Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2020

Readily Accessible Sp³-Rich Cyclic Hydrazine Frameworks Exploiting Nitrogen Fluxionality

Conor Dean, Sundaram Rajkumar, Stefan Roesner, Nessa Carson, Guy J. Clarkson, Martin Wills, Matthew Jones, and Michael Shipman*

Table of Contents

General Details	S2
Experimental Procedures and Characterization Data	S3-S64
Enantiomeric Excess Determination for 6a-v , 8a-v , 10b , 10d , 10j and 10o by HPLC	S65-108
Copies of ¹ H NMR and ¹³ C NMR Spectra of 5a-v , 6a-v , 8a-v , 9a-q , 10a-q and 12	S109-213
Depiction of Single Crystal X-ray Structures of 6a, 8d, 8h, 9i, 9m, 10a, 10b, 10l and 10o.	S214-222
LLAMA, NOESY and VT NMR data	S223-S233
References	S234

General Details

All reactions were performed under an atmosphere of nitrogen in oven-dried glassware unless otherwise stated. Anhydrous solvents were purchased from Sigma-Aldrich or Acros Organics in Sure-SealTM bottles for use as reaction solvents. All other solvents were reagent grade and used as received. Petroleum ether refers to the fraction that boils in the range 40-60 °C. Commercially available starting materials were used without purification.

Thin layer chromatography was performed on pre-coated aluminium-backed plates (Merck Silicagel 60 F254), visualized by UV 254 nm then stained with phosphomolybdic acid (PMA) or potassium permanganate (KMnO₄) dip and heated. Flash column chromatography was performed using 40-63 µm Silica Gel.

Nuclear magnetic resonance (NMR) spectra were recorded on Bruker DPX (300 or 400 MHz) or AV (500 or 600 MHz) spectrometers. Chemicals shifts (δ) are reported in parts per million (ppm) relative to the solvent residual peaks (CDCl₃ δ_H : 7.26 ppm, δ_C : 77.16 ppm; D6-DMSO δ_H : 2.50 ppm, δ_C : 39.52 ppm). Coupling constants (J) are reported in hertz (Hz). Splitting patterns are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad (br), or some combination of these.

Low-resolution mass spectra were recorded on an Agilent Technologies 6130 Quadrupole LC-MS instrument. High-resolution mass spectra were recorded using a Bruker MaXis Impact. Infrared spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer and are given in cm⁻¹. Melting points were recorded with a Gallenkamp MPD350 apparatus and are reported as observed. Optical rotations were measured using an AA-1000 polarimeter using a 2 dm cuvette and reported as observed.

Experimental Procedures and Characterization Data

1-Benzyl 2-(*tert*-butyl) 1-tosylhydrazine-1,2-dicarboxylate (4b). *tert*-Butyl 2- $_{Ts}^{N-NHBoc}$ tosylhydrazine-1-carboxylate^[3] (3.22 g, 11.3 mmol, 1.0 equiv), triethylamine (1.65 mL, 11.8 mmol, 1.05 equiv), 4-dimethylaminopyridine (138 mg, 1.1 mmol, 0.1 equiv) and dichloromethane (20 mL) were stirred at 0 °C. Then benzyl chloroformate (1.69 mL, 11.8 mol, 1.05 equiv) in dichloromethane (20 mL) was added via syringe pump over 1 h. The reaction mixture was then quenched with sodium hydrogen carbonate (20 mL), extracted with dichloromethane (3 x 20 mL), dried over MgSO₄ and concentrated *in vacuo* to give a clear oil. The crude product was purified by column chromatography (15% EtOAc/pet ether) to give 4b (4.35 g, 10.4 mmol, 92%) as a colourless oil. $R_f = 0.12$ (15% EtOAc in petroleum ether); IR (film) 3336, 2981, 1736, 1365, 1155 cm⁻¹; δ*H* (500 MHz; CDCl₃) 7.92 (2H, d, *J* 8.0, Ar-*H*), 7.36-7.25 (7H, m, Ar-*H*), 6.95 and 6.63 (minor rotamer) (1H, s, NH), 5.28-5.13 (2H, m, C*H*₂Ph), 2.44 (3H, s, C*H*₃) 1.49 (9H, s, C(CH₃)₃); δ*C* (125 MHz; CDCl₃) 153.5 (C=O), 151.5 (C=O), 145.3 (Ar-C), 131.7 (Ar-C), 134.2 (Ar-C), 129.6 (Ar-CH), 129.2 (Ar-CH), 128.7 (Ar-CH), 128.6 (Ar-CH), 128.4 (Ar-CH), 82.8 (C), 69.6 (CH₂), 28.0 (CH₃), 21.7 (CH₃); HRMS (ESI*) calculated for C₂₀H₂₄N₂NaO₆S [M+Na]* 443.1247; found 443.1245.

General method 1: Synthesis of keto hydrazines using triply protected hydrazines 4a-b

To a solution of hydrazine **4a**^[1] or **4b** (1.0 equiv) in anhydrous CH₃CN (0.1 M) was added halide (1.1 equiv) followed by potassium carbonate (1.1 equiv). The reaction mixture was stirred at rt until completion of the reaction (6-24 h). Water (10 mL) was then added and the mixture was extracted with dichloromethane (3 × 10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (15-40% EtOAc/ pet ether) to gave the tetrasubstituted hydrazine. To this compound (1.0 equiv) in dichloromethane (0.1 M) was added trifluroacetic acid (10 equiv) at 0 °C. After 2 h, the reaction mixture was concentrated *in vacuo*. The crude product was purified by column chromatography (15-40% EtOAc/ pet ether) to give the following compounds.

Benzyl 1-(2-oxo-2-phenylethyl)-2-tosylhydrazine-1-carboxylate (5a).
Following general procdure 1, hydrazine 4a (693 mg, 1.65 mmol, 1.0 equiv), 2-bromoacetophenone (360 mg, 1.81 mol, 1.1 equiv), potassium carbonate (250

mg 1.81 mmol, 1.1 equiv) and acetonitrile (17 mL, 0.1 M), then trifluoroacetic acid (1.27 mL, 16.5 mmol, 10 equiv) and dichloromethane (17 mL, 0.1 M) gave **5a** (582 mg, 1.33 mmol, 81%) as a white solid. $R_f = 0.38$ (30% EtOAc in petroleum ether); M.p. 123-124 °C; IR (film) 3220, 2924, 1724, 1340, 1184 cm⁻¹; δH (400 MHz; CDCl₃) 7.90-7.48 (7H, m, Ar-*H*), 7.34-7.23 (4H, m, Ar-*H*), 7.14-7.04 (3H, m, Ar-*H*), 5.07 (2H, s, C*H*₂Ph), 4.92 (2H, s, NC*H*₂), 2.43 (major) and 2.38 (minor) (3H, s, C*H*₃); δC (100 MHz; CDCl₃) 193.8 (C=O, rotamer), 193.4 (C=O, rotamer), 157.1 (C=O), 144.5 (Ar-C, rotamer), 144.3 (Ar-C, rotamer), 135.3 (Ar-C), 134.4 (Ar-C, rotamer), 134.3 (Ar-C, rotamer), 134.2 (Ar-CH), 133.9 (Ar-C), 129.5 (Ar-CH), 129.0 (Ar-CH), 128.7 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.1 (Ar-CH), 68.8 (CH₂), 59.1 (NCH₂ rotamer), 58.2 (NCH₂ rotamer), 21.8 (CH₃ rotamer), 21.7 (CH₃ rotamer); HRMS (ESI⁺) calculated for $C_{23}H_{22}N_2NaO_5S$ [M+Na]⁺ 461.1142; found 461.1139.

tert-Butyl 1-(2-oxo-2-phenylethyl)-2-tosylhydrazine-1-carboxylate Ph N N Ts Hydrazine **4b** (310 mg, 0.74 mmol, 1.0 equiv), 2-bromoacetophenone (161 mg, 0.81 mol, 1.1 equiv), potassium carbonate (112 mg 0.81 mmol, 1.1 equiv) and acetonitrile (8.0 mL, 0.1 M) were stirred at room temperature for 24 h. The solution was then quenched with water (10 mL), extracted with dichloromethane (3 x 10 mL), dried over MgSO₄ and concentrated in vacuo to give a clear oil. The product was purified by column chromatography (10% EtOAc in petroleum ether) to give a white solid. This was stirred under an atmosphere of hydrogen with 3 wt% palladium on charcoal (30 mg) and ethyl acetate (3.0 mL). The reaction was carefully monitored by TLC, as over-reduction to rac-6b was seen to occur after Cbz removal. Generally the reaction was complete in approximately 2 h. The crude reaction mixture was then filtered through a plug of Celite and concentrated in vacuo to give a clear oil, which was purified by column chromatography (25% EtOAc in petroleum ether) to give **5b** (153 mg, 0.38 mmol, 51%) as a white solid. $R_f = 0.52$ (25% EtOAc in petroleum ether); M.p. 148-150 °C; IR (film) 3219, 2981, 1710, 1695, 1329, 1156 cm⁻¹; δH (500 MHz; CDCl₃) 7.93 (2H, d, J 7.4, Ar-H), 7.85 (2H, d, J 8.2, Ar-H), 7.64 (1H, q, J 8.0, Ar-H), 7.55-7.49 (2H, m, Ar-H), 7.41-7.30 (2H, m, Ar-H), 7.21 and 7.00 (minor rotamer) (1H, s, NH), 5.01 (2H, s, CH_2N), 2.50-2.42 (3H, m, CH_3), 1.20 and 1.15 (minor rotamer) (9H, s, C(CH₃)₃); δC (125 MHz; CDCl₃) 193.9 (minor rotamer) and 193.6 (C=O), 155.6 and 154.7 (minor rotamer, C=O), 144.5 (minor rotamer) and 144.4 (Ar-C), 134.5 (Ar-C), 134.0 (Ar-CH), 133.6 (Ar-C), 134.2 (Ar-CH), 133.9 (Ar-C), 129.7 (minor rotamer) and 129.3 (Ar-CH), 128.9 and 128.7 (minor rotamer, Ar-CH), 128.8 and 128.6 minor rotamer, Ar-CH), 128.0 (minor rotamer) and 127.9 (Ar-CH), 83.1 (minor rotamer) and 82.8 (C), 58.9, and 58.1 (minor rotamer, CH₂), 27.6 and 27.5 (minor rotamer, CH₃), 21.6 (CH₃); HRMS (ESI⁺) calculated for $C_{20}H_{24}N_2NaO_5S$ [M+Na]⁺ 427.1298; found 427.1296.

Benzyl1-(2-(2-fluorophenyl)-2-oxoethyl)-2-tosylhydrazine-1-carboxylate (5c). Following general procdure 1, hydrazine 4a (300 mg, 0.72 mmol, 1.0 equiv), 2-bromo-2`-fluoroacetophenone (171 mg, 0.79 mmol, 1.1 equiv), potassium carbonate (109 mg, 0.79 mmol, 1.1 equiv) and acetonitrile (8.0 mL, 0.1 M), then trifluoroacetic acid (555 μL, 7.20 mmol, 10 equiv) and dichloromethane (8.0 mL, 0.1 M) gave **5c** (204 mg, 0.45 mmol, 62%) as a white solid. R_f = 0.21 (15% EtOAc in petroleum ether); M.p. 122-123 °C; IR (film) 3211, 2966, 1721, 1693, 1609, 1499, 1255, 1200 cm⁻¹; δ*H* (600 MHz; D6-DMSO at 100 °C) 9.97 (1H, s, NH), 7.80 (1H, t, *J* 7.5 Ar-*H*), 7.73-7.67 (3H, m, Ar-*H*), 7.38-7.27 (7H, m, Ar-*H*), 7.21-7.14 (2H, m, Ar-H), 4.84 (2H, s, CH₂Ph), 4.81 (2H, s, NCH₂) 2.36 (3H, s, CH₃); δ*C* (150 MHz, D6-DMSO at 100 °C) 144.0 (Ar-C), 136.1 (d, *J* 9.0, Ar-CH) 130.6 (Ar-CH), 129.7 (Ar-CH), 128.5 (Ar-CH), 128.2 (Ar-CH), 128.2 (Ar-CH), 127.8 (Ar-CH), 125.4 (Ar-CH), 117.2 (d, *J* 24 Ar-CH), 68.0 (CH₂), 61.7 (CH₂), 21.4 (CH₃), 2 C=O, 4 Ar-C not seen; δ*F* (376 MHz, D6-DMSO) -108.8 (C-F); HRMS (ESI⁺) calculated for C₂₃H₂₁FN₂O₅S [M+Na]⁺ 479.1047; found 479.1048.

1-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl)-2-Benzyl tosylhydrazine-1-carboxylate (5d). Following general procdure 1, hydrazine 4a (300 mg, 0.72 mmol, 1.0 equiv), 2-bromo-4'-(trifluoromethyl)acetophenone (211 mg, 0.79 mmol, 1.1 equiv), potassium carbonate (109 mg, 0.79 mmol, 1.1 equiv) and acetonitrile (8.0 mL, 0.1 M), then trifluoroacetic acid (555 μL, 7.20 mmol, 10 equiv) and dichloromethane (8.0 mL, 0.1 M) gave 5d (204 mg, 0.40 mmol, 56%) as a white solid. $R_f = 0.19$ (15% EtOAc in petroleum ether); M.p. 203-205 °C. IR (film) 3263, 2925, 1710, 1687, 1324, 830, 811 cm⁻¹; δH (500 MHz; CDCl₃) 8.05-7.97 (2H, m, Ar-H), 7.81-7.68 (4H, m, Ar-H), 7.36-7.03 (7H, m, Ar-H), 5.11-4.87 (4H, m, NCH₂ and CH₂Ph), 2.43 and 2.39 (minor rotamer) (3H, s, CH₃); δC (125 MHz, CDCl₃) 192.4 (C=O, seen on HMBC), 144.0 (Ar-C, seen on HMBC), 136.7 (Ar-C, seen on HMBC), 135.5 (Ar-C), 129.6 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.1 (Ar-CH), 128.0 (Ar-CH), 126.0 (Ar-CH), 68.9 (CH₂), 59.1 (CH₂) and 58.3 (CH₂, minor rotamer), 21.8 (CH₃), CF₃, 2 Ar-C and C=O not seen; δF (376 MHz; CDCl₃) -63.3 (CF₃); HRMS (ESI⁺) calculated for C₂₄H₂₁F₃N₂O₅S [M+Na]⁺ 529.1015; found 529.1016.

Benzyl 1-(2-(3-bromophenyl)-2-oxoethyl)-2-tosylhydrazine-1-carboxylate (5e). Following general procdure 1, hydrazine 4a (300 mg, 0.72 mmol, 1.0 equiv), 2,3'-bromoacetophenone (220 mg, 0.79 mmol, 1.1 equiv), potassium carbonate (109 mg, 0.79 mmol, 1.1 equiv) and acetonitrile (8.0 mL, 0.1 M), then trifluoroacetic acid (555 µL, 7.20 mmol, 10 equiv) and

dichloromethane (8.0 mL, 0.1 M) gave **5e** (201 mg, 0.39 mmol, 54%) as a white solid. $R_f = 0.18$ (15% EtOAc in petroleum ether); M.p. 131-133 °C. IR (film) 3230, 2964, 2919, 1719, 1682, 1494, 1343, 1215 cm⁻¹; δ H (500 MHz; CDCl₃) 8.03 (1H, d, J 8.3, Ar-H), 7.86-7.68 (4H, m, Ar-H), 7.41-7.02 (8H, m, Ar-H), 5.09-4.85 (4H, m, NC H_2 and C H_2 Ph), 2.43 and 2.39 (minor rotamer) (3H, s, CH₃); δ C (125 MHz, CDCl₃) 192.1 (C=O), 156.8 (C=O), 144.6 (Ar-C), 137.0 (Ar-CH), 131.1 (Ar-CH), 130.5 (Ar-CH), 129.5 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.0 (Ar-CH), 126.5 (Ar-CH), 123.3 (Ar-C), 68.9 (CH₂), 58.9 (CH₂) and 58.1 (CH₂, minor rotamer), 21.8 (CH₃), 3 Ar-C not seen; HRMS (ESI⁺) calculated for $C_{23}H_{21}^{79}$ BrN₂O₅S [M+Na]⁺ 539.0247; found 539.0240.

Benzyl 1-(2-(3,4-dichlorophenyl)-2-oxoethyl)-2-tosylhydrazine-1-carboxylate (5f). Following general procdure 1, hydrazine 4a (204 mg, 0.76 mmol, 1.0 equiv), 2-bromo-3`,4`-dichloroacetophenone (212 mg, 0.79 mmol, 1.1 equiv), potassium carbonate (109 mg, 0.79 mmol, 1.1

equiv) and acetonitrile (8.0 mL, 0.1 M), then trifluoroacetic acid (586 μ L, 7.60 mmol, 10 equiv) and dichloromethane (8.0 mL, 0.1 M) gave **5f** (157 mg, 0.31 mmol, 41%) as a white solid. R_f = 0.22 (15% EtOAc in petroleum ether); M.p. 174-177 °C. IR (film) 3257, 2928, 1710, 1421, 1183 cm⁻¹; δH (500 MHz; CDCl₃) 7.97 (1H, d, J 8.9, Ar-H), 7.81-7.67 (3H, m, Ar-H), 7.58 (1H, d, J 8.2, Ar-H) 7.37-7.01 (7H, m, Ar-H), 5.07-4.87 (4H, m, NCH₂ and CH₂Ph), 2.43 and 2.39 (minor rotamer) (3H, s, CH₃); δC (125 MHz, CDCl₃) 191.8 (C=O, major rotamer), 191.4 (C=O, minor rotamer), 156.7 (C=O), 144.7 (Ar-C), 138.9 (Ar-C) 133.8 (Ar-C), 133.7 (Ar-C), 131.1 (Ar-CH), 130.0 (Ar-CH), 129.6 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.1 (Ar-CH), 126.9 (Ar-CH), 68.9 (CH₂), 58.8 (CH₂, major rotamer), 58.0 (CH₂, minor rotamer), 21.8 (CH₃), 2 Ar-C not seen; HRMS (ESI⁺) calculated for C₂₃H₂₀³⁵Cl₂N₂O₅S [M+Na]⁺ 529.0362; found 529.0357.

Benzyl 1-(2-(2-chlorophenyl)-2-oxoethyl)-2-tosylhydrazine-1carboxylate (5g). Following general procdure 1, hydrazine 4a (300 mg, 0.72 mmol, 1.0 equiv), 2-bromo-2`-chloroacetophenone (184 mg, 0.79 mmol, 1.1 equiv), potassium carbonate (109 mg, 0.79 mmol, 1.1 equiv) and acetonitrile (7.2 mL, 0.1 M), then trifluoroacetic acid (555 μ L, 7.20 mmol, 10 equiv) and dichloromethane (7.2 mL, 0.1 M) gave 5g (191 mg, 0.40 mmol, 56%) as a white solid. R_f = 0.42 (25% EtOAc in petroleum)

gave **5g** (191 mg, 0.40 mmol, 56%) as a white solid. $R_f = 0.42$ (25% EtOAc in petroleum ether); M.p. 89-93 °C; IR (film) 3195, 2941, 1728, 1704, 1417, 1382, 1219 cm⁻¹; δH (500 MHz; d6-DMSO) 10.63 and 10.52 (minor rotamer) (1H, s, NH), 7.76-7.43 (5H, m, Ar-H), 7.36-7.10 (8H, m, Ar-H), 5.15-4.35 (4H, m, NC H_2 and C H_2 Ph), 2.30 (3H, s, C H_3); δC (125 MHz, d6-DMSO) 195.7 (C=O), 155.6 (C=O), 144.0 (Ar-C), 137.8 (Ar-C), 136.1 (Ar-C), 135.8 (Ar-CH), 131.2 (Ar-CH), 130.8 (Ar-CH), 130.2 (Ar-CH), 129.8 (Ar-CH), 129.4 (Ar-CH)

CH), 128.7 (Ar-CH), 128.1 (Ar-CH), 127.8 (Ar-CH), 125.8 (Ar-CH), 67.8 (CH₂), 60.8 (CH₂), 21.6 (CH₃); HRMS (ESI⁺) calculated for $C_{23}H_{21}^{35}CIN_2O_5S$ [M+Na]⁺ 495.0752; found 495.0737.

Benzyl 1-(3-oxo-3-phenylpropyl)-2-tosylhydrazine-1-carboxylate (5h).
Following general procdure 1, hydrazine 4a (300 mg, 0.72 mmol, 1.0 equiv), 3-chloropropiophenone (133 mg, 0.79 mmol, 1.1 equiv), potassium carbonate (109 mg, 0.79 mmol, 1.1 equiv) and acetonitrile (7.2 mL, 0.1 M), then trifluoroacetic acid (555 μL, 7.20 mmol, 10 equiv) and dichloromethane (7.2 mL, 0.1 M) gave 5h (293 mg, 0.65 mmol, 90%) as a white solid. $R_f = 0.20$ (15% EtOAc in petroleum ether); M.p. 122-123 °C; IR (film) 3231, 3034, 1702, 1666, 1380, 1307, 1184 cm⁻¹; δ*H* (500 MHz; CDCl₃) 7.95 (2H, d, *J* 7.8 Ar-H), 7.75 (2H, d, *J* 8.0, Ar-H), 7.60 (1H, t, *J* 7.3, Ar-H), 7.49 (2H, t, *J* 7.6, Ar-H), 7.33 (3H, d, *J* 4.9, Ar-H), 7.22 (2H, d, *J* 8.0, Ar-H), 7.15 (2H, s, Ar-H), 4.91 (2H, br s, CO₂CH₂), 4.08 (2H, br s, NCH₂), 3.40 (2H, br s, COCH₂), 2.42 (3H, s, Ar-CH₃); δ*C* (125 MHz, CDCl₃) 198.3 (C=O, seen on HMBC), 144.5 (Ar-C), 136.4 (Ar-C), 135.2 (Ar-C), 133.5 (Ar-CH), 129.6 (Ar-CH), 128.7 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.1 (Ar-CH), 128.1 (Ar-CH), 68.5 (CH₂), 46.8 (CH₂), 35.9 (CH₂), 21.7 (CH₃), 1 C=O, 1 Ar-H and 1 Ar-C not seen; HRMS (ESI+) calculated for $C_{24}H_{24}N_2O_5S$ [M+Na]+ 475.1298; found 475.1302.

General method 2: Synthesis of keto hydrazines using diprotected hydrazines

$$R^{1}HN-NHR^{2}$$
 + Ar
 CI
 $K_{2}CO_{3}, CH_{3}CN$
 $rt, time$
 Ar
 N
 R^{1}
 R^{1}

To a solution of protected hydrazine (1.0 equiv) in acetonitrile (0.1 M) was added the organic halide (1.0 equiv) followed by potassium carbonate (1.1 equiv). The reaction mixture was stirred at rt until completion of the reaction (6-24 h, monitored by TLC). Water (10 mL) was then added and the mixture was extracted with dichloromethane (3 x 10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄ and concentrated *in vacuo*. The crude product was purified by column chromatography (30-40% EtOAc/ pet ether) to give the following compounds.

tert-Butyl

2-((4-nitrophenyl)sulfonyl)-2-(3-oxo-3-

phenylpropyl)hydrazine-1-carboxylate (5i). Following general method 2, tert-butyl 2-((4-nitrophenyl)sulfonyl)hydrazine-1-carboxylate^[2] (250 mg, 0.79 mmol, 1.0 equiv), acetonitrile (7.9 mL, 0.1 M), 3-chloropropiophenone (133 mg, 0.83 mmol, 1.05 equiv) and potassium carbonate (112 mg, 0.87 mmol, 1.1 equiv) yielded **5i** as a white solid (249 mg, 0.56 mmol, 70%). $R_f = 0.39$ (25% EtOAc in petroleum ether); M.p; 157-159 °C; IR (film) 3316, 2984, 1735, 1679, 1526, 1317, 1208 cm⁻¹; δH (500 MHz; CDCl₃) 7.80

(4H, t, J 9.1, Ar-CH), 7.61 (2H, d, J 8.3, Ar-CH), 7.32 (2H, d, J 7.8, Ar-CH), 6.36 (1H, br s, NH), 3.88 (2H, br s, COCH₂), 3.34 (2H, t, J 6.3, CH₂NNs), 1.27 (9H, br s, C(CH₃)₃); δ*C* (125 MHz, CDCl₃) 197.0 (C=O, seen on HMBC), 196.6 (C=O, seen on HMBC), 144.6 (Ar-C), 135.1 (Ar-C), 133.8 (Ar-C), 132.0 (Ar-CH), 129.7 (Ar-CH), 129.6 (Ar-CH), 128.7 (Ar-CH), 128.6 (Ar-CH), 81.8 (C), 46.2 (NCH₂), 37.3 (CH₂), 27.9 (CH₃), 1 C=O not seen; HRMS (ESI⁺) calculated for C₂₁H₂₅⁷⁹BrN₂O₅S [M+Na]⁺ 519.0560; found 519.0564.

tert-Butyl 2-(3-oxo-3-phenylpropyl)-2-tosylhydrazine-1-carboxylate (5j).

