Synthesis of Amino Acids and Peptides with Bulky Side Chains via Ligand-Enabled Carboxylate-Directed γ-C(sp³)–H Arylation

Lei Liu,[†] Yan-Hua Liu,[†] and Bing-Feng Shi*,[†]

[†] Department of Chemistry, Zhejiang University Hangzhou 310027 (China)

*Email: <u>bfshi@zju.edu.cn</u>

Table of Contents:

1. General information	S2
2. Experimental Section	S3
2.1 Preparation of Substrates	S3
2.2 Optimization of Reaction Conditions	S 8
2.3 Pd(II)-Catalyzed Carboxylate-Directed γ-C(sp ³)-H Arylation	S13
with Different Aryl Iodides	
2.4 Pd(II)-Catalyzed Carboxylate-Directed γ-C(sp ³)-H Arylation	S22
of Different Peptides.	
2.5 Pd(II)-Catalyzed Carboxylate-Directed γ-C(sp ³)-H Arylation	S25
of Tle with Different Protected Groups	
2.6 Gram-Scale Synthesis of 3a	S34
2.7 Co(III)-Catalyzed Enantioselective C(sp ³)-H amidation	S37
of Thioamide 8	
2 References	\$40
3. References	340
4. NMR Spectra	S41

1. General Information

Pd(OAc)₂ (Laajoo), K₂CO₃ (Aladdin) were purchased from above mentioned company and used without additional purification. Other chemical reagents were commercially available and directly used without any further purification. NMR spectra were recorded on a Bruker Avance operating for ¹H NMR at 400 MHz, ¹³C NMR at 100 MHz, using TMS as internal standard. The peaks were internally referenced to TMS (0.00 ppm) or residual undeuterated solvent signal (77.16 ppm for ¹³C NMR). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, b = broad. Mass spectroscopy data of the products were collected on an HRMS-TOF instrumentor a low-resolution MS instrument using EI ionization. High pressure liquid chromatography (HPLC) analyses were performed on an Agilent 1100 instrument using a chiral stationary phase column (Daicel Co. CHIRALPAK). The chiral HPLC methods were calibrated with the corresponding racemic mixtures.

2. Experimental Section

2.1 General procedure for the preparation of short peptides

To a solution of L-*tert*-leucine benzyl ester hydrochloride (1.288 g, 5 mmol) and 4methylmorpholine (NMM, 0.94 mL, 0.86 g, 8.5 mmol) in DMF (30 mL) was added **S1** (5 mmol) and 1-Hydroxy-7-azabenzotriazole (HOAt, 0.75 g, 5.5 mmol). The mixture was cooled in an ice bath and subsequently 1-ethyl-3-(3- (dimethylamino)propyl)carbodiimide hydrochloride (EDCI, 1.15 g, 6 mmol) was added in one portion. After 1.5 h at 0 °C and 6 h at room temperature, the mixture waspartitioned between H₂O (200 mL) and EtOAc (30 mL). The aqueous phase wasextracted with EtOAc (30 mL X 3). The organic phase was washed successively with H₂O, 0.5 N HCl solution, saturated aqueous NaHCO₃ solution and brine, then it was dried over anhydrous Na₂SO₄, filtered, and the residue was purified by silica gel column chromatography, give the ester as a white solid, the benzyl ester was added to a hydrogen gas, the suspension was stirred overnight at room temperature. The reaction mixture was then filtered through a pad of Celite to remove the catalyst, and the solvents were removed under vacuum. The resulting residue was was purified by silica gel column chromatography¹.

To a solution of L-*tert*-leucine benzyl ester hydrochloride (1.288 g, 5 mmol) and 4methylmorpholine (NMM, 0.94 mL, 0.86 g, 8.5 mmol) in DMF (30 mL) was added **S3** (5 mmol) and 1-Hydroxy-7-azabenzotriazole (HOAt, O.75 g, 5.5 mmol). The mixture was cooled in an ice bath and subsequently 1-ethyl-3-(3- (dimethylamino)propyl)carbodiimide hydrochloride (EDCI, 1.15 g, 6 mmol) was added in one portion. After 1.5 h at 0 °C and 6 h at room temperature, the mixture waspartitioned between H₂O (200 mL) and EtOAc (30 mL). The aqueous phase wasextracted with EtOAc (30 mL X 3). The organic phase was washed successively with H₂O, 0.5 N HCl solution, saturated aqueous NaHCO₃ solution and brine, then it was dried over anhydrous Na₂SO₄, filtered, and the residue was purified by silica gel column chromatography, give the ester as a white solid **S4**, Adding **S4** to the round bottom flask in 10 mL HCl in 4 M 1.4-Dioxane, stirring at room temperature 4 h. the solvents were removed under vacuum to obtain **S5**.

S5 and 4-methylmorpholine (NMM, 0.94 mL,) in DMF (30 mL) was added **S6** and 1-hydroxy-7azabenzotriazole (HOAt,). The mixture was cooled in an ice bath and subsequently 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDCI) was added in one portion. After 1.5 h at 0 °C and 6 h at room temperature, the mixture waspartitioned between H₂O (200 mL) and EtOAc (30 mL). The aqueous phase was extracted with EtOAc (30 mL X 3). The organic phase was washed successively with H₂O, 0.5 N HCl solution, saturated aqueous NaHCO₃ solution and brine, then it was dried over anhydrous Na₂SO₄, filtered, and the residue was purified by silica gel column chromatography, give the ester as a white solid **S7**, the benzyl ester was added to a hydrogenator in which palladium on activated carbon (10% Pd/C), MeOH (30 mL). After filled with hydrogen gas, the suspension was stirred overnight at room temperature. The reaction mixture was then filtered through a pad of Celite to remove the catalyst, and the solvents were removed under vacuum. The resulting residue was purified by silica gel column chromatography¹.

R = hydrogen, Compound **4a**, a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (m, 2H), 7.71 (m, 2H), 6.96 (d, J = 9.3 Hz, 1H), 4.52 – 4.39 (m, 3H), 0.98 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.30, 168.08, 166.70, 134.41, 132.04, 123.78, 60.59, 40.76, 34.93, 26.65. **HRMS** (EI-TOF) calcd for C₁₆H₁₈N₂O₅ (M-H⁺): 317.1143, found: 317.1140.

R = cyclohexyl, Compound **4b**, a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.81 (m, 2H), 7.79 – 7.73 (m, 2H), 7.70 (d, *J* = 9.0 Hz, 1H), 4.52 (d, *J* = 11.4 Hz, 1H), 4.32 (d, *J* = 8.9 Hz, 1H), 2.56 – 2.42 (m, 1H), 1.89 – 1.72 (m, 2H), 1.64 (d, *J* = 11.2 Hz, 2H), 1.45 (d, *J* = 12.8 Hz, 1H), 1.32 – 1.07 (m, 4H), 1.01 (s, 9H), 0.91 – 0.79 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.66 , 169.16 , 168.73 , 134.62 , 131.32 , 123.92 , 62.23 , 60.59 , 36.69 , 34.32 , 30.36 , 29.59 , 26.78 , 26.06 , 25.48 , 25.41 . **HRMS** (EITOF) calcd for C₂₂H₂₈N₂O₅ (M-H⁺): 399.1925, found: 399.1927.

R = isobutyl, Compound **4c**, a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.77 (m, 2H), 7.82 – 7.65 (m, 2H), 6.92 (d, J = 9.0 Hz, 1H), 4.93 (dd, J = 11.1, 5.0 Hz, 1H), 4.40 (d, J = 9.0 Hz, 1H), 2.44 – 2.25 (m, 1H), 1.93 – 1.79 (m, 1H), 1.52 – 1.36 (m, 1H), 0.98 (s, 9H), 0.92 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ175.03, 169.49, 168.30, 134.45, 131.50, 123.74, 60.43, 53.65, 37.65, 34.72, 26.55, 25.26, 23.04, 21.32. **HRMS** (EI-TOF) calcd for C₂₀H₂₆N₂O₅ (M-H⁺): 373.1769, found: 373.1772.

R = isopropyl, Compound **4d**, a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.81 (m, 2H), 7.77 – 7.68 (m, 3H), 4.38 (d, *J* = 11.4 Hz, 1H), 4.25 (d, *J* = 8.8 Hz, 1H), 2.89 – 2.75 (m, 1H), 1.07 (d, *J* = 6.6 Hz, 3H), 0.95 (s, 9H), 0.80 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.20, 169.33, 168.74, 134.65, 131.31, 124.00, 63.42, 60.85, 34.32, 28.00, 26.74, 19.83, 19.57. **HRMS** (EI-TOF) calcd for C₁₉H₂₄N₂O₅ (M-H⁺): 359.1612, found: 359.1614.

R = sec-butyl, Compound **4e**, a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.81 (m, 2H), 7.78 – 7.72 (m, 2H), 7.65 (d, 1H), 4.51 (d, *J* = 11.6 Hz, 1H), 4.32 (d, *J* = 8.8 Hz, 1H), 2.75 – 2.59 (m, 1H), 1.39

-1.28 (m, 2H), 1.04 (d, J = 6.9 Hz, 3H), 1.01 (s, 9H), 0.82 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.03 , 169.99 , 168.83 , 134.72 , 131.28 , 124.00 , 61.90 , 61.05 , 34.24 , 33.35 , 26.72 , 25.51 , 15.70 , 10.10 . **HRMS** (EI-TOF) calcd for C₂₀H₂₆N₂O₅ (M-H⁺): 373.1769, found: 373.1770.

 $\mathbf{R} = tert$ -butyl, Compound **4f**, a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 7.7 Hz, 1H), 7.92 – 7.87 (m, 2H), 7.80 – 7.76 (m, 2H), 4.87 (s, 1H), 4.27 (d, J = 7.7 Hz, 1H), 1.13 (s, 9H), 1.01 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.12, 168.36, 134.78, 131.23, 123.96, 65.79, 61.71, 36.71, 33.83, 28.28, 26.88. **HRMS** (EI-TOF) calcd for C₂₀H₂₆N₂O₅ (M-H⁺): 373.1769, found: 373.1772.

