Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Accelerated Alkaline Hydrogen Evolution on $M(OH)_x/M$ -MoPO_x (M= Ni, Co, Fe, Mn) Electrocatalysts by Coupling Water Dissociation and Hydrogen Ad-Desorption Steps

Lishan Peng†, Mansheng Liao†, Xingqun Zheng†, Yao Nie, Ling Zhang, Minjie Wang, Rui Xiang, Jian Wang, Li Li, Zidong Wei*

Content:

Experiment and computational details

Figure S1-27

Table S1-6

1. Experiment and computational details

1.1 Experiment and computational details

Synthesis of M(Ni,Co,Fe,Mn)-MoO₄/NF precursors: All chemical reagents used in this experiment were of analytical grade. Prior to the synthesis, the Ni Foam (NF, 50.0 mm×10.0 mm×1.0 mm) was cleaned ultrasonically in a 3.0 mol L-1 HCl solution for 15 min to remove the surface oxide layer, and then placed against the wall of a Teflon-lined stainless steel autoclave at a certain angle. Afterwards, 30 mL aqueous solution with 1.50 mol Ni(NO₃)₂•6H₂O and 0.22 mol (NH₄)₆Mo₇O₂₄•4H₂O was transferred into the above Teflon autoclave. The autoclave was sealed and heated at 150 °C for 6 h. After the hydrothermal reaction was over, the precursors were completely washed with distilled water and dried in an oven at 60 °C. Other M(Ni,Co,Fe,Mn)-MoO₄/NF precursors were synthesized by the same process but changed the Ni(NO₃)₂•6H₂O by the corresponding metal nitrates.

Synthesis of M(Ni, Co, Fe, Mn)- $MoPO_x/NF$: The $NiMoO_4/NF$ precursors with an area of 10 cm⁻² and 1.2 g NaH₂PO₂ were put in a porcelain boat with a distance of 2 cm and NaH₂PO₂ was placed at the upstream side of the furnace. Then the furnace was heated up to 400 °C with a ramp of 5 °C min⁻¹ and stayed for 2 h in the near-static Ar atmosphere. The obtained sample was labelled as $NiMoPO_x/NF$, and can be directly used as work electrode. For purposes of comparison, $NiMoO_4/NF$ were prepared as described above without adding NaH₂PO₂. Other M(Ni, Co, Fe, Mn)- $MoPO_x/NF$ were synthesized by the same process.

Synthesis of $M(OH)_x/MMoPO_x/NF$: The $NiMoPO_x/NF$ was directly used as work electrode in a three-electrode cell system in 1.0 M NaOH. The electrochemical activation was conducted by CV at -0.3V ~ +0.2V vs. RHE with 100 mV/s for 8000 cycles. The obtained catalytic electrode was named as $Ni(OH)_2/NiMoPO_x$. All the $M(Ni,Co,Fe,Mn)-MoPO_x/NF$ were activated by the same process. The $NiMoPO_x/NF$ activated by different number of CV cycles name as $NiMoPO_x*/NF-n$ CVs. Without special noted, the sample named $Ni(OH)_2/NiMoPO_x$ means $M(Ni,Co,Fe,Mn)-MoPO_x/NF$ activated by CV for 8000 cycles. The catalyst loading on the NF is about 1 mg cm⁻¹.

Synthesis of M(Ni, Co, Fe, Mn)- MoP_2/NF : The $NiMoO_4/NF$ precursors with an area of 10 cm⁻² and 1.2 g NaH₂PO₂ were put in a porcelain boat with a distance of 2 cm and NaH₂PO₂ was placed at the upstream side of the furnace. Then the furnace was heated up to 650 °C with a ramp of 5 °C min⁻¹ and stayed for 2 h in the Ar/H₂ (90/10 sccm) atmosphere. The obtained sample was labelled as $NiMoP_2/NF$, and can be directly used as work electrode. Other M(Ni, Co, Fe, Mn)- $MoPO_x/NF$ were synthesized by the same process.

Synthesis of 20% Pt/C/NF electrode: The commercial Pt/C (20 wt% Pt loading, Johnson Matthey) were prepared by ultrasonically mixing 4 mg of the catalyst powder with the mixture of 40 μ L 5% Nafion solution, 560 μ L ethanol and 400 μ L H₂O for 15 min to form homogeneous catalyst ink. Next, a certain volume of the ink was carefully dropped onto the clean Ni foam, leading to a desirable catalyst loading of about 1.0 mg cm⁻² (labelled: 20% Pt/C/NF).

1.2 Characterization and electrochemical measurements

The surface morphology and the microstructure of the catalysts were analyzed by X-ray diffraction (XRD-6000, Shimadzu), X-ray photoelectron spectroscopy (XPS, PHI 550 ESCA/SAM), field-emission scanning electron microscopy (FE-SEM, JSM-7800, Japan), and dispersive X-ray spectra (EDX, OXFORD Link-ISIS-300), respectively. Electrochemical measurements were conducted in a three-electrode cell system with an Electrochemical Workstation (Auto Lab, Metrohm China Ltd, China). The electrode area of the working electrode is 1.0 cm². A carbon rod in parallel orientation to the working electrode was used as the counter electrode and Hg/HgO electrode as the reference electrode. Linear sweep voltammetry (LSV) was performed in N₂ saturated aqueous solution with a scan rate of 5 mV s⁻¹. The long-term durability test was carried out by chronopotentiometry measurements at -100 mV for 90 h. The double layer capacitance of the electrodes was obtained by cyclic voltammetry (CV) from 0.1 to 0.3 V (vs RHE) at scan rate from 2 to 7 mV s⁻¹. The catalytic performance of the prepared electrodes toward HER were systematically investigated in 1.0 M NaOH electrolyte. Electrochemical impedance spectroscopy (EIS) was performed at different overpotentials in the frequency range of 10⁵ Hz to 0.01 Hz with a perturbation amplitude of 5 mV. All potentials mentioned in this work were converted to the values with reference to a reversible hydrogen electrode (RHE) via E(RHE) = E(Hg/HgO) + 0.9334 V in 1 M NaOH and all data without iR correction unless noted.