Following general method 2, *tert*-butyl 2-tosylhydrazine-1-carboxylate^[3] (100 mg, 0.35 mmol, 1.0 equiv), acetonitrile (3.5 mL, 0.1 M), 3-chloropropiophenone (59 mg, 0.35 mmol, 1.0 equiv) and potassium carbonate (48 mg, 0.35 mmol, 1.0 equiv) yielded **5j** as a white solid (139 mg, 0.33 mmol, 95%). $R_f = 0.29$ (30% EtOAc in petroleum ether); M.p. 136-137.5 °C; IR (film) 2986, 2900, 1451, 1250, 1066 cm⁻¹; δH (400 MHz; CDCl₃) 7.95-7.78 (4H, m, Ar-*H*), 7.59-7.26 (5H, m, Ar-*H*), 6.38 (major) and 6.03 (minor) (1H, br s, N*H*), 3.89 (2H, br s, NC*H*₂), 3.38 (2H, t, *J* 6.2, C*H*₂CO), 2.42 (3H, s, CH₃), 1.26 (9H, s, (CH₃)₃); δC (125 MHz; CDCl₃) 198.0 (C=O, seen on HMBC), 144.6 (Ar-C), 136.5 (Ar-C), 133.9 (Ar-C), 133.6 (Ar-CH), 129.8 (Ar-CH), 128.7 (Ar-CH), 128.2 (Ar-CH), 81.8 (C), 46.4 (NCH₂), 37.4 (CH₂), 28.0 (Boc-CH₃), 21.7 (CH₃), 1 Ar-CH and 1 C=O not seen; HRMS (ESI⁺) calculated for C₂₁H₂₆N₂NaO₅S [M+Na]⁺ 441.1455; found 441.1459.

tert-Butyl 2-(3-([1,1'-biphenyl]-4-yl)-3-oxopropyl)-2-

tosylhydrazine-1-carboxylate (5k). Following general method 2, *tert*-butyl 2-tosylhydrazine-1-carboxylate^[3] (500 mg, 1.75 mmol, 1.00 equiv), acetonitrile (17.5 mL, 0.1 M), 1-([1,1'-biphenyl]-4-yl)-3-chloropropan-1-one^[4] (470 mg, 1.92 mmol, 1.1 equiv) and potassium carbonate (265 mg, 1.92 mmol, 1.1 equiv) yielded **5k** as a white solid (635 mg, 1.28 mmol, 73%). M.p. 156-157 °C; R_f = 0.34 (25% EtOAc in petroleum ether); IR (film) 3299, 2983, 2900, 1718, 1660, 1603, 1380, 1252 cm⁻¹; δ*H* (500 MHz; CDCl₃) 8.04 (2H, d, *J* 8.3, Ar-H), 7.82 (2H, d, *J* 8.2, Ar-H), 7.71 (2H, d, *J* 8.2, Ar-H), 7.65 (2H, d, *J* 7.4, Ar-H), 7.50 (2H, t, *J* 7.5, Ar-H), 7.43 (1H, t, *J* 7.3, Ar-H), 7.35 (2H, d, *J* 7.8, Ar-H), 3.93 (2H, br s, COCH₂), 3.43 (2H, t, *J* 6.1, CH₂NTs), 2.45 (3H, s, CH₃), 1.59 (9H, s, C(CH₃)₃); δ*C* (125 MHz, CDCl₃) 197.6 (C=O, seen on HMBC), 146.1 (Ar-C), 144.5 (Ar-C), 139.8 (Ar-C), 135.1 (Ar-C), 129.7 (Ar-CH), 129.6 (Ar-C, seen on HMBC) 129.0 (Ar-CH), 128.7 (Ar-CH), 128.6 (Ar-CH), 128.3 (Ar-CH), 127.3 (Ar-CH), 127.3 (Ar-CH), 81.5 (C, seen on HMBC), 46.4 (NCH₂), 41.4 (CH₂), 27.9 (CH₃), 21.6 (CH₃), 1 C=O not seen; HRMS (ESI+) calculated for C₂₇H₃₀N₂O₅S [M+Na]+ 517.1768; found 517.1771.

tert-Butyl 2-(3-(4-bromophenyl)-3-oxopropyl)-2-tosylhydrazine-1carboxylate **(5I)**. Following general method 2, tert-butyl 2tosylhydrazine-1-carboxylate^[3] (150 mg, 0.52 mmol, 1.0 equiv), acetonitrile (5.2 mL, 0.1 M), 4'-bromo-3-chloropropiophenone (129 mg, 0.52 mmol, 1.0 equiv) and potassium carbonate (75 mg, 0.55 mmol, 1.05 equiv) yielded 51 as a white solid (216 mg, 0.44 mmol, 85%). $R_f = 0.29$ (25% EtOAc in petroleum ether); M.p. 165-166 °C; IR (film) 3267, 2975, 2927, 1732, 1714, 1368, 1159 cm⁻¹; δH (500 MHz; CDCl₃) 7.80 (4H, t, J 9.1, Ar-CH), 7.61 (2H, d, J 8.3, Ar-CH), 7.32 (2H, d, J 7.8, Ar-CH), 6.36 (1H, br s, NH), 3.88 (2H, br s, COCH₂), 3.34 (2H, t, J 6.3, CH₂NTs), 2.43 (3H, s, Ar-CH₃) 1.27 (9H, br s, C(CH₃)₃); δC (125 MHz, CDCl₃) 197.0 (C=O, seen on HMBC), 196.6 (C=O, seen on HMBC), 144.6 (Ar-C), 135.1 (Ar-C), 133.8 (Ar-C), 132.0 (Ar-CH), 129.7 (Ar-CH), 129.6 (Ar-CH), 128.7 (Ar-CH), 128.7 (Ar-CH), 129.6 (Ar-CH), 129.7 (Ar-CH), 129.6 (Ar-CH), 128.7 (Ar-CH), 129.7 (Ar-CH), C), 128.6 (Ar-CH), 81.8 (C), 46.2 (NCH₂), 37.3 (CH₂), 27.9 (CH₃), 21.6 (CH₃), 1 C=O not seen; HRMS (ESI+) calculated for C₂₁H₂₅⁷⁹BrN₂O₅S [M+Na]+ 519.0560; found 519.0564.

tert-Butyl 2-(3-oxo-3-(thiophen-2-yl)propyl)-2-tosylhydrazine-1- carboxylate (5m). Following general method 2, *tert*-butyl 2-tosylhydrazine-1-carboxylate [^{3]} (200 mg, 0.70 mmol, 1.0 equiv), acetonitrile (7.0 mL, 0.1 M), 3-chloro-1-(thiophen-2-yl)propan-1-one (123 mg, 0.70 mmol, 1.0 equiv) and potassium carbonate (102 mg, 0.74 mmol, 1.05 equiv) yielded **5m** as a pale yellow solid (222 mg, 0.52 mmol, 75%). R_f = 0.38 (25% EtOAc in petroleum ether); M.p. 39-40 °C; IR (film) 3320, 2978, 1718, 1654, 1347, 1237, 1152 cm⁻¹; δ*H* (500 MHz; CDCl₃) 7.80 (2H, t, *J* 8.2, Ar-H), 7.76 (2H, d, *J* 3.4, Ar-H), 7.68 (2H, d, *J* 4.8, Ar-H), 7.16 (1H, t, *J* 4.3, Ar-H), 6.35 (1H, br s, NH), 3.90 (2H, br s, COCH₂), 3.33 (2H, t, *J* 6.3, CH₂NTs), 2.45 (3H, s, CH₃) 1.28 (9H, br s, C(CH₃)₃); δ*C* (125 MHz, CDCl₃) 190.9 (C=O, seen on HMBC), 144.5 (Ar-C), 143.7 (Ar-C), 134.2 (Ar-CH), 132.6 (Ar-CH), 129.7 (Ar-CH), 129.6 (Ar-C, seen on HMBC), 128.6 (Ar-CH), 128.3 (Ar-CH), 81.7 (C), 46.3 (NCH₂), 38.0 (CH₂), 27.8 (CH₃), 21.6 (CH₃), Ar-CH and 1 C=O not seen; HRMS (ESI*) calculated for C₁₉H₂₄N₂O₅S₂ [M+Na]* 447.1018; found 447.1021.

2-(3-oxo-3-(p-tolyl)propyl)-2-tosylhydrazine-1-carboxylate (5n). Following general method 2, *tert*-butyl 2-tosylhydrazine-1-carboxylate^[3] (2.59 g, 9.03 mmol, 1.0 equiv), acetonitrile (90 mL, 0.1 M), 3-chloro-1-(p-tolyl)propan-1-one^[5] (1.65 g, 9.03 mmol, 1.0 equiv) and potassium carbonate (1.37 g, 9.93 mmol, 1.1 equiv) yielded **5n** after purification by column chromatography (33% EtOAc in petroleum ether) as a white solid (3.41 g, 7.88 mmol, 79%). M.p. 146-147 °C; R_f = 0.17 (33% EtOAc in petroleum ether); IR (neat) 3314, 1719, 1667, 1346, 1154, 1101, 1023, 973, 813, 775, 739 cm⁻¹; δ*H* (400 MHz; CDCl₃) 7.83 (2H, d, *J* 8.2, Ar-*H*), 7.78 (2H, d, *J* 8.2, Ar-*H*), 7.30 (2H, d, *J* 8.0, Ar-*H*), 7.24 (2H, d, *J* 8.0, Ar-*H*), 6.41

(0.74H, br s, NH major), 6.09 (0.26H, br s, NH minor), 3.86 (2H, br s, NCH₂), 3.34 (2H, t,*J* $6.8, CH₂CO), 2.41 (3H, s, CH₃), 2.40 (3H, s, CH₃), 1.26 (9H, s, (CH₃)₃); <math>\delta$ C (101 MHz; CDCl₃) 199.9 (C=O, seen on HMBC), 144.5 (Ar-C), 144.4 (Ar-C), 134.1 (Ar-C), 134.1 (Ar-C), 129.8 (Ar-CH), 129.5 (Ar-CH), 128.7 (Ar-CH), 128.3 (Ar-CH), 81.7 (C, seen on HMBC), 46.5 (NCH₂), 37.2 (CH₂CO), 28.0 (Boc-CH₃), 21.8 (CH₃), 21.7 (CH₃), Boc-C=O not observed; HRMS (ESI⁺) calculated for C₂₂H₂₈N₂NaO₅S [M+Na]⁺ 455.1611; found 455.1612.

O NHBoc Ts **tert-Butyl 2-(3-(2,3-dihydro-1***H*-inden-5-yl)-3-oxopropyl)-2-tosylhydrazine-1-carboxylate (5o). Following general method 2, *tert*-butyl 2-tosylhydrazine-1-carboxylate^[3] (2.81 g, 9.82 mmol, 1.0

equiv), acetonitrile (98 mL, 0.1 M), 3-chloro-1-(2,3-dihydro-1*H*-inden-5-yl)propan-1-one^[5] (2.05 g, 9.82 mmol, 1.0 equiv) and potassium carbonate (1.49 g, 10.8 mmol, 1.1 equiv) yielded **5o** after purification by column chromatography (20-33% EtOAc in petroleum ether) as a colouless gum (3.84 g, 8.37 mmol, 85%). $R_f = 0.31$ (33% EtOAc in petroleum ether); IR (neat) 3303, 2975, 1724, 1675, 1366, 1237, 1152, 1090, 814, 753 cm⁻¹; δH (400 MHz; CDCl₃) 7.81-7.77 (3H, m, Ar-*H*), 7.73 (1H, d, *J* 8.0, Ar-*H*), 7.31 (2H, d, *J* 8.1, Ar-*H*), 7.28 (1H, d, *J* 8.0, Ar-*H*), 6.38 (1H, br s, NH), 3.86 (2H, br m, NCH₂), 3.35 (2H, t, *J* 6.7, CH₂CO), 2.94 (4H, t, *J* 7.4, CH₂), 2.42 (3H, s, CH₃), 2.11 (2H, p, *J* 7.4, CH₂C H_2 CH₂), 1.27 (9H, s, (CH₃)₃); δC (101 MHz; CDCl₃) 198.0 (C=O, seen on HMBC), 150.8 (Ar-C), 145.0 (Ar-C), 144.5 (Ar-C), 135.1 (Ar-C), 134.0 (Ar-C), 129.8 (Ar-CH), 128.7 (Ar-CH), 126.8 (Ar-CH), 124.6 (Ar-CH), 124.2 (Ar-CH), 81.6 (C, seen on HMBC), 46.6 (NCH₂), 37.3 (CH₂CO), 33.2 (CH₂), 32.7 (CH₂), 28.0 (Boc-CH₃), 25.5 (CH₂CH₂CH₂), 21.7 (CH₃), Boc-C=O not observed; HRMS (ESI⁺) calculated for C₂₄H₃₀N₂NaO₅S [M+Na]⁺ 481.1768; found 481.1772.

tert-Butyl 2-(3-(3,5-difluorophenyl)-3-oxopropyl)-2-tosylhydrazine-1-carboxylate (5p). Following general procedure 2, tert-butyl 2-tosylhydrazine-1-carboxylate^[3] (350 mg, 1.22 mmol, 1.0 equiv), 3-chloro-1-(3,5-difluorophenyl)propan-1-one (250 mg, 1.22 mol, 1.1 equiv), potassium carbonate (185 mg, 1.34 mmol, 1.1 equiv) and acetonitrile (12 mL, 0.1 M) gave **5p** (409 mg, 0.90 mmol, 74%) as a white solid. $R_f = 0.29$ (15% EtOAc in petroleum ether); M.p. 158-159 °C; IR (film) 3250, 2923, 1733, 1692, 1240, 1028 cm⁻¹; δH (500 MHz; CDCl₃) 7.81 (2H, d, J 8.2, Ar-H), 7.46 (2H, d, J 5.6, Ar-H), 7.35 (2H, d, J 7.8, Ar-H), 7.05 (1H, t, J 8.2, Ar-H), 6.39 and 5.96 (minor rotamer) (1H, s, NH), 3.95-3.62 (2H, br m, CH_2N), 3.34 (2H, t, J 6.4, COCH₂), 2.45 (3H, s, CH_3), 1.30 (9H, s, $C(CH_3)_3$); δC (125 MHz; CDCl₃) 164.2 (C=O), 163.1 (dd, J 251.4, 11.7, Ar-CF), 144.7 (Ar-C), 139.3 (Ar-C), 129.7 (Ar-CH), 128.6 (Ar-CH), 111.1 (dd, J 18.9, 6.3, Ar-CH), 108.7 (t, J 25.0, Ar-CH), 81.9 (C), 50.8 (CH_2), 46.0 (CH_2), 27.9

(CH₃), 21.6 (CH₃), 1 C=O and 1 Ar-C not seen; δF (376 MHz; CDCl₃) -107.8 (Ar-CF); HRMS (ESI⁺) calculated for C₂₁H₂₄N₂NaO₅SF₂ [M+Na]⁺ 477.1266; found 477.1264.

3-Chloro-1-(1-tosylindolin-5-yl)propan-1-one (12). Aluminium trichloride (733 mg, 5.50 mmol, 1.1 equiv) was slowly added to a solution of 1-tosylindoline[6] (1.37 g, 5.00 mmol, 1.0 equiv) and 3chloropropionyl chloride (525 µL, 5.50 mmol, 1.1 equiv) in dichloromethane (5.0 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 16 h. Water (10 mL) was carefully added at 0 °C, the layers were separated and the organic layer was washed with sat. NaHCO₃ (10 mL) and brine (10 mL). The resulting organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was recrystallised from EtOAc to give 12 as a tan-coloured solid (1.72 g, 4.72 mmol, 94%). M.p. 152-154 °C; IR (neat) 1676, 1602, 1486, 1350, 1247, 1159, 1099, 1038, 969, 819 cm⁻¹; δ*H* (400 MHz; CDCl₃) 7.81 (1H, d, J 8.4, Ar-H), 7.71 (2H, d, J 8.2, Ar-H), 7.70 (1H, d, J 8.3, Ar-H), 7.67 (1H, d, J 8.3, Ar-H), 7.26 (2H, d, J 8.2, Ar-H), 3.97 (2H, t, J 8.6, NCH₂), 3.89 (2H, t, J 6.8, CH₂CI), 3.37 (2H, t, J 6.8, CH₂CO), 3.01 (2H, t, J 8.6, NCH₂CH₂), 2.38 (3H, s, CH₃); δC (101 MHz; CDCl₃) 195.3 (C=O), 146.8 (Ar-C), 144.8 (Ar-C), 133.9 (Ar-C), 132.2 (Ar-C), 132.1 (Ar-C), 130.0 (Ar-CH), 129.3 (Ar-CH), 127.3 (Ar-CH), 125.3 (Ar-CH), 113.6 (Ar-CH), 50.3 (NCH₂), 41.1 (CH₂CO), 39.0 (CH₂Cl), 27.4 (NCH₂CH₂), 21.7 (CH₃); HRMS (ESI⁺) calculated for C₁₈H₁₈Cl³⁵NNaO₃S [M+Na]⁺ 386.0588; found 386.0584.

tert-Butyl 2-(3-oxo-3-(1-tosylindolin-5-yl)propyl)-2tosylhydrazine-1-carboxylate (5q). Following general method 2,
tert-butyl 2-tosylhydrazine-1-carboxylate^[3] (897 mg, 3.13 mmol, 1.0

equiv), acetonitrile (32 mL, 0.1 M), 3-chloro-1-(1-tosylindolin-5-yl)propan-1-one (**12**) (1.14 g, 3.13 mmol, 1.0 equiv) and potassium carbonate (476 mg, 3.44 mmol, 1.1 equiv) yielded **5q** after purification by column chromatography (33-50% EtOAc in petroleum ether) as a white foam (1.42 g, 2.31 mmol, 75%). M.p. 87-89 °C; $R_f = 0.32$ (50% EtOAc in petroleum ether); IR (neat) 3294, 2974, 1674, 1602, 1353, 1244, 1159, 1090, 1051, 973, 813 cm⁻¹; δH (400 MHz; CDCl₃) 7.80 (1H, d, J 8.6, Ar-H), 7.78 (2H, d, J 8.3, Ar-H), 7.71 (2H, d, J 8.3, Ar-H), 7.68 (1H, s, Ar-H), 7.66 (1H, d, J 8.6, Ar-H), 7.31 (2H, d, J 7.9, Ar-H), 7.27 (2H, d, J 7.9, Ar-H), 6.33 (1H, br s, NH), 3.97 (2H, t, J 8.6, NC H_2 CH $_2$ C), 3.84 (2H, br m, NC H_2 CH $_2$ CO), 3.29 (2H, t, J 6.7, NCH $_2$ CH $_2$ CO), 3.00 (t, J 8.6, 2H NCH $_2$ CH $_2$ C), 2.42 (3H, s, CH₃), 2.38 (3H, s, CH₃), 1.25 (9H, s, (CH₃)₃); δC (101 MHz; CDCl₃) 196.6 (C=O, seen on HMBC), 146.7 (Ar-C), 144.8 (Ar-C), 144.6 (Ar-C), 133.9 (Ar-C), 132.2 (Ar-C), 132.1 (Ar-C), 130.0 (Ar-CH), 129.8 (Ar-CH), 129.3 (Ar-CH), 128.7 (Ar-CH), 127.4 (Ar-CH), 125.4 (Ar-CH), 113.6 (Ar-CH), 81.6 (C, seen on HMBC), 50.4 (NCH $_2$ CH $_2$ C), 46.6 (NCH $_2$ CH $_2$ CO), 36.8 (NCH $_2$ CH $_2$ CO), 28.0 (Boc-CH₃),

27.4 (NCH₂CH₂C), 21.74 (CH₃), 21.70 (CH₃), one Ar-C and Boc-C=O not observed; HRMS (ESI⁺) calculated for $C_{30}H_{35}N_3NaO_7S_2$ [M+Na]⁺ 636.1809; found 636.1809.

Other Aryl Ketone Syntheses

Benzyl 1-(4-oxo-4-phenylbutyl)-2-tosylhydrazine-1-carboxylate (5r).

Hydrazine **4a**^[1] (400 mg, 0.96 mmol, 1.0 equiv), 4-hydroxy-1phenylbutan-1-one^[10] 158 mg, 0.96 mmol, 1.0 equiv), triphenylphosphine (376 mg, 1.44 mmol, 1.5 equiv), diethyl azodicarboxylate (224 µL, 1.44 mmol, 1.5 equiv) and tetrahydrofuran (10 mL, 0.1 M) were combined and stirred at room temperature for 24 h. The reaction mixture was then concentrated in vacuo. The crude product was purified by column chromatography (30% EtOAc/ pet ether) to give the tetrasubstituted hydrazine. To this hydrazine was added trifluoroacetic acid (735 µL, 9.60 mmol, 10.0 equiv) and dichloromethane (9.6 mL, 0.1 M), the solution was then stirred for 2 h. The resulting yellow solution was concentrated in vacuo to give a yellow oil, which was purified by column chromatography (25% EtOAc/pet ether) to yield 5r as a white solid (215 mg, 0.46 mmol, 48%). $R_f = 0.26$ (25% EtOAc in petroleum ether); M.p. 136-137 °C; IR (film) 3179, 3060, 2955, 1709, 1687, 1369, 1270 cm⁻¹; δH (500 MHz; CDCl₃) 7.91 (2H, d, J 7.6 Ar-CH), 7.72 (2H, d, J7.8, Ar-CH), 7.58 (1H, t, J7.3, Ar-CH), 7.46 (2H, t, J7.7, Ar-CH), 7.31 (3H, t, J6.9, Ar-CH), 7.19 (2H, d, J 7.5, Ar-CH), 7.10-7.00 (3H, m, Ar-CH and NH), 4.78 (2H, br s, COOCH₂), 3.79 (2H, br s, CH₂NCbz), 3.01 (2H, br s, COCH₂), 2.41 (3H, s, Ar-CH₃), 2.15-2.08 (2H, m, COCH₂CH₂); δC (125 MHz, CDCl₃) 199.2 (C=O, seen on HMBC), 144.4 (Ar-C), 136.7 (Ar-C), 135.2 (Ar-C), 133.2 (Ar-CH), 129.5 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.0 (Ar-CH), 128.0 (Ar-CH), 127.7 (Ar-C), 68.3 (CH₂), 50.6 (CH₂), 35.6 (CH₂), 22.7 (CH₂), 21.7 (Ar-CH₃), 1 C=O and 1 Ar-CH not seen; HRMS (ESI+) calculated for C₂₅H₂₆N₂O₅S [M+Na]⁺ 489.1455; found 489.1455.

1-(5-oxo-5-phenylpentyl)-2-tosylhydrazine-1-carboxylate (5s). Hydrazine 4a^[1] (200 mg, 0.48 mmol, 1.0 equiv), 5-hydroxy-1phenylpentan-1-one^[10] (84 mg, 0.48 mmol, 1.0 equiv), triphenylphosphine (188 mg, 0.72 mmol, 1.5 equiv), diethyl azodicarboxylate (112 µL, 0.72 mmol, 1.5 equiv) and tetrahydrofuran (4.8 mL, 0.1 M) were combined and stirred at room temperature for 24 h. The reaction mixture was then concentrated in vacuo. The crude product was purified by column chromatography (30% EtOAc/ pet ether) to give the tetrasubstituted hydrazine. To this hydrazine was added trifluoroacetic acid (368 µL, 4.8 mmol, 10.0 equiv) and dichloromethane (4.8 mL, 0.1 M), the solution was then stirred for 2 h. The resulting yellow solution was concentrated in vacuo to give a yellow oil, which was purified by column chromatography (25% EtOAc/pet ether) to yield 5s as a white solid (140 mg, 0.29 mmol, 61%). $R_f = 0.28$ (25% EtOAc in petroleum ether); M.p. 86-88 °C; IR (film) 3214, 2957, 1699, 1671, 1364, 1181 cm⁻¹; δH (500 MHz; CDCl₃) 7.96 (2H, d, J 7.6, Ar-H), 7.74 (2H, d, J 8.0, Ar-H), 7.59 (1H, t, J 7.3, Ar-H), 7.49 (2H, t, J 7.7, Ar-H), 7.38-7.30 (3H, m, Ar-H), 7.22 (2H, d, J 8.0, Ar-H), 7.15 (2H, s, Ar-H), 6.99 (1H, s, NH), 4.90 (2H, br s, COOCH₂), 3.72 (2H, br s, CH₂NCbz), 2.99 (2H, br s, COCH₂), 2.42 (3H, s, CH₃), 1.79-1.67 (4H, m, COCH₂CH₂CH₂); δC (125 MHz, CDCl₃) 199.8 (C=O), 144.5 (Ar-C), 136.9 (Ar-C), 135.2 (Ar-C), 133.1 (Ar-CH), 129.5 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.5 (Ar-CH), 128.1 (Ar-CH), 128.0 (Ar-CH), 68.4 (CH₂), 50.7 (CH₂), 37.9 (CH₂), 26.5 (CH₂), 21.7 (Ar-CH₃), 20.9 (CH₂), 1 C=O, 1 Ar-C and 1 Ar-CH not seen; HRMS (ESI⁺) calculated for C₂₆H₂₈N₂O₅S [M+Na]⁺ 503.1611; found 503.1615.

tert-Butyl 2-(4-oxo-4-pnenyibuty), 2 ---,

To a solution of tert-butyl 2-tosylhydrazine-1-carboxylate [3] (4.20 g, 14.7 tert-Butyl 2-(4-oxo-4-phenylbutyl)-2-tosylhydrazine-1-carboxylate (5t). mmol, 1.0 equiv) in dimethylformamide (146 mL) was added 4-iodo-1-phenylbutan-1-one^[8] (6.04 g, 22.0 mmol, 1.5 equiv) followed by potassium carbonate (3.34 g, 24.2 mmol, 1.6 equiv). The reaction mixture was stirred at rt for 20 h. The mixture was concentrated under reduced pressure, ethyl acetate (100 mL) was added, and mixture was washed with water (5 x 80 mL), brine (80 mL), dried over magnesium sulphate, filtered and concentrated in vacuo. The crude product was purified by column chromatography (20-33% EtOAc/petroleum ether) to give 5t as a white solid (4.92 g, 11.4 mmol, 78%). $R_f = 0.32$ (33% EtOAc in petroleum ether); M.p. 133-135 °C; IR (neat) 3277, 2977, 2910, 1717, 1677, 1342, 1161, 994, 665 cm⁻¹; δH (400 MHz; CDCl₃) 7.96 (2H, d, J 7.2, Ar-H), 7.74 (2H, d, J 7.5, Ar-H), 7.56 (1H, t, J 7.3, Ar-H), 7.45 (2H, t, J 7.6, Ar-H), 7.30-7.25 (2H, m, Ar-H), 6.37 (0.70H, br s, NH major), 5.84 (0.30H, br s, NH minor), 3.52 (2H, br s, NCH₂), 3.17 (2H, t, J 6.8, CH₂CO), 2.39 (3H, s, CH₃), 2.00 (2H, p, J 6.5, CH₂CH₂N), 1.33 (9H, s, (CH₃)₃); δC (125 MHz; CDCl₃) 199.9 (C=O), 153.6 (Boc-C=O), 144.4 (Ar-C), 137.0 (Ar-C), 134.2 (Ar-C), 133.2 (Ar-CH), 129.7 (Ar-CH), 128.7 (Ar-CH), 128.6 (Ar-CH), 128.2 (Ar-CH), 81.7 (C), 49.5 (NCH₂), 35.5 (CH₂CO), 28.1 (Boc-CH₃), 21.7 (CH₃), 21.2 (CH₂CH₂N); HRMS (ESI⁺) calculated for C₂₂H₂₈N₂NaO₅S [M+Na]⁺ 455.1611; found 455.1612.

tert-Butyl 2-(5-oxo-5-phenylpentyl)-2-tosylhydrazine-1-carboxylate [3] (2.58 g, 9.00 mmol, 1.0 equiv) in anhydrous dimethylformamide (90 mL) was added 5-iodo-1-phenylpentan-1-one [10] (3.92 g, 13.5 mmol, 1.5 equiv) followed by potassium carbonate (1.99 g, 14.4 mmol, 1.6 equiv). The reaction mixture was stirred at rt for 28 h. The mixture was concentrated under reduced pressure, ethyl acetate (60 mL) was added, and mixture was washed with water (5 × 50 mL), brine (50 mL), dried over magnesium sulphate, filtered and

concentrated in vacuo. The crude product was purified by column chromatography (20-33% EtOAc/petroleum ether) to give 5u as a colourless oil, which crystallised upon standing to a white solid (2.63 g, 5.90 mmol, 65%). $R_f = 0.31$ (33% EtOAc in petroleum ether); M.p. 89-91 °C; IR (neat) 3226, 3141, 2958, 1697, 1680, 1315, 1117, 1041, 976, 772, 693 cm⁻¹; δH (500 MHz; CDCl₃) 7.96 (2H, d, J7.6, Ar-H), 7.77 (2H, d, J8.2, Ar-H), 7.56 (1H, t, J7.4, Ar-H), 7.46 (2H, t, J7.6, Ar-H), 7.36–7.28 (2H, m, Ar-H), 6.40 (0.68H, br s, NH major), 5.84 (0.32H, br s, NH minor), 3.48 (2H, br s, NCH₂), 3.01 (2H, t, J7.1, CH₂CO), 2.41 (3H, s, CH₃), 1.88-1.79 (2H, m, CH_2CH_2CO), 1.68 (2H, p, J 7.6, CH_2CH_2N), 1.31 (9H, br s, $(CH_3)_3$); δC (125) MHz; CDCl₃) 200.1 (C=O), 153.4 (Boc-C=O), 144.4 (Ar-C), 137.0 (Ar-C), 134.4 (Ar-C), 133.2 (Ar-CH), 129.7 (Ar-CH), 128.7 (Ar-CH), 128.2 (Ar-CH), 81.6 (C), 49.5 (NCH₂), 37.8 (CH₂CO), 28.1 (Boc-CH₃), 26.7 (CH₂CH₂N), 21.7 (CH₃), 21.1 (CH₂CH₂CO), 1 Ar-CH not seen; HRMS (ESI⁺) calculated for $C_{23}H_{30}N_2NaO_5S$ [M+Na]⁺ 469.1768; found 469.1765.