R₁ = isopropyl, **R**₂ = sec-butyl, Compound **4g**, a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.82 (m, 2H), 7.76 – 7.73 (m, 2H), 7.71 (d, *J* = 8.4 Hz, 1H), 6.97 (d, *J* = 9.3 Hz, 1H), 4.53 (d, *J* = 11.3 Hz, 1H), 4.32 (dd, *J* = 20.0, 8.7 Hz, 1H), 2.85 – 2.54 (m, 1H), 2.19 – 1.91 (m, 1H), 1.37 – 1.29 (m, 1H), 1.03 (d, *J* = 6.7 Hz, 3H), 0.89 (d, *J* = 5.4 Hz, 3H), 0.87 (d, *J* = 5.2 Hz, 3H), 0.83 (s, 9H), 0.82 (t, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.88 , 171.28 , 170.14 , 168.64 , 134.69 , 131.37 , 123.92 , 61.46 , 60.19 , 59.34 , 34.85 , 33.18 , 30.40 , 26.43 , 25.59 , 19.40 , 18.22 , 15.85 , 10.22 . **HRMS** (EI-TOF) calcd for C₂₅H₃₅N₃O₆ (M-H⁺): 472.2453, found: 472.2455.

R₁ = isobutyl, **R**₂ = isopropyl, Compound **4h**, a white solid.¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.82 (m, 2H), 7.79 – 7.72 (m, 2H), 7.50 – 7.40 (m, 1H), 6.95 – 6.84 (m, 1H), 4.53 – 4.42 (m, 2H), 4.28 (d, *J* = 9.2 Hz, 1H), 2.93 – 2.78 (m, 1H), 1.78 – 1.53 (m, 3H), 1.09 (d, *J* = 6.6 Hz, 3H), 0.92 (d, *J* = 5.6 Hz, 3H), 0.88 (d, *J* = 5.6 Hz, 3H), 0.85 (d, *J* = 6.6 Hz, 3H), 0.81 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.03, 171.59, 169.58, 168.54, 134.66, 131.39, 123.90, 62.75, 60.17, 52.14, 40.08, 34.79, 27.77, 26.44, 24.90, 23.07, 21.96, 19.91, 19.55. **HRMS** (EI-TOF) calcd for C₂₅H₃₅N₃O₆ (M-H⁺): 472.2453, found: 472.2455.

R = methyl, Compound **4i**, a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.83 (m, 2H), 7.77 – 7.66 (m, 2H), 6.78 (d, *J* = 9.2 Hz, 1H), 4.97 (q, *J* = 7.3 Hz, 1H), 4.43 (d, *J* = 9.3 Hz, 1H), 1.70 (d, *J* = 7.4 Hz, 3H), 0.96 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.92, 169.57, 168.03, 134.53, 131.80, 123.78, 60.50, 49.87, 34.93, 26.62, 15.52. **HRMS** (EI-TOF) calcd for C₁₇H₁₂N₂O₅ (M-H⁺): 331.1299, found: 371.1297.

2.2 Optimization of Reaction Conditions

$ \begin{array}{c} $	Pd(OAc) ₂ (10 mol%) ligand (30 mol%) <u>1 equiv K₂CO₃ 1 equiv Ag₂CO₃ HFIP, air, 100 °C, 24 h</u>	MeO NPhth 3a
entry	Ligand	yield
1	Ac-Gly-OH	trace
2	Ac-Leu-OH	10%
3	Ac-IIe-OH	trace
4	Ac-Ala-OH	trace
5	Ac-Val-OH	trace
6	Ac-TIe-OH	15%

Table S1. Screening of ligands

Reaction Conditions: **1a** (0.10 mmol), **2a** (0.15 mmol), $Pd(OAc)_2$ (0.01 mmol), Ag_2CO_3 (0.1 mmol), K_2CO_3 (0.1mmol), ligand (0.03 mmol), HFIP (1.0 mL), air for 24 h at 100 °C. Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S2. Screening of solvents

NPhth	MeO 2a	Pd(OAc) ₂ (10 mol%) Ac-Tle-OH (30 mol%) $1 \text{ equiv } K_2CO_3$ $1 \text{ equiv } Ag_2CO_3$ solvent, air, 100 °C, 24 h	MeO O O O O O O O O O O O O O
entry		solvent	yield
1		HFIP	15%
2		HOAc	N.R
3		TFA	trace
4		<i>t-</i> BuOH	trace
5		DCE	N.R
6		PhMe	N.R
7		1.4-dioxane	N.R

Reaction Conditions: **1a** (0.10 mmol), **2a** (0.15 mmol), Pd(OAc)₂ (0.01 mmol), Ag₂CO₃ (0.1 mmol), K₂CO₃ (0.1 mmol), Ac-Tle-OH (0.03 mmol), solvent (1.0 mL), air for 24 h at 100 °C. Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S3. Screening of Silver Salts

O NPhth H 1	Pd(OAc) ₂ (10 mol%) Ac-Tle-OH (30 mol%) <u>1 equiv K₂CO₃ 1 equiv [Ag] solvent, air, 100 °C, 24 h</u>	MeO O O O O O O O O O O O O O
entry	[Ag]	yield
1	Ag ₂ CO ₃	15%
2	AgOAc	trace
3	Ag ₂ NO ₃	trace
4	Ag ₂ O	trace
5	AgOTf	trace
6	Ag ₃ PO ₄	40%
7	None	trace

Reaction Conditions: 1 (0.10 mmol), 2a (0.15 mmol), Pd(OAc)₂ (0.01 mmol), Oxidant (0.1 mmol), K₂CO₃ (0.1mmol), Ac-Tle-OH (0.03 mmol), HFIP (1.0 mL), air for 24 h at 100 °C. Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S4. Investigation of Temperature

O NPhth 1	MeO 2a	Pd(OAc) ₂ (10 mol%) Ac-Tle-OH (30 mol%) $1 \text{ equiv } K_2CO_3$ 1 equiv Ag ₂ CO ₃ HFIP, air, 100 °C, 24 h	MeO O NPhth 3a
 entry		T/°C	yield
1		120	38%
2		100	40%
3		90	43%
4		70	46%
5		60	40%

Reaction Conditions: 1 (0.10 mmol), 2a (0.15 mmol), Pd(OAc)₂ (0.01 mmol), Ag₃PO₄ (0.1 mmol), K₂CO₃ (0.1mmol), Ac-Tle-OH (0.03 mmol), HFIP (1.0 mL), air for 24 h . Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S5. Screening the Equivalents of 2a

Reaction Conditions: **1a** (0.10 mmol), **2a**, $Pd(OAc)_2$ (0.01 mmol), Ag_3PO_4 (0.1 mmol), $K_2CO_3(0.1 \text{ mmol})$, Ac-Tle-OH (0.03 mmol), HFIP (1.0 mL), air for 24 h at 70 °C. Yield was determined by ¹H NMR using1,3,5-trimethoxybenzene as an internal standard. ^aD-Ac-Tle-OH was used as ligand.

2.3 Palladium-Catalyzed Carboxylate-Directed γ -C(sp³)-H Arylation

with Different Aryl Iodides.

General Procedure A: To an oven-dried 50 mL Schlenk tube were added substrate 1 (0.30 mmol), 2 (0.90 mmol), $Pd(OAc)_2$ (6.6 mg, 0.030 mmol), Ac-Tle-OH (0.09 mmol), Ag_3PO_4 (125.4 mg, 0.30 mmol), K_2CO_3 (41.4 mg, 0.30 mmol), HFIP (3.0 mL). The mixture was stirred for 24 h at 70 °C followed by cooling. HCOOH (25uL) was then added and the resulting mixture was filtered through a celite pad and concentrated in *vacuo*. The residue was purified by preparative TLC using PE/EtOAc/HCOOH as the eluent to afford the product **3**. Characterization data for products are reported as follows:

The title compound **3a** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3a** was obtained as a white solid (64.0 mg, 58%).¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.82 (m, 2H), 7.79 – 7.70 (m, 2H), 7.09 (d, J = 8.6 Hz ,2H), 6.82 (d, J = 8.6 Hz ,2H), 4.86 (s, 1H), 3.79 (s, 3H), 3.01 (d, J = 13.3 Hz, 1H), 2.83 (d, J = 13.3 Hz, 1H), 1.17 (s, 3H), 1.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.84, 168.21 , 158.29 , 134.44 , 131.98 , 131.76 , 129.98 , 123.81 , 113.47 , 59.25 , 55.33 , 44.68 , 39.48 , 24.89 , 24.76 . **HRMS** (EI-TOF) calcd for C₂₂H₂₁NO₅ (M-H⁺): 366.1347, found: 366.1347.

The title compound **3a'** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%).**3a'** was obtained as a white solid (13.7 mg, 10%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.78 (m, 2H), 7.76 – 7.70 (m, 2H), 7.16 (d, *J* = 8.5 Hz, 2H), 7.07 (d, *J* = 8.5 Hz, 2H), 6.90 – 6.78 (m, 4H), 5.02 (s, 1H), 3.7997 (s, 3H), 3.7993 (s, 3H), 3.47 (d, *J* = 13.7 Hz, 1H), 3.39 (d, *J* = 13.4 Hz, 1H), 3.18 (d, *J* = 13.5 Hz, 1H), 2.54 (d, *J* = 13.6 Hz, 1H), 0.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.82, 168.25, 158.38, 158.11, 134.40, 132.30, 131.71, 131.67, 130.07, 129.58, 123.74, 113.81, 113.31, 56.65, 55.31, 55.26, 42.75, 42.39, 42.04, 22.74. **HRMS** (EI-TOF) calcd for C₂₈H₂₇NO₆ (M-H⁺): 472.1765, found: 472.1767.

The title compound **3b** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3b** was obtained as a white solid (62.6 mg,

55%).¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.82 (m, 4H), 7.82 – 7.70 (m, 2H), 7.27 (d, *J* = 9.0 Hz ,2H), 4.83 (s, 1H), 3.17 (d, *J* = 12.8 Hz, 1H), 2.97 (d, *J* = 12.8 Hz, 1H), 2.60 (s, 3H), 1.16 (s, 3H), 1.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.33, 171.77, 168.22, 144.04, 135.50, 134.56, 131.71, 128.15, 123.89, 59.30, 45.17, 39.52, 26.71, 25.00, 24.84. **HRMS** (EI-TOF) calcd for C₂₂H₂₁NO₅ (M-H⁺): 378.1347, found: 378.1349.

