delta$ /ppm):  $\delta = 0.86$  (t, J = 6.8 Hz, 12H, -CH<sub>3</sub>), 1.26 (m, 112H, -CH<sub>2</sub>-), 1.50 (t, J = 6.8 Hz, 8H, -CH<sub>2</sub>-), 1.80 (t, J = 6.8 Hz, 8H, -CH<sub>2</sub>-), 3.28 (s, 3H, -OCH<sub>3</sub>), 3.45-3.69 (m, 8H, -OCH<sub>2</sub>-), 3.82 (t, J = 4.7 Hz, 2H,  $-OCH_{2-}$ ), 4.16 (t, J = 6.8 Hz, 8H,  $-OCH_{2-}$ ), 4.22 (t, J = 4.7 Hz, 2H,  $-OCH_{2-}$ ), 6.79 (t, J = 2.1 Hz, 2H, phenyl), 7.03 (s, 2H, phenyl), 7.29 (m, 5H, phenyl), 8.00 (td, J = 6.4 Hz, *J* = 1.3 Hz, 4H, tpy), 8.54 (td, *J* = 7.9 Hz, *J* = 1.3 Hz, 4H, tpy), 8.91 (d, *J* = 7.9 Hz, 4H, tpy), 8.96 (s, 4H, tpy), 9.31 (d, J = 6.4 Hz, 4H, tpy). Positive-ion HR-ESI MS: calcd for  $[C_{131}H_{192}N_6O_8Pt_2]^{2+}$  m/z 1184.2056; found m/z 1184.2043  $[M-2OTf]^{2+}$ .

**Synthesis** of 2. The procedure similar that for except was to 1.  $Pt{tpy-C_6H_4-(OC_4H_9)_2-3,5}Cl]OTf$  (383 mg, 0.39 mmol) was used in place of [Pt{tpy-C<sub>6</sub>H<sub>4</sub>-(OC<sub>18</sub>H<sub>37</sub>)<sub>2</sub>-3,5}Cl]OTf. Recrystallization through a slow diffusion of diethyl ether vapor into a concentrated dichloromethane solution of **2** afforded an orange solid. Yield: 162 mg (54 %). <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ , 353 K,  $\delta$ /ppm):  $\delta = 1.00$  (t, J = 6.8 Hz, 12H, -CH<sub>3</sub>), 1.53 (m, 8H, -CH<sub>2</sub>-), 1.79 (m, 8H, -CH<sub>2</sub>-), 3.27 (s, 3H, -OCH<sub>3</sub>), 3.45-3.69 (m, 8H,  $-OCH_{2}$ , 3.83 (t, J = 4.6 Hz, 2H,  $-OCH_{2}$ ), 4.16 (t, J = 6.8 Hz, 8H,  $-OCH_{2}$ ), 4.22 (t, J = 4.6 Hz, 2H,  $-OCH_{2}$ -), 6.79 (t, J = 2.0 Hz, 2H, phenyl), 7.00 (s, 2H, phenyl), 7.27 (s, 1H,

phenyl), 7.30 (d, J = 2.0 Hz, 4H, phenyl), 7.98 (t, J = 6.8 Hz, 4H, tpy), 8.53 (t, J = 8.0 Hz, 4H, tpy), 8.93 (d, J = 8.0 Hz, 4H, tpy), 8.96 (s, 4H, tpy), 9.28 (d, J = 6.8 Hz, 4H, tpy). Positive-ion HR-ESI MS: calcd for  $[C_{75}H_{80}N_6O_8Pt_2]^{2+}$  *m/z* 791.2661; found *m/z* 791.2609 [M–2OTf]<sup>2+</sup>.

Synthesis of 3. The procedure was similar to that for 1, except L2 (110 mg, 0.16 mmol) was used in place of L1. Recrystallization through a slow diffusion of diethyl ether vapor into a concentrated dichloromethane solution of 3 afforded an orange solid. Yield: 273 mg (59 %). <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>, 353 K,  $\delta$ /ppm):  $\delta$  = 0.86 (t, *J* = 6.8 Hz, 12H, -CH<sub>3</sub>), 1.25 (m, 112H, -CH<sub>2</sub>--), 1.49 (m, 8H, -CH<sub>2</sub>--), 1.79 (m, 8H, -CH<sub>2</sub>--), 2.32 (m, 1H, -CH(OCH<sub>2</sub>)<sub>2</sub>--), 3.20 (d, *J* = 5.3 Hz, 4H, -OCH<sub>2</sub>--), 3.23 (s, 6H, -OCH<sub>3</sub>), 3.40--3.62 (m, 24H, -OCH<sub>2</sub>--), 4.11 (d, *J* = 5.3 Hz, 2H, -OCH<sub>2</sub>--), 4.15 (t, *J* = 6.8 Hz, 8H, -OCH<sub>2</sub>--), 6.78 (t, *J* = 1.5 Hz, 2H, phenyl), 7.00 (d, *J* = 1.5 Hz, 2H, phenyl), 7.27 (t, *J* = 1.5 Hz, 1H, phenyl), 7.29 (d, *J* = 1.5 Hz, 4H, phenyl), 7.99 (td, *J* = 5.7 Hz, *J* = 1.4 Hz, 4H, tpy), 8.55 (td, *J* = 7.9 Hz, *J* = 1.4 Hz, 4H, tpy), 8.91 (d, *J* = 7.9 Hz, 4H, tpy), 8.96 (s, 4H, tpy), 9.30 (d, *J* = 5.7 Hz, 4H, tpy). Positive-ion HR-ESI MS: calcd for [C<sub>142</sub>H<sub>214</sub>N<sub>6</sub>O<sub>13</sub>Pt<sub>2</sub>]<sup>2+</sup> *m*/z 1301.2791; found *m*/z 1301.2737 [M-2OTf]<sup>2+</sup>.

Synthesis of 4. The procedure was similar to that for 1, except L3 (110 mg, 0.16 mmol) was used in place of L1. The crude product was purified by column chromatography on silica gel using dichloromethane–methanol (8:1, v/v) as the eluent. Recrystallization through a slow diffusion of diethyl ether vapor into a concentrated dichloromethane solution of 4 afforded an orange solid. Yield: 220 mg (45 %). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 353 K,  $\delta$ /ppm):  $\delta$  = 0.86 (t, *J* = 6.7 Hz, 12H, –CH<sub>3</sub>), 1.26 (m, 112H, –CH<sub>2</sub>–), 1.50 (t, *J* = 6.7 Hz, 8H, –CH<sub>2</sub>–), 1.80 (t, *J* = 6.7 Hz, 8H, –CH<sub>2</sub>–), 3.24 (s, 6H, –OCH<sub>3</sub>), 3.28 (s, 3H, –OCH<sub>3</sub>), 3.42–3.68 (m, 18H, –OCH<sub>2</sub>–), 3.76 (t, *J* = 4.6 Hz, 6H, –OCH<sub>2</sub>–), 3.83 (t, *J* = 4.6 Hz, 6H, –OCH<sub>2</sub>–), 4.16 (t, *J* = 6.7 Hz, 8H, –OCH<sub>2</sub>–), 4.29 (t, *J* = 4.6 Hz, 6H, –OCH<sub>2</sub>–), 6.79 (t, *J* = 2.0 Hz, 2H, phenyl), 7.02 (s, 2H, phenyl), 7.30 (d, *J* = 2.0 Hz, 4H, phenyl), 7.65 (s, 1H, phenyl), 7.66 (s, 2H, phenyl), 8.00 (td, *J* = 6.0 Hz, *J* = 1.6 Hz, 4H, tpy), 8.56 (td, *J* = 8.1 Hz, *J* = 1.6 Hz, 4H, tpy), 8.92 (d,

J = 8.1 Hz, 4H, tpy), 8.97 (s, 4H, tpy), 9.35 (d, J = 6.0 Hz, 4H, tpy). Positive-ion HR-ESI MS: calcd for  $[C_{151}H_{224}N_6O_{16}Pt_2]^{2+}$  m/z 1384.3106; found m/z 1384.3058  $[M-2OTf]^{2+}$ .