2-(4-(4-fluorocyclohexa-2,4-dien-1-yl)-4-oxobutyl)-2-

tert-Butyl

tosylhydrazine-1-carboxylate (5v). To a solution of tert-butyl 2tosylhydrazine-1-carboxylate^[3] (4.24 g, 14.8 mmol, 1.0 equiv) in dimethylformamide (150 mL) was added 1-(4-fluorophenyl)-4-iodobutan-1-one^[11] (6.48 g, 22.2 mmol, 1.5 equiv) followed by potassium carbonate (3.27 g, 23.7 mmol, 1.6 equiv). The reaction mixture was stirred at rt for 26 h. The mixture was concentrated under reduced pressure, ethyl acetate (100 mL) was added, and mixture was washed with water (5 x 80 mL), brine (80 mL), dried over magnesium sulphate, filtered and concentrated in vacuo. The crude product was purified by column chromatography (20-33% EtOAc/petroleum ether) to give **5v** as a white solid (5.25 g, 11.7 mmol, 79%). M.p. 135-137 °C; $R_f = 0.34$ (33% EtOAc in petroleum ether); IR (neat) 3254, 2980, 1738, 1670, 1596, 1508, 1366, 1242, 1159, 1048, 814, 742, 655 cm⁻¹; δH (300 MHz; CDCl₃) 8.00 (2H, dd, J 8.1, 5.8, Ar-H), 7.74 (2H, d, J 8.0 Hz, Ar-H), 7.33-7.26 (2H, m, Ar-H), 7.12 (2H, t, J 8.4, Ar-H), 6.33 (0.74H, br s, NH major), 5.83 (0.26H, br s, NH minor), 3.50 (2H, br s, NCH₂), 3.16 (2H, t, J 6.9, CH₂CO), 2.40 (3H, s, CH₃), 2.00 (2H, p, J 6.5, CH₂CH₂N), 1.33 (9H, s, (CH₃)₃); δC (125 MHz; CDCl₃) δ 198.5 (C=O), 165.9 (d, J254.5, CF), 153.6 (Boc-C=O), 144.5 (Ar-C), 134.2 (Ar-C), 133.5 (d, J2.9, Ar-C), 130.9 (d, J7.4, Ar-CH), 129.7 (Ar-CH), 128.6 (Ar-CH), 115.8 (d, J21.7, Ar-CH), 81.8 (C), 49.6 (NCH₂), 35.4 (CH₂CO), 28.1 (Boc-CH₃), 21.7 (CH₃), 21.2 (CH₂CH₂N); δ*F* (376 MHz; CDCl₃) –105.5 (CF); HRMS (ESI⁺) calculated for C₂₂H₂₇FN₂NaO₅S [M+Na]⁺ 473.1517; found 473.1522.

Asymmetric Transfer Hydrogenation: Optimization

The catalyst (1 mol%) was stirred in formic acid: triethylamine (5:2) azeotrope (0.11 mL) for 10 min. Aryl ketone $\bf 5a$ (50 mg, 0.11 mmol, 1.0 equiv) and solvent (so that [S] = 0.2-0.5 M) were added and the solution was stirred for 24-48 h at 23 °C. The solution was then concentrated *in vacuo* and the crude product was purified by column chromatography (30% ethyl acetate in petroleum ether). Enantiomeric excess (98% ee) was determined by HPLC analysis (25 °C). [Chiralpak ADH column 2-propanol/hexane = 15/85; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 26.8 min; t_R 28.8 min.

Pr

$$CI = Ru$$
 $CI = Ru$ $Ts = N$ NH_2 $Ts = N$ $NH_$

Entry	Catalyst	Solvent	Yield [%] ^[a]	Ee [%] ^[b]
1	S,S- 7a	CH ₂ Cl ₂	86	97 (<i>R</i>)
2	<i>R,R</i> - 7b	CH ₂ Cl ₂	16 ^[c]	91 (S) ^[d]
3	S,S-7c	CH ₂ Cl ₂	97	99 (<i>R</i>)
4	S,S- 7d	CH ₂ Cl ₂	7	97 (<i>R</i>)
5	R,R- 7e	CH ₂ Cl ₂	97	97 (S) [d]
6	R,R- 7f	CH ₂ Cl ₂	80	99 (S) ^[d]
7	<i>R,R</i> - 7g	CH ₂ Cl ₂	16	98 (S) [d]
8	S,S-7c	CHCl ₃	96	99 (<i>R</i>)
9	S,S-7c	EtOAc	88	99 (<i>R</i>)
10	S,S-7c	MeCN ^[e]	66	98 (<i>R</i>)
11	S,S- 7c	MeOH ^[f]	92	99 (<i>R</i>)

[a] Isolated yield after column chromatography. [b] Determined by HPLC analysis using chiralpak ADH. [c] reaction run for 48 h. [d] Opposite S-enantiomer produced. [e] reaction run at 0.3 M. [f] reaction run at 0.2 M.

General method 3: Asymmetric Transfer Hydrogenation (ATH)

A solution of catalyst (0.5 - 1 mol%) in formic acid: triethylamine (5:2) azeotrope (so that [S] = 1.0 M) was stirred for 15 min. The ketone substrate (1.0 equiv) and Dichloromethane (so that [S] = 0.25 - 0.5 M) were added and stirred at 23 °C. After 24 h, the reaction mixture was concentrated *in vacuo*. The crude product was purified by column chromatography (35-40% EtOAc/ pet ether) to give the following alcohols.

Benzyl (*R*)-1-(2-hydroxy-2-phenylethyl)-2-tosylhydrazine-1-carboxylate Ph Cbz (6a). Following general method 3, aryl ketone 5a (100 mg, 0.23 mmol, 1.0 equiv), catalyst 7c (1.4 mg, 2.3 µmol, 0.01 equiv), 5 : 2 formic acid : triethylamine complex (0.23 mL, 1.0 M) in dichloromethane (0.46 mL, 0.5 M) yielded 6a as a white solid (97 mg, 0.22 mmol, 97%). M.p. 100-101 °C; $R_f = 0.29$ (40% EtOAc in petroleum ether); $[\alpha]^{31}_D - 50.5$ (c 0.30, CHCl₃). Enantiomeric excess (98% ee) was determined by HPLC analysis (25 °C). [Chiralpak ADH column 2-propanol/hexane = 15/85; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 26.8 min; t_R 28.8 min. IR (film) 3228, 2925, 1716, 1340, 1185 cm⁻¹; δH (400 MHz; CDCl₃) 7.73-7.71 (2H, m, Ar-*H*), 7.32-7.13 (12H, m, Ar-*H*), 5.13-4.85 (3H, m, C*H*OH and OCH₂Ph), 3.88-3.73 (2H, m, NCH₂), 2.79 (1H, br s, OH), 2.39 (3H, s, CH₃); δC (125 MHz; CDCl₃) 144.6 (Ar-C), 141.1 (Ar-C), 129.6 (Ar-CH), 128.7 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.2 (Ar-CH), 128.1 (Ar-CH), 126.0 (Ar-CH), 71.0 (CH, seen on HSQC), 68.8 (CH₂), 58.4 (NCH₂), 21.8 (CH₃), C=O, 2 Ar-C and 1 Ar-CH not seen; HRMS (ESI⁺) calculated for $C_{23}H_{24}N_2NaO_5S$ [M+Na]⁺ 463.1298; found 463.1302.

tert-Butyl (*R*)-1-(2-hydroxy-2-phenylethyl)-2-tosylhydrazine-1-carboxylate Ph (6b). Following general method 4, aryl ketone 5b (100 mg, 0.25 mmol, 1.0 equiv), (*S*, *S*)-catalyst 7c (1.6 mg, 2.5 μmol, 0.01 equiv), 5:2 FA:TEA complex (0.25 mL, 1 M) and CH₂Cl₂ (0.50 mL, 0.5 M) yielded 6b as a white solid (100 mg, 0.25 mmol, 99%). R_f = 0.21 (25% EtOAc in petroleum ether); M.p. 138-139 °C; [α]_D²⁸ = -4.8 (*c* 0.12, CHCl₃); Enantiomeric excess (99% *ee*) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 1.5/98.5; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 37.7 min; t_R 42.4 min; IR (film) 3456, 3128, 2975, 1709, 1089; δ*H* (500 MHz, CHCl₃) 7.82 (2H, d, *J* 8.2, Ar-H), 7.36 (7H, m, Ar-H), 5.17 (1H, dd, *J* 9.9, 3.6, CHPh), 3.86 (1H, br m, NC*H*H), 3.74 (1H, d, *J* 9.9, NCH*H*), 2.44 (3H, s, CH₃), 1.18 (9H, br s, C(CH₃)₃); δ*C* (125 MHz, CDCl₃) 144.6 (C=O), 141.4 (Ar-C), 132.2 (Ar-C), 132.1 (Ar-C) 130.0 (Ar-CH), 129.8 (Ar-CH),

128.6 (Ar-CH), 128.0 (Ar-CH), 126.0 (Ar-CH), 82.9 (C), 75.2 (CH), 58.8 (CH₂) 27.8 (CH₃), 21.6 (CH₃); HRMS (ES⁺) calculated for $C_{20}H_{26}N_2O_5S$ (M+Na)⁺ 429.1451; found 429.1455.

(S)-1-(2-(2-fluorophenyl)-2-hydroxyethyl)-2-tosylhydrazine-1-Benzyl carboxylate (6c). Following general method 3, aryl ketone 5c (100 mg, 0.22 mmol, 1.0 equiv), catalyst 7f (1.5 mg, 2.2 µmol, 0.01 equiv), 5 : 2 formic acid: triethylamine complex (0.22 mL, 1.0 M) and dichloromethane (0.44 mL, 0.5 M) yielded **6c** as a colourless oil (97 mg, 0.21 mmol, 97%). $R_f = 0.21$ (35% EtOAc in petroleum ether); [α]³²_D+4.0 (c 0.22, CHCl₃). Enantiomeric excess (90% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 5/95; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 56.4 min; t_R 61.4 min. IR (film) 3503, 3237, 2926, 1713, 1305, 1128 cm⁻¹; δH (500 MHz; CDCl₃) 7.73 (2H, d, J 7.9, Ar-CH), 7.47 (1H, t, J 7.3, Ar-H), 7.42 (1H, d, J7.7, Ar-H), 7.38-7.26 (3H, m, Ar-H), 7.20 (2H, d, J8.0, Ar-H), 7.18-7.11 (3H, m, Ar-H), 7.00 (1H, t, J 10.0, Ar-H), 5.44-5.34 (1H, m, CHOH), 4.86 (2H, br s, CH₂Ph), 3.99-3.89 and 2.95-2.75 (minor rotamer) (2H, m, NCH₂) 2.40 (3H, s, CH₃); δC (125 MHz; CDCl₃) 159.9 (d, J 245.0, Ar-CF), 144.6 (Ar-C), 135.0 (Ar-C), 129.6 (Ar-CH), 129.6 (Ar-CH), 128.0 (d, J 12.5, Ar-C), 127.7 (d, J 3.8, Ar-CH), 124.5 (d, J 3.8, Ar-CH), 115.4 (d, J 21.3, Ar-CH), 68.7 (CH₂), 66.3 (CH, seen on HSQC), 57.0 (CH₂), 21.7 (CH₃), 1 Ar-C, 4 Ar-CH, C=O not seen; δF (376 MHz, CDCl₃) -118.6 (CF); HRMS (ESI⁺) calculated for C₂₃H₂₃FN₂O₅S [M+Na]⁺ 481.1204; found 481.1209.

Benzyl (*R*)-1-(2-(2-fluorophenyl)-2-hydroxyethyl)-2-tosylhydrazine-1-carboxylate (6c). Following general method 3, aryl ketone 5c (100 mg, 0.22 mmol, 1.0 equiv), catalyst 7c (1.5 mg, 2.2 μ mol, 0.01 equiv), 5 : 2 formic acid : triethylamine complex (0.22 mL, 1.0 M) and dichloromethane (0.44 mL, 0.5 M) yielded 6c as a colourless oil (97 mg, 0.21 mmol, 97%). [α]³²_D -3.17 (*c* 0.30, CHCl₃). Enantiomeric excess (77% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 5/95; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 56.4 min; t_R 61.4 min.

Benzyl (*R*)-1-(2-hydroxy-2-(4-(trifluoromethyl)phenyl)ethyl)-2-tosylhydrazine-1-carboxylate (6d). Following general method 3, aryl ketone 5d (100 mg, 0.20 mmol, 1.0 equiv), catalyst 7c (1.24 mg, 2.0 μ mol, 0.01 equiv), 5 : 2 formic acid : triethylamine complex (0.2 mL, 1.0 M) and dichloromethane (0.4 mL, 0.5 M) yielded 6d as a white solid (97 mg, 0.19 mmol, 96%). $R_f = 0.19$ (35% EtOAc in petroleum ether); M.p. 147-148 °C; $[\alpha]^{32}_D$ –18.1 (*c* 0.06, CHCl₃). Enantiomeric excess (95% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H

column 2-propanol/hexane = 8/92; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 20.6 min; t_R 25.4 min; IR (film) 3439, 3144, 2923, 1716, 1401, 1324, 1087 cm⁻¹; δH (600 MHz; d6-DMSO at 100 °C) 9.66 (1H, s, NH), 7.68 (2H, d, J 8.2, Ar-H), 7.61 (2H, d, J 8.1, Ar-H), 7.50 (2H, d, J 8.0, Ar-H), 7.39-7.25 (5H, m, Ar-H), 7.15 (2H, d, J 7.5, Ar-H), 5.31 (1H, s, OH), 4.96-4.92 (1H, t, J 8.2, CHOH), 4.75-4.63 (2H, m, CH₂Ph), 3.75-3.58 (2H, m, NCH₂), 2.38 (3H, s, CH₃); δC (150 MHz; D6-DMSO at 100 °C) 155.7 (C=O), 148.1 (Ar-C), 143.9 (Ar-C), 137.3 (Ar-C), 136.3 (Ar-C), 129.8 (Ar-CH), 128.6 (q, J 26.3, Ar-C), 128.5 (Ar-CH), 128.2 (Ar-CH), 127.9 (Ar-CH), 127.9 (Ar-CH), 127.3 (Ar-CH), 125.3 (q, J 3.8, Ar-CH), 124.8 (q, J 225.0, CF₃), 69.5 (CH), 67.7 (CH₂), 58.0 (CH₂), 21.4 (CH₃); δF (286 MHz, D6-DMSO) -61.8 (CF₃); HRMS (ESI⁺) calculated for C₂₄H₂₃F₃N₂O₅S [M+Na]⁺ 531.1172; found 531.1173.

OH Cbz

(R)-1-(2-(3-bromophenyl)-2-hydroxyethyl)-2-tosylhydrazine-1carboxylate (6e). Following general method 3, aryl ketone 5e (80 mg, 0.15 mmol, 1.0 equiv), catalyst 7c (1.0 mg, 1.5 µmol, 0.01 equiv), 5 : 2 formic acid: triethylamine complex (0.15 mL, 1.0 M) and dichloromethane (0.3 mL,

0.5 M) yielded **6e** as a white solid (80 mg, 0.15 mmol, 99%). $R_f = 0.20$ (35% EtOAc in petroleum ether); M.p. 135-136 °C; $[\alpha]^{32}D-16.0$ (c 0.50, CHCl₃); Enantiomeric excess (97%) ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2-propanol/hexane = 9/91; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 19.6 min; t_R 25.1 min; IR (film) 3456, 3222, 2929, 1715, 1323, 1211, 1185 cm⁻¹; δH (500 MHz; CDCl₃) 7.73 (2H, d, J 8.0, Ar-CH), 7.50 (1H, s, Ar-H), 7.42 (1H, d, J7.7, Ar-H), 7.36-7.32 (3H, m, Ar-H), 7.27-7.05 (6H, m, Ar-H) 5.11 (1H, d, J 9.5, CHOH), 4.87 (2H, br s, CH₂Ph), 3.90-3.65 (2H, m, NCH₂) 2.41 (3H, s, CH₃); δC (125 MHz; CDCl₃) 144.8 (Ar-C), 143.4 (Ar-C), 131.1 (Ar-CH), 130.2 (Ar-CH), 129.7 (Ar-CH), 129.0 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.1 (Ar-CH), 124.6 (Ar-CH), 122.8 (Ar-C), 70.6 (CH, seen on HSQC), 68.8 (CH₂), 58.5 (CH₂), 21.8 (CH₃), 2 Ar-C, 1 Ar-CH, C=O not seen; HRMS (ESI+) calculated for C₂₃H₂₃⁷⁹BrN₂O₅S [M+Na]+ 541.0403; found 541.0411.

Benzyl OH Cbz ketone 5f (100 mg, 0.20 mmol, 1.0 equiv), catalyst 7c (1.2 mg, 2.0 μmol,

(R)-1-(2-(3,4-dichlorophenyl)-2-hydroxyethyl)-2tosylhydrazine-1-carboxylate (6f). Following general method 3, aryl

0.01 equiv), 5: 2 formic acid: triethylamine complex (0.2 mL, 1 M) and dichloromethane (0.4 mL, 0.5 M) yielded **6f** as a white solid (100 mg, 0.2 mmol, 99%). M.p. 141-142 °C; $R_f = 0.21$ (35% EtOAc in petroleum ether); $[\alpha]^{32}D-37.7$ (c 0.12, CHCl₃). Enantiomeric excess (92% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2-propanol/hexane = 12/88; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 18.4 min; t_R 24.1 min; IR (film) 3424, 3118, 2968, 2891, 1715, 1466, 1394, 1203 cm⁻¹; δH (500 MHz; CDCl₃) 7.73 (2H, d, J 8.0, Ar-H), 7.45 (1H, s, Ar-H), 7.40 (1H, d, J 8.2, Ar-H), 7.36-7.32 (3H, m, Ar-H), 7.22 (2H, d, J 8.1, Ar-H), 7.19-7.05 (4H, m, Ar-H), 5.12 (1H, dd, J 9.1, 2.1, CHOH), 4.87 (2H, br s, CH2Ph), 3.81 (1H, t, J 8.9, NCHH), 3.71 (1H, d, J 13.8, NCHH) 2.42 (3H, s, CH₃); δ C (125 MHz; CDCl₃) 144.9 (Ar-C), 141.2 (Ar-C), 132.8 (Ar-C), 131.9 (Ar-C), 130.6 (Ar-CH), 129.7 (Ar-CH), 129.7 (Ar-C, seen on HMBC), 128.7 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.2 (Ar-CH), 128.0 (Ar-CH), 125.3 (Ar-CH), 70.5 (CH, seen on HSQC), 68.9 (CH₂), 58.7 (CH₂), 21.8 (CH₃), 1 Ar-C, C=O not seen; HRMS (ESI+) calculated for C₂₃H₂₂³⁵Cl₂N₂O₅S [M+Na]+531.0519; found 531.0517.

(S)-1-(2-(2-chlorophenyl)-2-hydroxyethyl)-2-tosylhydrazine-1-Benzyl OH Cbz carboxylate (6g). Following general method 3, aryl ketone 5g (100 mg, 0.20 mmol, 1.0 equiv), catalyst 7f (1.3 mg, 2.0 µmol, 0.01 equiv), 5 : 2 formic acid: triethylamine complex (0.2 mL, 1.0 M) and dichloromethane (0.4 mL, 0.5 M) yielded **6g** as a colourless oil (100 mg, 0.2 mmol, 99%). $R_f = 0.21$ (35% EtOAc in petroleum ether); [\alpha]^{32}_D +35.8 (c 0.12, CHCl_3). Enantiomeric excess (90% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 5/95; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 57.1 min; t_R 65.2 min; IR (film) 3443, 3115, 2896, 1717, 1457, 1432, 1250 cm⁻¹; δH (500 MHz; CDCl₃) 7.74 (2H, d, J 7.8, Ar-H), 7.57 (1H, d, J 7.5, Ar-H), 7.40 (1H, d, J 8.2, Ar-H), 7.35-7.10 (9H, m, Ar-H), 5.48 (1H, m, CHOH), 4.88 (2H, br s, CH_2Ph), 3.87 and 2.92 (minor rotamer) (2H, br s, NCH₂), 2.40 (3H, s, CH₃); δC (125 MHz; CDCl₃) 144.6 (Ar-C), 138.4 (Ar-C), 131.9 (Ar-C), 129.6 (Ar-CH), 129.5 (Ar-CH), 129.1 (Ar-CH), 128.5 (Ar-CH), 128.2 (Ar-CH), 127.6 (Ar-CH), 127.2 (Ar-CH), 69.0 (CH, seen on HSQC), 68.7 (CH₂), 56.6 (CH₂), 21.7 (CH₃), 2 Ar-C, 2 Ar-CH, C=O not seen; HRMS (ESI⁺) calculated for $C_{23}H_{24}^{35}CIN_2O_5S$ [M+Na]⁺ 497.0908; found 497.0905.

Benzyl (*R*)-1-(2-(2-chlorophenyl)-2-hydroxyethyl)-2-tosylhydrazine-1-carboxylate (6g). Following general method 3, aryl ketone 5g (100 mg, 0.20 mmol, 1.0 equiv), catalyst 7c (1.3 mg, 2.0 μ mol, 0.01 equiv), 5 : 2 formic acid : triethylamine complex (0.2 mL, 1.0 M) and dichloromethane (0.4 mL, 0.5 M) yielded 6g as a colourless oil (100 mg, 0.2 mmol, 99%). [α]³²_D -14.7 (*c* 0.10, CHCl₃). Enantiomeric excess (19% *ee*) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 5/95; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 57.1 min; t_R 65.2 min.