The title compound **3b**' was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%).**3b**' was obtained as a white solid (19.4mg, 13%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.87 (m, 4H), 7.85 – 7.81 (m, 2H), 7.74 (m, 2H), 7.34 (d, *J* = 7.9 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 4.88 (s, 1H), 3.70 (d, *J* = 13.3 Hz, 1H), 3.58 (d, *J* = 13.2 Hz, 1H), 3.25 (d, *J* = 13.0 Hz, 1H), 2.60 (s, 3H), 2.59(s, 3H), 2.56 (d, *J* = 13.5 Hz, 1H), 0.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.48, 198.39, 168.23, 167.95, 143.90, 143.43, 135.76, 135.55, 134.61, 131.63, 131.61, 130.99, 128.61, 128.18, 123.87, 56.46, 43.50, 43.08, 42.82, 26.70, 23.01. **HRMS** (EITOF) calcd for C₃₀H₂₇NO₆ (M-H⁺):496.1765, found: 496.1766.

The title compound **3c** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3c** was obtained as a white solid (71.1 mg, 60%).¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.9 Hz, 2H), 7.92 – 7.85 (m, 2H), 7.80 – 7.70 (m, 2H), 7.25 (d, *J* = 7.9 Hz, 2H), 4.82 (s, 1H), 3.90 (s, 3H), 3.15 (d, *J* = 12.9 Hz, 1H), 2.96 (d, *J* = 12.8 Hz, 1H), 1.15 (s, 3H), 1.04 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.70 , 168.20 , 167.34 , 143.65 , 134.55 , 131.72 , 131.13 , 129.32 , 128.41 , 123.89 , 59.36 , 52.17 , 45.18 , 39.51 , 24.95 , 24.82 . **HRMS** (EI-TOF) calcd for C₂₂H₂₁NO₆ (M-H⁺):394.1296, found: 394.1296.

The title compound **3c'** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%).**3c'** was obtained as a white solid (14.3mg, 9%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.93 (m, 4H), 7.88 – 7.80 (m, 2H), 7.76 – 7.69 (m, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 4.89 (s, 1H), 3.9097 (s, 3H), 3.9007 (s, 3H), 3.68 (d, *J* = 13.3 Hz, 1H), 3.56 (d, *J* = 13.1 Hz, 1H), 3.27 (d, *J* = 13.0 Hz, 1H), 2.57 (d, *J* = 13.2 Hz, 1H), 0.89 (s, 3H). ¹³C
$$\begin{split} \text{NMR} & (101 \text{ MHz}, \text{CDCl}_3) \, \delta \, 172.07 \,, 168.21 \,, 167.34 \,, 167.24 \,, 143.54 \,, 143.08 \,, 134.56 \,, 131.65 \,, 131.47 \,, \\ & 130.82 \,, 129.78 \,, 129.32 \,, 128.79 \,, 128.48 \,, 123.86 \,, 53.57 \,, 52.22 \,, 52.19 \,, 43.51 \,, 43.08 \,, 42.76 \,, 22.94 \,. \\ & \textbf{HRMS} \, (\text{EI-TOF}) \, \text{calcd for } C_{30}\text{H}_{27}\text{NO}_8 \, (\text{M-H}^+) \text{:} \, 528.1664 \,, \, \text{found:} \, 528.1664 \,. \end{split}$$

The title compound **3d** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3d** was obtained as a white solid (64.1 mg, 58%).¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.92 – 7.82 (m, 2H), 7.80 (d, *J* = 7.9 Hz, 2H), 7.78 – 7.74 (m, 2H), 7.35 (d, *J* = 7.8 Hz, 2H), 4.84 (s, 1H), 3.19 (d, *J* = 12.8 Hz, 1H), 3.00 (d, *J* = 12.8 Hz, 1H), 1.16 (s, 3H), 1.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.32 , 171.82 , 168.17 , 145.64 , 134.86 , 134.55 , 131.71 , 131.65 , 129.50 , 123.87 , 59.23 , 45.28 , 39.52 , 24.99 , 24.84 . **HRMS** (EI-TOF) calcd for C₂₁H₁₉NO₅ (M+Na⁺): 388.1155, found: 388.1152.

The title compound **3e** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3e** was obtained as a white solid (60.1 mg, 54%).¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.75 (m, 2H), 7.79 – 7.71 (m, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 8.1 Hz, 2H), 4.83 (s, 1H), 3.05 (d, *J* = 13.1 Hz, 1H), 2.87 (d, *J* = 13.1 Hz, 1H), 1.14 (s, 3H), 1.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.13, 168.18, 136.40, 134.51, 132.31, 131.65, 128.13, 123.84, 59.20, 44.54, 39.32, 24.82, 24.65. **HRMS** (EI-TOF) calcd for C₂₀H₁₈CINO₄(M-H⁺): 370.0851, found: 370.0850.

The title compound **3f** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3f** was obtained as a white solid (68.7 mg, 60%).¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.85 (m, 2H), 7.84 – 7.79 (m, 1H), 7.79 – 7.73 (m, 3H), 7.39 (m,2H), 4.84 (s, 1H), 3.16 (d, *J* = 13.1 Hz, 1H), 2.97 (d, *J* = 13.1 Hz, 1H), 2.59 (s, 3H), 1.15 (s, 3H), 1.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.72, 172.12, 168.21, 138.61, 136.93, 135.90, 134.55, 131.71, 130.77, 128.28, 126.70, 123.90, 59.33, 45.00, 39.41, 26.83, 24.83, 24.77. **HRMS** (EI-TOF) calcd for C₂₂H₂₁NO₅ (M-H⁺): 378.1347, found: 378.1347.

The title compound **3g** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3g** was obtained as a white solid (61.8 mg, 56%) ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.97 – 7.84 (m, 2H), 7.81 – 7.73 (m, 3H), 7.69 (m, 1H), 7.51 – 7.43 (m, 2H), 4.85 (s, 1H), 3.19 (d, *J* = 13.1 Hz, 1H), 3.00 (d, *J* = 13.1 Hz, 1H), 1.16 (s, 3H), 1.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.79 , 172.02 , 168.20 , 137.26 , 136.30 , 134.59 , 132.12 , 131.70 , 128.76 , 128.22 , 123.92 , 59.30 , 44.80 , 39.41 , 24.87 , 24.78. **HRMS** (EI-TOF) calcd for C₂₁H₁₉NO₅ (M+Na⁺): 388.1155, found: 388.1157.

The title compound **3g'** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%).**3g'** was obtained as a white solid (15.2mg, 10%).¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 1H), 9.97 (s, 1H), 7.87 – 7.82 (m, 2H), 7.81 – 7.72 (m, 5H), 7.64 – 7.61 (m, 1H), 7.57 – 7.43 (m, 4H), 4.89 (s, 1H), 3.74 (d, *J* = 13.3 Hz, 1H), 3.60 (d, *J* = 13.3 Hz, 1H), 3.32 (d, *J* = 13.3 Hz, 1H), 2.61 (d, *J* = 13.4 Hz, 1H), 0.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.73, 192.67, 168.23, 138.97, 138.53, 137.57, 136.88, 136.55, 136.37, 134.65, 132.19, 131.61, 129.28, 128.92, 128.83, 128.50, 123.92, 43.17, 42.69, 42.55, 22.79. **HRMS** (EI-TOF) calcd for C₂₈H₂₃NO₆ (M-H⁺): 468.1452, found: 468.1454.

The title compound **3h** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3h** was obtained as a white solid (50.7 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.80 (m, 2H), 7.78 – 7.68 (m, 2H), 7.19 (t, J = 7.9 Hz, 1H), 6.77 (m,2H), 6.72 (m,1H), 4.86 (s, 1H), 3.78 (s, 3H), 3.04 (d, J = 13.1 Hz ,1H), 2.88 (d, J = 13.1 Hz 1H), 1.19 (s, 3H), 1.04 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.67 , 168.20 , 159.28 , 139.54 , 134.44 , 131.74 , 128.89 , 123.81 , 123.63 , 116.92 , 111.75 , 59.29 , 55.29 , 45.54 , 39.41 , 25.08 , 24.90 . **HRMS** (EI-TOF) calcd for C₂₁H₂₁NO₅ (M-H⁺): 366.1347, found: 366.1350.

The title compound **3h'** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3h'** was obtained as a white solid (10.0mg, 7%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.78 (m, 2H), 7.79 – 7.66 (m, 2H), 7.29 – 7.11 (m, 2H), 6.87 – 6.73 (m, 5H), 6.68 (s, 1H), 5.03 (s, 1H), 3.78 (s, 3H), 3.74 (s, 3H), 3.52 (d, *J* = 13.6 Hz, 1H), 3.43 (d, *J* = 13.2 Hz, 1H), 3.19 (d, *J* = 13.3 Hz, 1H), 2.60 (d, *J* = 13.4 Hz, 1H), 0.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.64, 168.19, 159.51, 159.22, 139.57, 139.18, 134.42, 131.69, 129.34, 128.78, 124.01, 123.77, 123.21, 117.21, 116.52, 112.24, 111.67, 55.30, 55.23, 43.55, 43.21, 42.63, 23.11. **HRMS** (EITOF) calcd for C₂₈H₂₇NO₆ (M-H⁺): 472.1765, found: 472.1763.

The title compound **3i** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3i** was obtained as a white solid (81.8 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.84 (m, 3H), 7.84 – 7.79 (m, 1H), 7.78 – 7.71 (m, 2H), 7.46 – 7.29 (m, 2H), 4.80 (s, 1H), 3.88 (s, 3H), 3.12 (d, *J* = 13.1 Hz, 1H), 2.95 (d, *J* = 13.1 Hz, 1H), 1.13 (s, 3H), 1.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.17, 168.27, 167.48, 138.44, 135.69, 134.48, 132.07, 131.72, 129.83, 128.06, 127.73, 123.84, 59.42, 52.26, 44.88, 39.37, 24.81, 24.70. **HRMS** (EI-TOF) calcd for C₂₂H₂₁NO₆ (M-H⁺): 394.1296, found: 394.1295.