The electrolyte (NaOH) used for hydrogen evolution reaction in this work is sourced from Aladdin (99.9%). For rigorously metal impurities-free measurements, the 1 M NaOH electrolyte was purified as follows. In a H_2SO_4 -cleaned 50 mL polypropylene centrifuge tube, ~2 g of 99.999% Ni(NO₃)₂·6H₂O were dissolved in ~4 mL of 18.2 M Ω ·cm H₂O. 20 mL of 1 M NaOH were added to precipitate high-purity Ni(OH)₂. The mixture was shaken and centrifuged, and the supernatant was decanted. The Ni(OH)₂ then underwent three washing cycles by adding ~20 mL of 18.2 M Ω ·cm water and ~2 mL of 1 M NaOH to the tube, redispersing the solid, centrifuging, and decanting the supernatant. Finally, the tube was filled with 50 mL of 1 M NaOH for purification. The solid was re-dispersed and mechanically agitated for at least 10 min, followed by at least 3 h of resting. The mixture was centrifuged, and the purified NaOH supernatant was decanted into a H_2SO_4 -cleaned polypropylene bottle for storage.

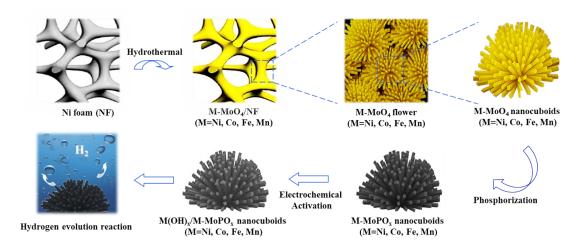
The concentration of PO_3^{3-} dissolved in the electrolyte during electrochemical activation process was detected via phosphomolybdenum blue method using UV-vis-NIR spectroscopy. Typically, 2 mL electrolyte was removed from the cathode chamber and mixed with 2 mL of 0.01 M (NH₄)₂MoO₄ solution, followed by the addition of 2 mL of 0.01 M ascorbic acid and 2 mL of 0.5 M H₂SO₄ solution. After incubation at room temperature for 2 h, the UV-vis adsorption spectra with absorbance at ~750 nm was measured using a spectrophotometer.

1.3 Theoretical calculation details

Density functional theory (DFT) calculations were performed by utilizing the Vienna Ab-Initio Simulation Package (VASP) code. The projector augmented wave (PAW) method was used to describe the ionic cores. And the electron exchange-correlation was modelled by Perdew-Burke-Ernzerh of (PBE) function within generalized gradient approximation (GGA). A cut-off

energy of 450 eV was used for the plane-wave basis set. The convergence criterion was 10^{-5} eV for energy and 0.03 eV/Å for force. The Monkhorst–Pack k-point mesh were set to be 3 × 3 × 1 for all systems. To separate adjacent periodic images a 15 Å thick vacuum along the vertical direction was added. In all the structure optimization calculations, the bottom three atomic layers were fixed while other atoms were fully relaxed. Transition states for H_2O dissociation were located using the climbing image-nudged elastic band (CI-NEB) method.

For H adsorption, ΔE_H is hydrogen adsorption energy, and it is defined by: $\Delta E_H = E_{surface+H} - E_{surface} - 1/2E_{H2}$


 $E_{surface+H}$ is the total energy of surface with an adsorbed H atom, $E_{surface}$ the energy of surface, E_{H2} is the energy of a gas H_2 .

For OH adsorption enegy: $\Delta E_{OH} = E_{surface+OH} - E_{surface} - E_{OH}$

 $E_{\text{surface+OH}}$ is the total energy of surface with an adsorbed OH radical, and E_{OH} is the energy of single OH radical.

The Gibbs free reaction energy of hydrogen adsorption ΔG_H was calculated as follow: $\Delta G_H = \Delta E_H + \Delta E_{ZPE}$ -T ΔS_H

Where ΔE_{ZPE} is the difference in zero point energy, and ΔS_H is the difference in entropy between the adsorbed and the gas phase. ΔE_{ZPE} -T ΔS_H is about 0.24 eV.

Scheme S1. Schematic illustration of the synthesis processes of M-MoO₄/NF, M-MoPO_x/NF and activated $M(OH)_x/M$ -MoPO_x/NF.