**Synthesis** of 5. The procedure similar that for 1. was to except  $Pt{tpy-C_6H_4-(OTEG)_2-3,5}Cl]OTf$  (695 mg, 0.69 mmol) was used in place of [Pt{tpy-C<sub>6</sub>H<sub>4</sub>-(OC<sub>18</sub>H<sub>37</sub>)<sub>2</sub>-3,5}Cl]OTf, and L4 (85 mg, 0.27 mmol) was used in place of L1. Recrystallization through a slow diffusion of diethyl ether vapor into a concentrated dichloromethane solution of **5** afforded a red solid. Yield: 372 mg (60 %). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ , 353 K,  $\delta$ /ppm):  $\delta = 0.85$  (t, J = 6.7 Hz, 3H, -CH<sub>3</sub>), 1.16–1.81 (m, 20H, -CH<sub>2</sub>–), 3.26 (s, 12H, -OCH<sub>3</sub>), 3.44–3.48 (m, 8H, -OCH<sub>2</sub>–), 3.53–3.62 (m, 16H, -OCH<sub>2</sub>–), 3.62–3.70 (m, 8H, -OCH<sub>2</sub>-), 3.84 (t, J = 4.8 Hz, 8H, -OCH<sub>2</sub>-), 4.08 (t, J = 6.7 Hz, 2H, -OCH<sub>2</sub>-), 4.30 (t, *J* = 4.8 Hz, 8H, –OCH<sub>2</sub>–), 6.85 (t, *J* = 1.5 Hz, 2H, phenyl), 6.99 (d, *J* = 1.5 Hz, 2H, phenyl), 7.26 (d, J = 1.5 Hz, 1H, phenyl), 7.35 (d, J = 1.5 Hz, 4H, phenyl), 7.98 (td, J = 6.0 Hz, *J* = 1.3 Hz, 4H, tpy), 8.54 (td, *J* = 7.9 Hz, *J* = 1.3 Hz, 4H, tpy), 8.90 (d, *J* = 7.9 Hz, 4H, tpy), 8.97 (s, 4H, tpy), 9.29 (d, J = 6.0 Hz, 4H, tpy). Positive-ion HR-ESI MS: calcd for  $[C_{92}H_{114}N_6O_{17}Pt_2]^{2+}$  m/z 982.8773; found m/z 982.8733  $[M-2OTf]^{2+}$ .

**Synthesis** procedure of 6. The was similar to that for 1. except  $[Pt{tpy-C_6H_4-(OTEG)_2-3,5}Cl]OTf$  (695 mg, 0.69 mmol) was used in place of [Pt{tpy-C<sub>6</sub>H<sub>4</sub>-(OC<sub>18</sub>H<sub>37</sub>)<sub>2</sub>-3,5}Cl]OTf, and L5 (63 mg, 0.16 mmol) was used in place of L1. Recrystallization through a slow diffusion of diethyl ether vapor into a concentrated dichloromethane solution of **6** afforded a red solid. Yield: 221 mg (59 %). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ , 353 K,  $\delta$ /ppm):  $\delta = 0.85$  (t, J = 6.8 Hz, 3H, -CH<sub>3</sub>), 1.19–1.44 (m, 28H, -CH<sub>2</sub>-), 1.50 (t, J = 6.8 Hz, 2H, -CH<sub>2</sub>-), 1.78 (t, J = 6.8 Hz, 2H, -CH<sub>2</sub>-), 3.27 (s, 12H, -OCH<sub>3</sub>), 3.42-3.51 (m, 8H, -OCH<sub>2</sub>-), 3.52-3.63 (m, 16H, -OCH<sub>2</sub>-), 3.63-3.71 (m, 8H, -OCH<sub>2</sub>-), 3.85 (t, J = 4.7 Hz, 8H,  $-OCH_{2}$ -), 4.08 (t, J = 6.8 Hz, 2H,  $-OCH_{2}$ -), 4.31 (t, J = 4.7 Hz, 8H,  $-OCH_{2}$ -), 6.84 (t, J = 1.6 Hz, 2H, phenyl), 6.95 (d, J = 1.6 Hz, 2H, phenyl), 7.22 (d, J = 1.6 Hz, 1H,

phenyl), 7.35 (d, J = 1.6 Hz, 4H, phenyl), 7.95 (td, J = 6.0 Hz, J = 1.5 Hz, 4H, tpy), 8.50 (td, J = 7.9 Hz, J = 1.5 Hz, 4H, tpy), 8.93 (d, J = 7.9 Hz, 4H, tpy), 8.97 (s, 4H, tpy), 9.26 (d, J = 6.0 Hz, 4H, tpy). Positive-ion HR-ESI MS: calcd for  $[C_{98}H_{126}N_6O_{17}Pt_2]^{2+}$  *m/z* 1024.9243; found *m/z* 1024.9204 [M–2OTf]<sup>2+</sup>.

**Synthesis** of 7. The procedure similar for was to that 1, except  $Pt{tpy-C_6H_4-(OTEG)_2-3,5}Cl]OTf$  (695 mg, 0.69 mmol) was used in place of [Pt{tpy-C<sub>6</sub>H<sub>4</sub>-(OC<sub>18</sub>H<sub>37</sub>)<sub>2</sub>-3,5}Cl]OTf. Recrystallization through a slow diffusion of diethyl ether vapor into a concentrated dichloromethane solution of 7 afforded a red solid. Yield: 204 mg (57 %). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ , 353 K,  $\delta$ /ppm):  $\delta$  = 3.26 (s, 12H, -OCH<sub>3</sub>), 3.27 (s, 3H, -OCH<sub>3</sub>), 3.45–3.49 (m, 10H, -OCH<sub>2</sub>–), 3.55–3.67 (m, 30H, -OCH<sub>2</sub>–), 3.84 (t, J = 4.8 Hz, 10H, -OCH<sub>2</sub>-), 4.22 (t, J = 4.8 Hz, 2H, -OCH<sub>2</sub>-), 4.30 (t, J = 4.8 Hz, 8H, -OCH<sub>2</sub>-), 6.85 (t, J = 2.0 Hz, 2H, phenyl), 6.99 (s, 2H, phenyl), 7.25 (s, 1H, phenyl), 7.35 (d, J = 2.0 Hz, 4H, phenyl), 7.96 (t, J = 6.6 Hz, 4H, tpy), 8.51 (t, J = 7.9 Hz, 4H, tpy), 8.92 (d, J = 7.9 Hz, 4H, tpy), 8.98 (s, 4H, tpy), 9.26 (d, J = 6.6 Hz, 4H, tpy). Positive-ion HR-ESI MS: calcd for  $[C_{87}H_{104}N_6O_{20}Pt_2]^{2+}$  m/z 971.8305; found m/z 971.8301  $[M-2OTf]^{2+}$ .