The title compound **3i'** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3i'** was obtained as a white solid (15.8mg, 10%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.7 Hz, 3H), 7.86 – 7.80 (m, 2H), 7.76 – 7.70 (m, 3H), 7.46 (d, J = 7.7 Hz, 1H), 7.41 – 7.31 (m, 3H), 4.90 (s, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.69 (d, J = 13.4 Hz, 1H), 3.56 (d, J = 13.3 Hz, 1H), 3.27 (d, J = 13.3 Hz, 1H), 2.58 (d, J = 13.4 Hz, 1H), 0.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.40, 168.23, 167.45, 167.32, 138.23, 137.84, 136.08, 135.31, 134.52, 132.33, 131.89, 131.64, 130.18, 129.93, 128.59, 128.19, 128.10, 127.81, 123.84, 56.42, 52.27, 43.17, 42.68, 42.58, 22.75. **HRMS** (EI-TOF) calcd for C₃₀H₂₇NO₈ (M-H⁺): 528.1664, found: 528.1664.

The title compound **3j** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3j** was obtained as a white solid (60.2 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.80 (m, 2H), 7.78 – 7.71 (m, 2H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.77 – 6.63 (m, 2H), 4.82 (s, 1H), 3.85 (s, 3H), 3.83 (s, 3H), 3.01 (d, *J* = 13.3 Hz, 1H), 2.81 (d, *J* = 13.3 Hz, 1H), 1.17 (s, 3H), 1.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.24, 168.24, 148.40, 147.71, 134.46, 131.75, 130.49, 123.81, 123.18, 114.45, 110.89, 59.25, 56.01, 55.95, 45.15, 39.49, 25.06, 24.84. **HRMS** (EI-TOF) calcd for C₂₂H₂₃NO₆ (M-H⁺): 396.1452, found: 396.1455.

The title compound **3j**' was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3j**' was obtained as a white solid (8.0 mg, 5%).¹H NMR (400 MHz, CDCl₃ δ 7.86 – 7.81 (m, 2H), 7.76 – 7.70 (m, 2H), 6.86 – 6.74 (m, 4H), 6.71 (d, J = 8.2 Hz, 1H), 6.63 (s, 1H), 4.99 (s, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 3.84 (s, 3H), 3.79 (s, 3H), 3.47 (d, J = 13.7 Hz, 1H), 3.39 (d, J = 13.5 Hz, 1H), 3.09 (d, J = 13.4 Hz, 1H), 2.56 (d, J = 13.6 Hz, 1H), 0.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.26, 168.23, 148.67, 148.29, 147.89, 147.60, 134.44, 131.71, 130.06, 123.77 (d, J = 3.7 Hz), 123.58, 122.83, 114.79, 114.03, 111.16, 110.80, 56.04, 55.93, 55.89, 42.95, 42.78, 42.63, 23.07. **HRMS** (EI-TOF) calcd for C₃₀H₃₁NO₈ (M-H⁺): 532.1977, found: 532.1977.

The title compound **3k** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3k** was obtained as a white solid (51.0 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.84 (m, 2H), 7.79 – 7.73 (m, 2H), 7.00 – 6.89 (m, 2H), 6.73 (d, *J* = 8.1 Hz, 1H), 4.87 (s, 1H), 3.81 (s, 3H), 2.96 (d, *J* = 13.3 Hz, 1H), 2.80 (d, *J* = 13.3 Hz, 1H), 2.18 (s, 3H), 1.18 (s, 3H), 1.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.28, 168.20, 156.41, 134.43, 133.44, 131.73, 129.47, 129.16, 125.87, 123.80, 109.49, 59.31, 55.39, 44.65, 39.44, 24.88, 24.74, 16.39. **HRMS** (EI-TOF) calcd for C₂₂H₂₃NO₅ (M-H⁺): 380.1503, found: 380.1503.

The title compound **3k'** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3k'** was obtained as a white solid (10.5 mg, 7%). ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.78 (m, 2H), 7.78 – 7.69 (m, 2H), 7.10 – 6.93 (m, 3H), 6.87 (s, 1H), 6.74 (dd, J = 8.2, 5.9 Hz, 2H), 5.03 (s, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.40 (d, J = 13.7 Hz, 1H), 3.34 (d, J = 13.4 Hz, 1H), 3.10 (d, J = 13.4 Hz, 1H), 2.55 (d, J = 13.7 Hz, 1H), 2.19 (s, 3H), 2.15 (s, 3H), 0.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.77, 168.26, 156.56, 156.29, 134.37, 133.81, 133.20, 131.74, 129.67, 129.53, 129.23, 128.86, 126.24, 125.70, 123.72, 109.82, 109.41, 56.82, 55.40, 55.34, 42.73, 42.42, 42.02, 22.83, 16.44, 16.38 **. HRMS** (EI-TOF) calcd for C₃₀H₃₁NO₆ (M-H⁺): 500.2078, found: 500.2080.

The title compound **31** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **31** was obtained as a white solid (74.9 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.79 (m, 2H), 7.79 – 7.67 (m, 2H), 6.37 (s, 2H), 4.83 (s, 1H), 3.82 (s, 3H), 3.81 (s, 6H), 3.00 (d, *J* = 13.1 Hz, 1H), 2.82 (d, *J* = 13.2 Hz, 1H), 1.18 (s, 3H), 1.06 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.76, 168.21, 152.67, 136.70, 134.48, 133.64, 131.70, 123.80, 108.23, 61.00, 59.35, 56.25, 45.82, 39.44, 25.20, 24.92. **HRMS** (EI-TOF) calcd for C₂₃H₂₅NO₇ (M-H⁺): 426.1558, found: 426.1559.

The title compound **3m** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3m** was obtained as a white solid (69.0 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.85 (m, 2H), 7.77 – 7.72 (m, 2H), 7.01 (s, 2H), 4.82 (s, 1H), 3.66 (s, 3H), 2.97 (d, *J* = 13.1 Hz, 1H), 2.78 (d, *J* = 13.1 Hz, 1H), 1.40 (s, 18H), 1.19 (s, 3H), 1.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.30, 168.19, 157.95, 142.74, 134.41, 131.77, 131.62, 129.25, 123.81, 64.29, 59.21, 45.57, 39.47, 35.70, 32.30, 24.92, 24.78. **HRMS** (EI-TOF) calcd for C₂₉H₃₇NO₅ (M-H⁺): 478.2599, found: 478.2598.

The title compound **3m**' was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3m**' was obtained as a white solid (11.5 mg, 5%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.78 (m, 2H), 7.75 – 7.69 (m, 2H), 7.09 (s, 2H), 7.02 (s, 2H), 4.74 (s, 1H), 3.67 (s, 3H), 3.66 (s, 3H), 3.38 (dd, *J* = 13.5, 4.7 Hz, 2H), 2.93 (d, *J* = 13.3 Hz, 1H), 2.51 (d, *J* = 13.5 Hz, 1H), 1.41 (s, 18H), 1.39 (s, 18H),), 0.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.37, 168.22, 157.97, 142.76, 134.43, 131.77, 131.61, 129.25, 123.82, 64.30, 59.17, 45.56, 39.50, 35.71, 32.30, 24.93, 24.77. **HRMS** (EI-TOF) calcd for C₄₄H₅₉NO₆ (M-H⁺): 696.4269, found:.696.4269.

The title compound **3n** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3n** was obtained as a white solid (65.8 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.78 (m, 2H), 7.77 – 7.65 (m, 2H), 7.22 (m, 1H), 7.13 (m, 1H), 6.93 – 6.84 (m, 2H), 4.91 (s, 1H), 3.76 (s, 3H), 3.29 (d, *J* = 13.1 Hz, 1H), 2.80 (d, *J* = 13.1 Hz, 1H), 1.28 (s, 3H), 0.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.62 , 168.19 , 158.21 , 134.33 , 133.14 , 131.79 , 127.88 , 126.65 , 123.71 , 120.16 , 110.65 , 58.68 , 55.08 , 40.00 , 39.26 , 25.21 , 25.02 . **HRMS** (EI-TOF) calcd for C₂₂H₂₁NO₅ (M-H⁺): 366.1347, found: 366.1340.

The title compound **3n'** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **3n'** was obtained as a white solid (11.3 mg, 8%)¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.79 (m, 2H), 7.78 – 7.58 (m, 2H), 7.22 – 7.11 (m, 3H), 7.02 – 6.76 (m, 5H), 5.00 (s, 1H), 3.79-3.76 (d, *J* = 12.0 Hz, 1H), 3.77 (s, 3H), 3.72 (d, *J* = 12.0 Hz, 1H), 3.68(s, 3H), 3.24 (d, *J* = 13.3 Hz, 1H), 2.54 (d, *J* = 13.7 Hz, 1H), 0.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.65, 168.29, 158.60, 158.15, 134.25, 133.57, 133.34, 131.90, 128.03, 127.58, 127.46, 126.62, 123.62, 120.35, 120.00, 110.70, 110.66, 57.15, 55.28, 54.99, 43.92, 36.80, 36.00, 22.24. **HRMS** (EI-TOF) calcd for C₂₀H₂₃NO₄ (M-H⁺): 472.1765, found: 472.1762.

The title compound **30** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **30** was obtained as a white solid (54.6 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.85 (m, 2H), 7.84 – 7.77 (m, 2H), 7.78 – 7.74 (m, 3H), 7.66 – 7.62 (m, 1H), 7.48 – 7.40 (m, 2H), 7.33 (dd, *J* = 8.4, 1.8 Hz, 1H), 4.93 (s, 1H), 3.23 (d, *J* = 13.1 Hz, 1H), 1.22 (s, 3H), 1.11 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.22 , 168.11 , 135.46 , 134.37 , 133.26 , 132.15 , 131.62 , 129.57 , 129.44 , 127.62 , 127.55 , 127.21 , 125.82 , 125.35 , 123.74 , 59.50 , 45.29 , 39.69 , 24.84 , 24.71 . **HRMS** (EI-TOF) calcd for C₂₄H₂₁NO₄ (M-H⁺): 386.1398, found: 386.1401.

General Procedure A: To an oven-dried 50 mL Schlenk tube were added substrate **11** (0.30 mmol), **2a** (0.90 mmol), $Pd(OAc)_2$ (6.6 mg, 0.030 mmol), Ac-Tle-OH (0.09 mmol), Ag_3PO_4 (125.4 mg, 0.30 mmol), K_2CO_3 (41.4 mg, 0.30 mmol), HFIP (3.0 mL). The mixture was stirred for 24 h at 70 °C followed by cooling. HCOOH (25uL) was then added and the resulting mixture was filtered through a celite pad and concentrated in *vacuo*. The residue was purified by preparative TLC using PE/EtOAc/HCOOH as the eluent to afford the product **11a**. Characterization data for products are reported as follows:

The title compound **11a** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **11a** was obtained as a white solid (49.5 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.73 (m, 2H), 7.70 – 7.61 (m, 2H), 7.07 (d, *J* = 8.5 Hz, 1H), 6.71 (d, *J* = 8.6 Hz, 1H), 5.17 (t, *J* = 8.3 Hz, 1H), 3.69 (s, 1H), 3.53 (d, *J* = 8.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 174.25 , 167.59, 157.46, 134.26 , 131.57 , 129.93 , 128.53 , 123.65 , 114.09 , 55.22 , 53.37 , 33.63. **11a** is a known compound.^[1]

2.4 Palladium-Catalyzed Carboxylate-Directed γ-C(sp³)-H Arylation

of Different Peptides.