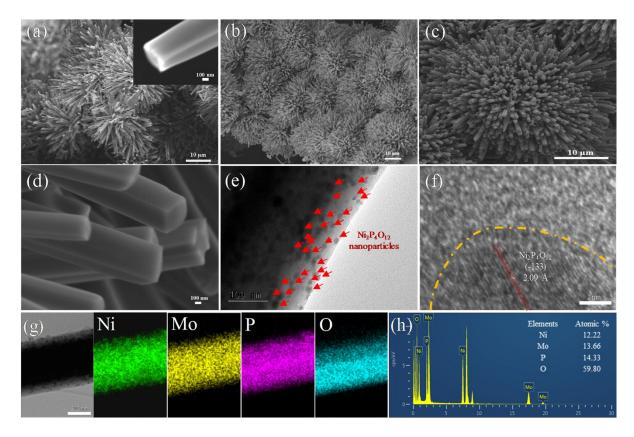


Figure S1. SEM images of (a) NiMoO₄/NF, and (b-d) NiMoPO_x/NF, inset in (a) is the SEM image of Ni foam. (e) TEM, (f) HR-TEM images, (g) elemental mapping and (h) EDX spectrum of NiMoPO_x powder.

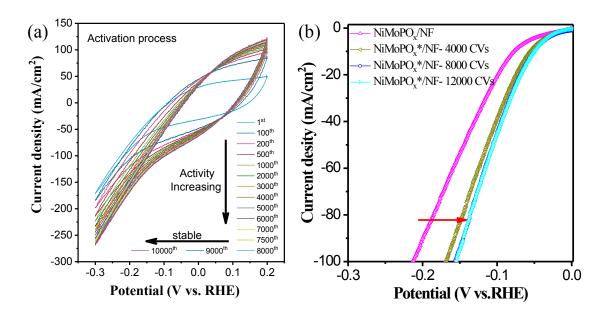


Figure S2. (a) Electrochemical activation of NiMoPO_x/NF by CVs, (b) LSV curves of NiMoPO_x/NF activated with different CVs without iR correction, (c) XRD patterns of NiMoO₄/NF, NiMoPO_x/NF, Ni(OH)₂/NiMoPO_x/NF and Ni foam.

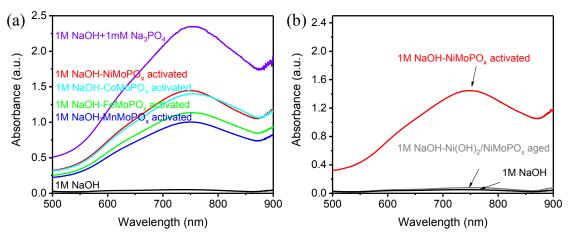


Figure S3. UV-vis absorption spectra of dissolved PO_3^{3-} in (a) M-MoPO_x activated electrolytes and (b) $Ni(OH)_2/NiMoPO_x$ aged electrolyte.

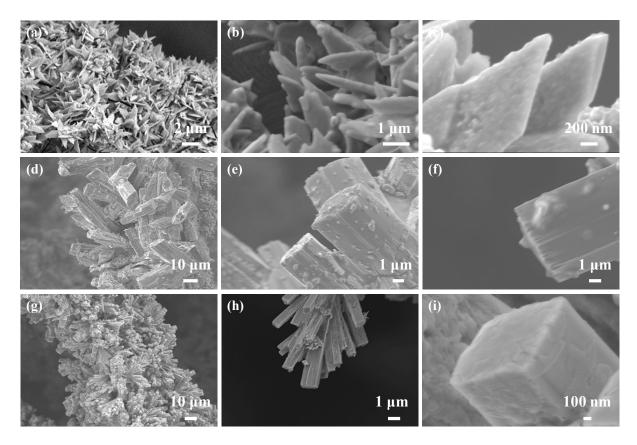


Figure S4. SEM images of (a-c) FeMoPO $_x$ /NF, (d-f) MnMoPO $_x$ /NF, (g-i) CoMoPO $_x$ /NF electrodes.

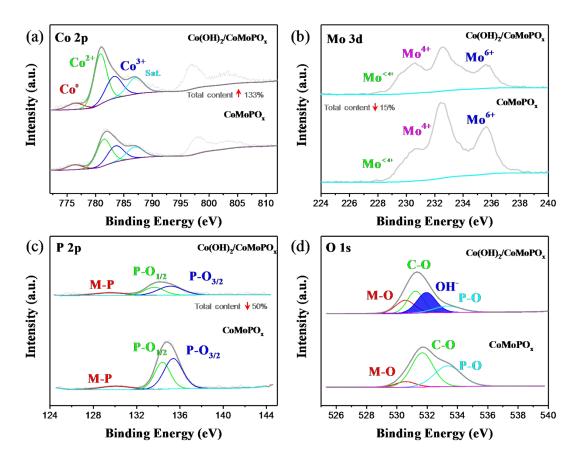


Figure S5. XPS spectra of CoMoPO₄, and Co(OH)₂/CoMoPO_x, (a) Co 2p region, (b) Mo 3d region, (c) P 2p region and (d) O 1s region.