Synthesis of 8. The procedure was similar to that for 1, except L6 (218 mg, 0.49 mmol) was used in place of L1. Recrystallization through a slow diffusion of diethyl ether vapor into a concentrated dichloromethane solution of 8 afforded an orange solid. Yield: 267 mg (40 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K,  $\delta$ /ppm):  $\delta$  = 0.87 (t, *J* = 6.6 Hz, 6H, –CH<sub>3</sub>), 1.15 (s, 21H, –Si{CH(CH<sub>3</sub>)<sub>2</sub>}<sub>3</sub>), 1.20–1.52 (m, 64H, –CH<sub>2</sub>–), 3.39 (s, 3H, –OCH<sub>3</sub>), 3.55–3.60 (m, 2H, –OCH<sub>2</sub>–), 3.65–3.80 (m, 6H, –OCH<sub>2</sub>–), 3.90 (m, 6H, –OCH<sub>2</sub>–), 4.18 (t, *J* = 4.9 Hz, 2H, –OCH<sub>2</sub>–), 6.24 (s, 1H, phenyl), 6.82 (m, 3H, phenyl), 6.96 (s, 1H, phenyl), 7.06 (s, 1H, phenyl), 7.66 (t, *J* = 6.7 Hz, 2H, tpy), 8.39 (t, *J* = 8.1 Hz, 2H, tpy), 8.48 (s, 2H, tpy), 8.88 (d, *J* = 8.1 Hz, 2H, tpy), 9.23 (d, *J* = 6.7 Hz, 2H, tpy). Positive-ion HR-ESI MS: calcd for [C<sub>83</sub>H<sub>126</sub>N<sub>3</sub>O<sub>6</sub>PtSi]<sup>+</sup> *m*/*z* 1484.9081; found *m*/*z* 1484.9077 [M–OTf]<sup>+</sup>.

**Synthesis** of 9. The procedure was similar that for 1, except to [Pt{4',4",4"'-tri-*tert*-butyl-tpy}Cl]OTf (305 mg, 0.39 mmol) was used in place of  $[Pt{tpy-C_6H_4-(OC_{18}H_{37})_2-3,5}Cl]OTf.$  The crude product was purified by column chromatography on silica gel using dichloromethane-acetone (10:1, v/v) as the eluent. Recrystallization through a slow diffusion of diethyl ether vapor into a concentrated dichloromethane solution of 9 afforded yellow crystals suitable for X-ray analysis. Yield: 142 mg (50 %). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 298 K,  $\delta$ /ppm):  $\delta$  = 1.42 (s, 36H, -CH<sub>3</sub>), 1.51 (s, 18H, -CH<sub>3</sub>), 3.40 (s, 3H, -OCH<sub>3</sub>), 3.58–3.81 (m, 8H, -OCH<sub>2</sub>–), 3.90 (t, *J* = 4.5 Hz, 2H, -OCH<sub>2</sub>–), 4.21 (t, J = 4.5 Hz, 2H,  $-OCH_{2-}$ ), 6.95 (s, 2H, phenyl), 7.54 (dd, J = 6.0 Hz, J = 1.7 Hz, 4H, tpy), 7.64 (s, 1H, phenyl), 8.34 (d, J = 1.7 Hz, 4H, tpy), 8.42 (s, 4H, tpy), 9.12 (d, J = 6.0 Hz, 4H, tpy). Positive-ion HR-ESI MS: calcd for  $[C_{71}H_{88}N_6O_4Pt_2]^{2+}$  m/z 739.3076; found m/z 739.3051 [M-2OTf]<sup>2+</sup>.



Fig. S1 (a) Perspective view of 9 with an atomic numbering scheme. The thermal ellipsoids are drawn at 50 % probability level. Hydrogen atoms, counter ions and solvent molecules are omitted for clarity. (b) Crystal packing diagram of 9 which shows the head-to-tail configuration.(c) Crystal packing diagram of 9 from the side view.

| Empirical formula                          | $C_{77}H_{88}N_6O_4Pt_2 \cdot 2(CF_3O_3S) \cdot 3(CH_2Cl_2)$    |
|--------------------------------------------|-----------------------------------------------------------------|
| Formula weight                             | 2032.57                                                         |
| Temperature, K                             | 173                                                             |
| Wavelength, Å                              | Mo $K\alpha$ , $\lambda = 0.71073$                              |
| Crystal system                             | Triclinic                                                       |
| Space group                                | PĪ                                                              |
| <i>a</i> , Å                               | 13.4362 (6)                                                     |
| <i>b</i> , Å                               | 18.3994 (8)                                                     |
| <i>c</i> , Å                               | 20.2998 (8)                                                     |
| <i>α</i> , °                               | 106.666 (1)                                                     |
| $\beta$ , °                                | 108.577 (1)                                                     |
| γ, °                                       | 103.771 (1)                                                     |
| Volume, Å <sup>3</sup>                     | 4246.8 (3)                                                      |
| $Z, Å^3$                                   | 2                                                               |
| Density (calculated), g cm <sup>-3</sup>   | 1.589                                                           |
| Crystal size                               | $0.21 \text{ mm} \times 0.08 \text{ mm} \times 0.06 \text{ mm}$ |
| Index ranges                               | $-16 \le h \le 16$                                              |
|                                            | $-23 \le k \le 21$                                              |
|                                            | $-23 \le l \le 25$                                              |
| Reflections collected/unique               | 42364/17273                                                     |
| $GoF$ on $F^2$                             | 1.07                                                            |
| Final <i>R</i> indices $[I > 2 \sigma(I)]$ | $R_1 = 0.057$                                                   |
|                                            | $wR_2 = 0.133$                                                  |
| Largest diff. peak and hole, e $Å^{-3}$    | 2.61 and -2.08                                                  |

 Table S1 Crystal and structure determination data of 9.

| Bond    | Length [Å] | Bonds       | Angle [°] |
|---------|------------|-------------|-----------|
| Pt1–N1  | 2.027(6)   | N2-Pt1-N1   | 80.8(3)   |
| Pt1-N2  | 1.961(6)   | N2-Pt1-N3   | 79.7(3)   |
| Pt1-N3  | 2.025(7)   | C55-Pt1-N1  | 98.5(3)   |
| Pt1-C55 | 1.982(9)   | C55-Pt1-N3  | 101.0(3)  |
| Pt2–N4  | 2.007(7)   | N3-Pt1-N1   | 160.5(3)  |
| Pt2–N5  | 1.968(6)   | N2-Pt1-C55  | 178.0(3)  |
| Pt2–N6  | 2.011(7)   | C56-C55-Pt1 | 175.9(8)  |
| Pt2-C57 | 1.982(8)   | N5-Pt2-N4   | 81.2(3)   |
| Pt1…Pt1 | 4.931      | N5-Pt2-N6   | 81.1(3)   |
| Pt2…Pt2 | 4.615      | C57-Pt2-N6  | 100.1(4)  |
|         |            | C57-Pt2-N4  | 97.6(3)   |
|         |            | N4-Pt2-N6   | 162.0(3)  |
|         |            | N5-Pt2-C57  | 178.5(3)  |
|         |            | C58-C57-Pt2 | 174.7(8)  |

 Table S2 Selected bond lengths and angles of 9 with estimated standard deviations (e.s.d.s.)

 in parentheses.