General Procedure B: To an oven-dried 50 mL Schlenk tube were added substrate **4** (0.10 mmol), **2c** (0.30 mmol), $Pd(OAc)_2$ (3.3 mg, 0.015 mmol), Ac-Tle-OH (0.030 mmol), Ag_2SO_4 (31.2 mg, 0.10 mmol), K_2CO_3 (13.8 mg, 0.10 mmol) and HFIP (1.0 mL). The mixture was stirred for 24 h at 70 °C followed by cooling. HCOOH (25uL) was then added and the resulting mixture was filtered through a celite pad and concentrated in *vacuo*. The residue was purified by preparative TLC using PE/EtOAc/HCOOH as the eluent to afford the product **5.** Characterization data for products are reported as follows:

The title compound **5a** was prepared following General Procedure B and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 2: 1: 1%). **5a** was obtained as a white solid (19.0 mg, 42%). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.6 Hz, 2H), 7.82 – 7.78 (m, 2H), 7.72 – 7.59 (m, 2H), 7.17 (d, *J* = 7.9 Hz, 2H), 6.79 – 6.58 (b, 1H), 4.59 – 4.36 (m, 3H), 3.87 (s, 3H), 2.66 (s, 2H), 0.99 (s, 3H). 0.97 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.94 , 168.09 , 167.37 , 167.12 , 143.17 , 134.43 , 131.91 , 131.00 , 129.25, 128.21 , 123.74 , 60.21 , 52.20 , 44.55 , 40.71 , 38.49 , 23.66 , 23.22 . **HRMS** (EI-TOF) calcd for C₂₄H₂₄N₂O₇ (M-H⁺): 451.1511, found: 451.1512.

The title compound **5a**'was prepared following General Procedure B and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 2: 1: 1%). **5a**' was obtained as a white solid (6.4 mg, 11%).¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 4.4 Hz, 2H), 7.86 (d, *J* = 4.3 Hz, 2H), 7.81 – 7.76 (m, 2H), 7.66 – 7.59 (m, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 1H), 4.53 (d, *J* = 8.6 Hz, 1H), 4.47 (d, *J* = 16.3 Hz, 1H), 4.35 (d, *J* = 16.3 Hz, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.00 (d, *J* = 13.1 Hz, 1H), 2.87 (d, *J* = 13.1 Hz, 1H), 2.72 (d, *J* = 13.2 Hz, 1H), 2.51 (d, *J* = 13.1 Hz, 1H), 0.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.74 , 168.03 , 167.54 – 167.11 (m), 142.54 , 142.40 , 134.45 , 131.92 , 131.28 , 131.09 , 129.52 , 129.48 , 128.66 , 128.60 , 126.02 , 123.79 , 58.08 , 52.23 , 52.21 , 42.48 , 41.80 , 40.71 , 21.91 . **HRMS** (EI-TOF) calcd for C₃₂H₃₀N₂O₉ (M-H⁺): 585.1878, found: 585.1877.

The title compound **5b** was prepared following General Procedure B and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **5b** was obtained as a white solid (18.7mg, 35%).¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 7.9 Hz, 2H), 7.89 – 7.82 (m, 2H), 7.79 (d, *J* = 8.8 Hz, 1H), 7.76 – 7.70 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 4.54 (d, *J* = 11.2 Hz, 1H), 4.42 (d, *J* = 8.7 Hz, 1H), 3.90 (s, 3H), 2.70 (s, 2H), 2.60 – 2.45 (m, 1H), 1.86 (d, *J* = 12.7 Hz, 1H), 1.76 (d, *J* = 12.6 Hz, 1H), 1.64 (d, *J* = 10.9 Hz, 2H), 1.47 (d, *J* = 12.9 Hz, 1H), 1.32 – 1.07 (m, 4H), 0.97 – 0.91 (s, 6H), 0.90 – 0.82 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.72, 169.40, 168.76, 167.27, 143.02, 134.69, 131.30, 130.95, 129.34, 128.42, 123.94, 62.09, 60.04, 52.22, 44.77, 38.09, 36.77, 30.50, 29.55, 26.03, 25.50, 25.40, 23.86, 23.42. **HRMS** (EI-TOF) calcd for C₃₀H₃₄N₂O₇ (M-H⁺): 533.2293, found: 533.2293.

The title compound **5c** was prepared following General Procedure B and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **5c** was obtained as a white solid (23.9mg, 47%).¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.1 Hz, 2H), 7.90 – 7.84 (m, 2H), 7.80 – 7.70 (m, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 6.93 (d, *J* = 9.0 Hz, 1H), 4.94 (dd, *J* = 11.1, 5.0 Hz, 1H), 4.55 (d, *J* = 9.0 Hz, 1H), 3.90 (s, 3H), 2.68 (s, 2H), 2.39 – 2.26 (m, 1H), 1.91 – 1.80 (m, 1H), 1.53 – 1.36 (m, 1H), 0.92(d, *J* = 2.0 Hz, 6H) 0.91(s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.53 , 169.61 , 168.29 , 167.17 , 143.02 , 134.56 , 131.45 , 130.89 , 129.23 , 128.28 , 123.78 , 59.86 , 53.45 , 52.11 , 44.48 , 38.53 , 37.58 , 25.23 , 23.70 , 23.30 , 23.08 , 21.29 . **HRMS** (EI-TOF) calcd for C₂₈H₃₂N₂O₇ (M-H⁺): 507.2137, found: 507.2136.

The title compound **5d** was prepared following General Procedure B and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **5d** was obtained as a white solid (20.7mg, 42%).¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.89 – 7.84 (m, 2H), 7.77 – 7.73 (m, 2H), 7.70 (d, *J* = 9.1 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 4.47 (d, *J* = 2.7 Hz, 1H), 4.45 (s, 1H), 3.90 (s, 3H), 2.93 – 2.82 (m, 1H), 2.70 (s, 2H), 1.10 (d, *J* = 6.6 Hz, 3H), 0.94 (s, 3H). 0.93 (s, 3H), 0.85 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.63, 169.50, 168.69, 167.27, 143.01, 134.70, 131.36, 130.97, 129.35, 128.48, 123.94, 63.25, 60.08, 52.20, 44.77, 38.12, 28.03, 23.87, 23.45, 19.99, 19.60. **HRMS** (EI-TOF) calcd for C₂₇H₃₀N₂O₇ (M-H⁺): 493.1980, found: 493.1979.

The title compound **5e** was prepared following General Procedure B and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **5e** was obtained as a white solid (23.4mg, 46%).¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.9 Hz, 2H), 7.89 – 7.84 (m, 2H), 7.78 – 7.70 (m, 3H), 7.22 (d, *J* = 8.0 Hz, 2H), 4.55 (d, *J* = 11.6 Hz, 1H), 4.45 (d, *J* = 8.7 Hz, 1H), 3.91 (s, 3H), 2.71 (s, 2H), 1.41 – 1.30 (m, 2H), 1.06 (d, *J* = 6.7 Hz, 3H), 0.96 (s, 3H), 0.94 (s, 3H), 0.84 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.19, 169.51, 168.60, 167.11, 142.84, 134.57, 131.27, 130.85, 129.25, 128.41, 123.81, 61.80, 53.43, 52.07, 44.71, 37.92, 33.22, 25.48, 23.81, 23.42, 15.84, 10.07. **HRMS** (EI-TOF) calcd for C₂₈H₃₂N₂O₇ (M-H⁺): 507.2137, found: 507.2137.

The title compound **5f** was prepared following General Procedure B and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **5f** was obtained as a white solid (24.9mg, 49%).¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.7 Hz, 1H), 7.97 – 7.86 (m, 4H), 7.80 – 7.75 (m, 2H), 7.27 – 7.25 (d, *J* = 9.8 Hz, 2H), 5.02 (s, 1H), 4.32 (d, *J* = 7.6 Hz, 1H), 3.89 (s, 3H), 3.03 (d, *J* = 12.9 Hz, 1H), 2.84 (d, *J* = 12.9 Hz, 1H), 1.16 (s, 3H), 1.04 (s, 9H), 0.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.69, 168.33, 167.34, 143.47, 134.89, 131.22, 129.13, 128.16, 124.03, 64.51, 61.78, 52.11, 45.58, 40.26, 33.77, 26.89, 24.95, 24.58. **HRMS** (EI-TOF) calcd for C₂₈H₃₂N₂O₇ (M-H⁺): 507.2137, found: 507.2137.

The title compound **5g** was prepared following General Procedure B and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **5g** was obtained as a white solid (20.6mg, 34%).¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.9 Hz, 2H), 7.78 – 7.70 (m, 3H), 7.67 – 7.60 (m, 2H), 7.05 – 6.95 (m, 3H), 4.56 (d, *J* = 11.6 Hz, 1H), 4.43 (d, *J* = 9.1 Hz, 1H), 4.29 (t, *J* = 7.9 Hz, 1H), 3.91 (s, 3H), 2.75 – 2.65 (m, 1H), 2.51 (d, *J* = 13.0 Hz, 1H), 2.43 (d, *J* = 13.0 Hz, 1H), 2.31 – 2.18 (m, 1H), 1.40 – 1.30 (m, 2H), 1.06 (d, *J* = 6.7 Hz, 3H), 1.00 (d, *J* = 5.6 Hz, 3H), 0.96 (d, *J* = 6.8 Hz, 3H), 0.83 (t, 3H), 0.75 (s, 3H) 0.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.00 , 170.15 , 168.61 , 167.26 , 143.08 , 134.58 , 131.19 , 130.84 , 129.19 , 128.20 , 123.84 , 61.72 , 59.46 , 52.19 , 44.30 , 38.50 , 33.27 , 29.91 , 26.70 , 25.54 , 23.51 , 22.96 , 19.66 , 18.28 , 15.87 , 10.22 . **HRMS** (EI-TOF) calcd for C₃₃H₄₁N₃O₈ (M-H⁺): 606.2821, found: 606.2823.