Benzyl (S)-1-(3-hydroxy-3-phenylpropyl)-2-tosylhydrazine-1-carboxylate (6h). Following general method 3, aryl ketone 5h (100 mg,

0.22 mmol), catalyst **7c** (1.4 mg, 2.2 μmol), 5 : 2 formic acid : triethylamine complex (0.22 mL, 1.0 M) and dichloromethane (0.88 mL, 0.25 M) yielded **6h** as a colourless oil (100 mg, 0.22 mmol, 99%). $R_f = 0.23$ (35% EtOAc in petroleum ether); $[\alpha]^{32}_D -4.6$ (c 0.75, CHCl₃). Enantiomeric excess was determined after cyclisation to **8h**. IR (film) 3503, 3228, 2951, 1707, 1340, 1185 cm⁻¹; δ*H* (500 MHz; CDCl₃) 7.73 (2H, d, *J* 7.9, Ar-CH), 7.38-7.29 (5H, m, Ar-H) 7.47 (4H, dd, *J* 13.5 and 7.9, Ar-H), 7.21 (3H, d, *J* 7.9, Ar-H), 7.02 (1H, br s, NH), 5.01-4.59 (3H, m, C*H*OH and CH₂Ph), 3.84 (2H, br s, NCH₂), 2.42 (3H, s, CH₃) 2.09-2.03 (2H, m, C*H*₂CHOH); δ*C* (125 MHz; CDCl₃) 144.4 (Ar-C), 143.4 (Ar-C), 135.1 (Ar-C), 129.5 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.1 (Ar-CH), 127.8 (Ar-CH), 125.6 (Ar-CH), 72.3 (CH), 68.4 (CH₂), 48.7 (CH₂), 35.0 (CH₂), 21.7 (CH₃), C=O and 1 Ar-C not seen; HRMS (ESI⁺) calculated for C₂₄H₂₆N₂O₅S [M+Na]⁺ 477.1455; found 477.1457.

tert-Butyl (*S*)-2-(3-hydroxy-3-phenylpropyl)-2-((4-Nydroxy-3-phe

tert-Butyl (S)-2-(3-hydroxy-3-phenylpropyl)-2-tosylhydrazine-1-carboxylate (6j). Following general method 3, aryl ketone 5j (97 mg, 0.23 mmol, 1.0 equiv), catalyst 7c (1.4 mg, 2.3 μmol, 0.01 equiv), 5 : 2 formic acid : triethylamine complex (0.23 mL, 1.0 M) in dichloromethane (0.92 mL, 0.25 M) yielded 6j as a colourless oil (96 mg, 0.23 mmol, 98%). $R_f = 0.22$ (35% EtOAc in petroleum ether); $[\alpha]^{32}_D -34.4$ (c 0.20, CHCl₃). Enantiomeric excess (96% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 15/85; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 15.4 min; t_R 20.1 min; IR (film) 3294, 2985, 1745, 1393, 1159, 1055 cm⁻¹; δH (400 MHz; CDCl₃) 7.81-7.79 (2H, m, Ar-H), 7.38-7.27 (7H, m, Ar-H), 6.45 (major) and 6.08 (minor) (1H, br s, NH), 4.97 (1H, br s, CHOH), 3.68-3.48 (2H, m,

NC H_2), 2.95 (1H, br s, OH), 2.42 (3H, s, Ts-C H_3), 1.97 (2H, br s, CHC H_2), 1.32 (9H, s, (CH₃)₃); δ C (125 MHz; CDCl₃) 153.9 (C=O), 144.7 (Ar-C), 144.6 (Ar-C), 133.8 (Ar-C), 129.7 (Ar-CH), 128.8 (Ar-CH), 128.6 (Ar-CH), 127.5 (Ar-CH), 125.8 (Ar-CH), 81.9 (C), 71.5 (CH), 47.8 (NC H_2), 36.6 (CH₂), 28.0 (CH₃), 21.8 (CH₃); HRMS (ESI⁺) calculated for C₂₁H₂₈N₂NaO₅S [M+Na]⁺ 443.1611; found 443.1610.

tert-Butyl (S)-2-(3-([1,1'-biphenyl]-4-yl)-3-hydroxypropyl)-2tosylhydrazine-1-carboxylate (6k). Following general method 3, aryl ketone 5k (100 mg, 0.20 mmol, 1.0 equiv), catalyst 7c (1.3 mg, 2.0 µmol, 0.01 equiv), 5 : 2 formic acid : triethylamine complex (0.20 mL, 1.0 M) and Dichloromethane (0.80 mL, 0.25 M) yielded 6k as a white solid (100 mg, 0.20 mmol, 99%). M.p. 62-63 °C; $R_f = 0.19$ (35% EtOAc in petroleum ether); $[\alpha]^{32}_D - 17.7$ (c 0.62, CHCl₃). Enantiomeric excess was determined after cyclisation to 8k. IR (film) 3513, 3303, 2926, 1704, 1391, 1247 cm⁻¹; δH (500 MHz; CDCl₃) 7.84 (2H, d, J 7.1, Ar-CH), 7.60 (4H, t, J 7.1, Ar-H) 7.47 (4H, dd, J 13.5, 7.9, Ar-H), 7.36 (3H, t, J 7.5, Ar-H), 6.40 (1H, br s, NH), 5.07 (1H, s, CHOH), 3.81-3.42 (2H, m, NCH₂), 2.46 (3H, s, CH₃) 2.09-1.96 (2H, m, CH₂CHOH), 1.26 (9H, s, C(CH₃)₃); δC (125 MHz; CDCl₃) 153.9 (C=O), 150.5 (Ar-C), 144.6 (Ar-C), 143.5 (Ar-C), 140.3 (Ar-C), 133.7 (Ar-C), 129.7 (Ar-CH), 128.8 (Ar-CH), 128.7 (Ar-CH), 127.2 (Ar-CH), 127.2 (Ar-CH), 127.1 (Ar-CH), 126.2 (Ar-CH), 81.9 (C), 71.2 (CH), 47.8 (CH₂), 36.5 (CH₂), 28.0 (CH₃) 21.6 (CH₃); HRMS (ESI⁺) calculated for C₂₇H₃₂N₂O₅S [M+Na]⁺ 519.1924; found 519.1924.

tert-Butyl (S)-2-(3-(4-bromophenyl)-3-hydroxypropyl)-2tosylhydrazine-1-carboxylate (6l). Following general method 3, aryl ketone 5I (100 mg, 0.20 mmol, 1.0 equiv), catalyst 7c (1.27 mg, 2.0 µmol), 5: 2 formic acid: triethylamine complex (0.20 mL, 1.0 M) and dichloromethane (0.80 mL, 0.25 M) yielded **6I** as a white solid (100 mg, 0.20 mmol, 99%). M.p. 121-124 °C; $R_f =$ 0.17 (35% EtOAc in petroleum ether); $[\alpha]^{32}_D$ –25.8 (c 0.65, CHCl₃). Enantiomeric excess (91% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 25.0 min; t_R 30.2 min. IR (film) 3513, 3303, 2925, 1704, 1367, 1247 cm⁻¹; δ*H* (500 MHz; CDCl₃) 7.83 (2H, d, J 7.1, Ar-CH), 7.48 (2H, d, J 7.8, Ar-H), 7.36 (2H, d, J 7.7, Ar-H), 7.36 (2H, d, J 7.6, Ar-H), 5.02 (1H, br s, CHOH), 3.88-3.01 (2H, m, NCH₂), 2.46 (3H, s, CH₃) 2.05-1.82 (2H, m, CH_2CHOH), 1.36 (9H, s, $C(CH_3)_3$); δC (125 MHz; $CDCl_3$) 154.1 (C=O), 144.8 (Ar-C), 143.6 (Ar-C), 133.5 (Ar-C), 131.5 (Ar-CH), 129.7 (Ar-CH), 128.7 (Ar-CH), 127.5 (Ar-CH), 121.0 (Ar-C), 82.1 (C), 70.8 (CH), 47.8 (CH₂), 36.5 (CH₂), 27.9 (CH₃), 21.6 (CH₃); HRMS (ESI⁺) calculated for $C_{21}H_{27}^{79}BrN_2O_5S$ [M+Na]⁺ 521.0716; found 521.0716.

tert-Butyl (S)-2-(3-hydroxy-3-(thiophen-2-yl)propyl)-2-tosylhydrazine
1-carboxylate (6m). Following general method 3, aryl ketone 5m (100 mg, 0.24 mmol, 1.0 equiv), catalyst 7c (1.5 mg, 2.4 µmol, 0.01 equiv), 5:

2 formic acid : triethylamine complex (0.24 mL, 1.0 M) and Dichloromethane (0.48 mL, 0.25 M) yielded **6m** as a colourless oil (97 mg, 0.23 mmol, 97%). $R_f = 0.21$ (35% EtOAc in petroleum ether); $[\alpha]^{32}_D$ –6.5 (c 0.13, CHCl₃). Enantiomeric excess (98% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 5/95; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 22.4 min; t_R 24.5 min; IR (film) 3453, 3309, 2926, 1704, 1354, 1252 cm⁻¹; δH (500 MHz; CDCl₃) 7.82 (2H, d, J 7.4, Ar-CH), 7.35 (2H, d, J 6.6, Ar-H), 7.26 (1H, d, J 4.0, Ar-H), 7.08-6.94 (2H, m, Ar-H), 6.43 (1H, s, NH), 5.27 (1H, br s, CHOH), 3.79-3.47 (2H, m, NCH₂), 2.45 (3H, s, CH₃) 2.20-2.03 (2H, m, CH₂CHOH), 1.34 (9H, s, C(CH₃)₃); δC (125 MHz; CDCl₃) 153.8 (C=O), 148.4 (Ar-C), 144.6 (Ar-C), 133.7 (Ar-C), 129.6 (Ar-CH), 128.7 (Ar-CH), 126.7 (Ar-CH), 124.4 (Ar-CH), 123.5 (Ar-CH), 82.0 (C), 67.7 (CH), 47.6 (CH₂), 36.6 (CH₂), 27.9 (CH₃), 21.6 (CH₃); HRMS (ESI*) calculated for $C_{19}H_{26}N_2O_5S_2$ [M+Na]* 449.1175; found 449.1179.

tert-Butyl (S)-2-(3-hydroxy-3-(p-tolyl)propyl)-2-tosylhydrazine1-carboxylate ((S)-6n). Following general method 3, aryl ketone
5n (433 mg, 1.00 mmol, 1.0 equiv), catalyst (S,S)-7c (6.2 mg, 10

μmol, 1.0 mol%), formic acid : triethylamine (5 : 2) complex (1.0 mL, 1.0 M) and dichloromethane (3.0 mL, 0.33 M) yielded (*S*)-**6n** after purification by column chromatography (33-50% EtOAc/petroleum ether) as a colourless gum (432 mg, 0.99 mmol, 99%). $R_f = 0.40$ (50% EtOAc in petroleum ether); $[\alpha]^{23}_D - 23.4$ (c 0.46, CHCl₃). Enantiomeric excess (96% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 24.3 min; t_R 27.1 min; IR (neat) 3313, 2977, 2927, 1719, 1367, 1153, 813 cm⁻¹; δH (300 MHz; CDCl₃) 7.82 (2H, d, J7.8, Ar-H), 7.34 (2H, d, J7.8, Ar-H), 7.29 (2H, d, J7.8, Ar-H), 7.17 (2H, d, J7.8, Ar-H), 6.40 (1H, br s, NH), 5.01-4.90 (1H, m, CHOH), 3.68 (1H, br m, NCHH), 3.50 (1H, br m, NCHH), 2.45 (3H, s, CH₃), 2.36 (3H, s, CH₃), 2.20 (1H, br s, OH), 1.98 (2H, dd, J11.5, 6.1, CH2CHOH), 1.35 (9H, s, (CH₃)₃); δ C (101 MHz; CDCl₃) 144.6 (Ar-C), 141.6 (Ar-C), 140.2 (Ar-C, seen on HMBC), 137.1 (Ar-C, seen on HMBC), 71.4 (CHOH), 47.7 (NCH₂), 36.5 (CH₂CHOH), 28.0 (Boc-CH₃), 21.7 (CH₃), 21.2 (CH₃), Boc-C=O not observed; HRMS (ESI+) calculated for C₂₂H₃₀N₂NaO₅S [M+Na]+ 457.1768; found 457.1765.

tert-Butyl (*R*)-2-(3-hydroxy-3-(*p*-tolyl)propyl)-2-tosylhydrazine-1-carboxylate ((*R*)-6n). Following general method 3, aryl ketone 5n (433 mg, 1.00 mmol, 1.0 equiv), catalyst (*R*,*R*)-7c (3.1 mg, 5.0

μmol, 1.0 mol%), formic acid : triethylamine (5 : 2) complex (1.0 mL, 1.0 M) and dichloromethane (3.0 mL, 0.33 M) yielded (R)-**6n** after purification by column chromatography (33-50% EtOAc/petroleum ether) as a colourless gum (373 mg, 0.86 mmol, 86%). [α]²²_D +39.6 (c 0.40, CHCl₃). Enantiomeric excess (97% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 24.6 min; t_R 30.5 min.

tert-Butyl (S)-2-(3-(2,3-dihydro-1*H*-inden-5-yl)-3-hydroxypropyl)-2-tosylhydrazine-1-carboxylate (6o). Following general method 3, aryl ketone 5o (917 mg, 2.00 mmol, 1.0 equiv),

catalyst 7c (12.4 mg, 20 µmol, 1.0 mol%), formic acid: triethylamine (5:2) complex (2.0 mL, 1.0 M) and dichloromethane (4.0 mL, 0.5 M) yielded 60 after purification by column chromatography (33-50% EtOAc/petroleum ether) as a white foam (905 mg, 1.96 mmol, 98%). M.p. 41-43 °C; $R_f = 0.52$ (50% EtOAc in petroleum ether); $[\alpha]^{23} D - 25.9$ (c 0.62, CHCl₃). Enantiomeric excess (95% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 24.3 min; t_R 34.4 min; IR (neat) 3311, 2930, 2846, 1704, 1351, 1246, 1152, 814, 715 cm⁻¹; δH (300 MHz; CDCl₃) 7.80 (2H, d, J 7.7, Ar-H), 7.32 (2H, d, J 7.7, Ar-H), 7.24 (1H, s, Ar-H), 7.19 (1H, d, J 7.8, Ar-H), 7.12 (1H, d, J 7.8, Ar-H), 6.38 (1H, br s, NH), 4.92 (1H, t, J 4.9, CHOH), 3.67 (1H, br m, NCHH), 3.50 (1H, br m, NCHH), 2.89 (4H, t, J 7.3, CH₂), 2.67 (1H, br s, OH), 2.43 (3H, s, CH₃), 2.07 (2H, p, J 7.3, CH₂CH₂CH₂), 1.97 (2H, dd, J 11.8, 6.1, CH₂CHOH), 1.32 (9H, s, (CH₃)₃); δC (101 MHz; CDCl₃) 144.6 (Ar-C), 144.2 (Ar-C, seen on HMBC), 143.6 (Ar-C, seen on HMBC), 133.5 (Ar-C, seen on HMBC), 129.7 (Ar-CH), 128.8 (Ar-CH), 124.4 (Ar-CH), 123.8 (Ar-CH), 121.9 (Ar-CH), 81.5 (C, seen on HMBC), 71.8 (CHOH), 47.8 (NCH₂), 36.7 (CH₂CHOH), 32.9 (CH₂), 32.7 (CH₂), 28.1 (Boc-CH₃), 25.6 (CH₂CH₂CH₂), 21.7 (CH₃), one Ar-C and Boc-C=O not observed; HRMS (ESI+) calculated for C₂₄H₃₂N₂NaO₅S [M+Na]⁺ 483.1924; found 483.1921

tert-Butyl (R)-2-(3-(3,5-difluorophenyl)-3-hydroxypropyl)-2tosylhydrazine-1-carboxylate (6p). Following general procedure 4, aryl ketone 5p (572 mg, 1.26 mmol, 1.0 equiv), (R,R)-catalyst 7f (8.4 mg, 13 µmol, 0.01 equiv), 5:2 FA:TEA complex (1.26 mL, 1 M) and CH₂Cl₂ (5 mL, 0.25 M) yielded 6p as a white solid (572 mg, 1.26 mmol, 99%). $R_f = 0.46$ (33% EtOAc in petroleum ether); [α] $_D^{24}$ +55.3 (c 0.03, CHCl₃); Enantiomeric excess (93% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 13.5 min; t_R 16.3 min. M.p. 110-111 °C; IR (film) 3333, 3165, 2980, 1740, 1625, 1183 cm⁻¹; δH (500 MHz; CDCl₃) 7.84 (2H, d, J 7.4, Ar-H), 7.37 (2H, d, J 7.8, Ar-H), 6.95 (2H, d, J 6.3, Ar-H), 6.70 (1H, t, J 7.7, Ar-H), 6.33 (1H, s, NH), 5.08 (1H, d, J 5.1, CHOH), 3.79-3.65 (1H, br m, CHHN), 3.48-3.37 (1H, br m, CHHN), 2.46 (3H, s, CH₃), 2.04-1.95 (1H, br m, CHOHCHH), 1.92-1.79 (1H, br m, CHOHCHH), 1.37 (9H, s, C(CH₃)₃); δC (125 MHz; CDCl₃) 163.1 (dd, J 246.2, 12.5, Ar-CF), 154.3 (C=O), 149.0 (Ar-C), 144.9 (Ar-C), 133.3 (Ar-C), 129.7 (Ar-CH), 128.7 (Ar-CH), 108.5 (dd, J 21.3, 6.3, Ar-CH), 102.4 (t, J 26.3, Ar-CH), 82.3 (C), 70.4 (CH), 47.8 (CH₂), 36.4 (CH₂), 27.9 (CH₃), 21.6 (CH₃); δF (376 MHz; CDCl₃) -109.9 (Ar-CF); HRMS (ESI+) calculated for C₂₁H₂₆N₂NaO₅SF₂ [M+Na]+ 479.1423; found 479.1421.

tert-Butyl (S)-2-(3-(3,5-difluorophenyl)-3-hydroxypropyl)-2-tosylhydrazine-1-carboxylate (6p). Following general procedure 4, aryl ketone **5p** (266 mg, 0.59 mmol, 1.0 equiv), (S,S)-catalyst **7c** (3.6 mg, 6 µmol, 0.01 equiv), 5:2 FA:TEA complex (0.59 mL, 1 M) and CH₂Cl₂ (2.4 mL, 0.25 M) yielded **6p** as a white solid (266 mg, 0.59 mmol, 99%). [α]_D²⁴ –14.2 (c 0.10, CHCl₃); Enantiomeric excess (80% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 13.5 min; t_R 16.3 min.

ŌН tert-Butyl (R)-2-(3-hydroxy-3-(1-tosylindolin-5-yl)propyl)-2tosylhydrazine-1-carboxylate ((R)-6q). Following general method 3, aryl ketone **5q** (1.42 g, 2.31 mmol, 1.0 equiv), catalyst (*R*,*R*)-**7c** (14.3 mg, 23 µmol, 1.0 mol%), formic acid: triethylamine (5:2) complex (2.3 mL, 1.0 M) and dichloromethane (6.9 mL, 0.33 M) yielded (R)-6q after purification by column chromatography (33-50% EtOAc/petroleum ether) as a white foam (1.13 g, 1.84 mmol, 92%). M.p. 65-68 °C; $R_f = 0.22$ (50% EtOAc in petroleum ether); $[\alpha]^{22}_D + 20.9$ (c 0.32, CHCl₃). Enantiomeric excess (88% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 20/80; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 41.3 min; t_R 46.2 min; IR (neat) 3305, 2928, 1722, 1599, 1486, 1350, 1245, 1158, 1089, 1052, 974, 813 cm⁻¹; δH (400 MHz; CDCl₃) 7.79 (2H, d, J 8.0, Ar-H), 7.66 (2H, d, J 8.0, Ar-H), 7.58 (1H, d, J 8.4, Ar-H), 7.32 (2H, d, J 8.0, Ar-H), 7.22 (2H, d, J 8.0, Ar-H), 7.17 (1H, d, J 8.4, Ar-H), 7.13 (1H, s, Ar-H), 6.32 (1H, br s, NH), 4.91 (1H, br m, CHOH), 3.90 (2H, t, J 8.4, NCH₂CH₂C), 3.64 (1H, br m, NCHHCH₂CO), 3.44 (1H, br m, NCHHCH₂CO), 2.94 (1H, br s, OH), 2.87 (2H, t, J 8.2, NCH₂CH₂C), 2.43 (3H, s, CH₃), 2.37 (3H, s, CH₃), 1.98-1.83 (2H, m, NCH₂CH₂CO), 1.32 (9H, s, (CH₃)₃); δC (151 MHz; CDCl₃) 144.8 (Ar-C), 144.2 (Ar-C), 141.4

(Ar-C), 140.3 (Ar-C, seen on HMBC), 134.0 (Ar-C), 132.2 (Ar-C), 129.82 (Ar-CH), 129.80 (Ar-CH), 128.8 (Ar-CH), 127.5 (Ar-CH), 125.5 (Ar-CH), 122.8 (Ar-CH), 114.9 (Ar-CH), 81.8 (C, seen on HMBC), 71.4 (CHOH), 50.3 (NCH₂CH₂C), 47.9 (NCH₂CH₂CHOH, seen on HMBC), 36.1 (NCH₂CH₂CHOH, seen on HMBC), 28.1 (Boc-CH₃), 28.0 (NCH₂CH₂C), 21.8 (CH₃), 21.7 (CH₃), one Ar-C Boc-C=O not observed; HRMS (ESI⁺) calculated for C₃₀H₃₇N₃NaO₇S₂ [M+Na]⁺ 638.1965; found 638.1961.

tert-Butyl (S)-2-(3-hydroxy-3-(1-tosylindolin-5-yl)propyl)-2-tosylhydrazine-1-carboxylate ((S)-6q). Following general method 3, aryl ketone 5q (505 mg, 0.82 mmol, 1.0 equiv), catalyst (S,S)-7c (5.1 mg, 8.2 µmol, 1.0 mol%), formic acid : triethylamine (5 : 2) complex (0.8 mL, 1.0 M) and dichloromethane (1.6 mL, 0.5 M) yielded (S)-6q after purification by column chromatography (33-50% EtOAc/petroleum ether) as a colourless gum (356 mg, 0.58 mmol, 71%). $[\alpha]^{22}_D$ – 20.6 (c 0.38, CHCl₃). Enantiomeric excess (89% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 20/80; flow rate = 1.0 mL/min; detection

wavelength = 254 nm] t_R 39.7 min; t_R 47.1 min.

Benzyl (*S*)-1-(4-hydroxy-4-phenylbutyl)-2-tosylhydrazine-1-carboxylate (*G*r). Following general method 3, aryl ketone 5r (60 mg, 0.13 mmol, 1.0 equiv), catalyst 7c (1 mg, 1.3 μmol, 0.01 equiv), 5 : 2 formic acid : triethylamine complex (0.13 mL, 1.0 M) and dichloromethane (0.26 mL, 0.5 M) yielded 6r as a colourless oil (60 mg, 0.13 mmol, 99%). R_f = 0.20 (35% EtOAc in petroleum ether); [α]³²_D –13.0 (*c* 0.92, CHCl₃); enantiomeric excess was determined after cyclisation to 8r; IR (film) 3510, 3285, 2946, 1717, 1375, 1184 cm⁻¹; δ*H* (500 MHz; CDCl₃) 7.72 (2H, d, *J* 8.0, Ar-H), 7.40-7.30 (8H, m, Ar-H), 7.21 (2H, d, *J* 8.1, Ar-H), 7.12 (2H, d, *J* 6.1, Ar-H), 4.88 (2H, s, CH₂Ph), 4.69 (1H, s, C*H*OH), 3.70 (2H, br s, NCH₂), 2.42 (3H, s, CH₃), 1.85-1.62 (4H, m, C*H*₂C*H*₂CHOH); δ*C* (125 MHz; CDCl₃) 144.5 (Ar-C), 144.4 (Ar-C), 135.2 (Ar-C), 129.5 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.5 (Ar-CH), 128.1 (Ar-CH), 127.7 (Ar-CH), 125.8 (Ar-CH), 74.2 (CH), 68.4 (CH₂), 50.8 (CH₂), 35.7 (CH₂), 23.4 (CH₂), 21.7 (CH₃), C=O, 1 Ar-C and 1 Ar-CH not seen; HRMS (ESI⁺) calculated for C₂₅H₂₆N₂O₅S [M+Na]⁺ 489.1455; found 489.1455.

Benzyl (S)-1-(5-hydroxy-5-phenylpentyl)-2-tosylhydrazine-1-carboxylate (6s). Following general method3, aryl ketone 5 (80 mg, 0.17 mmol, 1.0 equiv), catalyst 7c (1.0 mg, 1.7 μmol, 0.01 equiv), 5 : 2 formic acid : triethylamine complex (0.17 mL, 1.0 M) and dichloromethane (0.34 mL, 0.5 M)

yielded **6s** as a colourless oil (80 mg, 0.17 mmol, 99%). $R_f = 0.20$ (35% EtOAc in petroleum ether); $[α]^{32}_D - 8.2$ (c 1.13, CHCl₃). Enantiomeric excess was determined after cyclisation to **8s**; IR (film) 3489, 3233, 2925, 1707, 1340, 1215 cm⁻¹; δH (500 MHz; CDCl₃) 7.72 (2H, d, J 8.0, Ar-H), 7.38-7.31 (8H, m, Ar-H), 7.21 (2H, d, J 8.1, Ar-H), 7.14 (2H, s, Ar-H), 6.91 (1H, s, NH), 4.88 (2H, s, CH₂Ph), 4.69-4.61 (1H, m, CHOH), 3.65 (2H, br s, NCH₂), 2.42 (3H, s, CH₃) 1.85-1.62 (4H, m, NCH₂CH₂ and CH₂CHOH), 1.42-1.31 (2H, m, CH₂CH₂CH₂); δC (125 MHz; CDCl₃) 144.6 (Ar-C), 144.5 (Ar-C), 135.2 (Ar-C), 129.5 (Ar-CH), 128.5 (Ar-CH), 128.1 (Ar-CH), 127.6 (Ar-CH), 125.8 (Ar-CH), 74.3 (CH), 68.3 (CH₂), 50.9 (CH₂), 38.5 (CH₂), 26.7 (CH₂), 22.6 (CH₂), 21.7 (CH₃), 1 C=O, 1 Ar-C and 2 Ar-CH not seen; HRMS (ESI⁺) calculated for C₂₆H₃₀N₂O₅S [M+Na]⁺ 505.1768; found 505.1767.

tert-Butyl (S)-2-(4-hydroxy-4-phenylbutyl)-2-tosylhydrazine-1-carboxylate (6t). Following general method 3, aryl ketone 5t (5.21 g, 12.0 mmol, 1.0 equiv) catalyst 7c (37 mg, 60 μmol, 0.5 mol%), formic acid: triethylamine (5: 2) complex (12 mL, 1.0 M), dichloromethane (24 mL, 0.5 M) yielded 6t as a white, sticky foam (5.21 g, 12.0 mmol) in quantitative yield. R_f = 0.35 (50% EtOAc in petroleum ether); [α]²⁸_D –18.0 (*c* 0.32, CHCl₃). Enantiomeric excess (91% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2-propanol/hexane = 2.5/97.5; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 87.8 min; t_R 97.6 min; IR (neat) 2979, 2930, 1703, 1351, 1151, 1088, 753, 700, 659 cm⁻¹; δ*H* (500 MHz; CDCl₃) 7.76 (2H, d, *J* 7.8, Ar-*H*), 7.35-7.33 (4H, m, Ar-*H*), 7.33-7.27 (3H, m, Ar-*H*), 6.27 (0.70H, br s, N*H* major), 5.77 (0.30H, br s, N*H* minor), 4.77 (1H, br s, C*H*OH), 3.44 (2H, br s, 2H, NC*H*₂), 2.45 (1H, br s, O*H*), 2.42 (3H, s, CH₃), 1.92–1.82 (2H, m, C*H*₂CHOH), 1.75–1.63 (2H, m, C*H*₂CH₂N), 1.31 (9H, br s, (CH₃)₃); δC (125 MHz; CDCl₃) 153.8 (Boc-C=O), 144.8 (Ar-C), 144.6 (Ar-C), 134.0 (Ar-C), 129.7 (Ar-CH), 128.7 (Ar-CH), 128.5 (Ar-CH), 127.5 (Ar-CH), 125.9 (Ar-CH), 81.9 (C), 73.5 (CHOH), 50.0 (NCH₂), 36.3 (CH₂CHOH), 28.1 (Boc-CH₃), 23.0 (CH₂CH₂N), 21.7 (CH₃); HRMS (ESI*) calculated for C₂₂H₃₀N₂NaO₅S [M+Na]* 457.1768; found 457.1763.

tert-Butyl (*S*)-2-(5-hydroxy-5-phenylpentyl)-2-tosylhydrazine-1-carboxylate (6u). Following general method 3, aryl ketone 5u (2.60 g, 5.82 mmol, 1.0 equiv), catalyst 7c (18 mg, 29 μmol, 0.5 mol%), formic acid: triethylamine (5:2) complex (6.0 mL, 1.0 M), dichloromethane (12 mL, 0.5 M) yielded 6u as a white solid (2.46 g, 5.48 mmol, 94%). M.p. 83.5-85 °C; $R_f = 0.43$ (50% EtOAc in petroleum ether); $[\alpha]^{28}_D$ –18.4 (c 0.35, CHCl₃). Enantiomeric excess (93% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2-propanol/hexane = 4/96; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 39.8 min; t_R 47.0 min; IR (neat) 3310, 2930, 1702, 1351, 1151, 756, 700, 659 cm⁻¹; δ*H* (400 MHz; CDCl₃) 7.75 (2H, d, *J* 7.0, Ar-*H*), 7.34 (4H, d, *J* 3.8,

Ar-*H*), 7.32-7.27 (3H, m, Ar-*H*), 6.35 (0.80H, br s, N*H* major), 5.81 (0.20H, br s, N*H* minor), 4.66 (1H, t, *J* 6.1, C*H*OH), 3.41 (2H, br d, *J* 16.7, NC*H*₂), 2.41 (3H, s, CH₃), 2.21 (1H, br s, O*H*), 1.84-1.77 (1H, m, C*H*HCHOH), 1.76-1.69 (1H, m, CH*H*CHOH), 1.59 (2H, tt, *J* 10.5, 5.4, C*H*₂CH₂N), 1.55-1.49 (1H, m, C*H*HCH₂CH₂N), 1.48-1.39 (1H, m, CH*H*CH₂CH₂N), 1.31 (9H, br s, (CH₃)₃); δ*C* (125 MHz; CDCl₃) 153.5 (C=O), 144.9 (Ar-C), 144.4 (Ar-C), 134.3 (Ar-C), 129.6 (Ar-CH), 128.7 (Ar-CH), 128.6 (Ar-CH), 127.6 (Ar-CH), 126.0 (Ar-CH), 81.7 (C), 74.1 (CHOH), 49.8 (NCH₂), 38.7 (*C*H₂CHOH), 28.1 (Boc-CH₃), 26.9 (*C*H₂CH₂N), 22.8 (*C*H₂CH₂CH₂N), 21.7 (CH₃). HRMS (ESI⁺) calculated for C₂₃H₃₂N₂NaO₅S [M+Na]⁺ 471.1924; found 471.1921.