Fig. S2 PXRD pattern on the bulk sample of 6. Numerical values indicate *d*-spacings (in nm).

| Complex | $\lambda_{abs} \text{ [nm]} (\epsilon/dm^3 \text{ mol}^{-1} \text{ cm}^{-1})$ | $\lambda_{em} [nm] (\tau_o [\mu s])$ | $arPsi_{	ext{lum}}{}^{	ext{a}}$ |
|---------|-------------------------------------------------------------------------------|--------------------------------------|---------------------------------|
| 1       | 339 (33840), 420 (13120), 475 (11810)                                         | 620 (0.47)                           | 0.003                           |
| 2       | 337 (27190), 420 (10030), 489 (7250)                                          | 628 (0.92)                           | 0.030                           |
| 3       | 319 (28690), 338 (29190), 419 (10950), 485                                    | 632 (0.77)                           | 0.026                           |
|         | (7480)                                                                        |                                      |                                 |
| 4       | 345 (33450), 433 (16670), 480 (14740)                                         | b                                    | b                               |
| 5       | 319 (33360), 341 (28010), 490 (14360)                                         | 642 (0.49)                           | 0.004                           |
| 6       | 342 (20550), 417 (7420), 484 (8850)                                           | 636 (0.52)                           | 0.005                           |
| 7       | 341 (18940), 421 (7050), 486 (8220)                                           | 637 (0.55)                           | 0.005                           |
| 8       | 344 (21250), 431 (8730), 479 (7100)                                           | 625 (0.97)                           | 0.034                           |
| 9       | 314 (25600), 341 (20260), 411 (6660), 466                                     | 609 (1.31)                           | 0.099                           |
|         | (6330)                                                                        |                                      |                                 |

| Table S3 Photophysica | l data of <b>1–9</b> in dichl | loromethane at 298 K. |
|-----------------------|-------------------------------|-----------------------|
|-----------------------|-------------------------------|-----------------------|

<sup>a</sup> Relative luminescence quantum yield ( $\Phi_{lum}$ ) measured at room temperature using aqueous [Ru(bpy)<sub>3</sub>]Cl<sub>2</sub> solution as the reference (excitation wavelength = 436 nm,  $\Phi_{lum}$  = 0.042). <sup>b</sup> Non-emissive.



Fig. S3 Electronic absorption spectra of 1, 5, 8 and 9 in dichloromethane.



Fig. S4 Normalized emission spectra of 2, 6 and 8 in degassed dichloromethane at 298 K.



Fig. S5 Transient absorption difference spectra of 1 measured in dichloromethane at 298 K at decay times of  $0 - 60 \ \mu s$  (at intervals of 10  $\ \mu s$ ) following a 355 nm laser pulse excitation. Inset: The decay trace of the absorption at 480 nm.



**Fig. S6** <sup>1</sup>H NMR spectra of **1** in CDCl<sub>3</sub> at 298 and 323 K. ([Pt] =  $2.8 \times 10^{-3}$  M)



Fig. S7 UV–Vis absorption spectra of 1 in dichloromethane at various concentrations  $(4.9 \times 10^{-5}-9.8 \times 10^{-4} \text{ M})$ . Inset: A plot of absorbance at 550 nm against concentration. The apparent absorbance values have been obtained by correcting to a 1-cm path length equivalence.



**Fig. S8** UV–Vis absorption spectra of **8** in dichloromethane at various concentrations  $(7.7 \times 10^{-5}-1.5 \times 10^{-3} \text{ M})$ . Inset: A plot of absorbance at 500 nm against concentration. The apparent absorbance values have been obtained by correcting to a 1-cm path length equivalence.



Fig. S9 Normalized emission spectra of 1 in dichloromethane solutions at various concentrations.



Fig. S10 Normalized emission spectra of 8 in dichloromethane solutions at various concentrations.



Fig. S11 Normalized excitation spectra of 1 in dichloromethane solutions at concentrations 1.0  $\times 10^{-3}$ ,  $1.0 \times 10^{-4}$  and  $1.0 \times 10^{-5}$  M, monitored at 728, 665 and 640 nm respectively.



Fig. S12 TEM image of (a) an air-dried sample of a dichloromethane solution of 1 ( $[Pt] = 2.0 \times 10^{-3} \text{ M}$ ) and (b) a sample of a dichloromethane solution of 1 dried under dry nitrogen atmosphere ( $[Pt] = 2.0 \times 10^{-4} \text{ M}$ ).



**Fig. S13** UV–Vis absorption spectra of **2** in DMSO ( $[Pt] = 2.8 \times 10^{-4}$  M) upon decreasing temperature from 358 to 298 K. Inset: A plot of absorbance at 470 nm against temperature. The apparent absorbance values were obtained by correcting to a 1-cm path length equivalence.



**Fig. S14** UV–Vis absorption spectra of **5** in DMSO ([Pt] =  $1.0 \times 10^{-3}$  M) upon decreasing temperature from 348 to 298 K. Inset: A plot of absorbance at 500 nm against temperature. The apparent absorbance values were obtained by correcting to a 1-cm path length equivalence.



**Fig. S15** UV–Vis absorption spectra of **6** in DMSO ([Pt] =  $5.1 \times 10^{-4}$  M) upon decreasing temperature from 353 to 298 K. Inset: A plot of absorbance at 500 nm against temperature. The apparent absorbance values were obtained by correcting to a 1-cm path length equivalence.



**Fig. S16** UV–Vis absorption spectra of **7** in DMSO ( $[Pt] = 3.1 \times 10^{-4}$  M) upon decreasing temperature from 358 to 298 K. Inset: A plot of absorbance at 500 nm against temperature. The apparent absorbance values were obtained by correcting to a 1-cm path length equivalence.



**Fig. S17** (a) Simulated dimeric, (b) simulated monomeric and (c) experimental isotope distribution of **4** in its high-resolution ESI mass spectrum.



Fig. S18 TEM images of 1 obtained from DMSO solution ([Pt] = (a)  $2.0 \times 10^{-4}$  M and (b)  $2.0 \times 10^{-3}$  M).



Fig. S19 SEM images of 1 obtained from DMSO solution ([Pt] = (a)  $2.0 \times 10^{-4}$  M and (b)  $2.0 \times 10^{-3}$  M).



**Fig. S20** TEM image of **3** obtained from DMSO solution ( $[Pt] = 2.0 \times 10^{-4} \text{ M}$ ).



**Fig. S21** TEM image of **4** obtained from DMSO solution ( $[Pt] = 2.0 \times 10^{-4} \text{ M}$ ).



**Fig. S22** UV–Vis absorption spectra of **5** in 30 % H<sub>2</sub>O in DMSO ([Pt] =  $3.9 \times 10^{-5}$  M) upon decreasing temperature from 348 to 293 K. Inset: A plot of absorbance at 510 nm against temperature.