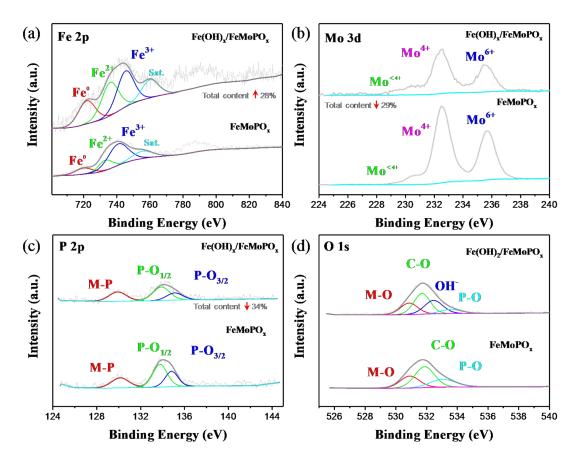


Figure S6. XPS spectra of FeMoPO₄, and Fe(OH)_x/FeMoPO_x, (a) Fe 2p region, (b) Mo 3d region, (c) P 2p region and (d) O 1s region.

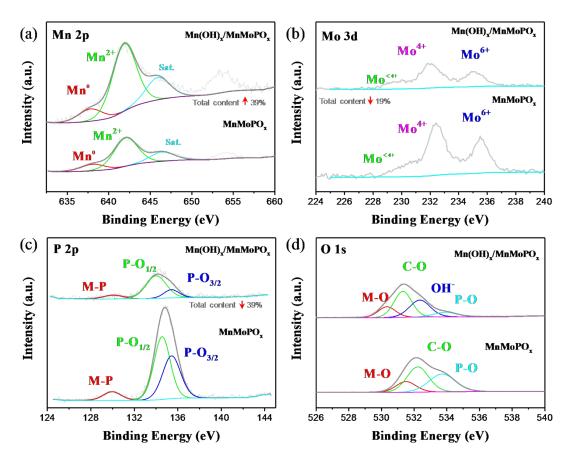


Figure S7. XPS spectra of MnMoPO₄, and Mn(OH)_x/MnMoPO_x, (a) Mn 2p region, (b) Mo 3d region, (c) P 2p region and (d) O 1s region.

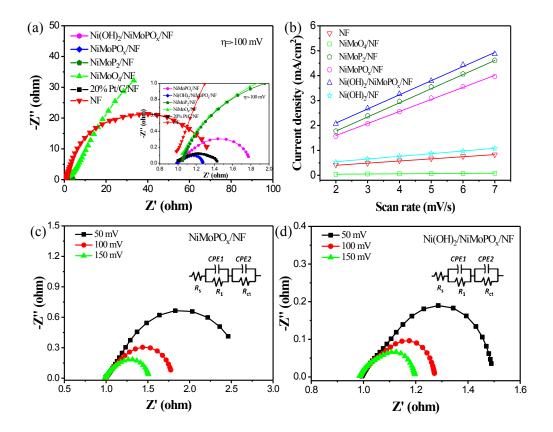


Figure S8. (a) Nyquist plots of the corresponding samples measured at a voltage of -0.1 V (vs RHE) over the frequency range 100 kHz to 0.01 Hz in 1.0 M NaOH; (b) Estimation of C_{dl} by plotting the current density variation ($\Delta j = (j_a - j_c)/2$). Nyquist plots of (c) NiMoPO_x/NF, (d) Ni(OH)₂/NiMoPO_x/NF measured at different voltage over the frequency range 100 kHz to 0.01 Hz in 1.0 M NaOH.

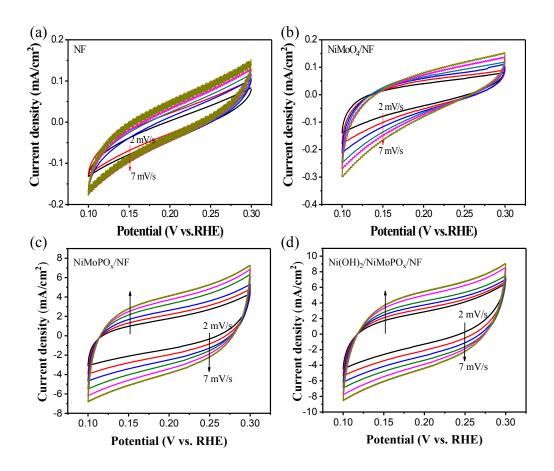


Figure S9. CVs of NF, NiMoO₄/NF, NiMoPO_x/NF, and Ni(OH)₂/NiMoPO_x/NF with various scan rates (2-7 mV/s) in the region of 0.1 to 0.3 V vs. RHE.

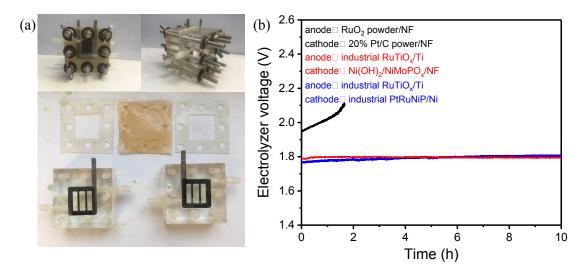


Figure S10. (a) Structure diagram of electrolyzer for water electrolysis. (b) Electrolyzer voltage at $1000~A~m^{-1}$ of overall water electrolysis catalyzed by different catalytic electrodes in 1.0~M~NaOH.

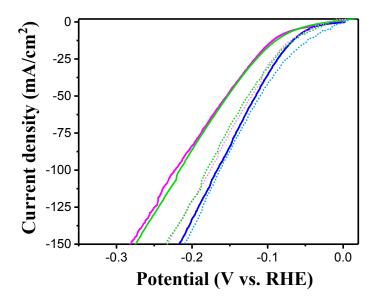


Figure S11. LSV of $NiMoPO_x/NF$, $Ni(OH)_2/NiMoPO_x/NF$ and $Ni(OH)_2/NiMoPO_x/NF$ -acid electrodes without iR correction.