(S)-2-(4-(4-fluorophenyl)-4-hydroxybutyl)-2tosylhydrazine-1-carboxylate (6v). Following general method 3, aryl ketone 5v (3.25 g, 7.21 mmol, 1.0 equiv), catalyst 7c (22 mg, 36 µmol, 0.5 mol%), formic acid: triethylamine (5:2) complex (7.0 mL, 1.0 M), dichloromethane (14 mL, 0.5 M) yielded 6v as a colourless gum (3.26 g, 7.21 mmol) in quantitative yield. $R_f = 0.36$ (50% EtOAc in petroleum ether); $[\alpha]^{28}D - 13.9$ (c 0.94, CHCl₃). Enantiomeric excess (87% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2-propanol/hexane = 4/96; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 29.9 min; t_R 34.4 min; IR (neat) 3310, 2979, 2930, 1703, 1509, 1350, 1220, 1152, 813, 658 cm⁻¹; δH (400 MHz; CDCl₃) 7.76 (2H, d, J 7.9, Ar-H), 7.37-7.27 (4H, m, Ar-H), 7.02 (2H, t, J 8.6, Ar-H), 6.23 (0.75H, br s, NH major), 5.77 (0.25H, br s, NH minor), 4.78 (1H, br s, CHOH), 3.46 (1H, br s, NCHH), 3.41 (1H, br s, NCHH), 2.57 (1H, br s, OH), 2.42 (3H, s, CH₃), 1.94-1.78 (2H, m, C H_2 CHOH), 1.71-1.61 (2H, m, C H_2 CH₂N), 1.31 (9H, br s, (CH₃)₃); δC (125 MHz; CDCl₃) 162.2 (d, J 244.7, CF), 154.0 (Boc-C=O), 144.7 (Ar-C), 140.6 (Ar-C), 133.8 (Ar-C), 129.8 (Ar-CH), 128.8 (Ar-CH), 127.5 (d, J 8.0, Ar-CH), 115.3 (d, J 21.1, Ar-CH), 82.0 (C), 72.7 (CHOH), 50.0 (NCH₂), 36.5 (CH₂CHOH), 28.1 (Boc-CH₃), 22.8 (CH₂CH₂N), 21.7 (CH₃); δF (376 MHz; CDCl₃) –115.6 (CF); HRMS (ESI⁺) calculated for C₂₂H₂₉FN₂NaO₅S [M+Na]⁺ 475.1673; found 475.1671.

General method 4: Mitsunobu cyclisation

$$Ar \xrightarrow{\text{OH}} \underset{\text{R}^2}{\text{N}} \underset{\text{R}^2}{\text{H}} \xrightarrow{\text{PPh}_{3,}} \text{DEAD} \xrightarrow{\text{THF, RT, 12-48 h}} \xrightarrow{\text{Ar}} \underset{\text{R}^1}{\text{N}} \underset{\text{R}^1}{\text{R}^2}$$

To a solution of alcohol (1.0 equiv) in tetrahydrofuran (0.01 M) was added triphenylphosphine (1.5-2.5 equiv) and diethyl azodicarboxylate (1.5-2.5 equiv). The reaction mixture was stirred at rt until completion of the reaction (12-48 h, monitored by TLC). The

reaction mixture was concentrated *in vacuo*. The crude product was purified by column chromatography (20-30% EtOAc in petroleum ether) to give the following compounds.

Benzyl (*S*)-3-phenyl-2-tosyl-1,2-diazetidine-1-carboxylate (*8a*). Following general method 4, 6a (91 mg, 0.21 mmol, 1.0 equiv), triphenylphosphine (142 mg, 0.54 mmol, 2.5 equiv), diethyl azodicarboxylate (77 μL, 0.54 mmol, 2.5 equiv) in tetrahydrofuran (21 mL, 0.01 M) yielded 8a as a white solid (75 mg, 0.18 mmol, 86%). $R_f = 0.32$ (20% EtOAc in petroleum ether); M.p. 113-114.5 °C; $[\alpha]^{32}_D$ +21.5 (*c* 0.50, CHCl₃); Enantiomeric excess (96% ee) was determined by HPLC analysis (25 °C). [Chiralcel ODH column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 21.7 min; t_R 27.2 min. IR (film) 3032, 1751, 1720, 1305, 1185 cm⁻¹; δ*H* (400 MHz; CDCl₃) 7.89-7.87 (2H, m, Ar-*H*), 7.34-7.31 (12H, m, Ar-*H*), 5.25-4.96 (3H, m, C*H*Ph and OC*H*₂Ph), 4.23 (1H, t, *J* 8.6, NC*H*H), 4.00 (1H, t, *J* 8.6, NCH*H*), 2.44 (3H, s, Ts-C*H*₃); δ*C* (100 MHz; CDCl₃) 160.3 (C=O), 145.4 (Ar-C), 137.3 (Ar-C), 135.5 (Ar-C), 130.6 (Ar-C), 130.1 (Ar-CH), 129.0 (Ar-CH), 128.8 (Ar-CH), 128.6 (Ar-CH), 128.4 (Ar-CH), 126.4 (Ar-CH), 68.5 (CH₂), 61.6 (CH), 56.6 (CH₂), 21.9 (CH₃), 2 Ar-CH not seen; HRMS (ESI+) calculated for C₂₃H₂₂N₂NaO₄S [M+Na]+ 445.1192; found 445.1194.

tert-Butyl (*S*)-3-phenyl-2-tosyl-1,2-diazetidine-1-carboxylate (*8b*) Following general procedure 5, alcohol 6b (450 mg, 1.11 mmol, 1.0 equiv), triphenylphosphine (727 mg, 2.77 mmol, 2.5 equiv), diethylazodicarboxylate (436 μL, 2.77 mmol, 2.5 equiv) and tetrahydrofuran (111 mL, 0.01 M) yielded 8b as a white solid (328 mg, 0.84 mmol, 76%). $R_f = 0.25$ (15% EtOAc/petroleum ether); M.p. 166-167 °C; $[\alpha]_D^{28}$ +7.6 (*c* 0.09, CHCl₃); Enantiomeric excess (98% *ee*) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 0.6/99.4; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 54.5 min; t_R 63.1 min. IR (film) 2980, 2932, 1733, 1395, 1358 cm⁻¹; δ*H* (500 MHz, CDCl₃) 7.93 (2H, d, *J* 8.2, Ar-CH), 7.37 (7H, m, Ar-CH), 5.06 (1H, dd, *J* 8.7, 5.9, CHPh), 4.21 (1H, t, *J* 8.7, NC*H*H), 3.96 (1H, dd, *J* 8.5, 5.9, NCH*H*), 2.51 (3H, s, CH₃), 1.45 (9H, s, C(CH₃)₃); δ*C* (125 MHz, CDCl₃) 159.3 (C=O), 145.2 (Ar-C), 137.6 (Ar-C), 130.8 (Ar-CH), 130.1 (Ar-CH), 130.0 (Ar-C), 129.6 (Ar-CH), 128.9 (Ar-CH), 126.4 (Ar-CH), 82.9 (C), 61.3 (CH), 56.3 (CH₂), 28.0 (CH₃), 21.8 (CH₃); HRMS (ES+) calculated for C₂₀H₂₄N₂O₄S (M+Na)+ 411.1349; found 411.1352.

Benzyl (*R*)-3-(2-fluorophenyl)-2-tosyl-1,2-diazetidine-1-carboxylate (8c).

Following general method 4, 6c (44 mg, 0.10 mmol, 1.0 equiv),

triphenylphosphine (36 mg, 0.15 mmol, 1.5 equiv), diethyl azodicarboxylate (22 μL, 0.15 mmol, 1.5 equiv) and tetrahydrofuran (10 mL, 0.01 M) yielded **8c** as a colourless oil (32 mg, 70 μmol, 75%). R_f = 0.26 (25% EtOAc in petroleum ether); [α]³²_D –15.6 (*c* 0.15, CHCl₃). Enantiomeric excess (90% *ee*) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 15.0 min; t_R 21.1 min; IR (film) 3034, 2924, 1720, 1236, 1162 cm⁻¹; δ*H* (500 MHz; CDCl₃) 7.83 (2H, d, *J* 8.2, Ar-H), 7.55 (1H, t, *J* 7.5, Ar-H), 7.30-7.26 (7H, m, Ar-H), 7.19 (1H, s, Ar-H), 7.10 (1H, t, *J* 7.5, Ar-H), 6.96 (1H, t, *J* 10.0, Ar-H), 5.20-5.04 (3H, m, CH₂Ph and NCHPh), 4.14 (1H, t, *J* 8.7, NC*H*H), 3.90 (1H, dd, *J* 8.4, 6.0, NCH*H*), 2.40 (3H, s, CH₃); δ*C* (125 MHz; CDCl₃) 160.1 (C=O), 159.7 (d, *J* 246.3, Ar-CF), 145.5 (Ar-C), 135.4 (Ar-C), 130.4 (d, *J* 8.8, Ar-CH), 130.1 (Ar-CH), 130.0 (Ar-C), 129.7 (Ar-CH), 128.5 (Ar-CH), 128.5 (d, *J* 3.8, Ar-CH), 129.7 (Ar-CH), 128.3 (Ar-CH), 127.9 (Ar-CH), 124.7 (d, *J* 13.8, Ar-C), 124.7 (d, *J* 2.5, Ar-CH), 15.5 (d, *J* 20.0, Ar-CH), 68.4 (CH₂), 57.1 (d, *J* 3.8, CH), 56.1 (d, *J* 2.5, CH₂), 21.8 (CH₃); δ*F* (376 MHz; CDCl₃) -118.4 (CF); HRMS (ESI⁺) calculated for C₂₃H₂₁FN₂O₄S [M+Na]⁺ 463.1098; found 463.1097.

Cbz N Ts Benzyl (*S*)-2-tosyl-3-(4-(trifluoromethyl)phenyl)-1,2-diazetidine-1-carboxylate (8d). Following general method 4, 6d (60 mg, 0.12 mmol, 1.0 equiv), triphenylphosphine (77 mg, 0.29 mmol, 2.5 equiv), diethyl azodicarboxylate (63 μ L, 0.29 mmol, 2.5 equiv) and tetrahydrofuran (12 mL,

0.01 M) yielded **8d** as a white solid (48 mg, 0.10 mmol, 82%). M.p. 117-119 °C; $R_f = 0.21$ (25% EtOAc in petroleum ether); $[\alpha]^{32}_D + 18.9$ (c 2.86, CHCl₃). Enantiomeric excess (94% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 19.5 min; t_R 24.3 min; IR (film) 2925, 1750, 1693, 1360, 1151, 1087 cm⁻¹; δH (500 MHz; d6-DMSO) 7.89 (2H, d, J 8.2, Ar-H), 7.79 (2H, d, J 8.2, Ar-H) 7.65 (2H, d, J 8.1, Ar-H), 7.54 (2H, d, J 8.1, Ar-H), 7.39-7.32 (5H, m, Ar-H), 5.38-5.09 (3H, m, CHOH and CH₂Ph), 4.09 (1H, t, J 8.9, NCHH), 3.93 (1H, dd, J 8.9, 5.8, NCHH), 2.46 (3H, s, CH₃); δC (125 MHz; d6-DMSO) 159.5 (C=O) 145.6 (Ar-C), 135.6 (Ar-C), 130.1 (Ar-CH), 129.8 (Ar-CH), 129.2 (Ar-C), 129.0 (q, J 31.9, Ar-C), 128.4 (Ar-CH), 128.2 (Ar-CH), 127.7 (Ar-CH), 127.4 (Ar-CH), 125.6 (q, J 3.8, Ar-CH), 124.1 (q, J 272.2, CF₃), 67.8 (CH₂), 60.1 (CH), 56.1 (CH₂), 21.3 (CH₃), 1 Ar-C not seen; δF (376 MHz; d6-DMSO) -61.1 (CF₃); HRMS (ESI⁺) calculated for C₂₄H₂₁F₃N₂O₄S [M+Na]⁺ 513.1066; found 513.1061.

Benzyl (S)-3-(3-bromophenyl)-2-tosyl-1,2-diazetidine-1-carboxylate (8e). Following general method 4, 6e (61 mg, 0.12 mmol, 1.0 equiv),

triphenylphosphine (77 mg, 0.29 mmol, 2.5 equiv), diethyl azodicarboxylate (63 µL, 0.29 mmol, 2.5 equiv) and tetrahydrofuran (12 mL, 0.01 M) yielded **8e** as a colourless oil (47 mg, 90 µmol, 79%). $R_f = 0.25$ (25% EtOAc in petroleum ether); $[\alpha]^{32}_D +34.8$ (c 0.38, CHCl₃). Enantiomeric excess (97% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2-propanol/hexane = 9/91; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 19.6 min; t_R 25.1 min; IR (film) 2923, 1718, 1302, 1212 cm⁻¹; δH (500 MHz; CDCl₃) 7.87 (2H, d, J 8.2, Ar-H), 7.50 (1H, s, Ar-H), 7.38-7.29 (8H, m, Ar-H), 7.23 (1H, t, J 7.8, Ar-H), 5.19 (1H, d, J 12.3 CHHAr), 5.11 (1H, d, J 12.3, CHHAr), 5.07 (1H, dd, J 8.7, 6.0, NCHAr) 4.23 (1H, t, J 8.7, NCHH), 3.97 (1H, dd, J 8.7, 6.0, NCHH), 2.46 (3H, s, CH₃); δC (125 MHz; CDCl₃) 160.1 (C=O) 145.5 (Ar-C), 139.5 (Ar-C), 135.3 (Ar-C), 131.9 (Ar-CH), 130.6 (Ar-CH), 131.0 (Ar-CH), 130.3 (Ar-C) 130.0 (Ar-CH), 129.7 (Ar-CH), 129.4 (Ar-CH), 128.6 (Ar-CH), 128.4 (Ar-CH), 127.9 (Ar-CH), 68.5 (CH₂), 60.5 (CH), 56.2 (CH₂), 21.8 (CH₃), 1 Ar-C and 1 Ar-CH not seen; HRMS (ESI+) calculated for $C_{23}H_{21}^{79}BrN_2O_4S$ [M+Na]+ 523.0298; found 523.0294.

Benzyl (S)-3-(3,4-dichlorophenyl)-2-tosyl-1,2-diazetidine-1-carboxylate (8f). Following general method 4, 6f (100 mg, 0.20 mmol, 1.0 equiv), triphenylphosphine (129 mg, 0.49 mmol, 2.5 equiv), diethyl azodicarboxylate (76 µL, 0.49 mmol, 2.5 equiv) and tetrahydrofuran (20 mL, 0.01 M) yielded 8f as a white solid (75 mg, 0.15 mmol, 78%). M.p. 133-135 °C; $R_f = 0.23$ (25% EtOAc in petroleum ether); $[\alpha]^{32}_D$ +33.2 (c 4.40, CHCl₃); Enantiomeric excess (90% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 25.0 min; t_R 33.1 min; IR (film) 2983, 1711, 1337, 1313, 1212 cm⁻¹; δH (500 MHz; CDCl₃) 7.86 (2H, d, J 7.6, Ar-H), 7.50-7.27 (8H, m, Ar-H), 7.19 (2H, d, J 8.5, Ar-H), 5.25-4.98 (3H, m, CHAr and CH₂Ph), 4.25 (1H, t, J 8.9, NCHH), 3.94 (1H, t, J 8.9, NCHH), 2.43 (3H, s, CH₃); δC (125 MHz; CDCl₃) 160.1 (C=O), 145.6 (Ar-C), 137.4 (Ar-C), 135.2 (Ar-C), 133.2 (Ar-C) 133.0 (Ar-C), 131.0 (Ar-CH), 130.2 (Ar-C) 130.0 (Ar-CH), 129.7 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.0 (Ar-CH), 125.6 (Ar-CH), 68.6 (CH₂), 60.0 (CH), 56.1 (CH₂), 21.8 (CH₃); HRMS (ESI⁺) calculated for $C_{23}H_{20}^{35}Cl_2N_2O_5S$ [M+Na]⁺ 513.0413; found 513.0413.

Benzyl (*R*)-3-(2-chlorophenyl)-2-tosyl-1,2-diazetidine-1-carboxylate (8g). Following general method 4, **6g** (81 mg, 0.17 mmol, 1.0 equiv), triphenylphosphine (112 mg, 0.43 mmol, 2.5 equiv), diethyl azodicarboxylate (66 μL, 0.43 mmol, 2.5 equiv) and tetrahydrofuran (17 mL, 0.01 M) yielded **8g** as a colourless oil (50 mg, 0.11 mmol, 65%). $R_f = 0.24$ (25% EtOAc in petroleum ether); $[\alpha]^{32}$ _D +33.2 (*c* 0.44, CHCl₃). Enantiomeric excess (90% *ee*) was determined by HPLC analysis

(25 °C). [Chiralpak OD-H column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 13.6 min; t_R 17.1 min. IR (film) 2924, 1749, 1271, 1186 cm⁻¹; δH (500 MHz; CDCl₃) 7.92 (2H, d, J 8.2, Ar-H), 7.83 (1H, d, J 7.0, Ar-H), 7.37-7.27 (9H, m, Ar-H), 5.25 (1H, dd, J 8.6, 5.9, CHAr), 5.21 (1H, d, J 12.4, CHHPh), 5.11 (1H, d, J 12.4, CHHPh), 4.25 (1H, t, J 8.7, NCHH), 3.83 (1H, dd, J 8.6, 5.8, NCHH), 2.48 (3H, s, CH₃); δC (125 MHz; CDCl₃) 160.2 (C=O) 145.6 (Ar-C), 135.4 (Ar-C), 135.3 (Ar-C), 131.0 (Ar-C) 130.1 (Ar-CH), 130.0 (Ar-C), 129.8 (Ar-CH), 129.6 (Ar-CH), 129.2 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 127.9 (Ar-CH), 127.8 (Ar-CH), 127.5 (Ar-CH), 68.4 (CH₂), 59.8 (CH), 56.5 (CH₂), 21.8 (CH₃); HRMS (ESI⁺) calculated for C₂₃H₂₁³⁵ClN₂O₄S [M+Na]⁺ 479.0803; found 479.0805.

Benzyl (R)-3-phenyl-2-tosylpyrazolidine-1-carboxylate (8h). Following general method 4, 6h (60 mg, 0.13 mmol, 1.0 equiv), triphenylphosphine (52 mg, 0.20 mmol, 1.5 equiv), diethylazodicarboxylate (31 µL, 0.20 mmol, 1.5 equiv) and tetrahydrofuran (13 mL, 0.01 M) yielded 8h as a white solid (51 mg, 0.12 mmol, 90%). M.p. 105-106 °C; $R_f = 0.24$ (25% EtOAc in petroleum ether); $[\alpha]^{32}_D$ +52.1 (*c* 0.02, CHCl₃). Enantiomeric excess (96% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 13.0 min; t_R 14.1 min. IR (film) 3034, 2959, 2925, 1702, 1344, 1216, 1181 cm⁻¹; δH (500 MHz; CDCl₃) 7.84 (2H, d, J 8.2, Ar-CH), 7.37-7.31 (5H, m, Ar-H), 7.28-7.22 (5H, m, Ar-H), 7.21-7.18 (2H, m, Ar-H), 5.37 (1H, dd, *J* 8.0, 4.7, C*H*Ph), 5.09 (1H, d, *J* 12.2, CO₂C*H*HPh), 4.82 (1H, d, J 12.2, CO₂CHHPh), 3.98 (1H, ddd, J 11.0, 8.4, 5.7, NCHH), 3.29 (1H, dt, J 10.8, 8.3, NCHH), 2.45-2.39 (4H, m, CH₃ and CHPhCHH), 2.17 (1H, dtd, J 12.7, 7.2, 5.1, CHPhCHH); δC (125 MHz; CDCl₃) 157.3 (C=O), 144.8 (Ar-C), 139.9 (Ar-C) 135.6 (Ar-C), 133.2 (Ar-C), 129.6 (Ar-CH), 129.4 (Ar-CH), 128.6 (Ar-CH), 128.4 (Ar-CH), 128.2 (Ar-CH), 128.0 (Ar-CH), 127.6 (Ar-CH), 126.2 (Ar-CH), 68.2 (CH₂), 63.4 (CH), 47.8 (CH₂), 33.8 (CH₂), 21.7 (CH₃); HRMS (ESI⁺) calculated for C₂₄H₂₄N₂O₄S [M+Na]⁺ 459.1349; found 459.1349.

Following general method 4, **6i** (42 mg, 0.09 mmol, 1.0 equiv), triphenylphosphine (37 mg, 0.14 mmol, 1.5 equiv), diethylazodicarboxylate (22 μ L, 0.14 mmol, 1.5 equiv) and tetrahydrofuran (9 mL, 0.01 M) yielded **8i** as a colourless oil (36 mg, 0.08 mmol, 85%). R_f = 0.18 (25% EtOAc in petroleum ether); [α]³²_D +7.8 (c 0.17, CHCl₃). Enantiomeric excess (99% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 25.6 min; t_R 28.9 min. IR (film) 2979, 2931, 1712, 1530, 1346, 1161 cm⁻¹; δ *H* (500 MHz; CDCl₃) 8.27 (2H, d, J 8.6, Ar-H), 8.18 (2H, t, J 8.7, Ar-H) 7.43 (2H, d, J 6.9, Ar-H), 7.36 (2H, t, J 7.4, Ar-H), 7.31 (1H, d, J 7.1, Ar-H), 5.04 (1H, t, J 8.6, C*H*Ph), 4.21 (1H, br s, NC*H*H), 3.42 (1H,

br s, NCH*H*), 2.59 (2H, dt, *J* 12.9, 6.5, CHPhC*H*H), 2.31 (1H, p, *J* 11.5, CHPhCH*H*), 1.27 (9H, s, C(CH₃)₃); δ C (125 MHz; CDCl₃) 155.8 (C=O seen on HMBC), 142.9 (Ar-C), 130.7 (Ar-CH), 128.4 (Ar-CH), 127.5 (Ar-CH), 126.6 (Ar-CH), 123.7 (Ar-CH), 114.1 (Ar-C), 82.7 (C), 65.4 (CH), 49.3 (CH₂), 36.1 (CH₂), 27.9 (CH₃), 1 Ar-C not seen; HRMS (ESI⁺) calculated for C₂₀H₂₃N₃O₆ [M+Na]⁺ 456.1200; found 456.1198.

tert-Butyl (*R*)-5-phenyl-2-tosylpyrazolidine-1-carboxylate (8j). Following general method 4, **6j** (72 mg, 0.17 mmol, 1.0 equiv), triphenylphosphine (112 mg, 0.43 mmol, 2.5 equiv), diethyl azodicarboxylate (74 mg, 0.43 mmol, 2.5 equiv) in tetrahydrofuran (17 mL, 0.01 M) yielded **8j** as a colourless oil (62 mg, 0.15 mmol, 90%). $R_f = 0.30$ (30% EtOAc in petroleum ether); $[\alpha]^{32}_D + 23.5$ (*c* 0.70, CHCl₃). Enantiomeric excess (95% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 5/95; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 10.9 min; t_R 17.4 min. IR (film) 2987, 2900, 1706, 1405, 1075 cm⁻¹; δH (500 MHz; CDCl₃) 7.86-7.85 (2H, m, Ar-H), 7.45-7.25 (7H, m, Ar-H), 4.99 (1H, dd, *J* 8.7, 6.2, CHPh), 4.10 (1H, br s, NC*H*H), 3.29 (1H, br s, NCH*H*), 2.48-2.26 (5H, m, CH₂, CH₃), 1.25 (9H, s, (CH₃)₃); δC (125 MHz; CDCl₃) 156.6 (C=O), 144.7 (Ar-C), 141.5 (Ar-C), 133.8 (Ar-C), 129.6 (Ar-CH), 129.5 (Ar-CH), 128.4 (Ar-CH), 127.2 (Ar-CH), 126.8 (Ar-CH), 82.0 (C), 65.6 (CH), 49.3 (CH₂), 36.1 (CH₂), 27.9 (CH₃), 21.7 (CH₃); HRMS (ESI⁺) calculated for C₂₁H₂₆N₂NaO₄S [M+Na]⁺ 425.1505; found 425.1504.

tert-Butyl (*R*)-5-{[1,1'-biphenyl]-4-yl)-2-tosylpyrazolidine-1-carboxylate (8k).
Following general method 4, 6k (84 mg, 0.17 mmol, 1.0 equiv), triphenylphosphine (66 mg, 0.25 mmol, 1.5 equiv), diethyl azodicarboxylate (39 μL, 0.25 mmol, 1.0 equiv) and tetrahydrofuran (17 mL, 0.01 M) yielded 8k as a white solid (70 mg, 0.15 mmol, 86%). M.p. 109-111 °C; R_f = 0.24 (25% EtOAc in petroleum ether); [α]³²_D+75.0 (*c* 0.03, CHCl₃). Enantiomeric excess (90% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 9.5 min; t_R 10.5 min. IR (film) 2980, 2924, 1701, 1393, 1357, 1255 cm⁻¹ δ*H* (500 MHz; CDCl₃) 7.90 (2H, d, *J* 8.2, Ar-H), 7.63 (4H, t, *J* 7.5, Ar-H), 7.60 (2H, d, *J* 7.9, Ar-H), 7.56 (2H, s, Ar-H), 7.47 (2H, t, *J* 7.6, Ar-H), 7.37 (1H, t, *J* 7.4, Ar-H), 7.27 (1H, d, *J* 9.4, Ar-H), 5.07 (1H, t, *J* 8.8, CHAr), 4.17 (1H, br s, NCHH), 3.33 (1H, br s, NCHH), 2.58-2.49 (1H, m, CHArCHH), 2.46-2.35 (4H, m, CH₃ and CHNCHH), 1.30 (9H, s, C(CH₃)₃); δ*C* (125 MHz; CDCl₃) 156.8 (C=O seen on HMBC), 150.5 (Ar-C), 144.6 (Ar-C), 140.9 (Ar-C), 140.1 (Ar-C), 133.8 (Ar-C), 129.6 (Ar-CH), 129.4 (Ar-CH), 128.8 (Ar-CH), 127.2 (Ar-CH), 127.1 (Ar-CH), 82.1 (C), 65.3 (CH), 49.3 (CH₂), 36.0 (CH₂), 27.9 (CH₃) 21.6 (CH₃),

2 Ar-CH not seen; HRMS (ESI⁺) calculated for $C_{27}H_{30}N_2O_4S$ [M+Na]⁺ 501.1818; found 501.1819.

tert-Butyl (R)-5-(4-bromophenyl)-2-tosylpyrazolidine-1-carboxylate (8I). Following general method 4, 61 (61 mg, 0.12 mmol, 1.0 equiv), triphenylphosphine (47 mg, 0.18 mmol, 1.5 equiv), diethyl azodicarboxylate (28 μL, 0.18 mmol, 1.5 equiv) and tetrahydrofuran (12 mL, 0.01 M) yielded 8I as a colourless oil (52 mg, 0.11 mmol, 90%). $R_f = 0.22$ (25% EtOAc in petroleum ether); $[\alpha]^{32}$ _D +34.6 (c 0.25, CHCl₃). Enantiomeric excess (90% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2-propanol/hexane = 5/95; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 12.5 min; t_R 15.5 min. IR (film) 2979, 2928, 1705, 1366, 1133 cm⁻¹; δH (500 MHz; CDCl₃) 7.77 (2H, d, J 8.1, Ar-H), 7.39 (2H, d, J 8.4, Ar-H), 7.30 (2H, s, Ar-H), 7.19 (2H, d, J7.8, Ar-H), 4.88 (1H, t, J9.8 CHAr), 4.07 (1H, br s, NCHH), 3.20 (1H, br s, NCHH), 2.43 (1H, sex, J 6.9, CHArCHH), 2.46 (3H, s, CH₃), 2.05-1.82 (1H, m, CHArCHH), 1.19 (9H, s, C(CH₃)₃); δC (125 MHz; CDCl₃) 156.3 (C=O, seen on HMBC), 144.8 (Ar-C), 140.4 (Ar-C), 133.6 (Ar-C), 131.4 (Ar-CH), 129.6 (Ar-CH), 129.4 (Ar-CH), 128.6 (Ar-CH), 121.1 (Ar-C), 82.2 (C), 65.0 (CH), 49.3 (CH₂), 36.0 (CH₂), 27.9 (CH₃), 21.7 (CH₃); HRMS (ESI+) calculated for C₂₁H₂₅⁷⁹BrN₂O₄S [M+Na]+ 503.0611; found 503.0612.