**Fig. S23** UV–Vis absorption spectra of **6** in 30 % H<sub>2</sub>O in DMSO ([Pt] =  $3.5 \times 10^{-5}$  M) upon decreasing temperature from 343 to 298 K. Inset: A plot of absorbance at 510 nm against temperature.



**Fig. S24** Corrected emission spectra of **5** upon increasing the water content in DMSO (left) from 0 to 30 % and (right) from 30 to 90 %.



**Fig. S25** Selected structural parameters of the optimized ground-state geometries of the model complex of **1**. All hydrogen atoms are omitted for clarity.



**Fig. S26** Optimized ground-state structure of the dimer of the model complex of **1** with head-to-tail stacking. The  $Pt \cdots Pt$  distance is in angstroms. All hydrogen atoms are omitted for clarity.

## **Table S4** Cartesian coordinates of the optimized geometries of the model complex of 1.

| 1  | С | -7.175705  | 1.397367  | 0.577066  | 58 | С  | 1.16146   | -4.378973 | -0.232371 |
|----|---|------------|-----------|-----------|----|----|-----------|-----------|-----------|
| 2  | С | -8.142632  | -0.529292 | -0.403637 | 59 | Н  | 2.099401  | -4.926618 | -0.259348 |
| 3  | С | -9.401687  | 0.049781  | -0.364327 | 60 | 0  | -0.206071 | -6.383379 | -0.286628 |
| 4  | С | -9.547337  | 1.341413  | 0.164581  | 61 | С  | 0.965838  | -7.173572 | -0.304485 |
| 5  | С | -8.413482  | 2.018696  | 0.640058  | 62 | Н  | 1.573723  | -7.014948 | 0.596441  |
| 6  | Н | -10.266494 | -0.478937 | -0.755664 | 63 | Н  | 0.636598  | -8.21457  | -0.330827 |
| 7  | Н | -8.513108  | 3.009035  | 1.075696  | 64 | Н  | 1.578543  | -6.971158 | -1.193258 |
| 8  | С | -7.777189  | -1.864    | -0.915871 | 65 | С  | 2.454749  | -2.297312 | -0.180103 |
| 9  | С | -8.691387  | -2.757964 | -1.448573 | 66 | С  | 3.542937  | -1.728133 | -0.171596 |
| 10 | С | -8.251716  | -3.996297 | -1.905451 | 67 | Pt | 5.31008   | -0.836388 | -0.143338 |
| 11 | Н | -9.741743  | -2.488214 | -1.505969 | 68 | Ν  | 7.088311  | 0.054455  | -0.106619 |
| 12 | С | -6.029108  | -3.38354  | -1.275026 | 69 | Ν  | 6.255165  | -1.98442  | 1.269563  |
| 13 | С | -6.904692  | -4.31332  | -1.81866  | 70 | Ν  | 5.002558  | 0.632698  | -1.541812 |
| 14 | Н | -8.961212  | -4.703856 | -2.324534 | 71 | С  | 8.017221  | -0.424914 | 0.735201  |
| 15 | Н | -4.964234  | -3.578488 | -1.18078  | 72 | С  | 7.282183  | 1.109479  | -0.91262  |
| 16 | Н | -6.521457  | -5.267927 | -2.163912 | 73 | С  | 7.544059  | -1.5856   | 1.514984  |
| 17 | С | -5.87376   | 1.922583  | 1.032308  | 74 | С  | 5.742358  | -3.026143 | 1.934486  |
| 18 | С | -5.70825   | 3.172631  | 1.606039  | 75 | С  | 6.100117  | 1.431787  | -1.735232 |
| 19 | С | -4.439941  | 3.579132  | 2.008143  | 76 | С  | 3.884466  | 0.85738   | -2.241646 |
| 20 | Н | -6.565781  | 3.825452  | 1.739857  | 77 | С  | 9.257074  | 0.193516  | 0.794542  |
| 21 | С | -3.581273  | 1.483454  | 1.24461   | 78 | С  | 8.505976  | 1.760855  | -0.891006 |
| 22 | С | -3.363277  | 2.724669  | 1.826184  | 79 | С  | 8.320618  | -2.25544  | 2.445827  |
| 23 | Н | -4.301333  | 4.556661  | 2.460915  | 80 | С  | 6.478694  | -3.728098 | 2.878599  |
| 24 | Н | -2.775178  | 0.774781  | 1.078309  | 81 | Н  | 4.716167  | -3.286762 | 1.690967  |
| 25 | Н | -2.358376  | 3.0031    | 2.126368  | 82 | С  | 6.062797  | 2.467998  | -2.653448 |
| 26 | С | -10.877238 | 1.976767  | 0.224395  | 83 | С  | 3.795145  | 1.885064  | -3.170389 |
| 27 | С | -10.999335 | 3.354762  | 0.041483  | 84 | Н  | 3.053453  | 0.188123  | -2.037624 |
| 28 | С | -12.008586 | 1.197794  | 0.471822  | 85 | С  | 9.512028  | 1.30327   | -0.025994 |
| 29 | С | -12.259597 | 3.95099   | 0.105226  | 86 | Н  | 10.019432 | -0.153828 | 1.486476  |
| 30 | Н | -10.139724 | 3.980282  | -0.186081 | 87 | Н  | 8.694004  | 2.606329  | -1.54676  |
| 31 | С | -13.263167 | 1.805567  | 0.541736  | 88 | С  | 7.783497  | -3.337055 | 3.136586  |
| 32 | Н | -11.937941 | 0.127659  | 0.651292  | 89 | Н  | 9.340606  | -1.934517 | 2.632608  |
| 33 | С | -13.40067  | 3.184721  | 0.360066  | 90 | Н  | 6.022151  | -4.56608  | 3.395027  |
| 34 | Н | -14.37781  | 3.651483  | 0.414193  | 91 | С  | 4.898582  | 2.698266  | -3.379562 |
| 35 | 0 | -12.284043 | 5.284878  | -0.097521 | 92 | Н  | 6.940444  | 3.089728  | -2.803704 |
| 36 | 0 | -14.297664 | 0.977822  | 0.796901  | 93 | Н  | 2.868363  | 2.032182  | -3.715279 |
| 37 | С | -13.529125 | 5.953995  | -0.027286 | 94 | С  | 10.820251 | 1.983433  | 0.02707   |

