
Electronic Supplementary Information for:
Scaffold-based molecular design with a graph generative

model

Jaechang Lim,†a Sang-Yeon Hwang,†a
Seokhyun Moon,a Seungsu Kimb and Woo Youn Kim∗a,c

aDepartment of Chemistry, KAIST, Daejeon 34141, Republic of Korea
bSchool of Computing, KAIST, Daejeon 34141, Republic of Korea

cKI for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea
∗ Email: wooyoun@kaist.ac.kr

† These authors contributed equally to this work.

1

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2019

Algorithm
Algorithm 1 shows the full process of encoding and decoding molecular graphs in our model. There, concat
denotes the vector concatenation, Cat denotes a categorical distribution, and ◦ denotes the function com-
position. The role and operation of other modules are introduced in the main text and will be detailed
below.

Algorithm 1 Scaffold-based graph generation
Inputs: G, S, y, yS . Whole/scaffold graphs and properties

1: G0 ← S
2: ỹ← concat (y,yS)
3: if G 6= (∅, ∅) then . Learning phase
4:

(
HV (G),HE(G)

)
← embed(G)

5: HV (G) ← propagate(k)
(
HV (G),HE(G), ỹ

)
6: z ∼ reparam ◦ readout

(
HV (G)

)
. Vector representation of the target graph

7: else
8: z ∼ N (0, I) . Generation phase
9: end if

10: z̃← concat (z, ỹ)
11:

(
HV (G0),HE(G0)

)
← embed (G0) . Node and edge feature vectors

12: HV (G0) ← propagate(k)
(
HV (G0),HE(G0), ỹ

)
. Initial update of the scaffold nodes

13: t← 1 . Node addition counter
14: vt ∼ Cat ◦ addNode

(
HV (Gt−1),HE(Gt−1), z̃

)
. Sample a node type or STOP

15: while vt 6= STOP do
16: V (Gt)← V (Gt−1) ∪ {vt} . Add the new node
17: HV (Gt) ← HV (Gt−1) ∪

{
initNode

(
vt,HV (Gt−1)

)}
. Initialize and add a new node vector

18: Et,0 ← E(Gt−1); HEt,0
← HE(Gt−1) . Prepare edge additions

19: i← 1 . Edge addition counter
20: et,i ∼ Cat ◦ addEdge

(
HV (Gt),HEt,i−1 , z̃

)
. Sample an edge type or STOP

21: while et,i 6= STOP do
22: vt,i ∼ Cat ◦ selectNode

(
HV (Gt),HEt,i−1

, z̃
)

. Sample a node to connect
23: Et,i ← Et,i−1 ∪ {(vt, vt,i)} . Add the new edge (with type et,i)
24: HEt,i

← HEt,i−1
∪
{
initEdge

(
et,i,HV (Gt)

)}
. Initialize and add a new edge vector

25: i← i+ 1
26: et,i ∼ Cat ◦ addEdge

(
HV (Gt),HEt,i−1 , z̃

)
. Sample a next edge type or STOP

27: end while
28: HE(Gt) ← HEt,i−1

29: E(Gt)← Et,i−1
30: Gt ← (V (Gt), E(Gt))
31: t← t+ 1
32: vt ∼ Cat ◦ addNode

(
HV (Gt−1),HE(Gt−1), z̃

)
. Sample a next node type or STOP

33: end while
34: G∗t ∼ Cat ◦ selectIsomer (Gt, z̃) . Assign the stereoisomerism
35: return G∗t

2

Graph representation of molecules
In our graph representation G = (V (G), E(G)) of a molecule, the nodes v ∈ V (G) represent the atoms, and
the edges (v, w) ∈ E(G) represent the bonds. We regard each node as attributed with an atom type and
each edge as attributed with a bond type.

In the present work, we used the atom types in an indexed family A = (Ai) = (C, N, O, F, P, S, Cl,
Br) and the bond types in another indexed family B = (Bi) = (single-bond, double-done, triple-bond).
The symbols in A indicate the corresponding elements in the periodic table. For the initial representation
of whole-molecules and scaffolds, we use an extended family A∗, which includes all the elements of A and
additionally chirality (R, S, or none), formal charge, and aromaticity; also, we use an extended family B∗,
which includes the three bond types and stereoisomerism (E, Z, cis, trans, or none). We used RDKit [1] to
preprocess molecules into graphs.

To prepare node feature vectors hv and edge feature vectors hvw, we embed node and edge types via two
networks:

hv = MLPn
(
h0∗
v

)
(1)

hvw = MLPe
(
h0∗
vw

)
. (2)

h0∗
v is a raw feature vector representing the type of v based on A∗, and similarly h0∗

vw is a raw feature vector
of (v, w) based on B∗. For each of MLPn and MLPe, we used a single linear layer with output dimension
128. The result of embedding all elements of a graph G becomes(

HV (G),HE(G)

)
= embed (G) . (3)

We use the same module embed to embed all whole-molecules, scaffolds, and stereoisomers.