The title compound **5h** was prepared following General Procedure B and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **5h** was obtained as a white solid (13.9 mg, 23%).¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.9 Hz, 2H), 7.73 – 7.66 (m, 2H), 7.66 – 7.57 (m, 3H), 7.17 (d, *J* = 9.1 Hz, 1H), 6.99 (d, *J* = 7.9 Hz, 2H), 4.61 – 4.31 (m, 3H), 3.90 (s, 3H), 2.88 – 2.69 (m, 1H), 2.51 (d, *J* = 12.9 Hz, 1H), 2.44 (d, *J* = 13.0 Hz, 1H), 1.72 – 1.61 (m, 3H), 1.09 (d, *J* = 6.5 Hz, 3H), 0.95 (d, *J* = 5.6 Hz, 3H), 0.89 (d, *J* = 5.6 Hz, 3H), 0.83 (d, *J* = 6.6 Hz, 3H), 0.76 (s, 3H), 0.74(s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.55, 170.06, 168.52, 167.21, 142.96, 134.58, 131.12, 130.74, 128.23, 123.82, 63.05, 60.57, 53.57, 52.14, 44.49, 39.50, 38.32, 27.94, 26.42, 24.94, 23.57, 23.11, 21.92, 19.81, 19.52. **HRMS** (EI-TOF) calcd for C₃₃H₄₁N₃O₈ (M-H⁺): 606.2821, found: 606.2824.

The title compound **5i** was prepared following General Procedure B and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **5i** was obtained as a white solid (31.5mg, 67%). ¹H NMR (400 MHz, CDCl₃)) δ 7.80 (d, *J* = 8.0 Hz, 2H), 7.77 – 7.71 (m, 2H), 7.69 – 7.63 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 6.89 (d, *J* = 9.1 Hz, 1H), 5.19 (dd, *J* = 9.8, 6.8 Hz, 1H), 4.45 (d, *J* = 9.1 Hz, 1H), 3.81 (s, 3H), 3.62 (d, *J* = 4.4 Hz, 1H), 3.60 (s, 1H), 0.95 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.51, 168.44, 167.98, 166.96, 142.05, 134.57, 131.14, 129.97, 129.01, 128.82, 123.75, 77.36, 60.51, 55.60, 52.16, 34.86, 26.55. **HRMS** (EI-TOF) calcd for C₂₅H₂₆N₂O₇ (M-H⁺): 465.1667, found: 465.1667.

2.5 Palladium-Catalyzed Carboxylate-Directed γ-C(sp³)-H Arylation

of Tle with Different Protecting Groups.

The title compound **7a** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%).**7a** was obtained as a white solid (54.3mg, 61%).¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.87 (d, *J* = 7.7, 1H), 7.72 (d, *J* = 7.9 Hz, 1H), 7.08 (d, *J* = 8.2 Hz, 2H), 6.82 (d, *J* = 8.1 Hz, 2H), 4.83 (s, 1H), 3.79 (s, 3H), 3.00 (d, *J* = 13.3 Hz, 1H), 2.81 (d, *J* = 13.3 Hz, 1H), 1.16 (s, 3H), 0.99 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.09 , 167.22 , 166.68 , 158.17 , 137.32 , 134.29 , 133.23 , 131.82 , 130.11 , 129.69 , 129.31 , 127.04 , 125.04 , 123.67 , 113.36 , 55.20 , 44.56 , 39.34 , 28.01 , 24.78 , 24.64 . **HRMS** (EI-TOF) calcd for C₂₁H₂₀BrNO₅ (M-H⁺): 444.0452, found: 444.0452.

The title compound **7a'** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%).**7a'** was obtained as a white solid (16.1mg, 15%).¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.86 (d, *J* = 7.9 Hz, 1H), 7.69 (d, *J* = 7.9 Hz, 1H), 7.15 (d, *J* = 8.2 Hz, 2H), 7.05 (d, *J* = 8.2 Hz, 2H), 6.82 (dd, *J* = 8.5, 2.4 Hz, 4H), 4.98 (s, 1H), 3.79 (s, 3H), 3.78(s, 3H), 3.44 (d, *J* = 13.7 Hz, 1H), 3.35 (d, *J* = 13.5 Hz, 1H), 3.12 (d, *J* = 13.5 Hz, 1H), 2.54 (d, *J* = 13.7 Hz, 1H), 0.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.30, 167.42, 166.89, 158.48, 158.23, 137.42, 133.36, 132.30, 131.72, 130.23, 129.95, 129.50, 129.42, 127.11, 125.11, 113.87, 113.40, 56.96, 55.34, 55.30, 42.80, 42.47, 42.09, 22.78 . **HRMS** (EI-TOF) calcd for C₂₈H₂₆BrNO₆ (M-H⁺): 550.0871, found: 550.0870.

The title compound **7b** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%).**7b** was obtained as a pale yellow solid (38.3mg, 46%).¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 7.7 Hz, 2H), 7.93 (t, *J* = 7.8 Hz, 1H), 7.09 (d, *J* = 8.1 Hz, 2H), 6.83 (d, *J* = 8.2 Hz, 2H), 4.88 (s, 1H), 3.79 (s, 3H), 3.04 (d, *J* = 13.4 Hz, 1H), 2.81 (d, *J* = 13.3 Hz, 1H), 1.20 (s, 3H), 1.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.33 , 165.70 , 162.74 , 158.39 , 145.40 , 135.78 , 133.77 , 131.92 , 129.60 , 129.06 , 127.58 , 123.47 , 113.58 , 59.57 , 55.34 , 44.84 , 39.49 , 25.01 , 24.88 . **HRMS** (EI-TOF) calcd for C₂₁H₂₀N₂O₇ (M-H⁺): 411.1198, found: 411.1201.

The title compound **7b**' was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7b**' was obtained as a pale yellow solid (8.5mg, 8%).¹H NMR (400 MHz, CDCl₃) δ 8.19 – 8.02 (m, 2H), 7.91 (t, *J* = 7.8 Hz, 1H), 7.15 (d, *J* = 8.2 Hz, 2H), 7.03 (d, *J* = 8.3 Hz, 2H), 6.81 (m, 4H), 4.99 (s, 1H), 3.79 (s, 3H), 3.77 (s, 3H) 3.43 (d, *J* = 13.7 Hz, 1H), 3.37 (d, *J* = 13.5 Hz, 1H), 3.06 (d, *J* = 13.5 Hz, 1H), 2.53 (d, *J* = 13.7 Hz, 1H), 0.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.97, 165.71, 162.70, 158.36, 158.15, 145.21, 135.58, 133.62, 132.16, 131.50, 129.62, 129.20, 128.84, 127.36, 123.29, 113.80, 113.31, 57.26, 55.21, 55.16, 42.68, 42.41, 41.93, 22.76. **HRMS** (EI-TOF) calcd for C₂₈H₂₆N₂O₈ (M-H⁺): 517.1616, found: 517.1617.

The title compound **7c** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7c** was obtained as a white solid (71.2mg, 53%).¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 1H), 7.21 – 7.16 (m, 6H), 7.12 (d, 4H), 7.03 (d, *J* = 8.3 Hz, 2H), 6.89 – 6.86 (m, 6H), 6.79 (d, 2H), 6.75 – 6.70 (m, 3H), 4.74 (s, 1H), 3.76 (s, 3H), 2.92 (d, *J* = 13.3 Hz, 1H), 1.09 (s, 3H), 0.98 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.72, 167.09, 158.16, 148.34, 139.78, 138.12, 135.57, 131.97, 130.82 (d, *J* = 2.1 Hz), 130.10, 130.07,

127.85, 127.58, 127.40, 127.12, 126.44, 113.41, 59.42, 55.31, 44.70, 39.35, 24.82 (d, J = 9.8 Hz). HRMS (EI-TOF) calcd for C₄₅H₃₇NO₅ (M-H⁺): 670.2599, found: 670.2602.

The title compound **7c'** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7c'** was obtained as a white solid (23.3mg, 15%).¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 1H), 7.15 – 7.03 (m, 10H), 6.95 (d, *J* = 8.2 Hz, 2H), 6.89 – 6.85 (m, 7H), 6.80 (d, *J* = 8.4 Hz, 2H), 6.75 – 6.69 (m, 6H), 4.71 (s, 1H), 3.78 (s, 3H), 3.72 (s, 3H), 3.41 (d, *J* = 13.7 Hz, 1H), 3.37 (d, *J* = 13.7 Hz, 1H), 2.78 (d, *J* = 13.6 Hz, 1H), 2.37 (d, *J* = 13.8 Hz, 1H), 0.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.64 , 158.20 , 158.07 , 139.67 , 138.15 , 135.58 , 132.32 , 131.52 , 130.81 , 130.80 , 130.38 , 130.06 , 129.75 , 127.89 , 127.55 , 127.40 , 127.10 , 126.41 , 113.86 , 113.32 , 56.73 , 55.34 , 55.24 , 42.80 , 42.56 , 41.57 , 23.24 . **HRMS** (EI-TOF) calcd for C₅₂H₄₃NO₆ (M-H⁺): 776.3017, found: 776.3013.

The title compound **7d** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7d** was obtained as a white solid (22.2mg, 15%).¹H NMR (400 MHz, CDCl3) δ 7.07 (d, *J* = 8.3 Hz, 2H), 6.82 (d, *J* = 8.4 Hz, 2H), 6.76 (s, 2H), 4.65 (s, 1H), 3.79 (s, 3H), 2.95 (d, *J* = 13.3 Hz, 1H), 2.77 (d, *J* = 13.3 Hz, 1H), 1.11 (s, 3H), 0.96 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ 172.68, 170.48 , 158.32 , 134.37 , 131.94 , 129.84 , 113.50 , 55.34 , 53.57 , 44.58 , 39.24 , 24.82 , 24.66 . **HRMS** (EI-TOF) calcd for C₁₇H₁₉NO₅ (M-H⁺): 316.1190, found: 316.1189.