| 38 | Η  | -14.230551 | 5.586262  | -0.788064 | 95  | Η | 8.385583  | -3.865778 | 3.869799  |
|----|----|------------|-----------|-----------|-----|---|-----------|-----------|-----------|
| 39 | Н  | -13.986034 | 5.852605  | 0.966207  | 96  | Н | 4.860865  | 3.508098  | -4.1026   |
| 40 | Н  | -13.321441 | 7.009093  | -0.217086 | 97  | С | 11.980342 | 1.243429  | 0.262056  |
| 41 | С  | -15.594861 | 1.533279  | 0.903566  | 98  | С | 10.893428 | 3.365924  | -0.151418 |
| 42 | Н  | -15.657491 | 2.258704  | 1.72572   | 99  | С | 13.215292 | 1.891754  | 0.308037  |
| 43 | Н  | -15.906081 | 2.017701  | -0.031571 | 100 | Н | 11.958975 | 0.16194   | 0.372767  |
| 44 | Н  | -16.268999 | 0.700233  | 1.113136  | 101 | С | 12.132647 | 4.005333  | -0.092164 |
| 45 | Ν  | -7.090462  | 0.161258  | 0.06197   | 102 | Н | 10.004151 | 3.973174  | -0.302217 |
| 46 | Ν  | -4.799397  | 1.088399  | 0.856949  | 103 | С | 13.3031   | 3.276294  | 0.136405  |
| 47 | Ν  | -6.448191  | -2.191796 | -0.834422 | 104 | 0 | 14.283681 | 1.095479  | 0.519859  |
| 48 | Pt | -5.30191   | -0.706347 | -0.003446 | 105 | 0 | 12.105874 | 5.343419  | -0.262983 |
| 49 | С  | -3.534775  | -1.593979 | -0.068666 | 106 | Н | 14.264296 | 3.776053  | 0.178374  |
| 50 | С  | -2.459587  | -2.185448 | -0.11142  | 107 | С | 15.566966 | 1.689997  | 0.56673   |
| 51 | С  | -1.231049  | -2.913781 | -0.156468 | 108 | С | 13.326702 | 6.056775  | -0.200554 |
| 52 | С  | -1.256418  | -4.31049  | -0.2071   | 109 | Н | 15.816769 | 2.186781  | -0.380276 |
| 53 | С  | 0.002779   | -2.244792 | -0.150449 | 110 | Н | 15.648114 | 2.413562  | 1.388871  |
| 54 | С  | -0.065369  | -5.039504 | -0.243141 | 111 | Н | 16.275423 | 0.877062  | 0.738871  |
| 55 | Н  | -2.202103  | -4.848248 | -0.213549 | 112 | Н | 13.808143 | 5.948451  | 0.780547  |
| 56 | С  | 1.195314   | -2.973048 | -0.187883 | 113 | Н | 14.024645 | 5.734491  | -0.984779 |
| 57 | Н  | 0.031091   | -1.1582   | -0.114122 | 114 | Н | 13.07637  | 7.107787  | -0.359343 |

**Table S5** Cartesian coordinates of the optimized geometries of the dimer of the model complex

of **1**.

| 1  | С | -3.172011 | 1.376897  | 1.188759 | 115 | С | -10.474897 | -0.153054 | -0.553732 |
|----|---|-----------|-----------|----------|-----|---|------------|-----------|-----------|
| 2  | С | -2.129369 | -0.720047 | 1.50147  | 116 | С | -11.215271 | -2.400604 | -0.591462 |
| 3  | С | -3.359576 | -1.338339 | 1.665395 | 117 | С | -12.495287 | -2.013607 | -0.222255 |
| 4  | С | -4.538462 | -0.576849 | 1.583709 | 118 | С | -12.766822 | -0.651867 | -0.010176 |
| 5  | С | -4.426973 | 0.799666  | 1.315326 | 119 | С | -11.734607 | 0.285881  | -0.175333 |
| 6  | Н | -3.398292 | -2.393131 | 1.903751 | 120 | Н | -13.285982 | -2.747204 | -0.118148 |
| 7  | Н | -5.314703 | 1.412794  | 1.240495 | 121 | Н | -11.918174 | 1.336632  | 0.015931  |
| 8  | С | -0.788617 | -1.325864 | 1.609032 | 122 | С | -10.708541 | -3.764521 | -0.836964 |
| 9  | С | -0.558575 | -2.688572 | 1.723663 | 123 | С | -11.485823 | -4.90873  | -0.743127 |
| 10 | С | 0.75043   | -3.155461 | 1.798671 | 124 | С | -10.905219 | -6.151798 | -0.980057 |
| 11 | Н | -1.393892 | -3.379541 | 1.738843 | 125 | Н | -12.537219 | -4.829277 | -0.490211 |
| 12 | С | 1.512153  | -0.891544 | 1.658741 | 126 | С | -8.82262   | -5.044499 | -1.383674 |
| 13 | С | 1.798839  | -2.245631 | 1.766258 | 127 | С | -9.557447  | -6.220082 | -1.304516 |
| 14 | Н | 0.942755  | -4.220329 | 1.879253 | 128 | Н | -11.504842 | -7.053316 | -0.910697 |
| 15 | Н | 2.28345   | -0.130804 | 1.634174 | 129 | Н | -7.767332  | -5.035456 | -1.62826  |
| 16 | Н | 2.833264  | -2.566796 | 1.825401 | 130 | Н | -9.065682  | -7.166906 | -1.497151 |
| 17 | С | -2.837624 | 2.80825   | 1.048156 | 131 | С | -9.256068  | 0.649818  | -0.766298 |
| 18 | С | -3.776495 | 3.820225  | 0.909498 | 132 | С | -9.207356  | 2.030039  | -0.640647 |
| 19 | С | -3.353205 | 5.143885  | 0.836848 | 133 | С | -8.005641  | 2.69454   | -0.862973 |
| 20 | Н | -4.832399 | 3.577795  | 0.869606 | 134 | Н | -10.104015 | 2.579709  | -0.377347 |
| 21 | С | -1.096763 | 4.37917   | 1.042673 | 135 | С | -6.980799  | 0.578913  | -1.316897 |
| 22 | С | -1.996078 | 5.427739  | 0.908166 | 136 | С | -6.878905  | 1.959646  | -1.207132 |
| 23 | Н | -4.081083 | 5.942055  | 0.733722 | 137 | Н | -7.957896  | 3.774699  | -0.77128  |
| 24 | Н | -0.026416 | 4.535098  | 1.106896 | 138 | Н | -6.138943  | -0.050163 | -1.580239 |
| 25 | Н | -1.625026 | 6.445545  | 0.865561 | 139 | Н | -5.925453  | 2.441077  | -1.393347 |
| 26 | С | -5.860275 | -1.19653  | 1.824683 | 140 | С | -14.117366 | -0.21444  | 0.392847  |
| 27 | С | -6.96148  | -0.395374 | 2.147642 | 141 | С | -14.6165   | 1.008463  | -0.060675 |
| 28 | С | -6.016981 | -2.583256 | 1.744777 | 142 | С | -14.891792 | -1.029279 | 1.221475  |
| 29 | С | -8.202478 | -0.982124 | 2.392931 | 143 | С | -15.902432 | 1.407637  | 0.309557  |
| 30 | Н | -6.884985 | 0.680291  | 2.253623 | 144 | Н | -14.047889 | 1.643379  | -0.731619 |
| 31 | С | -7.261245 | -3.160059 | 1.999678 | 145 | С | -16.171841 | -0.614151 | 1.59474   |
| 32 | Η | -5.209553 | -3.240329 | 1.4454   | 146 | Н | -14.515663 | -1.969175 | 1.610669  |
| 33 | С | -8.361553 | -2.369578 | 2.341814 | 147 | С | -16.689198 | 0.603095  | 1.140033  |
| 34 | Н | -9.322183 | -2.821457 | 2.548283 | 148 | Н | -17.683599 | 0.917833  | 1.426692  |
| 35 | 0 | -9.211133 | -0.126278 | 2.67107  | 149 | 0 | -16.311055 | 2.592144  | -0.189582 |