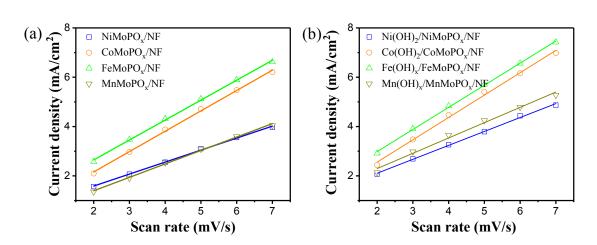


Figure S12. Estimation of C_{dl} of M(Ni, Co, Fe, Mn)-MoPO_x/NF (a) before and (b) after activation by plotting the current density variation ($\Delta j = (j_a - j_c)/2$).

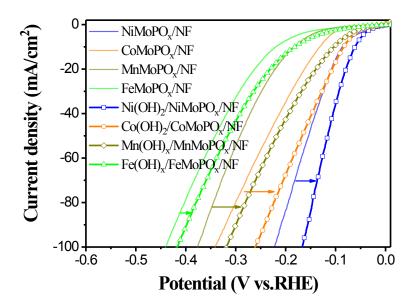


Figure S13. The ECSA-normalized HER polarization curves for $M(OH)_2/M-MoPO_x/NF$ without iR correction (M=Ni, Co, Fe, Mn).

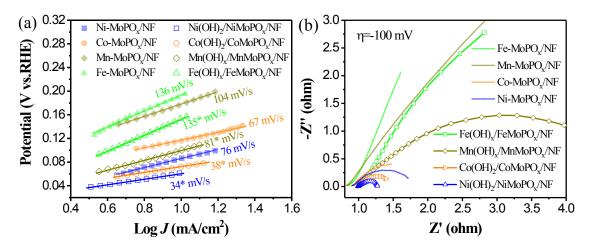


Figure S14. (a) Tafel slopes of M(Ni, Co, Fe, Mn)-MoPO $_x$ /NF and their activated M(OH) $_2$ /M-MoPO $_x$ /NF electrodes without iR correction; (b) Nyquist plots for the corresponding samples measured at a voltage of -0.1 V (vs RHE) over the frequency range 100 kHz to 0.01 Hz in 1.0 M NaOH.

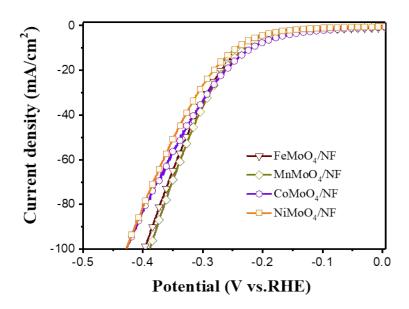


Figure S15. (a) LSV of M(Ni, Co, Fe, Mn)-MoO₄/NF precursors at 1.0 M NaOH.

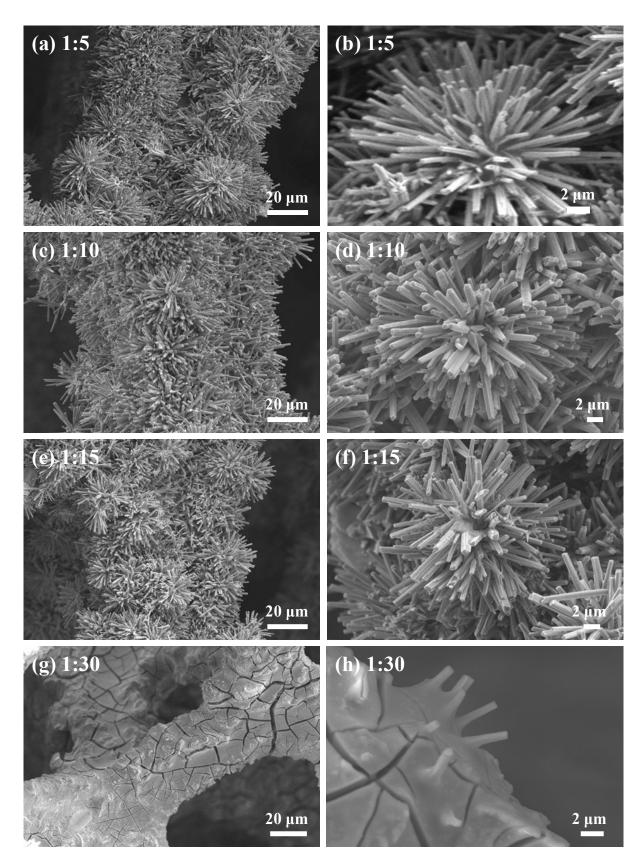


Figure S16. SEM images of NiMoPO_x/NF electrodes with different phosphorus sources.

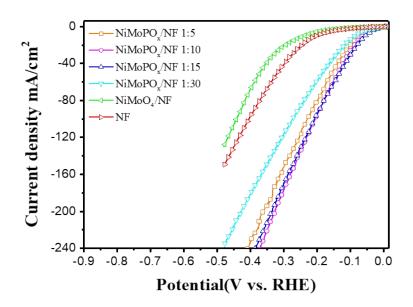


Figure S17. LSV of NiMoPO $_x$ /NF prepared with different phosphorus sources at 400°C for 2 h tested in 1.0 M NaOH.