(R)-5-(thiophen-2-yl)-2-tosylpyrazolidine-1-carboxylate (8m). Following general method 4, 6m (41 mg, 0.10 mmol, 1.0 equiv), triphenylphosphine (39 mg, 0.15 mmol, 1.5 equiv), diethylazodicarboxylate (24 µL, 0.15 mmol, 1.5 equiv) and tetrahydrofuran (10 mL, 0.01 M) yielded 8m as a colourless oil (28 mg, 0.07 mmol, 72%). $R_f = 0.26$ (25% EtOAc in petroleum ether); $[\alpha]^{32}$ _D +31.3 (c 0.07, CHCl₃). Enantiomeric excess (73% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 3/97; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 18.5 min; t_R 19.5 min. IR (film) 2978, 2925, 1704, 1256, 1133 cm⁻¹; δH (500 MHz; CDCl₃) 7.79 (2H, d, J 7.9, Ar-H), 7.25 (1H, d, J 5.1, Ar-H), 7.23 (2H, d, J 7.9, Ar-H), 6.99 (1H, s, Ar-H), 6.94 (1H, t, J 3.7, Ar-H), 5.29 (1H, t, J 8.7, CHAr), 4.27 (1H, br s, NCHH), 3.32 (1H, br s, NCHH), 2.64-2.44 (2H, m, CHArCH₂), 2.42 (3H, s, CH₃), 1.32 (9H, s, C(CH₃)₃); δC (125 MHz; CDCl₃) 156.3 (C=O seen on HMBC), 144.6 (Ar-C), 133.3 (Ar-C), 129.7 (Ar-CH), 129.3 (Ar-CH), 126.2 (Ar-CH), 125.1 (Ar-CH), 124.9 (Ar-CH), 82.3 (C), 60.7 (CH), 49.2 (CH₂), 35.5 (CH₂), 27.9 (CH₃), 21.6 (CH₃), 1 Ar-C not seen; HRMS (ESI⁺) calculated for $C_{19}H_{24}N_2O_4S_2$ [M+Na]⁺ 431.1070; found 431.1073.

Boc tert-Butyl (R)-5-(p-tolyl)-2-tosylpyrazolidine-1-carboxylate ((R)-8n). Following general method 4, (S)-6n (217 mg, 0.50 mmol, 1.0 equiv), triphenylphosphine (328 mg, 1.25 mmol, 2.5 equiv), diethyl azodicarboxylate (DEAD) (197 µL, 1.25 mmol, 2.5 equiv) and tetrahydrofuran (50 mL, 0.01 M) yielded (R)-8n after purification by column chromatography (20-33% EtOAc/petroleum ether) as a colourless gum (190 mg, 0.46 mmol, 91%). Alternatively replacing DEAD with diisopropyl azodicarboxylate (DIAD) in general method 4, (R)-8n was obtained as a colourless gum (249 mg, 0.60 mmol, 91%). M.p. 103-106 °C; $R_f = 0.35$ (33% EtOAc in petroleum ether); [\alpha]^{23}_D - 26.8 (c 0.59, CHCl₃). Enantiomeric excess for reaction with DEAD (93% ee) and reaction with DIAD (95% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 5/95; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 12.2 min; t_R 16.3 min; IR (neat) 2979, 2928, 1705, 1330, 1159, 1133, 1088, 814, 761 cm⁻¹; δH (300 MHz; CDCl₃) 7.88 (2H, d, J 8.1, Ar-H), 7.37 (2H, d, J 6.5, Ar-H), 7.27 (2H, d, J 9.0, Ar-H), 7.16 (2H, d, J 7.8, Ar-H), 4.98 (1H, t, J 8.7, NCH), 4.13 (1H, br m, NCHH), 3.31 (1H, br m, NCHH), 2.53-2.44 (1H, m, CHHCHN), 2.42 (3H, s, CH₃), 2.37 (3H, s, CH₃), 2.35-2.26 (1H, m, CHHCHN), 1.27 (9H, s, (CH₃)₃); δC (101 MHz; CDCl₃) 144.7 (Ar-C), 138.4 (Ar-C, seen on HMBC), 136.9 (Ar-C), 134.0 (Ar-C), 129.7 (Ar-CH), 129.5 (Ar-CH), 12 CH), 129.1 (Ar-CH), 126.9 (Ar-CH), 82.0 (C), 65.6 (NCH), 49.4 (NCH₂), 36.2 (CH₂CHN), 28.0 (Boc-CH₃), 21.8 (CH₃), 21.3 (CH₃), Boc-C=O not observed; HRMS (ESI⁺) calculated for C₂₂H₂₈N₂NaO₄S [M+Na]⁺ 439.1662; found 439.1660.

Ts Boc tert-Butyl (*S*)-5-(*p*-tolyl)-2-tosylpyrazolidine-1-carboxylate ((*S*)-8n). Following general method 4, (*R*)-6n (306 mg, 0.70 mmol, 1.0 equiv), triphenylphosphine (462 mg, 1.76 mmol, 2.5 equiv) and tetrahydrofuran (70 mL, 0.01 M) yielded (*S*)-8n after purification by column chromatography (20-33% EtOAc/petroleum ether) as a colourless gum (236 mg, 0.57 mmol, 81%). [α]²²_D +26.0 (*c* 0.49, CHCl₃). Enantiomeric excess (95% *ee*) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 5/95; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 12.2 min; t_R 16.3 min.

Ts Boc tert-Butyl (*R*)-5-(2,3-dihydro-1*H*-inden-5-yl)-2-tosylpyrazolidine-1-carboxylate (8o). Following general method 4, 6o (115 mg, 0.25 mmol, 1.0 equiv), triphenylphosphine (164 mg, 0.63 mmol, 2.5 equiv), diethyl azodicarboxylate (DEAD) (98 μ L, 0.63 mmol, 2.5 equiv) and tetrahydrofuran (25 mL, 0.01 M) yielded 8o after purification by column chromatography (10-20% EtOAc/petroleum ether) as a colourless gum (98 mg, 0.22 mmol, 89%). $R_f = 0.20$ (20% EtOAc in petroleum ether); $[\alpha]^{22}_D$

+25.1 (c 0.22, CHCl₃). Enantiomeric excess (94% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 7.9 min; t_R 11.1 min; IR (neat) 2930, 1707, 1366, 1332, 1160, 1135, 1088, 815, 750 cm⁻¹; δH (600 MHz; CDCl₃) 7.87 (2H, d, J 8.1, Ar-H), 7.33-7.20 (4H, m, Ar-H), 7.17 (1H, d, J 7.6, Ar-H), 4.96 (1H, t, J 8.6, NCH), 4.11 (1H, br m, NCHH), 3.27 (1H, br m, NCHH), 2.90 (4H, t, J 7.8, CH₂), 2.47-2.42 (m, 1H, CHHCHN), 2.41 (3H, s, CH₃), 2.38-2.29 (1H, m, CH*H*CHN), 2.07 (2H, p, *J* 7.8, 2H, CH₂CH₂CH₂), 1.27 (9H, s, (CH₃)₃); δC (151 MHz; CDCl₃) 144.7 (Ar-C), 144.3 (Ar-C), 143.3 (Ar-C), 138.4 (Ar-C, seen on HMBC), 134.0 (Ar-C), 129.7 (Ar-CH), 129.5 (Ar-CH), 124.9 (Ar-CH, seen on HMBC), 124.3 (Ar-CH), 123.0 (Ar-CH, seen on HMBC), 81.9 (C), 65.9 (NCH), 49.5 (NCH₂), 36.4 (CH₂CHN), 33.0 (CH₂), 32.7 (CH₂), 28.0 (Boc-CH₃), 25.7 (CH₂CH₂CH₂), 21.7 (CH₃), Boc-C=O not observed; HRMS (ESI⁺) calculated for C₂₄H₃₀N₂NaO₄S [M+Na]⁺ 465.1818; found 465.1815.

(S)-5-(3,5-difluorophenyl)-2-tosylpyrazolidine-1-carboxylate tert-Butyl (8p). Following general procedure 5, alcohol 6p (239 mg, 0.50 mmol, 1.0 equiv). triphenylphosphine (330)mg, 1.26 mmol, 2.5 equiv), diethylazodicarboxylate (198 µL, 1.26 mmol, 2.5 equiv) and tetrahydrofuran (50 mL, 0.01 M) yielded **8p** as a white solid (193 mg, 0.44 mmol, 88%). $R_f = 0.08$ (15%) EtOAc in petroleum ether); [α]_D²⁴ –16.4 (*c* 0.11, CHCl₃); Enantiomeric excess (93% ee) was determined by HPLC analysis (15 °C). [Chiralcel OD column 2-propanol/hexane = 1/99; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 34.7 min; t_R 43.2 min. M.p. 103-104 °C; IR (film) 2974, 1721, 1680, 1155, 1113 cm⁻¹; δH (500 MHz; CDCl₃) 7.85 (2H, d, J 8.2, Ar-H), 7.28 (2H, d, J 8.1, Ar-H), 6.98 (2H, d, J 6.0, Ar-H), 6.70 (1H, tt, J 8.8, 2.2, Ar-H), 6.33 (1H, s, NH), 4.98 (1H, d, J 8.9, CHAr), 4.24-4.12 (1H, br m, C*H*HN), 3.33-3.21 (1H, br m, CH*H*N), 2.54-2.46 (1H, m, CHArC*H*H), 2.42 (3H, s, C*H*₃), 2.36-2.24 (1H, br m, CHArCH*H*), 1.27 (9H, s, $C(CH_3)_3$); δC (125 MHz; $CDCl_3$) 162.9 (dd, J 246.3, 12.5, Ar-CF), 145.5 (Ar-C), 145.0 (Ar-C), 133.5 (Ar-C), 129.6 (Ar-CH), 129.5 (Ar-CH), 109.6 (d, J 25.0, Ar-CH), 102.6 (t, J 25.0, Ar-CH), 82.5 (C), 64.8 (CH), 49.2 (CH₂), 35.7 (CH₂), 27.8 (CH₃), 21.6 (CH₃), C=O not seen; δF (376 MHz; CDCl₃) -109.7 (Ar-CF); HRMS (ESI⁺) calculated for C₂₁H₂₄N₂NaO₄SF₂ [M+Na]+ 461.1317; found 461.1322.

Boc tert-Butyl (S)-2-tosyl-5-(1-tosylindolin-5-yl)pyrazolidine-1carboxylate ((S)-8q). Following general method 4, (R)-6q (308 mg, 0.50 mmol, 1.0 equiv), triphenylphosphine (328 mg, 1.25 mmol, 2.5 equiv), diethyl azodicarboxylate (DEAD) (197 µL, 1.25 mmol, 2.5 equiv) and tetrahydrofuran (50 mL, 0.01 M) yielded (S)-8q after purification by column chromatography (33-50% EtOAc/petroleum ether) as a colourless gum (244 mg, 0.41 mmol, 82%). Alternatively replacing DEAD with diisopropyl azodicarboxylate (DIAD) in general method 4, (S)-8q was obtained as a white foam (274 mg, 0.46 mmol, 92%). M.p. 148-151 °C (decomposition); $R_f =$ 0.29 (50% EtOAc in petroleum ether); $[\alpha]^{22}_D$ –34.3 (c 0.20, CHCl₃). Enantiomeric excess for reaction with DEAD (85% ee) and reaction with DIAD (85% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 54.3 min; t_R 59.1 min; IR (neat) 2928, 1711, 1488, 1334, 1248, 1161, 1090, 1055, 976, 815 cm⁻¹; δH (400 MHz; CDCl₃) 7.83 (2H, d, J 8.2, Ar-H), 7.69 (2H, d, J 8.2, Ar-H), 7.56 (1H, d, J 8.9, Ar-H), 7.26-7.19 (6H, m, Ar-H), 4.91 (1H, t, J 8.7, NCH), 4.07 (1H, br m, NCHHCH2CH), 3.98-3.85 (2H, m, NCH2CH2C), 3.24 (1H, br m, NCHHCH₂CH), 2.91 (2H, t, J 8.4, NCH₂CH₂C), 2.47-2.41 (NCH₂CHHCH), 2.41 (3H, s, CH₃), 2.37 (3H, s, CH₃), 2.33-2.26 (NCH₂CH*H*CH), 1.26 (9H, s, (CH₃)₃); δC (151 MHz; CDCl₃) 144.9 (Ar-C), 144.2 (Ar-C), 141.3 (Ar-C), 136.8 (Ar-C, seen on HMBC), 134.1 (Ar-C), 133.9 (Ar-C), 132.0 (Ar-C), 129.8 (Ar-CH), 129.7 (Ar-CH), 129.5 (Ar-CH), 127.5 (Ar-CH), 123.6 (Ar-CH) CH, seen on HSQC), 114.5 (Ar-CH), 82.0 (C), 65.3 (NCH, seen on HSQC), 50.3 (NCH₂CH₂C), 49.3 (NCH₂CH₂CH, seen on HSQC), 36.2 (NCH₂CH₂CH), 28.1 (NCH₂CH₂C), 28.0 (Boc-CH₃), 21.8 (CH₃), 21.7 (CH₃), one Ar-CH and Boc-C=O not observed; HRMS (ESI⁺) calculated for $C_{30}H_{35}N_3NaO_6S_2$ [M+Na]+ 620.1859; found 620.1864.

Ph N-Cbz Following general method 4, **6r** (46 mg, 0.10 mmol, 1.0 equiv), triphenylphosphine (39 mg, 0.15 mmol, 1.5 equiv), diethylazodicarboxylate (23 μL, 0.15 mmol, 1.5 equiv) and tetrahydrofuran (10 mL, 0.01 M) yielded **8r** as a colourless oil (29 mg, 0.06 mmol, 63%). $R_f = 0.29$ (25% EtOAc in petroleum ether); $[α]^{32}_D + 43.8$ (c 0.04, CHCl₃). Enantiomeric excess (94% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 1.5/98.5; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 34.0 min; t_R 36.3 min. IR (film) 2953, 2925, 1706, 1353, 1260 cm⁻¹; δH (500 MHz; CDCl₃) 7.79-7.66 (2H, m, Ar-H), 7.60-7.31 (6H, m, Ar-H) 7.22-7.06 (6H, m, Ar-H), 5.21-5.08 (1H, m, CHPh), 4.85 (1H, d, J 11.8, CO₂CHH), 4.70 (1H, d, J 11.9, CO₂CHH), 4.28-4.02 (1H, m, NCHH), 3.71-3.44 (1H, m, NCHH), 2.43-2.31 (4H, m, CH₃ and CHPhCHH), 2.17-2.10 (1H, m, CHPhCHH), 1.97 (1H, br s, CH₂CHHCH₂), 1.78-1.71 (1H, m, CH₂CHHCH₂); δC (125 MHz; CDCl₃) 155.9 (C=O), 144.4 (Ar-C), 138.6 (Ar-C) 135.5 (Ar-C), 134.9 (Ar-C), 132.2 (Ar-CH), 132.0 (Ar-CH), 129.4 (Ar-CH), 128.8 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.2 (Ar-CH), 127.4 (Ar-CH), 68.2 (CH₂), 57.4 (CH), 43.6 (CH₂), 29.7 (CH₂),

21.7 (CH₃), 19.1 (CH₂); HRMS (ESI⁺) calculated for C₂₅H₂₆N₂O₄S [M+Na]⁺ 473.1505; found

473.1503.

Benzyl (R)-3-phenyl-2-tosyltetrahydropyridazine-1(2H)-carboxylate (8r).

Benzyl (R)-3-phenyl-2-tosyl-1,2-diazepane-1-carboxylate (8s). general method 4, 6s (27 mg, 56 µmol, 1.0 equiv), triphenylphosphine (22 mg, 84 μmol, 1.5 equiv), diethylazodicarboxylate (13 μL, 84 μmol, 1.5 equiv) and tetrahydrofuran (5.6 mL, 0.01 M) yielded **8s** as a colourless oil (17 mg, 38 μ mol, 67%). R_f = 0.31 (25% EtOAc in petroleum ether); [a]³²_D +22.3 (c 0.09, CHCl₃). Enantiomeric excess (90% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2propanol/hexane = 2/98; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 14.8 min; t_R 16.8 min. IR (film) 2925, 2856, 1705, 1401, 1126 cm⁻¹; δH (500 MHz; CDCl₃) 7.34-7.23 (5H, m, Ar-CH), 7.15-7.00 (6H, m, Ar-H) 6.90-6.84 (3H, m, Ar-H), 5.11-5.00 (1H, m, CHPh), 4.85 (1H, d, J11.8, CO₂CHHPh), 4.70 (1H, d, J11.9, CO₂CHHPh), 4.28-4.02 (1H, m, NCHH), 3.71-3.44 (1H, m, NCHH), 2.43-2.31 (4H, m, CH₃ and CHPhCHH) 2.17-2.10 (1H, m, CHPhCHH), 1.99-1.72 (4H, br s, $CH_2(CH_2)_2CH_2$); δC (125 MHz; $CDCl_3$) 156.2 (minor rotamer) and 156.1 (C=O), 143.5 (Ar-C) and 143.4 (minor rotamer), 142.6 (Ar-C) and 142.3 (minor rotamer), 136.3 (minor rotamer) and 136.2 (Ar-C), 136.1 (minor rotamer) and 135.0 (Ar-C), 129.1 (Ar-CH), 128.9 (Ar-CH), 128.7 (Ar-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.4 (Ar-CH), 128.3 (Ar-CH), 128.3 (Ar-CH), 128.2 (Ar-CH), 128.0 (Ar-CH), 127.9 (Ar-CH), 127.8 (Ar-CH), 127.5 (Ar-CH), 127.2 (Ar-CH), 127.0 (Ar-CH), 126.9 (Ar-CH), 68.5 (minor rotamer) and 67.0 (CH₂), 68.4 (CH), 54.1 (minor rotamer) and 52.9 (CH₂), 36.2 (minor rotamer) and 36.1 (CH₂), 28.3 (CH₂) and 28.2 (minor rotamer), 27.2 (minor rotamer) and 26.3 (CH₂), 21.5 (CH₃); HRMS (ESI⁺) calculated for $C_{26}H_{28}N_2O_4S$ [M+Na]⁺ 487.1662; found 487.1656.

 $_{N}^{Boc}$ tert-Butyl (*R*)-6-phenyl-2-tosyltetrahydropyridazine-1(2*H*)-carboxylate (8t).

Following general method 4 **6t** (3.72 g, 8.56 mmol, 1.0 equiv), triphenylphosphine (5.61 g, 21.4 mmol, 2.5 equiv), diethyl azodicarboxylate (3.37 mL, 21.4 mmol, 2.5 equiv), tetrahydrofuran (860 mL, 0.01 M) yielded **8t** as a colourless oil, which crystallised upon standing to a white solid (2.16 g, 5.19 mmol, 61%). M.p. 99-102 °C; $R_f = 0.24$ (20% EtOAc in petroleum ether); $[\alpha]^{28}_D$ –26.3 (c 0.31, CHCl₃). Enantiomeric excess (91% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2-propanol/hexane = 2/98; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 13.7 min; t_R 15.3 min; IR (neat) 2980, 1707, 1357, 1157, 747, 659 cm⁻¹; δH (400 MHz; CDCl₃) 7.45 (2H d, J 7.6, Ar-H), 7.39-7.28 (5H, m, Ar-H), 7.05 (2H, d, J 8.0, Ar-H), 5.21 (1H, t, J 5.9, NCH), 3.66 (1H, dt, J 13.1, 6.7, NCHH), 3.41 (1H, dt, J 12.9, 6.4, NCHH), 2.34 (3H, s, CH₃), 2.01-1.95 (2H, m, CH2CHN), 1.93-1.85 (1H, m, CHHCH₂N), 1.55-1.48 (1H, m, CHHCH₂N), 1.47 (9H, s, (CH₃)₃); δC (125 MHz; CDCl₃) 156.9 (Boc-C=O), 143.2 (Ar-C), 140.6 (Ar-C), 136.7 (Ar-C), 129.3 (Ar-CH), 128.3 (Ar-CH), 128.1 (Ar-CH), 127.5 (Ar-CH), 127.2 (Ar-CH), 82.5 (C), 58.9 (NCH), 44.9 (NCH₂), 28.2 (Boc-CH₃), 24.9 (CH₂CHN), 21.6 (CH₃), 19.5 (CH₂CH₂N); HRMS (ESI+) calculated for C₂₂H₂₈N₂NaO₄S [M+Na]+ 439.1662; found 439.1657.

tert-Butyl (R)-7-phenyl-2-tosyl-1,2-diazepane-1-carboxylate (8u). Following general method 4, 6u (2.44 g, 5.67 mmol, 1.0 equiv), triphenylphosphine (3.72 g, 14.2 mmol, 2.5 equiv), diethyl azodicarboxylate (2.24 mL, 14.2 mmol, 2.5 equiv) and tetrahydrofuran (570 mL, 0.01 M) yielded 8u as a colourless, highly viscous oil (969 mg, 2.25 mmol, 40%). $R_f = 0.29$ (20% EtOAc in petroleum ether); IR (neat) 2932, 1714, 1320, 1157, 1089, 957, 753, 698, 665 cm⁻¹; $[\alpha]^{28}_D$ +1.4 (c 0.22, CHCl₃). Enantiomeric excess (93% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 2/98; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 11.5 min; t_R 13.5 min; δH (400 MHz; CDCl₃) 7.68-7.56 (4H, m, Ar-H), 7.36 (2H, t, J7.5, Ar-H), 7.31-7.28 (1H, m, Ar-H), 7.21 (2H, d, J 8.0, Ar-H), 4.92 (1H, br s, NCH), 4.17 (1H, dt, J 14.0, 4.1, NCHH), 3.13 (1H, ddd, J 14.2, 10.7, 3.6, 1H, NCHH), 2.40 (3H, s, CH₃), 2.24-2.15 (1H, m, CHHCHN), 2.09-2.03 (2H, m, CHHCHN, CHHCH2CH2N), 1.81-1.67 (2H, m, CH2CH2N), 1.55-1.45 (1H, m, $CHHCH_2CH_2N$), 1.26 (9H, s, (CH₃)₃); δC (125 MHz; CDCl₃) 155.7 (Boc-C=O), 143.3 (Ar-C), 142.6 (Ar-C), 137.2 (Ar-C), 129.3 (Ar-CH), 128.2 (Ar-CH), 128.1 (Ar-CH), 127.6 (Ar-CH), 127.1 (Ar-CH), 82.2 (C), 66.4 (NCH), 51.7 (NCH₂), 31.8 (CH₂CHN), 28.5 (CH₂CH₂N), 28.0 (Boc-CH₃), 27.0 (CH₂CH₂CH₂N), 21.6 (CH₃); HRMS (ESI⁺) calculated for C₂₃H₃₀N₂NaO₄S [M+Na]⁺ 453.1818; found 453.1816.

tert-Butyl (R)-6-(4-fluorophenyl)-2-tosyltetrahydropyridazine-1(2H)carboxylate (8v). Following general method 4, 6v (805 mg, 1.78 mmol, 1.0 equiv), triphenylphosphine (1.17 g, 4.45 mmol, 2.5 equiv), diethyl azodicarboxylate (701 µL, 4.45 mmol, 2.5 equiv) and tetrahydrofuran (178 mL, 0.01 M) yielded 8v as a colourless oil (466 mg, 1.07 mmol, 60%). $R_f = 0.21$ (20% EtOAc in petroleum ether); [α]²⁸_D –9.8 (c 0.52, CHCl₃). Enantiomeric excess (82% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 0.8/99.2; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 23.4 min; t_R 25.8 min; IR (neat) 2977, 1707, 1510, 1351, 1222, 1154, 835, 652 cm⁻¹; δH (500 MHz; CDCl₃) 7.45 (2H, d, J 7.8, Ar-H), 7.42 (2H, dd, J 8.3, 5.7, Ar-H), 7.10 (2H, d, J 8.0, Ar-H), 7.00 (2H, t, J 8.7, Ar-H), 5.15 (1H, t, J 6.1, NCH), 3.71 (1H, dt, J 13.0, 6.6, NCHH), 3.40 (1H, dt, J 12.6, 6.2, NCHH), 2.36 (3H, s, CH₃), 1.99-1.92 (3H, m, CH₂CHN, CHHCH₂N), 1.55-1.49 (1H, m, CHHCH₂N), 1.45 (9H, s, (CH₃)₃); δC (125 MHz; CDCl₃) 162.2 (d, J 245.6, CF), 156.8 (Boc-C=O), 143.5 (Ar-C), 136.7 (Ar-C), 136.5 (d, J2.8, Ar-C), 129.3 (Ar-CH), 129.2 (d, J8.0, Ar-CH), 128.1 (Ar-CH), 115.0 (d, J21.4, Ar-CH), 82.6 (C), 58.5 (NCH), 44.9 (NCH₂), 28.2 (Boc-CH₃), 25.1 (CH₂CHN), 21.6 (CH₃), 19.4 (CH_2CH_2N); δF (282 MHz; $CDCl_3$) –115.9 (CF); HRMS (ESI+) calculated for C₂₂H₂₇FN₂NaO₄S [M+Na]⁺ 457.1568; found 457.1564.