| 36 | 0  | -7.324069  | -4.503034 | 1.868812 | 150 | 0  | -16.84324  | -1.455293 | 2.407657  |
|----|----|------------|-----------|----------|-----|----|------------|-----------|-----------|
| 37 | С  | -10.470895 | -0.673068 | 3.02193  | 151 | С  | -17.627199 | 3.026527  | 0.106424  |
| 38 | Н  | -10.893745 | -1.272331 | 2.207899 | 152 | Н  | -18.375427 | 2.317293  | -0.266382 |
| 39 | Н  | -10.399551 | -1.284664 | 3.92914  | 153 | Н  | -17.770188 | 3.177545  | 1.182913  |
| 40 | Н  | -11.125944 | 0.177396  | 3.214227 | 154 | Н  | -17.750464 | 3.980585  | -0.408136 |
| 41 | С  | -8.539556  | -5.150457 | 2.203332 | 155 | С  | -18.151603 | -1.093767 | 2.815295  |
| 42 | Н  | -8.799155  | -4.986535 | 3.255911 | 156 | Н  | -18.15179  | -0.156547 | 3.384104  |
| 43 | Н  | -9.368905  | -4.816878 | 1.568699 | 157 | Н  | -18.828904 | -1.002236 | 1.95801   |
| 44 | Н  | -8.368636  | -6.214519 | 2.037347 | 158 | Н  | -18.498794 | -1.902502 | 3.459747  |
| 45 | Ν  | -2.080786  | 0.600999  | 1.272724 | 159 | Ν  | -10.266615 | -1.464144 | -0.743321 |
| 46 | Ν  | -1.501334  | 3.105151  | 1.104737 | 160 | Ν  | -8.135246  | -0.061179 | -1.103327 |
| 47 | Ν  | 0.25605    | -0.443117 | 1.578727 | 161 | Ν  | -9.37818   | -3.849512 | -1.155074 |
| 48 | Pt | -0.323368  | 1.478885  | 1.332918 | 162 | Pt | -8.451356  | -2.055561 | -1.209629 |
| 49 | С  | 1.420322   | 2.344602  | 1.531306 | 163 | С  | -6.631398  | -2.664017 | -1.587118 |
| 50 | С  | 2.530903   | 2.845292  | 1.683384 | 164 | С  | -5.477413  | -3.072501 | -1.677106 |
| 51 | С  | 3.870696   | 3.326736  | 1.760012 | 165 | С  | -4.114608  | -3.489618 | -1.658209 |
| 52 | С  | 4.14893    | 4.699941  | 1.887446 | 166 | С  | -3.778744  | -4.843895 | -1.471376 |
| 53 | С  | 4.919925   | 2.410836  | 1.639572 | 167 | С  | -3.102688  | -2.532344 | -1.76629  |
| 54 | С  | 5.474297   | 5.138255  | 1.873383 | 168 | С  | -2.436208  | -5.217883 | -1.394898 |
| 55 | Н  | 3.326865   | 5.398621  | 1.983935 | 169 | Н  | -4.572669  | -5.575796 | -1.383987 |
| 56 | С  | 6.251044   | 2.855941  | 1.602586 | 170 | С  | -1.752412  | -2.910303 | -1.680138 |
| 57 | Н  | 4.705213   | 1.352334  | 1.551187 | 171 | Н  | -3.360313  | -1.488325 | -1.90609  |
| 58 | С  | 6.521751   | 4.223125  | 1.716351 | 172 | С  | -1.423904  | -4.256239 | -1.495699 |
| 59 | Н  | 7.54193    | 4.591548  | 1.690637 | 173 | Н  | -0.388299  | -4.571788 | -1.425143 |
| 60 | 0  | 5.846971   | 6.42951   | 1.993531 | 174 | 0  | -2.014292  | -6.488408 | -1.214115 |
| 61 | С  | 4.826787   | 7.393664  | 2.182724 | 175 | С  | -2.99892   | -7.49882  | -1.086792 |
| 62 | Н  | 4.284556   | 7.219249  | 3.120099 | 176 | Н  | -3.617164  | -7.573535 | -1.98933  |
| 63 | Н  | 5.330903   | 8.359535  | 2.234879 | 177 | Н  | -2.455364  | -8.434243 | -0.947107 |
| 64 | Н  | 4.119745   | 7.400028  | 1.347148 | 178 | Н  | -3.643937  | -7.322299 | -0.21768  |
| 65 | С  | 7.294044   | 1.90242   | 1.412311 | 179 | С  | -0.766223  | -1.883648 | -1.747197 |
| 66 | С  | 8.136271   | 1.031254  | 1.214933 | 180 | С  | -0.057417  | -0.88202  | -1.77742  |
| 67 | Pt | 9.447084   | -0.382063 | 0.878094 | 181 | Pt | 0.852629   | 0.84882   | -1.802221 |
| 68 | Ν  | 10.755178  | -1.809148 | 0.537954 | 182 | Ν  | 1.686851   | 2.626504  | -1.807663 |
| 69 | Ν  | 11.093536  | 0.747193  | 0.559385 | 183 | Ν  | 2.779608   | 0.311621  | -1.517887 |
| 70 | Ν  | 8.242175   | -1.995718 | 1.079379 | 184 | Ν  | -0.786852  | 1.982947  | -2.143476 |
| 71 | С  | 12.024689  | -1.45503  | 0.291331 | 185 | С  | 3.005597   | 2.705707  | -1.58274  |
| 72 | С  | 10.332507  | -3.08088  | 0.587287 | 186 | С  | 0.888627   | 3.693877  | -1.944732 |
| 73 | С  | 12.214641  | 0.007307  | 0.289101 | 187 | С  | 3.63829    | 1.378092  | -1.46991  |
| 74 | С  | 11.167915  | 2.082419  | 0.585473 | 188 | С  | 3.257837   | -0.934602 | -1.421022 |