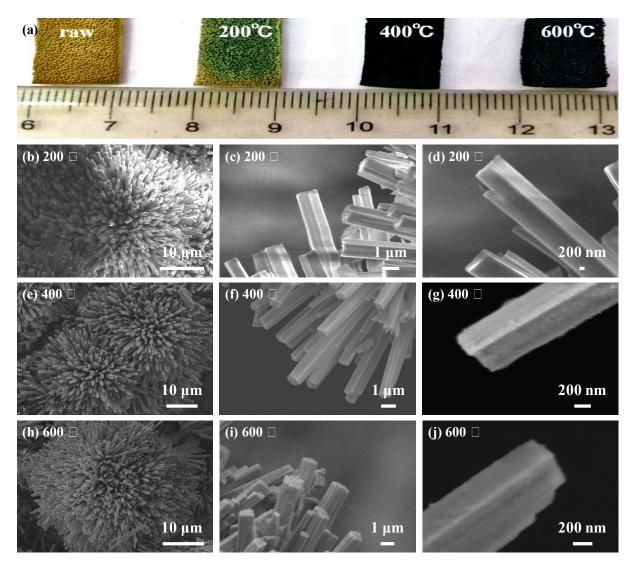


Figure S18. SEM images of $NiMoPO_x/NF$ electrodes with different phosphating temperatures for 2 h.

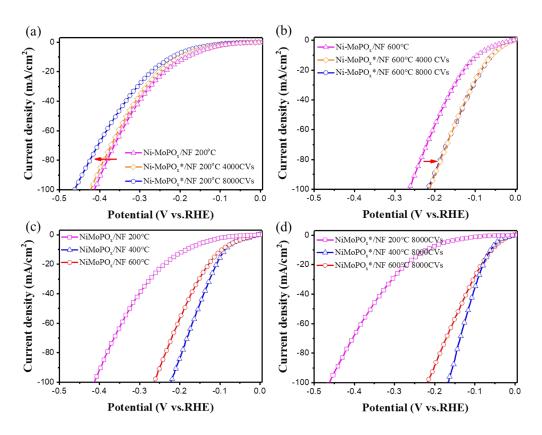


Figure S19. LSV curves of (a) NiMoPO_x/NF 200°C and (b) NiMoPO_x/NF 600°C activated with different CVs; LSV curves of (c) NiMoPO_x/NF and (d) NiMoPO_x*/NF with different phosphating temperature for 2 h.

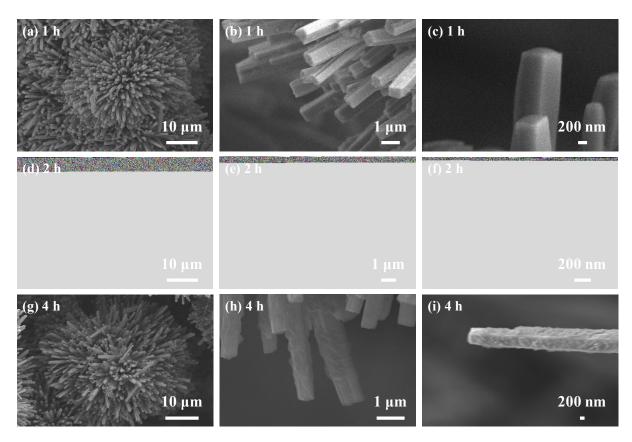


Figure S20. SEM images of NiMoPO_x/NF electrodes at 400°C with different phosphating time.

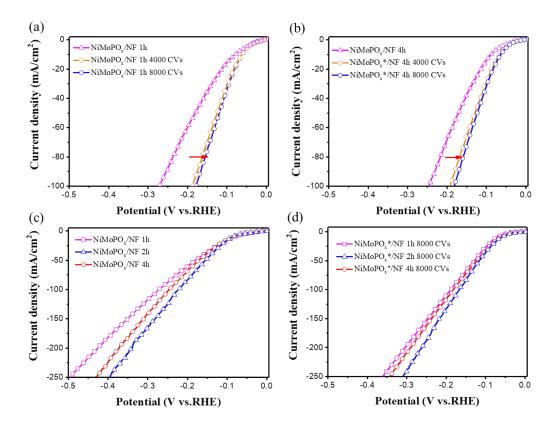


Figure S21. LSV curves of (a) NiMoPO $_x$ /NF 1h and (b) NiMoPO $_x$ /NF 4h activated with different CVs; LSV curves of (c) NiMoPO $_x$ /NF and (d) NiMoPO $_x$ */NF with different phosphating time after 8000 CVs. All these samples were phosphatized at 400°C.

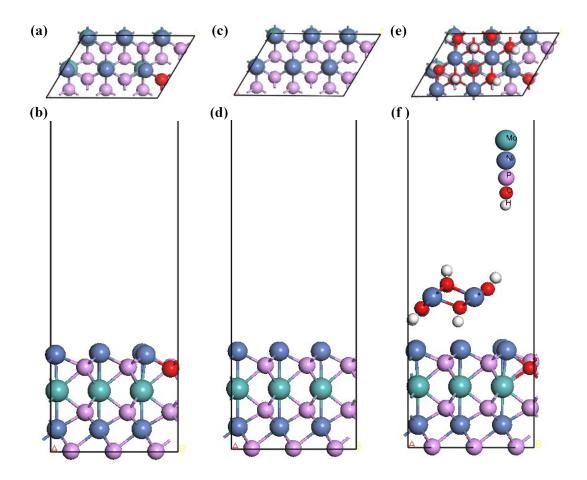


Figure S22. The (2x3) slab models of (a, b) $NiMoP_2O$, (c, d) $NiMoP_2$ and (e, f) $Ni(OH)_2/NiMoP_2O$.