Large Scale Synthesis

tert-Butyl 2-(3-oxo-3-phenylpropyl)-2-tosylhydrazine-1-carboxylate (5j).

tert-Butyl carbazate (10.0 g, 75.7 mmol, 1.0 equiv), para-toluenesulphonyl chloride (15.1 g, 79.4 mmol, 1.05 equiv) and tetrahydrofuran (250 mL) were cooled to 0 °C. Pyridine (30 mL, 379 mmol, 5.0 equiv) was added dropwise over 30 min, then the reaction was allowed to warm to rt and stirred for 2 h. The reaction was quenched with 2 M HCl (50 mL) mixed with ice cold water (50 mL), which was added portionwise over 10 min. This was exracted with dichloromethane (3 x 50 mL) and the combined organic extracts were dried over magnesium sulphate and concentrated *in vacuo* to give a pale yellow solid. This crude material was dissolved in acetonitrile (400 mL), then 3-chloropropiophenone (12.8 g, 75.7 mmol, 1.0 equiv) and potassium carbonate (11.0 g, 79.4 mmol, 1.05 equiv) were added. This was stirred for 18 h and then quenched with water (100 mL) and extracted with dichloromethane (3 x 100 mL). The combined organic extracts were dried over magnesium sulphate and concentrated *in vacuo* to give a pale yellow solid. This was purified by recrystallisation from an 8:1 mixture of ethyl actate: dichloromethane (900 mL) to give 5j as a white solid (20.7 g, 49.5 mmol, 65%). [Data on page S8].

tert-Butyl (S)-2-(3-hydroxy-3-phenylpropyl)-2-tosylhydrazine-1-carboxylate (6j) 5j (5.00 g, 12.0 mmol, 1.0 equiv), catalyst 7c (37 mg, 0.06 mmol, 0.5 mol%) and formic acid: triethylamine (5:2) azeotrope (12.0 mL, 1M) were combined and stirred in dichloromethane (47.8 mL, 0.25 M) for 72 h. The solution was then concentrated *in vacuo* to give a red oil. This was purified by column chromatography (33% ethyl acetate in petroleum ether) to give 6j as a white solid (5.00 g, 11.9 mmol, 99%). [Data on page \$20].

tert-Butyl (*R*)-5-phenyl-2-tosylpyrazolidine-1-carboxylate (8j) 6j (6.00 g, 14.3 mmol, 1.0 equiv), triphenylphosphine (6.74 g, 25.7 mmol, 1.8 equiv), diethylazodicarboxylate (4.05 mL, 25.7 mmol, 1.8 equiv) and tetrahydrofuran (143 mL, 0.1 M) were combined and stirred at rt for 24 h. The solution was then concentrated *in vacuo* to give a yellow oil. This was purified by column chromatography (20% ethyl acetate in petroleum ether) to give 8j as a white solid (5.57 g, 13.8 mmol, 97%). [Data on page S32].

Nitrogen Functionalisation: Reductive Amination

N.B. Magnesium turnings were activated by washing them with 1.0 M hydrochloric acid solution (2×20 mL), water (20 mL) and methanol (20 mL).

tert-Butyl (R)-2-isobutyl-5-phenylpyrazolidine-1-carboxylate (9b). Cyclic hydrazine 8i (84 mg, 0.20 mmol, 1.0 equiv), activated magnesium turnings (24 mg, 1.0 mmol, 5.0 equiv) and methanol (2.0 mL, 0.1 M) were combined and stirred (800 rpm) at room temperature for 2 hours. The solution was quenched with saturated ammonium chloride solution (5 mL), then extracted with dichloromethane (3 x 5 mL). The combined organic extracts were dried over MgSO₄ and concentrated in vacuo to give a clear oil. To this was added sodium triacetoxyborohydride (212 mg, 1.00 mmol, 5.0 equiv), isobutyraldehyde (91 µL, 1.0 mmol, 5.0 equiv) and tetrahydrofuran (2 mL, 0.1 M). The reaction mixture was stirred at room temperature for 18 hours. The reaction mixture was quenched with 1 M NaOH (5 mL), extracted with dichloromethane (3 x 5 mL). The combined organic extracts were dried over MgSO₄ and concentrated in vacuo. The crude product was purified by column chromatography (5-10% ethyl acetate in petroleum ether) to give 9b as a colourless oil (39 mg, 0.13 mmol, 63%). $R_f = 0.38$ (15% ethyl acetate in heptane). $[\alpha]^{32}$ _D +35.8 (*c* 0.30, dichloromethane). IR (film) 2955, 2878, 1690, 1366, 1173 cm⁻¹; δ*H* (400 MHz; CDCl₃) 7.39-7.15 (5H, m, Ar-H), 4.97 (1H, t, J 8.4, CHPh), 3.15 (1H, td, J 11.3, 5.9, NC*H*HCH₂), 3.03 (1H, ddd, *J* 11.6, 6.6, 2.3, NCH*H*CH₂), 2.71 (1H, dd, *J* 11.5, 7.1, NC*H*HCH(CH₃)₂), 2.56-2.43 (2H, m, NCH*H*CH(CH₃)₂ and C*H*HCHPh), 2.23-2.10 (1H, m, CHHCHPh), 1.80 (1H, nonet, J 7.0, CH(CH₃)₂), 1.36 (9H, s, C(CH₃)₃), 1.05 (3H, d, J 6.6, CHC H_3), 1.02 (3H, d, J 6.6, CHC H_3); δC (100 MHz; CDCI₃) 143.8 (Ar-C), 128.3 (Ar-CH), 126.6 (Ar-CH), 125.7 (Ar-CH), 80.1 (C), 66.8 (CH₂), 63.1 (CH), 53.3 (CH₂), 34.9 (CH₂), 28.3 (CH₃), 27.5 (CH), 21.3 (CH₃), 20.9 (CH₃), C=O not seen; HRMS (ESI+) calculated for $C_{18}H_{28}N_2O_2$ [M+Na]⁺ 327.2048; found 327.2052.

tert-Butyl (*R*)-2-cinnamyl-6-phenyltetrahydropyridazine-1(2*H*)-carboxylate (9k). Cyclic hydrazine 8o (134 mg, 0.31 mmol, 1.0 equiv), activated magnesium turnings (38 mg, 1.55 mmol, 5.0 equiv) and methanol (3.1 mL, 0.1 M) were combined and stirred (800 rpm) at room temperature for 2 h. The solution was quenched with saturated ammonium chloride solution (5 mL), then extracted with dichloromethane (3 x 5 mL). The combined organic extracts were dried over MgSO₄ and concentrated in vacuo to give a clear oil. To this was added sodium triacetoxyborohydride (323 mg, 1.52 mmol, 5.0 equiv), *E*-cinnamaldehyde (193 μL, 1.52 mmol, 5.0 equiv) and tetrahydrofuran (3.1 mL, 0.1 M). The reaction mixture was stirred at room temperature for 18 hours. The reaction mixture was quenched with 1 M NaOH (5 mL), extracted with dichloromethane (3 x 5 mL). The combined organic extracts were dried over MgSO₄ and

concentrated *in vacuo*. The crude product was purified by column chromatography (5-10% ethyl acetate in petroleum ether) to give **9k** as a colourless oil (105 mg, 0.28 mmol, 91%). $R_f = 0.16$ (10% ethyl acetate in heptane); $[\alpha]^{32}_D + 24.0$ (c 0.35, CHCl₃). IR (film) 3007, 2866, 1681, 1390, 1069 cm⁻¹; δH (500 MHz; CDCl₃) 7.48-7.43 (2H, m, Ar-H), 7.35 (2H, t, J 7.5, Ar-H), 7.32-7.27 (5H, m, Ar-H), 7.25-7.20 (1H, m, Ar-H), 6.22 (1H, d, J 15.9, C=CH), 6.09 (1H, dt, J 15.8, 6.3, C=CH), 5.37 (1H, s, CHPh), 3.58 (2H, d, J 7.0, NCH2CH=C), 3.22-3.07 (1H, m, NCHHCH₂), 2.99-2.92 (1H, m, NCHHCH₂), 2.42-2.21 (1H, m, CHHCHPh), 2.09-1.95 (2H, m, CHHCHPh and NCH₂CHH), 1.53 (10H, s, NCH₂CHH and C(CH₃)₃); δC (125 MHz; CDCl₃) 142.0 (Ar-C), 137.2 (Ar-C), 131.7 (C=CH) 128.5 (Ar-CH), 128.2 (Ar-CH), 127.4 (C=CH), 127.2 (Ar-CH), 127.1 (Ar-CH), 126.6 (Ar-CH), 126.3 (Ar-CH), 80.5 (C), 57.9 (CH₂), 55.2 (CH, seen on HSQC), 49.0 (CH₂), 29.7 (CH₂), 28.5 (CH₃), 25.6 (CH₂), 17.9 (CH₃), C=O not seen; HRMS (ESI⁺) calculated for C₂₄H₃₀N₂O₂ [M+Na]⁺ 401.2199; found 401.2197.

HO Ph

(R)-2-((6-Phenyl-2-(pyridin-2-yl)tetrahydropyridazin-1(2H)-

yl)methyl)phenol (10j). Cyclic hydrazine 9j (53 mg, 155 μmol, 1.0 equiv) in HCl/1,4-dioxane (4M, 2.5 mL) was stirred for 2 h at rt. The solvent was

removed in vacuo and dichloromethane (15 mL) and saturated NaHCO3 solution (15 mL) were added. The layers were separated and the aqueous one was extracted with dichloromethane (2 x 15 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was dissolved anhydrous THF (2.0 mL) and salicylaldehyde (83 µL, 0.78 mmol, 5.0 equiv) and sodium triacetoxyborohydride (164 mg, 0.78 mmol, 5.0 equiv) were added. The reaction mixture was stirred for 24 h at rt, quenched with aqueous NaOH (1M, 4.0 mL) and extracted with dichloromethane (3 x 10 mL). The combined organic extracts were washed with brine (25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The redidue was purified by column chromatography (20-33% EtOAc/petroleum ether) to give 10j as a colourless, viscous oil (33 mg, 96 µmol, 62%). $R_f = 0.17$ (33% EtOAc in petroleum ether); $[\alpha]^{29}_D + 61.4$ (c 0.02, CHCl₃); IR (neat) 2926, 1591, 1466, 1437, 1348, 1258, 1159, 957, 770, 753, 693 cm⁻¹ δH (600 MHz; CDCI₃; 233 K) Two confomers in a ratio of 66:34 are observed at 233 K: 8.36 (1H, d, J 4.4, Ar-H), 8.16 (2H, d, J 4.1, Ar-H), 7.54-7.50 (2H, m, Ar-H), 7.50-7.47 (6H, m, Ar-H) H), 7.42 (4H, t, J7.5, Ar-H), 7.37-7.33 (4H, m, Ar-H), 7.23 (2H, t, J7.6, Ar-H), 7.19 (1H, t, J 7.7, Ar-H), 7.16-7.10 (2H, m, Ar-H), 6.92 (1H, d, J 8.0, Ar-H), 6.75 (1H, t, J 7.1, Ar-H), 6.70 (1H, dd, J6.6, 5.5, Ar-H), 6.63 (2H, dd, J6.3, 5.5, Ar-H), 6.57 (1H, d, J8.7, Ar-H), 4.73 (2H, d, J10.8, NCHHCH₂), 4.34 (1H, d, J12.4, NCHH), 4.16 (1H, br d, J2.4, NCH), 4.12 (1H, d, J 12.3, NCHH), 3.89 (2H d, J 10.4, NCH), 3.65 (3H, br d, J 10.6, NCHHCH₂, OH), 3.49 (1H, m, NCHHCH₂), 2.96 (2H, t, J 11.2, NCHHCH₂), 2.45 (1H, ddd, J 17.6, 9.2, 4.3, CH₂), 2.24-2.08 (3H, m, CH₂, CH₂), 1.98-1.94 (2H, m, CH₂), 1.94-1.68 (6H, m, CH₂). N.B. Compound decomposes in CDCl₃ within several hours. δC (150 MHz; CDCl₃; 233 K) Chemical shifts for the major confomer at 233 K: 159.7 (Ar-C), 158.2 (Ar-C), 147.2 (Ar-CH), 141.2 (Ar-C), 137.8 (Ar-CH), 128.6 (Ar-CH), 128.2 (Ar-CH), 127.7 (Ar-CH), 127.0 (Ar-CH), 126.8 (Ar-CH), 121.8 (Ar-C), 118.3 (Ar-CH), 116.9 (Ar-CH), 113.2 (Ar-CH), 108.5 (Ar-CH), 59.0 (NCH₂), 50.8 (NCH), 45.1 (NCH₂CH₂), 31.1 (NCHCH₂), 23.6 (NCH₂CH₂); HRMS (ESI⁺) calculated for $C_{22}H_{24}N_3O$ [M+H]⁺ 346.1914; found 346.1917.

tert-Butyl (R)-2-cinnamyl-7-phenyl-1,2-diazepane-1-carboxylate (90). To a solution of cyclic hydrazine 8p (160 mg, 0.37 mmol, 1.0 equiv) in methanol (10 mL) was added activated magnesium turnings (5.0 equiv), and the mixture was stirred vigorously for 4 h at rt. The reaction mixture was quenched with saturated ammonium chloride solution (20 mL) and extracted with dichloromethane (4 x 15 mL). The combined organic extracts were washed with brine (30 mL), dried over magnesium sulphate, filtered, and concentrated in vacuo. The residue was dissolved anhydrous THF (6.0 mL) and cinnmaldehyde (233 µL, 1.85 mmol, 5.0 equiv) and sodium triacetoxyborohydride (392 mg, 1.85 mmol, 5.0 equiv) were added. The reaction mixture was stirred for 20 h at rt, quenched with aqueous NaOH (1M, 4.0 mL) and extracted with dichloromethane (3 x 10 mL). The combined organic extracts were washed with brine (25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (10-20% EtOAc/petroleum ether) to give **90** as a colourless oil (131 mg, 0.33 mmol, 90%). $R_f = 0.62$ (20% EtOAc in petroleum ether); $[\alpha]^{27}_D$ –9.0 (*c* 0.20, CHCl₃); IR (neat) 2939, 2873, 1702, 1456, 1326, 985, 781, 706 cm⁻¹; δH (400 MHz; CDCl₃) Two conformers in a 50:50 ratio are observed: 7.46 (1H, d, J 7.5, Ar-H), 7.42 (1H, d, J 7.1, Ar-H), 7.30-7.20 (8H, m, Ar-H), 6.43 (1H, d, J 15.9, C=CH), 6.02-5.88 (1H, m, C=CH), 5.12 (0.5H, dd, J 9.5, 6.4, NCH), 4.85 (0.5H, dd, J 10.5, 5.3, NCH), 4.01 (0.5H, dd, J 14.1, 7.5, CHHCH), 3.76 (0.5H, dd, J 14.2, 7.5, CHHCH), 3.58 (0.5H, dd, J 14.0, 4.7, CHHCH), 3.46 (0.5H, dd, J 14.0, 4.3, CHHCH), 3.29-3.20 (0.5H, m, NCHH), 3.08-2.99 (0.5H, m, NCHH), 2.86-2.81 (1H, m, NCHH), 2.29-2.19 (1H, m, CHHCHN), 2.06-1.88 (2H, m, CHHCHN, CHHCH2CHN), 1.69-1.61 (2H, m, CH_2CH_2N), 1.57-1.52 (1H, m, CH_4CH_2CHN), 1.53 (4.5H, s, $(CH_3)_3$), 1.47 (4.5H, s, $(CH_3)_3$); δC (125 MHz; CDCl₃) Two confomers are observed: 156.8 (Boc-C=O), 154.7 (Boc-C=O), 143.31 (Ar-C), 143.27 (Ar-C), 137.5 (Ar-C), 137.3 (Ar-C), 131.6 (alk-CH), 131.4 (alk-CH), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.3 (Ar-CH), 128.1 (Ar-CH), 128.0 (Ar-CH), 127.7 (alk-CH), 127.5 (alk-CH), 127.4 (Ar-CH), 127.3 (Ar-CH), 127.1 (Ar-CH), 127.0 (Ar-CH), 126.5 (Ar-CH), 80.5 (C), 80.4 (C), 62.2 (NCH), 60.9 (CH₂CH), 60.5 (NCH), 59.7 (CH₂CH), 52.2 (NCH₂), 51.6 (NCH₂), 33.8 (CH₂CHN), 33.3 (CH₂CHN), 30.7 (CH₂CH₂N), 30.3 (CH₂CH₂N), 29.0 (Boc-CH₃), 28.8 (Boc-CH₃), 25.6 (CH₂CH₂CHN), 25.2 (CH₂CH₂CHN); HRMS (ESI⁺) calculated for C₂₅H₃₂N₂NaO₂ [M+Na]⁺ 415.2356; found 415.2359.

Buchwald-Hartwig Amination Screen 1 – 96 Well Screen

The reactions were performed in an aluminium heating block with 96 x 750 μ L vials, each with a teflon coated magnetic stirrer bar. These vials were arranged in 12 columns (labelled 1-12) and 8 rows (labelled A-H). The following powders were weighed into the vials using a Mettler Toledo QX96 powder dispenser inside a glovebox.

All vials in rows A, E: Sodium *tert*-butoxide (4.3 mg, 44 µmol, 2.0 equiv).

All vials in rows B, F: Caesium carbonate (14.4 mg, 44 µmol, 2.0 equiv).

All vials in rows C, G: Potassium carbonate (6.1 mg, 44 µmol, 2.0 equiv).

All vials in rows D, H: Potassium phosphate tribasic (9.4 mg, 44 µmol, 2.0 equiv).

All vials in column 1: [XantPhos Pd(allyl)]Cl (1.7 mg, 2.2 µmol, 0.1 equiv).

All vials in column 2: [(R)-BINAP Pd(allyl)]Cl (1.9 mg, 2.2 µmol, 0.1 equiv).

All vials in column 3: Pd(dppf)Cl₂ · dichloromethane (1.8 mg, 2.2 μmol, 0.1 equiv).

All vials in column 4: [P(tBu)₃] Pd(crotyl) Cl (0.9 mg, 2.2 µmol, 0.1 equiv).

All vials in column 5: JohnPhos (0.8 mg, 2.2 μ mol, 0.1 equiv) and palladium (II) acetate (0.5 mg, 2.2 μ mol, 1.0 equiv).

All vials in column 6: AdBrettPhos (1.7 mg, 2.7 μ mol, 0.12 equiv) and palladium (II) acetate (0.5 mg, 2.2 μ mol, 0.1 equiv).

All vials in column 7: [tBuBrettPhos Pd(allyl)]OTf (1.7 mg, 2.2 µmol, 0.1 equiv).

All vials in column 8: MorDalPhos (1.2 mg, 2.6 µmol, 0.12 equiv) and palladium (II) acetate (0.5 mg, 2.2 µmol, 0.1 equiv).

All vials in column 9: [BrettPhos Pd(crotyl)]OTf (1.9 mg, 2.2 µmol, 0.1 equiv).

All vials in column 10: [tBuXPhos Pd(allyl)]OTf (1.6 mg, 2.2 µmol, 0.1 equiv).

All vials in column 11: XPhos Pd(crotyl)Cl (1.5 mg, 2.2 µmol, 0.1 equiv).

All vials in column 12: RuPhos Pd(crotyl)Cl (1.5 mg, 2.2 µmol, 0.1 equiv).

The following stock solutions were then made:

Stock Solution 1: *tert*-butyl (*R*)-5-phenylpyrazolidine-1-carboxylate (**13**) (286 mg, 1.15 mmol) and 2-bromopyridine (333 mg, 2.10 mmol) in toluene (4.42 mL).

Stock Solution 2: *tert*-butyl (*R*)-5-phenylpyrazolidine-1-carboxylate (**13**) (286 mg, 1.15 mmol) and 2-bromopyridine (333 mg, 2.10 mmol) in dioxane (4.42 mL).

All vials in rows A-D were dosed with 85 μ L of Stock Solution 1 which contained *tert*-butyl (R)-5-phenylpyrazolidine-1-carboxylate (13) (5.5 mg, 22 μ mol, 1.0 equiv, obtained by deprotection of 8j using procedure in gerneal method 5) and 2-bromopyridine (6.4 mg, 41 μ mol, 1.8 equiv).

All vials in rows E-H were dosed with 85 μ L of Stock Solution 2 which contained *tert*-butyl (*R*)-5-phenylpyrazolidine-1-carboxylate (13) (5.5 mg, 2.2 μ mol, 1.0 equiv) and 2-bromopyridine (6.4 mg, 41 μ mol, 1.8 equiv).

The plate was sealed with a silicone and PFA mat and placed on an HEL polyblock. The plate was then heated at 90 °C for 16 h. The vials were then cooled to rt and DMSO (300 μ L) was added to each using a multichannel pipette. A 5 μ L aliquot was extracted from each then added to a 96-well analyical plate and diluted with DMSO (50 μ L). The plate was analyzed by reverse phase LCMS (XBridge C₁₈ 3.5- μ m 2.1 × 35 mm Column, 1.6 mL min⁻¹, 50 °C; gradient 5:95 to 99:1 (pH 9 H₂O + 10 mM NH₄HCO₂) / MeCN over 0.7 min + 0.3 min hold). The LCMS traces were processed using in-house software and the results visualized using Spotfire software to give **Figure S1**.

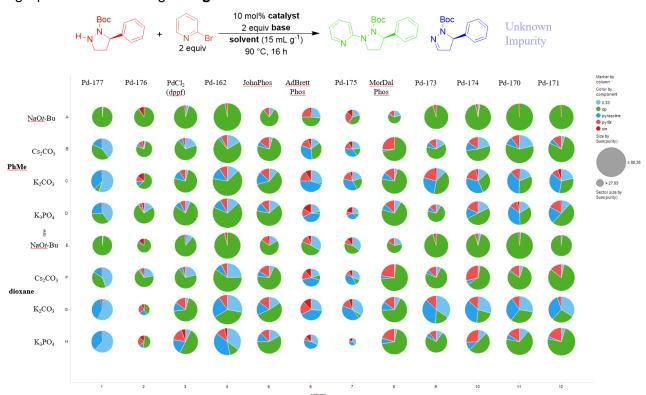


Figure \$1 High throughput screening of the Buchwald-Hartwig coupling using 13

From this reaction screen conditions used in vial A11 were chosen for subsequent Buchwald-Hartwig aminations (see general method 5).