Graph propagation and readout
The graph propagation module

H′V (G) = propagate
(
HV (G),HE(G), c

)
(4)

consists of the following processes:

mu→v = ReLU ◦MLPm ◦ concat (hu,hv,huv, c) (5)

mv =
∑

u:(u,v)∈E(G)

mu→v (6)

h′v = GRUCell (mv,hv) , (7)

where ◦ is the function composition, ReLU is the rectified linear unit [2], c is a condition vector, and GRUCell
is a gated recurrent unit cell [3] (accepting mv as the input and hv as the hidden state). For MLPm we used
one linear layer with output dimension 128. We had MLPm and GRUCell use a different set of parameters
in different rounds of iterated propagation.

The readout module summarizes node features via the gated pooling:

hG = readout
(
HV (G)

)
=

1

|V (G)|
∑

v∈V (G)

σ
(
MLPr2 (hv)

)
�MLPr1 (hv) , (8)

where σ is the sigmoid function, and � is the elementwise product. For each of MLPr1 and MLPr2, we used
a single linear layer.

We had propagate and readout in different modules have different sets of parameters. For instance, all
propagate involved in addNode, addEdge, selectNode, and selectIsomer have different MLPm and GRUCell.
In addition, we used two different output dimensions for readout: when reading-out the node features of any
transient graph in the building process, we set the dimension equal to that of a node feature vector (i.e.,
128); when encoding a whole-molecule graph, we set double.

3

Encoding
With a whole-molecule graph G, we sample a latent vector z by applying the reparametrization trick [4]:

µG = MLPµ (hG) (9)
σG = exp {MLPσ (hG) /2} (10)
ε ∼ N (0, I) (11)
z = µG + σG � ε, (12)

where N (0, I) is the standard normal distribution. In the last line we omitted the graph dependence of z
for simplicity. For each of MLPµ and MLPσ, we used one linear layer with output dimension 128. Note that
in Algorithm 1 we used reparam to concisely express the sampling process.

Decoder modules
The node addition module computes atom type probabilities as

p̂an = addNode
(
HV (Gt),HE(Gt), z

)
= softmax ◦MLPan ◦ concat

(
readout ◦ propagate(k)

(
HV (Gt),HE(Gt), z

)
, z
)
, (13)

where Gt is a transient graph in the building process. For MLPan, we used three linear layers with ReLU
activations. The output dimensions of the layers were all 128. The length of the vector p̂an is |A|+ 1. The
computed probabilities define a categorical distribution Cat (p̂an), from which we sample an index i:

i ∼ Cat (p̂an) (1 ≤ i ≤ |A|+ 1). (14)

If i ≤ |A|, the model adds a new node with the i-th chemical element Ai, or else the building process
terminates.

If a new node w is to be added to a transient graph Gt, the node initialization module computes a
corresponding feature vector as follows:

hw = initNode
(
w,HV (Gt)

)
= MLPi2 ◦ concat

(
readout

(
HV (Gt)

)
,MLPi1

(
h0
w

))
. (15)

In the last line, h0
w is a raw feature representing the new node’s type based on A (note the absence of an

asterisk, unlike the one in eqn 1). We used one linear layer for each of MLPi1 and MLPi2.
The edge addition module addEdge computes p̂ae in the same way as eqn 13 but with an MLP of different

weights. If the sampled index i ∼ Cat (p̂ae) is less than or equal to |B|, the model adds a new edge with the
i-th bond type Bi. If i = |B|+ 1, the model stops the edge addition.

To describe the node selection, let us suppose a new node w was added to a transient graph Gt−1 so
that V (Gt) = V (Gt−1) ∪ {w} and E(Gt) = E(Gt−1). If a new edge is determined to be added, the module
selectNode first updates the node features as

H′V (Gt)
= propagate(k)

(
HV (Gt),HE(Gt), z

)
(16)

and computes the selection probability for each existing node through the following steps:

p̂sn
′

u = MLPsn ◦ concat (h′u,hw, z) ∀u ∈ V (Gt) \ {w} (17)

p̂sn = softmax
(
p̂sn

′
)
. (18)

Then from the resulting categorical distribution Cat (p̂sn), the model samples a node and connects it with
w (i.e., add the resulting edge to E(Gt)).

The edge initialization module initEdge computes edge feature vectors in the same way as eqn 15. The
differences are that different MLPs are used and that h0

w is replaced by a raw representation of the chosen
bond type.