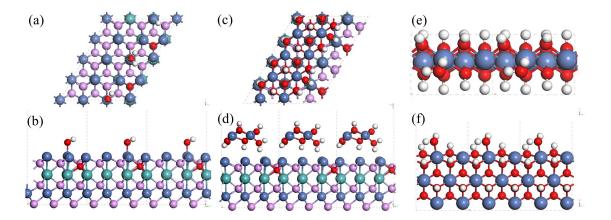


Figure S23. The (2x3) slab models of H_2O adsorbed on (a, b) NiMoP₂O, (c, d) Ni(OH)₂/NiMoP₂O and (e, f) Ni(OH)₂.

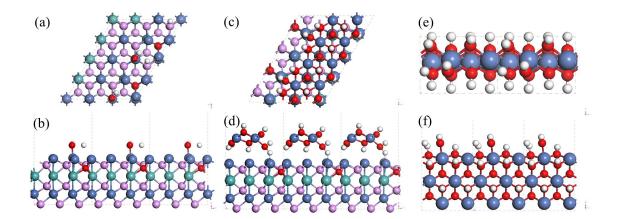


Figure S24. The (2x3) slab models of H_2O dissociated on (a, b) $NiMoP_2O$, (c, d) $Ni(OH)_2/NiMoP_2O$ and (e, f) $Ni(OH)_2$.

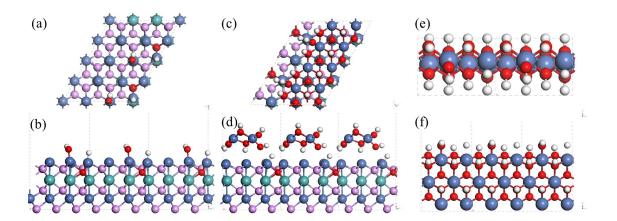


Figure S25. The (2x3) slab models of H and OH adsorbed on (a, b) NiMoP₂O, (c, d) Ni(OH)₂/NiMoP₂O and (e, f) Ni(OH)₂.

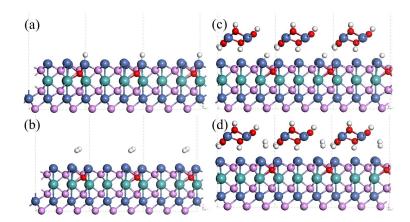


Figure S26. The (2x3) slab models of H_2 formation on (a, b) NiMoP₂O, (c, d) Ni(OH)₂/NiMoP₂O.

Figure S27. Calculated density of states (DOS) of the oxygen incorporated $NiMoP_2$ slab and the pristine $NiMoP_2$ slab.

Table S1. Elements contents of $NiMoPO_x$ and the activated $Ni(OH)_2/NiMoPO_x$.

	Elements (atm %)		Ni			Mo]	P		()	
Catalysts	T. (1/0/)		0.25			2.07		10	70			00	
	Total (%)		9.35			2.87		19.	.79		67.	99	
NiMoPO _x	specials	Ni^0	Ni ²⁺	Ni ³⁺	$\mathrm{Mo}^{^{<4+}}$	Mo^{4+}	Mo ⁶⁺	M-P	P-O	М-О	С-О	О-Н	O-P
	Content	0.12	0.51	0.37	0.08	0.43	0.49	0.04	0.96	0.41	0.40	0	0.19
	Total (%)		17.57			2.33		7.	26		72.	84	
Ni(OH) ₂ /NiMoPO _x	specials	Ni^0	Ni ²⁺	Ni ³⁺	$\mathrm{Mo}^{<4+}$	Mo ⁴⁺	Mo ⁶⁺	M-P	P-O	М-О	С-О	О-Н	O-P
	Content	0.03	0.82	0.15	0.06	0.42	0.52	0.11	0.89	0.30	0.36	0.27	0.07

Table S2. Elements contents of (Co/Fe/Mn)MoPO $_{x}$ and their corresponding activated hybrids.

Elements (atm %)	M (Co/Fe/Mn)	Mo	P	0
Catalysts				
$CoMoPO_x$	7.63	3.37	19.04	67.96
Co(OH) ₂ /CoMoPO _x	17.82	2.87	9.58	69.72
FeMoPO _x	25.32	24.93	7.10	42.65
Fe(OH) _x /FeMoPO _x	35.22	17.58	4.68	42.52
$MnMoPO_x$	23.14	7.66	17.14	52.06
Mn(OH) _x /MnMoPOx	38.14	6.92	5.59	49.35

Table S3. HER performances of $NiMoO_x/NF$, $NiMoPO_x/NF$, $Ni(OH)_2/NiMoPO_x/NF$, 20% Pt/C/NF and NF.