The title compound **7e** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7e** was obtained as a white solid (36.7mg, 44%).¹H NMR (400 MHz, CDCl₃) δ 8.69 – 8.43 (m, 2H), 8.19 (d, *J* = 8.2 Hz, 2H), 7.73 (m, 2H), 7.08 (d, *J* = 8.2 Hz, 2H), 6.80 (d, *J* = 8.1 Hz, 2H), 5.75 (s, 1H), 3.77 (s, 3H), 3.10 (d, *J* = 13.3 Hz, 1H), 2.86 (d, *J* = 13.2 Hz, 1H), 1.19 (s, 3H), 1.02 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 174.24, 164.61, 164.34, 158.10, 134.35, 132.21, 132.06, 131.81, 131.60, 130.38, 128.21, 127.15, 122.51, 122.21, 113.31,

59.18 , 55.27 , 45.02 , 39.82 , 25.04 , 25.00 . HRMS (EI-TOF) calcd for $C_{25}H_{23}NO_5$ (M-H^+): 416.1503 , found: 416.1502.

The title compound **7e'** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7e'** was obtained as a white solid (10.4mg, 10%).¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, *J* = 7.2 Hz, 1H), 8.51 (d, *J* = 7.3 Hz, 1H), 8.28 – 8.13 (m, 2H), 7.78 – 7.64 (m, 2H), 7.12 (d, *J* = 8.3 Hz, 2H), 7.08 (d, *J* = 8.2 Hz, 2H), 6.85 (d, *J* = 8.1 Hz, 2H), 6.78 (d, *J* = 8.2 Hz, 1H), 5.79 (s, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.71 (d, *J* = 13.7 Hz, 1H), 3.56 (d, *J* = 13.7 Hz, 1H), 2.90 – 2.66 (d, *J* = 13.7 Hz, 1H), 2.45 (d, *J* = 13.7 Hz, 1H), 0.98 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.96, 164.76, 164.50, 158.29, 157.98, 134.32, 132.40, 131.65, 130.69, 130.06, 128.23, 127.17, 127.13, 122.59, 122.24, 113.81, 113.19, 56.73, 55.27, 55.24, 43.26, 42.97, 42.02, 22.68 . **HRMS** (EI-TOF) calcd for C₃₂H₂₉NO₆ (M-H⁺): 522.1922, found: 522.1920.

The title compound **7f** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7f** was obtained as a white solid (32.2mg, 38%).¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.83 – 7.74 (m, 2H), 7.09 (d, *J* = 8.2 Hz, 2H), 6.82 (d, *J* = 8.1 Hz, 2H), 4.86 (s, 1H), 3.79 (s, 3H), 3.01 (d, *J* = 13.3 Hz, 1H), 2.86 (d, *J* = 13.3 Hz, 1H), 1.37 (s, 9H), 1.17 (s, 3H), 1.02 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.69, 168.63, 168.22, 159.11, 158.20, 131.97, 131.91, 131.46, 130.02, 129.02, 123.63, 113.40, 59.21, 55.28, 44.60, 39.43, 35.89, 31.23, 24.77 (d, *J* = 11.8 Hz). **HRMS** (EI-TOF) calcd for C₂₅H₂₉NO₅ (M-H⁺): 422.1973, found: 422.1976.

The title compound **7f**' was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7f**' was obtained as a white solid (16.9mg,

16%).¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.75 (s, 2H), 7.16 (d, J = 8.2 Hz, 2H), 7.07 (d, J = 8.2 Hz, 2H), 6.83 (t, J = 7.7 Hz, 4H), 5.01 (s, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.45 (d, J = 13.7 Hz, 1H), 3.37 (d, J = 13.5 Hz, 1H), 3.19 (d, J = 13.5 Hz, 1H), 2.55 (d, J = 13.7 Hz, 1H), 1.37 (s, 9H), 0.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.77, 168.59, 168.15, 158.98, 158.31, 158.04, 132.21, 131.80, 131.63, 131.34, 130.07, 129.53, 128.92, 123.46, 120.78, 113.71, 113.22, 56.51, 55.20, 55.15, 42.67, 42.33, 41.98, 35.78, 31.13, 22.63. **HRMS** (EI-TOF) calcd for C₃₂H₃₅NO₆ (M-H⁺): 528.2391, found: 528.2393.

The title compound **7g** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%).**7g** was obtained as a white solid (47.7mg, 62%).¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, *J* = 8.2 Hz, 2H), 6.81 (d, *J* = 8.1 Hz, 2H), 4.63 (s, 1H), 3.78 (s, 3H), 3.15 (s, 2H), 2.96 (d, *J* = 13.3 Hz, 1H), 2.81 – 2.73 (m, 3H), 1.71 – 1.44 (m, 5H), 1.36 (m, 1H), 1.09 (s, 3H), 0.95 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.41 , 178.18 , 172.09 , 158.12 , 131.81 , 129.82 , 113.31 , 60.49 , 55.19 , 48.90 , 44.41 , 42.66 , 39.55 , 39.37 , 39.04 , 24.77 , 24.63 . **HRMS** (EITOF) calcd for C₂₂H₂₇NO₅ (M-H⁺): 384.1816, found: 384.1816.

The title compound **7g'** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7g'** was obtained as a white solid (8.8mg, 9%).¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 8.2 Hz, 2H), 7.01 (d, *J* = 8.2 Hz, 2H), 6.82 (t, *J* = 7.7 Hz, 4H), 4.75 (s, 1H), 3.80 (s, 3H), 3.77 (s, 3H), 3.40 (t, *J* = 12.5 Hz, 1H), 3.17 – 3.04 (s, 2H), 2.95 (d, *J* = 13.5 Hz, 1H), 2.76 (s, 2H), 2.47 (d, *J* = 13.7 Hz, 1H), 1.58 – 1.21 (m, 6H), 0.83 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.57, 178.16, 172.22, 158.27, 158.04, 132.16, 131.48, 130.04, 129.43, 113.72, 113.23, 55.21, 55.13, 48.83, 42.63, 42.34, 41.87, 39.56, 39.39, 24.66, 22.71. **HRMS** (EI-TOF) calcd for C₂₉H₃₃NO₆ (M-H⁺): 490.2235, found: 490.2237.

The title compound **7h** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7h** was obtained as a white solid (47.5mg, 47%).¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, *J* = 8.2 Hz, 2H), 6.82 (d, *J* = 8.2 Hz, 2H), 4.85 (s, 1H), 3.79 (s, 3H), 3.04 (d, *J* = 13.4 Hz, 1H), 2.78 (d, *J* = 13.4 Hz, 1H), 1.20 (s, 3H), 1.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.24, 163.50, 158.39, 140.71, 131.87, 130.18, 129.57, 127.28, 113.59, 59.51, 55.33, 44.94, 39.47, 25.03, 24.97. **HRMS** (EI-TOF) calcd for C₂₁H₁₇Cl₄NO₅ (M-H⁺): 501.9788, found: 501.9789.

The title compound **7h'** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7h'** was obtained as a white solid (9.8mg, 8%).¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 8.2 Hz, 2H), 7.02 (d, J = 8.3 Hz, 2H), 6.81 (t, J = 9.2 Hz, 4H), 4.96 (s, 1H), 3.80 (s, 3H), 3.77 (s, 3H), 3.40 (m, 2H), 3.03 (d, J = 13.5 Hz, 1H), 2.52 (d, J = 13.8 Hz, 1H), 0.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.21, 163.47, 158.32, 158.15, 140.51, 132.15, 131.42, 129.97, 129.56, 129.22, 127.13, 113.79, 113.31, 57.32, 55.22, 55.14, 42.70, 42.49, 41.94, 22.83 . **HRMS** (EI-TOF) calcd for C₂₈H₂₃Cl₄NO₅ (M-H⁺): 608.0206, found: 608.0209.

The title compound **7i** was prepared under the optimized conditions and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%).**7i** was obtained as a white solid (24.2mg, 29%).¹H NMR (400 MHz, CDCl3) δ 8.34 (s, 2H), 8.03 (m, 2H), 7.76 – 7.61 (m, 2H), 7.10 (d, *J* = 8.1 Hz, 2H), 6.81 (d, *J* = 7.8 Hz, 2H), 4.95 (s, 1H), 3.78 (s, 3H), 3.05 (d, *J* = 13.3 Hz, 1H), 2.87 (d, J = 13.3 Hz, 1H), 2.87 (d, J = 13.3 Hz, 1H), 2.87 (d, J = 13.3 Hz, 1H), 3.78 (d, J = 13.3 Hz, 1H), 3.7

1H), 1.21 (s, 3H), 1.04 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ 173.14, 167.96, 158.22, 135.66, 131.98, 130.42, 130.01, 129.45, 127.26, 125.38, 113.42, 59.43, 55.29, 44.64, 39.62, 24.89, 24.74. **HRMS** (EI-TOF) calcd for C₂₅H₂₃NO₅ (M-H⁺): 416.1503, found: 416.1505.

The title compound **7i'** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7i'** was obtained as a white solid (8.4mg, 8%)¹H NMR (400 MHz, CDCl3) δ 8.32 (s, 2H), 8.13 – 7.93 (m, 2H), 7.76 – 7.61 (m, 2H), 7.16 (d, *J* = 8.2 Hz, 2H), 7.08 (d, *J* = 8.2 Hz, 2H), 6.82 (m, 4H), 5.07 (s, 1H), 3.79 (s, 6H), 3.49 (d, *J* = 13.7 Hz, 1H), 3.44 (d, *J* = 13.4 Hz, 1H), 3.17 (d, *J* = 13.5 Hz, 1H), 2.54 (d, *J* = 13.6 Hz, 1H), 0.90 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ 172.99, 168.03, 158.44, 158.16, 135.70, 132.35, 131.75, 130.44, 130.18, 129.68, 129.45, 127.33, 125.32, 113.86, 113.34, 56.88, 55.31 (d, *J* = 4.0 Hz), 42.97, 42.51, 42.07, 22.80. **HRMS** (EI-TOF) calcd for C₃₂H₂₉NO₆ (M-H⁺): 522.1922, found: 522.1923.

The title compound **7j** was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7j** was obtained as a white solid (43.1mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, *J* = 8.3 Hz, 2H), 6.82 (d, *J* = 8.2 Hz, 2H), 4.69 (s, 1H), 3.79 (s, 3H), 2.93 (d, *J* = 13.3 Hz, 1H), 2.78 (s, 3H), 2.73 (d, *J* = 13.3 Hz, 1H), 1.10 (s, 3H), 0.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.20, 172.30, 158.21 , 131.92 , 129.81 , 113.42 , 59.58 , 55.30 , 43.79 (d, *J* = 149.7 Hz), 39.21, 28.17 , 24.77 , 24.61. **HRMS** (EI-TOF) calcd for C₁₇H₂₁NO₅ (M-H⁺): 318.1347, found: 318.1346.