| 75  | С | 8.890686  | -3.186095 | 0.880724  | 189 | С | -0.521152 | 3.324803  | -2.173942 |
|-----|---|-----------|-----------|-----------|-----|---|-----------|-----------|-----------|
| 76  | С | 6.935077  | -1.989029 | 1.363029  | 190 | С | -2.03369  | 1.542285  | -2.340139 |
| 77  | С | 12.974683 | -2.441771 | 0.075146  | 191 | С | 3.598451  | 3.951788  | -1.445903 |
| 78  | С | 11.243361 | -4.106613 | 0.38558   | 192 | С | 1.434851  | 4.963615  | -1.838114 |
| 79  | С | 13.426921 | 0.628549  | 0.034981  | 193 | С | 5.004161  | 1.178604  | -1.33449  |
| 80  | С | 12.358336 | 2.753427  | 0.339819  | 194 | С | 4.615334  | -1.187746 | -1.27582  |
| 81  | Н | 10.244816 | 2.603749  | 0.809752  | 195 | Н | 2.52093   | -1.727297 | -1.468891 |
| 82  | С | 8.200102  | -4.38603  | 0.952625  | 196 | С | -1.542932 | 4.239095  | -2.389455 |
| 83  | С | 6.198639  | -3.162702 | 1.451425  | 197 | С | -3.087514 | 2.412672  | -2.578146 |
| 84  | Н | 6.49291   | -1.011718 | 1.514611  | 198 | Н | -2.160555 | 0.467133  | -2.30647  |
| 85  | С | 12.586969 | -3.791011 | 0.123529  | 199 | С | 2.806019  | 5.106406  | -1.566401 |
| 86  | Н | 14.001691 | -2.175644 | -0.145158 | 200 | Н | 4.651283  | 4.026975  | -1.202687 |
| 87  | Н | 10.929595 | -5.141462 | 0.451917  | 201 | Н | 0.811356  | 5.838777  | -1.972091 |
| 88  | С | 13.501687 | 2.01824   | 0.059796  | 202 | С | 5.500532  | -0.118283 | -1.239819 |
| 89  | Н | 14.30459  | 0.029849  | -0.179942 | 203 | Н | 5.674282  | 2.029713  | -1.302888 |
| 90  | Н | 12.372811 | 3.836965  | 0.371608  | 204 | Н | 4.960547  | -2.212874 | -1.201329 |
| 91  | С | 6.838274  | -4.376473 | 1.23966   | 205 | С | -2.84028  | 3.779428  | -2.596385 |
| 92  | Н | 8.723468  | -5.320478 | 0.78578   | 206 | Н | -1.327356 | 5.301208  | -2.404784 |
| 93  | Н | 5.14053   | -3.111039 | 1.684625  | 207 | Н | -4.078284 | 2.009433  | -2.753924 |
| 94  | С | 13.578361 | -4.862398 | -0.09607  | 208 | С | 3.395475  | 6.449341  | -1.389625 |
| 95  | Н | 14.445509 | 2.515865  | -0.137421 | 209 | Н | 6.568275  | -0.281199 | -1.13351  |
| 96  | Н | 6.290156  | -5.310949 | 1.298761  | 210 | Н | -3.643021 | 4.48705   | -2.77512  |
| 97  | С | 14.900182 | -4.679455 | 0.31643   | 211 | С | 4.75143   | 6.658992  | -1.648024 |
| 98  | С | 13.191997 | -6.052477 | -0.71742  | 212 | С | 2.596297  | 7.511161  | -0.952899 |
| 99  | С | 15.83582  | -5.693958 | 0.10473   | 213 | С | 5.302355  | 7.930584  | -1.475589 |
| 100 | Н | 15.217176 | -3.778238 | 0.829996  | 214 | Н | 5.395364  | 5.867655  | -2.013837 |
| 101 | С | 14.137784 | -7.05775  | -0.928671 | 215 | С | 3.155066  | 8.780514  | -0.792537 |
| 102 | Н | 12.180472 | -6.207491 | -1.07733  | 216 | Н | 1.54977   | 7.377471  | -0.7028   |
| 103 | С | 15.464307 | -6.889011 | -0.519555 | 217 | С | 4.509791  | 9.003849  | -1.057203 |
| 104 | 0 | 17.085572 | -5.43633  | 0.541973  | 218 | 0 | 6.617968  | 8.036972  | -1.749308 |
| 105 | 0 | 13.682443 | -8.167107 | -1.547017 | 219 | 0 | 2.310147  | 9.739665  | -0.360636 |
| 106 | Н | 16.192766 | -7.671147 | -0.685235 | 220 | Н | 4.939897  | 9.988437  | -0.931848 |
| 107 | С | 18.078038 | -6.430092 | 0.353295  | 221 | С | 7.228233  | 9.307119  | -1.601322 |
| 108 | С | 14.597585 | -9.221491 | -1.789031 | 222 | С | 2.826831  | 11.044475 | -0.160089 |
| 109 | Н | 17.827876 | -7.354848 | 0.886788  | 223 | Н | 6.785799  | 10.046264 | -2.279414 |
| 110 | Н | 18.228151 | -6.650022 | -0.710229 | 224 | Н | 7.157018  | 9.669154  | -0.568689 |
| 111 | Н | 18.999073 | -6.016886 | 0.766553  | 225 | Н | 8.278825  | 9.16802   | -1.859372 |
| 112 | Н | 15.415292 | -8.901753 | -2.445712 | 226 | Н | 3.621979  | 11.048949 | 0.595163  |
| 113 | Н | 15.01266  | -9.616191 | -0.8542   | 227 | Н | 3.20618   | 11.474832 | -1.094239 |

114 н 14.026362 -10.006629 -2.286205 228 н 1.990183 11.646333 0.197186

#### References

- 1. G. A. Crosby and J. N. Demas, J. Phys. Chem., 1971, 75, 991–1024.
- 2. J. Van Houten and R. J. Watts, J. Am. Chem. Soc., 1976, 98, 4853–4858.
- P. Jonkheijm, P. van der Schoot, A. P. H. J. Schenning and E. W. Meijer, *Science*, 2006,
   313, 80–83.
- P. A. Korevaar, C. Schaefer, T. F. A. de Greef and E. W. Meijer, *J. Am. Chem. Soc.*, 2012, **134**, 13482–13491.
- 5. G. M. Sheldrick, *Acta Cryst. A*, 2015, **71**, 3–8.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 (Revision D.01), Gaussian, Inc., Wallingford, CT, 2013.
- 7. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- 8. Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157–167.
- A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378– 6396.

- 10. D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta*, 1990, **77**, 123–141.
- 11. M. Dolg, P. Pyykkoe and N. Runeberg, *Inorg. Chem.*, 1996, **35**, 7450–7451.
- 12. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261.
- 13. P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, **28**, 213–222.
- 14. J. D. Dill and J. A. Pople, J. Chem. Phys., 1975, 62, 2921–2923.
- M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, *J. Chem. Phys.*, 1982, **77**, 3654–3665.
- H.-K. Yip, L.-K. Cheng, K.-K. Cheung and C.-M. Che, J. Chem. Soc., Dalton Trans., 1993, 2933–2938.
- F. García, M. R. Torres, E. Matesanz and L. Sánchez, *Chem. Commun.*, 2011, 47, 5016– 5018.
- 18. D. Zhang, D. Li, X. Li and W. Jin, *Dyes Pigm.*, 2018, **152**, 43–48.
- Y. Morisaki, K. Suzuki, H. Imoto and Y. Chujo, *Macromol. Rapid Commun.*, 2010, **31**, 1719–1724.
- A. Llanes-Pallas, K. Yoosaf, H. Traboulsi, J. Mohanraj, T. Seldrum, J. Dumont, A. Minoia, R. Lazzaroni, N. Armaroli and D. Bonifazi, *J. Am. Chem. Soc.*, 2011, 133, 15412–15424.
- J. Liang, J. Zhang, L. Zhu, A. Duarandin, V. G. Young, N. Geacintov and J. W. Canary, *Inorg. Chem.*, 2009, 48, 11196–11208.
- 22. J. G. Rodríguez and T. Laparra, *Tetrahedron*, 2009, **65**, 2551–2555.
- T. Kaneko, K. Iwamura, R. Nishikawa, M. Teraguchi and T. Aoki, *Polymer*, 2014, 55, 1097–1102.
- 24. K. L. Chandra, S. Zhang and C. B. Gorman, *Tetrahedron*, 2007, **63**, 7120-7132.

- 25. D. Zornik, R. M. Meudtner, T. El Malah, C. M. Thiele and S. Hecht, *Chem. Eur. J.*, 2011, **17**, 1473–1484.
- S. Chen, S. Zhang, C. Bao, C. Wang, Q. Lin and L. Zhu, *Chem. Commun.*, 2016, 52, 13132–13135.