4

The complete specification of a molecular graph should assign the extended types in A∗ and B∗ to its
elements. Motivated by the strategy of Jin et al. [5], our model assigns only the basic types in A and
B during graph building and specifies stereoisomerism at the final stage of generation. Given a graph G,
the isomer selection module selectIsomer prepares the set of all possible stereoisomers of G enumerated by
RDKit. The graphs in the resulting set I(G) consist of nodes and edges that are fully typed according to
A∗ and B∗. For each isomeric graph I ∈ I(G), selectIsomer estimates the selection probability through(

HV (I),HE(I)

)
= embed (I) (19)

H′V (I) = propagate(k)
(
HV (I),HE(I), z

)
(20)

hI =
1

|V (I)|
∑

v∈V (I)

h′v (21)

p̂siI = σ ◦MLPs ◦ concat (hI , z) . (22)

Note that multiple I ∈ I(G) can be valid for oneG. For instance, there can be someG whose stereocenters
are only partially labeled by its data source, and in such case isomers with different labels on the same
unlabeled stereocenters can all be regarded as valid. When generating a new molecule, however, we want our
model to predict one isomer without ambiguity. Therefore, in the generation phase, the model normalizes the
probabilities p̂siI by

∑
I p̂

si
I and then samples one plausible isomer from the resulting categorical distribution.

Learning
We used for learning the molecule dataset described in Datasets and experiments in the main text. The
dataset consists of a set of scaffold molecules, S, and a collection of each scaffold’s whole-molecules, D(S) =
{D(S) : S ∈ S}, where D(S) is a set of whole-molecules of scaffold S. We can arrange S and D(S) into
an indexed family ((Si, Gi))1≤i≤

∑
S∈S |D(S)|, each of whose elements is the pair of a scaffold and one of its

whole-molecules. There can be duplicates of scaffolds or whole-molecules over different pairs, but each pair
(Si, Gi) itself is unique.

The individual loss li due to each pair (Si, Gi) is a weighted sum of three losses: the graph building loss
lbuild
i , the isomer selection loss lisomer

i , and the posterior approximation loss lKL
i . The second of the three is

set to be
lisomer
i = −

∑
I∈I(Gi)

(
psiI log

(
p̂siI
)
+
(
1− psiI

)
log
(
1− p̂siI

))
, (23)

where psiI is the true probability of selecting I. The third of the three reads [4]

lKL
i = −1

2

∑
j

(
1 + log

(
σ2
Gi,j

)
− µ2

Gi,j − σ
2
Gi,j

)
, (24)

where µGi,j and σGi,j are the j-th elements of µGi
and σGi , respectively (eqn 9 and 10).

To describe the graph building loss, let us express the stepwise transitions from Si to Gi by a finite
sequence (Gi,0, Gi,1, · · · , Gi,T), where Gi,0 = Si and Gi,T = Gi. The transition from Gi,t to Gi,t+1 con-
forms to the true probability vector pi,t, which has one unity value for the correct building action and
zeros for the others. During learning, the model reconstructs each Gi from Si by estimating a sequence
(p̂i,0, p̂i,1, · · · , p̂i,T−1). Then the individual graph building loss can be defined by

lbuild
i = −

∑
t

pi,t · log (p̂i,t) . (25)

We minimized
∑
i

(
lbuild
i + lisomer

i + βlKL
i

)
to optimize our model and maximize the log-likelihood objec-

tive. We used 0.1 for the weight β. As for k, the number of iterations of propagate, we set k = 3 for the initial
propagation of whole-molecule graphs and scaffold graphs and k = 2 for addNode, addEdge, and selectNode.

Finally, we remark the effect of node and edge orderings. Sequential generation of graphs requires
their elements to be ordered. Different orderings amount to different sequences of graph transitions for
the same (Si, Gi). Similarly to Li et al. [6], we trained two models using a fixed ordering for one and

5

using random orderings for the other. We evaluated the two models in terms of the descriptors used in
Results and Discussions in the main text and confirmed that different orderings cause no significant change
in performance. Therefore, we used the fixed ordering (assigned by RDKit when reading SMILES data) for
all the results.

References
(1) RDKit: Open-Source Cheminformatics, www.rdkit.org.

(2) V. Nair and G. E. Hinton, Proceedings of the 27th International Conference on Machine Learning,
Haifa, Israel, 2010, pp. 807–814.

(3) K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk and Y. Bengio,
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
Doha, Qatar, 2014, pp. 1724–1734.

(4) D. P. Kingma and M. Welling, 2nd International Conference on Learning Representations, Conference
Track Proceedings, Banff, AB, Canada, 2014.

(5) W. Jin, R. Barzilay and T. Jaakkola, Proceedings of the 35th International Conference on Machine
Learning, ed. J. Dy and A. Krause, PMLR, Stockholmsmässan, Stockholm Sweden, 2018, vol. 80,
pp. 2323–2332.

(6) Y. Li, O. Vinyals, C. Dyer, R. Pascanu and P. Battaglia, 6th International Conference on Learning
Representations, Workshop Track Proceedings, Vancouver, BC, Canada, 2018.

6

www.rdkit.org