The title compound **7j**' was prepared following General Procedure A and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7j**' was obtained as a white solid (18.7mg, 14%). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, *J* = 8.6 Hz, 2H), 7.00 (d, *J* = 8.7 Hz, 2H), 6.85 - 6.78 (m, 4H), 4.78 (s, 1H), 3.80 (s, 3H), 3.77 (s, 3H), 3.43 - 3.32 (m, 2H), 2.94 (d, *J* = 11.2 Hz, 1H), 2.72 (s, 4H), 2.45

(d, J = 13.6 Hz, 1H), 0.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.18, 158.36, 158.15, 132.27, 131.61, 130.04, 129.57, 127.55, 113.80, 113.34, 55.27, 42.52, 41.97, 28.17, 26.69, 22.63. **HRMS** (EI-TOF) calcd for C₂₄H₂₇NO₆ (M-H⁺): 424.1765, found: 424.1766.

The title compound **7kc** was prepared following General Procedure B and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7k** was obtained as a white solid (15.2 mg, 16%). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.8 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 6.24 (d, *J* = 10.8 Hz, 1H), 4.60 (d, *J* = 9.2 Hz, 1H), 3.90 (s, 3H), 2.72 (s, 2H), 2.07 (s, 3H), 0.95 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.33 , 167.38 , 143.24 , 131.07 , 129.41 , 128.52 , 52.31 , 44.89 , 38.38 , 23.79 , 23.44 (d, *J* = 4.3 Hz). **HRMS** (EI-TOF) calcd for C₁₆H₂₀NO₄ (M-H+):307.1347, found: 306.1347.

The title compound **7kc'** was prepared following General Procedure B and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7kc'** was obtained as a white solid (7.4 mg, 6%). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (dd, J = 8.2, 3.2 Hz, 4H), 7.34 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 6.16 (d, J = 9.0 Hz, 1H), 4.57 (d, J = 9.1 Hz, 1H), 3.93 (s, 3H), 3.92 (s, 3H), 3.08 (d, J = 13.1 Hz, 1H), 2.96 (d, J = 13.2 Hz, 1H), 2.82 (d, J = 13.4 Hz, 1H), 2.65 (d, J = 13.2 Hz, 1H), 1.94 (s, 3H), 0.93 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.24, 167.19, 167.13, 142.62, 131.29, 131.04, 129.59, 129.54, 128.80, 128.76, 128.75, 52.29, 42.62, 41.54, 29.47, 27.36, 23.23, 22.14. **HRMS** (EI-TOF) calcd for C₂₄H₂₆NO₆ (M-H+):440.1715, found: 440.1715.

2.6 Gram-Scale Synthesis of 3a

Gram-scale synthesis was carried out following the general procedure as described in Section 2.3 using **1** (10 mmol, 2.61 g). **3a** was obtained in 59% yield, 2.18 g. Enantiomeric excess was determined by HPLC with a Daicel Chiralpak AD-H, *n*-hexane/2-propanol = 50/50, v = 0.5 mL·min⁻¹, $\lambda = 254$ nm, t (minor) = 18.020 min, t (major) = 22.609 min, 99% ee.

3a: AD-H, hexane/*i*PrOH = 50/50, rate = 0.5 mL/min, 254 nm

<Chromatogram>

<Peak Table>

Detector A 220nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	18.147	33978373	935451	52.077		M	
2	23.357	31268572	594979	47.923		M	
Total		65246945	1530430				

<Peak Table>

Deleci	ULA ZZUHIH		i			2) <u> </u>	
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	18.020	734544	23555	0.577		M	
2	22.609	126571320	2045365	99.423		M	1
Total		127305863	2068920		1	80 83 G	

3a' was obtained in 12% yield, 0.59 g. Attempts to determined the ee value using HPLC failed after trying different types of chiral column. Then **3a'** was converted to the corresponding benzyl ester **11** to determine the ee value.

Preparation of Benzyl Ester 12

3a' (47.3 mg, 0.1 mmol), KHCO₃ (20 mg, 0.2 mmol) and benzyl bromide (24 uL) in 2 mL DMF was stirred at rt for 2 h. Then the mixture was partitioned between H₂O (20 mL) and EtOAc (10 mL), The organic phase was dried over anhydrous Na₂SO₄, filtered, and the residue was purified by silica gel column chromatography, giving the benzyl ester **12** as a white solid (53.5mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.76 (m, 2H), 7.76 – 7.67 (m, 2H), 7.31 (s, 5H), 7.11 (d, *J* = 8.5 Hz, 2H), 6.90 (d, *J* = 8.5 Hz, 2H), 6.80 (d, *J* = 8.5 Hz, 2H), 6.71 (d, *J* = 8.5 Hz, 2H), 5.32 (d, *J* = 12.3 Hz, 1H), 5.08 (d, *J* = 12.2 Hz, 1H), 4.77 (s, 1H), 3.79 (s, 3H), 3.76 (s, 3H), 3.44 (dd, *J* = 13.6, 8.7 Hz, 2H), 2.92 (d, *J* = 13.5 Hz, 1H), 2.44 (d, *J* = 13.5 Hz, 1H), 0.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.31, 168.24, 158.31, 158.14, 135.58, 134.34, 132.29, 131.84, 131.58, 130.20, 129.71, 128.63, 128.59, 128.44, 123.65, 113.72, 113.31, 67.21, 57.06, 55.33, 55.26, 42.88, 42.21, 41.83, 23.00 . **HRMS** (EI-TOF) calcd for C₃₅H₃₃NO₆ (M+Na⁺): 586.2200, found: 586.2197. Enantiomeric excess was determined by HPLC with a Daicel Chiralpak IC, *n*-hexane/2-propanol = 70/30, v = 0.8 mL·min⁻¹, λ = 254 nm, t (minor) = 9.864 min, t (major) = 14.573 min, 96.2% ee.

12: IC, hexane/*i*PrOH = 70/30, rate = 0.8 mL/min, 254 nm

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.023	1803333	81233	49.714		M	
2	15.076	1824107	47675	50.286			
Total	S 9.	3627441	128908	8		8	

<Chromatogram> mV

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.864	66449	3102	1.891	10.0	Q (2)	
2	14.573	3446735	97255	98.109		î li	
Total		3513184	100357			8	
2.7 Co(III)-Catalyzed Enantioselective C(sp³)-H amidation of

Thioamide 8

2.7.1 Preparation of Chiral Acid 7gc

The title compound **7gc** was prepared under the optimized conditions and purified by preparative TLC (petroleum ether: ethyl acetate: formic acid = 3: 1: 1%). **7gc** was obtained as a white solid (70.6mg, 57%)¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.9 Hz, 2H), 7.22 (d, *J* = 7.9 Hz, 2H), 4.61 (s, 1H), 3.90 (s, 3H), 3.17 (s, 2H), 3.10 (d, *J* = 12.9 Hz, 1H), 2.88 (d, *J* = 12.8 Hz, 1H), 2.78 (s, 2H), 1.70 – 1.48 (m, 5H), 1.41 – 1.29 (m, 1H), 1.07 (s, 3H), 0.97 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.57 , 171.73 , 167.37 , 143.64 , 131.09 , 129.28 , 128.29 , 52.21 , 49.02 , 45.01 , 42.79 , 39.67 , 39.48 , 39.17 , 24.98 , 24.76 . **HRMS** (EI-TOF) calcd for C₂₃H₂₇NO₆ (M-H⁺): 412.1765, found: 412.1768.

2.7.2 Co(III)-Catalyzed Enantioselective C(sp3)-H amidation of Thioamide 8

To an oven-dried 50 mL Schlenk tube were added **8** (0.05 mmol), **9** (0.06 mmol), $Cp*Co(CH_3CN)_3](SbF_6)_2$ (0.0025 mmol), and chiral amino acid (0.005 mmol) in the o-DCB (0.05ml) under N₂ atmosphere. The title compound **10**³ was purified by preparative TLC (petroleum ether: ethyl acetate = 3: 1). **10** was isolated as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.80 (brs, 1H), 7.80 – 7.75 (m, 2H), 7.51 – 7.36 (m, 3H), 7.34 – 7.20 (m, 5H), 4.20 – 4.03 (m, 4H), 4.03 – 3.83 (m, 2H), 3.19 (d, *J* = 14.2 Hz, 1H), 2.98 (d, *J* = 14.2 Hz, 1H), 1.83 – 1.73 (m, 6H), 1.39 (s, 3H). **7g** as chiral ligand: **10** (15.2mg, 76%, 86.5:13.5 er); **7gc** as chiral ligand: **10** (13.3mg, 69%, 87:13 er).

HPLC Spectra for 10: AD-H, hexane/*i*PrOH = 70/30, rate = 1 mL/min, 254 nm

<Peak Table>

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.066	14503431	657873	49.740		M	
2	11.818	14654958	557287	50.260		M	
Total)	29158389	1215159	1			

7g as chiral ligand

<Chromatogram>

<Peak Table>

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.965	3963192	201926	13.509		M	
2	11.517	25373702	965599	86.491		M	
Total		29336894	1167524				

7gc as chiral ligand

<Peak Table>

Detect	or a 254nm	li an			1.		
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	10.205	2450332	123850	13.110		M	
2	11.856	16240060	620983	86.890		M	
Total		18690392	744833	25		16 B	

3. References

[1] Gong, W.; Zhang, G.-F.; Liu, T.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 16940.

[2] Adly, F. G.; Gardinar, M. G.; Ghanem, A. Chem. Eur. J. 2016, 22, 3447.

[3] Fukagawa, S.; Kato, Y.; Tanaka, R.; Kojima, M.; Yoshino, T.; Matsunaga, S, Angew. Chem. Int.

Ed. **2019**, *131*,1165;

4. NMR Spectra

S42

4c

4d

4f

3a'

3b

3b'

3c'

3d

3g

3h'

3i

3i'

3j'

3k'

31

3m

3m'

3n

30

11a

5a

5c

5d

5e

5f

5g

5h

5i

7a

7b

7b'

S91

7g'