		otential V)	Tafel	C_{dl}	$\operatorname{Rct}\left(\Omega\right)$	
Catalysts	10 mA/cm ²	100 mA/cm ²	slope (mV dec ⁻¹)	(mF cm ⁻²)	(η= -100 mV)	
20% Pt/C/NF	31	154	33	/	0.43	
NiMoO ₄ /NF	234	328	101	0.8	162.24	
NiMoP ₂ /NF	80	216	92	56.6	2.86	
NiMoPO _x /NF	77	123	72	48.6	0.84	
Ni(OH) ₂ /NiMoPO _x /NF	51	72	34	56.5	0.27	
Ni(OH) ₂ /NF	251	396	121	10.8	>200	
NF	202	314	140	8.4	72.12	

Table S4. HER performances of M(Ni, Co, Fe, Mn)-MoPO $_x$ /NF and their activated M(OH) $_x$ /MMoPO $_x$ /NF electrodes.

Catalysts	FeMoP	O _x /NF	MnMoF	O _x /NF	CoMoPO _x /NF NiMoPC			O _x /NF
Parameters	-	*	-	*	-	*	-	*
Onset potential (mV)	139	75	111	49	80	38	32	29
η @ -10 mA/cm ² (mV)	192	153	177	100	116	72	87	61
η @ -100 mA/cm ² (mV)	370	345	360	302	258	191	222	166
Tafel slope (mV/dec)	136	135	104	81	67	38	76	34
$Rct (\Omega) (\eta = -100 \text{ mV})$	19.56	8.86	13.29	6.50	1.15	0.56	0.84	0.27
C_{dl} (mF/cm ²)	80.8	89.6	54.5	62.1	82.6	90.6	48.6	56.5

Note: - means the M-MoPO $_x$ /NF samples, and * means their corresponding $M(OH)_x$ /MMoPO $_x$ /NF samples.

Table S5. Summary of the HER performances of nonprecious materials based electrocatalysts in alkaline electrolytes reported recently.

			Loading density	Counter	Overpotential	Tafel slope	
Electrocatalysts	Electrolyte	Substrate	(mg cm ⁻²)	electrode	(mV@10 mA cm ⁻²)	$(mV dec^{-1})$	Reference
Ni(OH) ₂ /NiMoPO _x	1 M NaOH	Ni Foam	1.0	Carbon Rod	51	34	This work
Co(OH) ₂ /CoMoPO _x	1 M NaOH	Ni Foam	1.0	Carbon Rod	72	38	This work
CoMnCH@NF	1 M KOH	Ni Foam	5.6	Pt Wire	180	/	J. Am. Chem. Soc. 2017, 139, 8320-8328.
Cu NDs/Ni ₃ S ₂ NTs- CFs	1 M KOH	Carbon Fibers	0.52	Graphite Rod	128	76.2	J. Am. Chem. Soc. 2018 , 140, 610-617.
Ni-MoS ₂ -CC	1 M KOH	Carbon Cloth	0.89	Graphite Rod	98	60	Energy Environ. Sci. 2016 , 9, 2789-2793
NiCo ₂ P _x /CF	1 M KOH	Carbon Fibers	5.9	Pt sheet	58	34.3	Adv. Mater. 2017 , 29, 1605502.
CoMoP@C	1 M KOH	Glassy Carbon	0.354	Graphite Rod	81	55.5	Energy Environ. Sci. 2017 , 10, 788-798
MoP@C	1 M KOH	Carbon	~6.0	Graphite	49	54	Adv. Energy Mater.

		Cloth		Rod			2018 , 8, 1801258.
FLNPC@MoPNC/MoP- C	1 M KOH	Carbon Cloth	2.42	Carbon Rod	69	52	<i>Adv. Funct. Mater.</i> 2018 , 28, 1801527.
MoP-C	1 M KOH	Glassy Carbon	0.84	Graphite Rod	169	70	Nano Energy 2017 , 32, 511-519.
$MoS_2/Co(OH)_2$	1 M KOH	Glassy Carbon	0.285	Graphite Rod	125	76	Adv. Mater. 2018 , 30, 1801171
MoS_2 Confined $Co(OH)_2$	1 М КОН	Glassy Carbon	0.2	Graphite Rod	89	53	ACS Nano 2018 , 12, 4565-4573.
Ni(OH) ₂ /MoS ₂	1 M KOH	Carbon Cloth	4.8	Pt Foil	80	60	Nano Energy 2017 , 37, 74-80

Table S6. HER performances of NiMoPO_x/NF and their corresponding Ni(OH)₂/NiMoPO_x/NF electrodes with different phosphating conditions.

Catalysts	NiMoPO _x /NF 200 °C-2 h		NiMoPO _x /NF 400 °C-2 h		NiMoPO _x /NF 600 °C-2 h		NiMoPO _x /NF 400 °C-1 h		NiMoPO _x /NF 400 °C-4 h	
- 	-	*	-	*	-	*	-	*	-	*
Onset potential (mV)	94	121	32	29	45	29	45	42	40	32
η @ -10 mA/cm ² (mV)	182	220	87	61	95	58	88	72	79	64
η @ -100 mA/cm ² (mV)	413	462	222	166	264	218	271	189	245	183
j @-400 mV (mA/cm ²)	92	68	255	349	212	232	181	284	224	305

Note: - means the $NiMoPO_x/NF$ samples, and * means their corresponding $Ni(OH)_2/NiMoPO_x/NF$ samples.