General method 5: Buchwald-Hartwig Amination

N.B. Magnesium turnings were activated by washing them with 1 M hydrochloric acid solution $(2 \times 20 \text{ mL})$, water (20 mL) and methanol (20 mL).

tert-Butyl-(R)-5-phenyl-2-tosylpyrazolidine-1-carboxylate (8j)(1.0)equiv), activated magnesium turnings (5.0 equiv) and MeOH (0.1 M) were combined and stirred (800 rpm) at room temperature for 2 hours. The solution was quenched with saturated ammonium chloride solution (5 mL), then extracted with dichloromethane (3 x 5 mL). The combined organic extrcts were dried over MgSO₄ and concentrated in vacuo to give a clear oil. To this was added toluene (1.0 M) was added XPhos Pd(crotyl)Cl (0.1 equiv), sodium tert-butoxide (2.0 equiv) and aryl halide (2.0 equiv). The reaction mixture was stirred at 90 °C for 16 h. The mixture was cooled to rt then quenched with saturated ammonium chloride solution (5 mL) and extracted with dichloromethane (3 x 5 mL). The combined organic extracts were dried over magnesium sulphate and concentrated in vacuo. The crude product was purified by column chromatography (30% ethyl acetate in petroleum ether) to give the following compounds.

tert-Butyl (*R*)-5-phenyl-2-(pyridin-2-yl)pyrazolidine-1-carboxylate (9a).
Following general method 5, **8j** (72 mg, 0.18 mmol, 1.0 equiv), magnesium turnings (22 mg, 0.90 mmol, 5.0 equiv) and methanol (1.8 mL, 0.1 M), then XPhos Pd(crotyl)Cl (12 mg, 18 μmol, 0.1 equiv), sodium *tert*-butoxide (35 mg, 0.36 mmol, 2.0 equiv) and 2-bromopyridine (34 μL, 0.36 mmol, 2.0 equiv) in toluene (0.18 mL, 1.0 M) yielded **9a** as a white solid (50 mg, 0.16 mmol, 85%). M.p. 98-99 °C; R_f = 0.34 (30% ethyl acetate in petroleum ether); [α]³²_D –91.3 (*c* 0.04, CHCl₃); IR (film) 2989, 1698, 1588, 1388, 1161 cm⁻¹; δ*H* (500 MHz; CDCl₃) 8.25 (1H, d, *J* 4.8, Ar-H), 7.59 (1H, td, *J* 7.8, 1.8, Ar-H), 7.30-7.18 (5H, m, Ar-H), 6.95 (1H, d, *J* 8.4, Ar-H), 6.82 (1H, dd, *J* 6.7, 5.3, Ar-H), 5.19 (1H, t, *J* 8.1, C*H*Ph), 4.89 (1H, t, *J* 10.3, NC*H*H), 3.49-3.41 (1H, m, NCH*H*), 2.58-2.51 (1H, m, CHPhC*H*H), 2.09-1.98 (1H, m, CHPhCH*H*), 1.43 (9H, s, C(CH₃)₃); δ*C* (125 MHz; CDCl₃) 160.9 (Ar-C), 156.8 (C=O), 147.3 (Ar-CH), 142.1 (Ar-C), 137.5 (Ar-CH), 128.4 (Ar-CH), 127.2 (Ar-CH), 126.6 (Ar-CH), 115.8 (Ar-CH), 110.4 (Ar-CH), 81.5 (C), 65.5 (CH), 48.2 (CH₂), 36.2 (CH₂), 28.2 (CH₃); HRMS (ESI⁺) calculated for C₁₉H₂₄N₃O₂ [M+Na]⁺ 326.1863; found 326.1867.

tert-Butyl (R)-5-phenyl-2-(3-(trifluoromethyl)phenyl)pyrazolidine-1carboxylate (9c). Following general method 5, 8j (85 mg, 0.21 mmol, 1.0 equiv), magnesium turnings (26 mg, 1.05 mmol, 5.0 equiv) and methanol (2.1 mL, 0.1 M), then XPhos Pd(crotyl)Cl (7 mg, 10 µmol, 0.05 equiv), sodium tert-butoxide (40 mg, 0.42 mmol, 2.0 equiv) and 3-bromobenzotrifluoride (55 μL, 0.42 mmol, 2.0 equiv) in toluene (0.21 mL, 1.0 M) yielded **9c** as a clear oil (69 mg, 0.18 mmol, 85%). R_f = 0.28 (20% ethyl acetate in petroleum ether); $[\alpha]^{32}D-9.8$ (c 0.25, dichloromethane). IR (film) 2978, 2930, 1704, 1451, 1367, 1164 cm⁻¹; δH (500 MHz; CDCl₃7.37 (1H, t, J 8.0, Ar-CH), 7.30-7.21 (5H, m, Ar-H), 7.19 (1H, s, Ar-H), 7.15 (1H, d, J7.6, Ar-H), 7.11 (1H, dd, J8.3, 1.6, Ar-CH), 5.20 (1H, t, J7.5, CHPh), 3.85 (1H, ddd, J11.0, 6.5, 4.5, NCHH), 3.69 (1H, ddd, J11.0, 8.9, 6.3, NCHH), 2.54 (1H, qd, J6.3, 4.5, CHPhCHH), 2.13 (1H, dt, J15.7, 7.2, CHPhCHH), 1.39 (9H, s, C(CH₃)₃); δC (125 MHz; CDCl₃) 156.1 (C=O), 150.7 (Ar-C), 141.4 (Ar-C), 131.1 (q, J 32.5, Ar-C), 129.3 (Ar-CH), 128.5 (Ar-CH), 127.4 (Ar-CH), 126.7 (Ar-CH), 124.3 (q, J 271.3, CF₃), 118.2 (Ar-CH), 117.9 (g, J 3.8, Ar-CH), 111.9 (g, J 3.8, Ar-CH), 81.7 (C), 63.3 (CH), 52.3 (CH₂), 35.4 (CH₂), 28.1 (CH₃); δF (282 MHz; CDCl₃) -62.8 (CF₃); HRMS (ESI⁺) calculated for $F_3C_{21}H_{23}N_2O_2$ [M+Na]⁺ 415.1604; found 415.1597.

tert-Butvl (R)-5-phenyl-2-(p-tolyl)pyrazolidine-1-carboxylate (9e). Following general method 5, 8j (105 mg, 0.26 mmol, 1.0 equiv), magnesium turnings (32 mg, 1.30 mmol, 5.0 equiv) and methanol (2.6 mL, 0.1 M), then XPhos Pd(crotyl)Cl (18 mg, 26 µmol, 0.1 equiv), sodium tert-butoxide (50 mg, 0.52 mmol, 2.0 equiv) and 4-chlorotoluene (63 µL, 0.52 mmol, 2.0 equiv) in toluene (0.26 mL, 1.0 M) yielded **9e** as an orange oil (73 mg, 0.22 mmol, 82%). $R_f = 0.30$ (30% ethyl acetate in petroleum ether); $[\alpha]^{32}_D$ –27.5 (c 0.26, dichloromethane); IR (film) 2978, 2924, 1697, 1512, 1366, 1134 cm⁻¹; δH (400 MHz; CDCl₃) 7.30-7.23 (5H, m, Ar-H), 7.08 (2H, d, J 8.4, Ar-H), 6.91 (2H, d, J 8.5, Ar-H) 5.09 (1H, t, J 7.8, CHPh), 3.95-3.80 (1H, m, NCHH), 3.62-3.54 (1H, m, NCHH), 2.54-2.42 (1H, m, CHPhCHH), 2.29 (3H, s, Ar-CH₃), 2.09-1.99 (1H, m, CHPhCHH), 1.35 (9H, s, C(CH₃)₃); δC (100 MHz; CDCl₃) 148.3 (Ar-C) 142.2 (Ar-C), 130.3 (Ar-C), 129.4 (Ar-CH), 128.3 (Ar-CH), 127.1 (Ar-CH), 126.9 (Ar-CH), 115.8 (Ar-CH), 81.0 (C), 63.6 (CH), 53.0 (CH₂), 35.7 (CH₂), 28.2 (CH₃), 20.5 (CH₃), C=O not seen; HRMS (ESI⁺) calculated for $C_{21}H_{26}N_2O_2$ [M+Na]⁺ 361.1892; found 361.1896.

tert-Butyl (*R*)-2-([1,1'-biphenyl]-4-yl)-5-phenylpyrazolidine-1-carboxylate (9f). Following general method 5, 8j (101 mg, 0.25 mmol, 1.0 equiv), magnesium turnings (30 mg, 1.25 mmol, 5.0 equiv) and methanol (2.5 mL, 0.1 M), then XPhos Pd(crotyl)Cl (8 mg, 12 μmol, 0.05 equiv), sodium *tert*-butoxide (48 mg, 0.50 mmol, 2.0 equiv) and 4-bromobiphenyl (116 mg, 0.50 mmol, 2.0 equiv) in toluene (0.25 mL,

1.0 M) yielded **9f** as a clear oil (73 mg, 0.18 mmol, 73%). $R_f = 0.17$ (15% ethyl acetate in petroleum ether); $[\alpha]^{32}_D - 28.2$ (c 0.19, CHCl₃); IR (film) 3030, 2977, 1700, 1608, 1366, 1132 cm⁻¹; δ H (500 MHz; CDCl₃) 7.61 (2H, d, J 7.4, Ar-H), 7.56 (2H, d, J 8.7, Ar-CH), 7.44 (2H, t, J 7.7, Ar-CH), 7.31-7.27 (6H, m, Ar-H), 7.10 (2H, d, J 8.6, Ar-H), 5.18 (1H, t, J 7.6, C*H*Ph), 3.96 (1H, ddd, J 10.7, 6.2, 4.2, NC*H*H), 3.74-3.64 (1H, m, NCH*H*), 2.61-2.53 (1H, m, CHPhC*H*H), 2.20-2.10 (1H, m, CHPhCH*H*), 1.41 (9H, s, C(CH₃)₃); δ C (125 MHz; CDCl₃) 155.9 (C=O), 149.7 (Ar-C), 141.9 (Ar-C), 140.9 (Ar-C), 133.8 (Ar-C), 128.7 (Ar-CH), 128.4 (Ar-CH), 127.5 (Ar-CH), 127.3 (Ar-CH), 126.9 (Ar-CH), 126.6 (Ar-CH), 126.6 (Ar-CH), 115.9 (Ar-CH), 81.4 (C), 63.6 (CH), 52.8 (CH₂), 35.7 (CH₂), 28.2 (CH₃); HRMS (ESI⁺) calculated for C₂₆H₂₈N₂O₂ [M+Na]⁺ 423.2043; found 423.2037.

Nitrogen Functionalisation: Acylation

N.B. Magnesium turnings were activated by washing them with 1.0 M hydrochloric acid solution (2×20 mL), water (20 mL) and methanol (20 mL).

(R)-(4-Methoxyphenyl)(5-phenyl-2-(pyridin-2-yl)pyrazolidin-1yl)methanone (10a). Cyclic hydrazine 9a (29 mg, 90 µmol, 1.0 equiv) was dissolved in 4 M HCI/dioxane solution (2 mL) and stirred for 2 h. It was then concentrated in vacuo and 4-methoxybenzoyl chloride (38 mg, 0.23 mmol, 2.5 equiv) in dichloromethane (90 µL, 0.1 M) was added. The reaction mixture was cooled over an ice bath then N,N-diisopropylethylamine (31 µL, 0.18 mmol, 2.0 equiv) in dichloromethane (2 mL) was added dropwise over 30 min. The reaction mixture was allowed to warm to rt then stirred for 18 h. The mixture was then quenched with 1 M hydrochloric acid (5 mL), extracted with dichloromethane (3 x 5 mL) and dried over MgSO₄. It was then concentrated in vacuo and the crude product was purified by column chromatography (25% ethyl acetate in petroleum ether) to give **10a** as a white solid (26 mg, 70 μ mol, 82%). R_f = 0.21 (25% ethyl acetate in petroleum ether); M.p. 131-132 °C; $[\alpha]^{32}_D$ –26.7 (c 0.06, CH₂Cl₂). IR (film) 2924, 1643, 1597, 1466, 1258 cm⁻¹; δH (400 MHz; CDCl₃) 8.25 (1H, d, J 4.0, Ar-H), 7.78 (2H, d, J 8.4, Ar-H), 7.45 (1H, t, J 7.6, Ar-H), 7.26-7.19 (5H, m, Ar-H), 6.88-6.74 (4H, m, Ar-H), 5.60 (1H, s, CHPh), 4.65 (1H, br s, NCHH), 3.78 (3H, s, OCH₃), 3.60 (1H, s, NCHH), 2.63 (1H, dt, J 12.4, 6.1, CHPhCHH), 2.22 (1H, td, J 13.4, 7.2, CHPhCHH); δC (100 MHz; CDCl₃) 161.9 (C=O), 147.8 (Ar-CH), 141.0 (Ar-C), 137.5 (Ar-CH), 130.7 (Ar-C), 128.5 (Ar-CH) CH), 127.3 (Ar-CH), 126.9 (Ar-CH), 126.4 (Ar-C), 116.4 (Ar-CH), 113.3 (Ar-CH), 110.6 (Ar-CH), 69.6 (CH), 55.3 (CH₃), 34.0 (CH₂), 1 Ar-CH, 1 CH₂ and 1 Ar-C not seen; HRMS (ESI⁺) calculated for $C_{22}H_{21}N_3O_2$ [M+H]⁺ 360.1712; found 360.1712.

(R)-(2-Isobutyl-5-phenylpyrazolidin-1-yl)(4-nitrophenyl)methanone

(10b). Cyclic hydrazine 9b (43 mg, 0.14 mmol, 1.0 equiv) was dissolved in 4 M HCl/dioxane solution (2 mL) and stirred for 2 h. It was then concentrated *in vacuo* and a solution of 4-nitrobenzoyl chloride (63 mg,

0.34 mmol, 2.5 equiv) in dichloromethane (135 µL, 0.1 M) were added. The mixture was cooled over an ice bath then N,N-diisopropylethylamine (47 µL, 0.27 mmol, 2.0 equiv) in dichloromethane (2.0 mL) was added dropwise over 30 minutes. The reaction mixture was allowed to warm to rt then stirred for 18 h. The reaction mixture was then quenched with 1 M hydrochloric acid (5 mL), extracted with dichloromethane (3 x 5 mL) and dried over magnesium sulphate. It was then concentrated in vacuo and the crude product was purified by column chromatography (20% ethyl acetate in petroleum ether) to give 10b as a white solid (37 mg, 0.1 mmol, 77%). $R_f = 0.18$ (20% ethyl acetate in petroleum ether); $[\alpha]^{32}D + 5.2$ (c 0.17, CHCl₃); Enantiomeric excess (95% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 10/90; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 17.4 min; t_R 36.3 min; IR (film) 2923, 2851, 1635, 1521, 1346 cm⁻¹; δH (500 MHz; CDCl₃) 8.24 (2H, d, J 8.6, Ar-H), 7.84-7.74 (2H, br m, Ar-H), 7.33 (5H, br m, Ar-H), 5.48 (1H, br s, CHPh), 3.24-3.09 (1H, br m, NCH_2CH_2), 2.83-2.74 (1H, br m, CHPhC*H*H), 2.49-2.29 (3H, br m, CHPhCH*H* and C*H*₂CH(CH₃)₂) 1.45 (1H, br s, C*H*(CH₃)₂), 0.55 (6H, s, $CH(CH_3)_2$); δC (125 MHz; $CDCl_3$) 166.6 (C=O), 148.2 (Ar-C), 142.8 (Ar-C), 142.1 (Ar-C), 129.0 (Ar-CH), 128.6 (Ar-CH), 125.7 (Ar-CH), 123.6 (Ar-CH), 122.9 (Ar-CH), 65.8 (CH₂), 61.8 (CH), 33.2 (CH₂), 27.2 (CH), 20.5 (CH₃), 20.2 (CH₃), 1 CH₂ not seen; HRMS (ESI⁺) calculated for C₂₀H₂₃N₃O₃ [M+Na]⁺ 376.1632; found 376.1632.

(R)-Furan-2-yl(5-phenyl-2-(3-(trifluoromethyl)phenyl)pyrazolidin-1-

yl)methanone (10c). Cyclic hydrazine 9c (41 mg, 0.10 mmol, 1.0 equiv)

was dissolved in 4 M HCl/dioxane solution (2 mL) and stirred for 2 h. It was then concentrated *in vacuo* then 2-furoyl chloride (26 μ L, 0.26 mmol, 2.5 equiv) and dichloromethane (100 μ L, 0.1 M) were added. The reaction mixture was cooled over an ice bath then a solution of *N*,*N*-diisopropylethylamine (37 μ L, 0.21 mmol, 2.0 equiv) in dichloromethane (2 mL) was added dropwise over 30 minutes. The mixture was allowed to warm to rt then stirred for 18 h. The mixture was then quenched with 1 M hydrochloric acid (5 mL), extracted with dichloromethane (3 × 5 mL) and dried over magnesium sulphate. It was then concentrated *in vacuo* and the crude product was purified by column chromatography (25% ethyl acetate in petroleum ether) to give **10c** as a yellow solid (28 mg, 71 μ mol, 69%). R_f = 0.18 (25% ethyl acetate in petroleum ether); [α]³²_D +0.9 (c 0.33, CHCl₃). IR (film) 2927, 1649, 1470, 1337, 1124 cm⁻¹; δ *H* (500 MHz; CDCl₃) 7.55 (1H, s, Ar-H), 7.40-7.21 (9H, m, Ar-H), 6.95 (1H, d, *J* 3.0, Ar-*H*), 6.38 (1H, dd, *J* 3.5 and 1.6, Ar-H), 5.75 (1H, t, *J*

8.2, C*H*Ph), 4.12-4.07 (1H, br m, NC*H*H), 3.62-3.48 (1H, br m, NCH*H*), 2.68-2.62 (1H, m, CHPhC*H*H), 2.37-2.28 (1H, m, CHPhCH*H*); δC (125 MHz; CDCl₃) 162.5 (C=O, seen on HMBC), 150.3 (Ar-C), 145.7 (Ar-CH), 139.8 (Ar-C), 131.6 (q, *J* 31.3, Ar-C), 129.7 (Ar-CH), 128.4 (Ar-CH), 127.6 (Ar-CH), 123.9 (q, *J* 270, Ar-C), 119.5 (Ar-CH), 118.7 (Ar-CH), 118.2 (Ar-CH), 112.9 (Ar-CH), 111.7 (Ar-CH), 62.5 (CH), 54.3 (CH₂), 32.6 (CH₂), 1 Ar-C and 1 Ar-CH not seen; δF (282 MHz; CDCl₃) -62.8 (CF₃); HRMS (ESI⁺) calculated for F₃C₂₁H₁₇N₂O₂ [M+Na]⁺ 409.1134; found 409.1131.

tert-Butyl (R)-2-(2-fluorobenzoyl)-5-phenylpyrazolidine-1-carboxylate (9d). Cyclic hydrazine 8j (64 mg, 0.16 mmol, 1.0 equiv), magnesium turnings (19 mg, 0.80 mmol, 5.0 equiv) and methanol (1.6 mL, 0.1 M) were combined and stirred (800 rpm) at room temperature for 2 hours. The solution was quenched with saturated ammonium chloride solution (5 mL), then extracted with dichloromethane (3 x 5 mL). The combined organic extrcts were dried over MgSO₄ and concentrated in vacuo to give a clear oil. To this was added then 2-fluorobenzoyl chloride (48 µL, 0.40 mmol, 2.5 equiv) in dichloromethane (1.6 mL). The reaction mixture was stirred at rt for 18 h. The mixture was concentrated in vacuo. The crude product was purified by column chromatography (25% ethyl acetate in petroleum ether) to give 9d as a clear oil (46 mg, 0.12 mmol, 77%). $R_f = 0.21$ (25% ethyl acetate in petroleum ether). $[\alpha]^{32}_D + 7.1$ (c 0.12, CHCl₃). IR (film) 2978, 1725, 1714, 1368, 1154 cm⁻¹; δH (500 MHz; d6-DMSO at 373 K) 7.47 (1H, d, J 5.3, Ar-H), 7.39-7.25 (5H, m, Ar-H), 7.25-7.13 (3H, m, Ar-H), 5.27 (1H, t, J 6.6, CHPh), 4.05-3.91 (1H, br m, NCHH), 3.47 (1H, dd, J 17.9 and 8.5, NCHH), 2.69-2.60 (1H, m, CHPhCHH), 2.23-2.16 (1H, br m, CHPhCHH), 1.38 (9H, s, C(CH₃)₃); δC (125 MHz; d6-DMSO at 373 K) 159.9 (C=O), 157.9 (C=O), 143.7 (Ar-C, seen on HMBC), 141.7 (Ar-C, seen on HMBC), 141.3 (Ar-C, seen on HMBC), 132.5 (d, J7.5, Ar-CH), 129.2 (d, J2.5, Ar-CH), 129.1 (Ar-CH), 128.7 (Ar-CH), 127.6 (Ar-CH), 127.0 (Ar-CH), 126.7 (Ar-CH), 116.2 (d, J 21.3, 82.1 Ar-C), 63.5 (CH), 28.0 (CH₃), 2 x CH₂, 2 x C=O and 1 x Ar-C not seen; δF (282 MHz; CDCl₃) -112.3 (CF); HRMS (ESI+) calculated for C₂₁H₂₃N₂O₃F [M+Na]+ 393.1585; found 393.1587.

(*R*)-(4-Methoxyphenyl)(5-phenyl-2-(*p*-tolyl)pyrazolidin-1-yl)methanone (10e). Cyclic hydrazine 9e (34 mg, 0.1 mmol, 1.0 equiv) was dissolved in 4 M HCl/dioxane solution (2 mL) and stirred for 2 h. It was then concentrated *in vacuo* and 4-methoxybenzoyl chloride (34 μL, 0.25 mmol, 2.5 equiv) and dichloromethane (100 μL, 0.1 M) were added. The reaction mixture was cooled over an ice bath then a solution of *N*,*N*-diisopropylethylamine (36 μL, 0.21 mmol, 2.0 equiv) in dichloromethane (2.0 mL) was added dropwise over 30 minutes. The mixture was allowed to warm to rt then stirred for 18 h. The mixture was then quenched with 1 M hydrochloric

acid (5 mL), extracted with dichloromethane (3 x 5 mL) and dried over magnesium sulphate. It was then concentrated in vacuo. The crude product was purified by column chromatography (25% ethyl acetate in petroleum ether) to give 10e as a white solid (32 mg. 86 µmol, 84%). $R_f = 0.18$ (25% ethyl acetate in petroleum ether); M.p. 165-166 °C; $[\alpha]^{32}_D$ – 3.8 (c 0.17, CHCl₃); IR (film) 2923, 1635, 1509, 1254, 1175 cm⁻¹; δH (400 MHz; CDCl₃) 7.81-7.73 (2H, br m, Ar-H), 7.78 (2H, d, J 8.4, Ar-CH), 7.32 (2H, t, J 7.4, Ar-H), 7.26 (1H, t, J 7.2, Ar-H), 7.05 (2H, d, J 8.2, Ar-H), 6.91 (2H, d, J 8.1, Ar-H), 6.78 (2H, d, J 8.8, Ar-H), 5.72-5.64 (1H, br m, CHPh), 3.92-3.79 (1H, br m, NCHH), 3.80 (3H, s, OCH₃), 3.60-3.39 (1H, br m, NCH*H*), 2.58 (1H, sextet, *J* 12.0, CHPhC*H*H), 2.32-2.18 (4H, br m, CHPhCH*H* and CH₃Ar); δC (100 MHz; CDCl₃) 161.7 (Ar-C), 132.3 (Ar-CH), 130.9 (Ar-CH), 129.5 (Ar-CH), 128.4 (Ar-CH), 127.2 (Ar-CH), 126.9 (Ar-C), 113.8 (Ar-CH), 113.0 (Ar-CH), 62.8 (CH, seen on HSQC), 55.2 (OCH₃), 29.7 (CH₂), 20.5 (CH₃), 3 Ar-C, 1 CH₂ and 1 C=O not seen; HRMS (ESI⁺) calculated for $C_{24}H_{24}N_2O_2$ [M+Na]⁺ 395.1730; found 395.1727.

methoxyethan-1-one (10f). Cyclic hydrazine 9f (45 mg, 0.11 mmol, 1.0

(R)-1-(2-([1,1'-Biphenyl]-4-yl)-5-phenylpyrazolidin-1-yl)-2-

equiv) was dissolved in 4 M HCl/dioxane solution (2.0 mL) and stirred for 2 h. It was then concentrated in vacuo and methoxyacetyl chloride (26 µL, 0.28 mmol, 2.5 equiv) and dichloromethane (110 µL, 0.1 M) were added. The reaction mixture was cooled over an ice bath then a solution of N,N-diisopropylethylamine (39 μ L, 0.22 mmol, 2.0 equiv) in dichloromethane (2.0 mL) was added dropwise over 30 minutes. The reaction mixture was allowed to warm to rt then stirred for 18 h. The reaction mixture was then guenched with 1 M hydrochloric acid (5 mL), extracted with dichloromethane (3 x 5 mL) and dried over magnesium sulphate. It was then concentrated in vacuo and the crude product was purified by column chromatography (50% ethyl acetate in petroleum ether) to give 10f as a white solid (28 mg, 74 µmol, 66%). $R_f = 0.16$ (50% ethyl acetate in petroleum ether); $[\alpha]^{32}_D - 17.5$ (c 0.35, CHCl₃). IR (film) 2926, 1686, 1485, 1197, 1128 cm⁻¹; δH (500 MHz; CDCl₃) 7.57 (2H, d, J 7.3, Ar-H), 7.51 (2H, d, J 8.4, Ar-CH), 7.46-7.38 (4H, m, Ar-H), 7.37-7.23 (4H, m, Ar-H), 7.06 (2H, d, J 8.5, Ar-H), 5.46 (1H, t, J 8.5, CHPh), 4.48 (1H, d, J 15.5, NCHH), 4.06 (2H, d, J 15.6, CH₂OMe) 3.49-3.43 (4H, m, NCHH and OCH₃), 2.63-2.56 (1H, m, CHPhCHH), 2.35-2.25 (1H, br m, CHPhCHH); δC (125 MHz; CDCl₃) 174.5 (C=O), 148.9 (Ar-C), 140.3 (Ar-C), 140.1 (Ar-C), 135.0 (Ar-C), 128.8 (Ar-CH), 128.4 (Ar-CH), 127.8 (Ar-CH), 127.5 (Ar-CH), 127.0 (Ar-CH), 126.7 (Ar-CH), 116.3 (Ar-CH), 70.5 (CH₂), 61.8 (CH), 59.4 (OCH₃), 54.4 (CH₂), 32.0 (CH₂), 1 Ar-CH not seen; HRMS (ESI+) calculated for C₂₄H₂₄N₂O₂ [M+Na]+ 395.1730; found 395.1721.

tert-Butyl (R)-2-(4-methoxybenzoyl)-5-phenylpyrazolidine-1carboxylate (9g). Cyclic hydrazine 8j (36 mg, 90 µmol, 1.0 equiv), magnesium turnings (11 mg, 0.45 mmol, 5.0 equiv) and methanol (0.9 mL, 0.1 M) were combined and stirred (800 rpm) at room temperature for 2 hours. The solution was quenched with saturated ammonium chloride solution (5 mL), then extracted with dichloromethane (3 x 5 mL). The combined organic extracts were dried over magnesium sulphate and concentrated in vacuo to give a clear oil. Then a solution of 4methoxybenzoyl chloride (30 µL, 0.23 mmol, 2.5 equiv) in dichloromethane (0.9 mL) were added. The reaction mixture was stirred at rt for 18 h. The mixture was concentrated in vacuo. The crude product was purified by column chromatography (25% ethyl acetate in petroleum ether) to give **9g** as a clear oil (27 mg, 70 μ mol, 80%). $R_f = 0.21$ (25% ethyl acetate in petroleum ether); $[\alpha]^{32}$ _D +19.6 (c 0.18, dichloromethane); IR (film) 2989, 2924, 1712, 1611, 1388, 1161 cm⁻¹; δH (400 MHz; CDCl₃) 7.58-7.49 (2H, m, Ar-H), 7.36-7.23 (5H, m, Ar-H), 6.79 (2H, d, J 8.4, Ar-H), 5.32 (1H, br s, CHPh), 4.34-4.17 (1H, m, NCHH), 3.81 (3H, s, OCH₃), 3.54 (1H, d, J 8.6, NCHH), 2.55 (1H, dtd, J 12.5, 8.3, 4.2, CHPhCHH), 2.27 (1H, br s, CHPhCHH), 1.35 (9H, s, C(CH₃)₃); δC (100 MHz; CDCl₃) 161.6 (C=O), 140.6 (Ar-C), 132.2 (Ar-C), 130.2 (Ar-CH), 128.6 (Ar-CH), 127.5 (Ar-CH), 126.5 (Ar-CH), 113.1 (Ar-CH), 82.3 (C), 62.9 (CH), 55.3 (CH₃), 36.2 (CH₂), 28.0 (CH₃), C=O, Ar-C and CH₂ not seen; HRMS (ESI⁺) calculated for C₂₂H₂₆N₂O₄ [M+Na]⁺ 405.1790; found 405.1793.

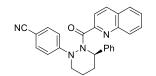
(R)-4-(3-([1,1'-Biphenyl]-4-yl)-2-propionylpyrazolidin-1-

yl)benzonitrile (10h). Cyclic hydrazine 9h (20 mg, 47 µmol, 1.0 equiv) was dissolved in 4 M HCl/dioxane solution (2.0 mL) and stirred for 2 h. It was then concentrated in vacuo then propionyl chloride (12 µL, 0.14 mmol, 2.5 equiv) and dichloromethane (47 µL, 0.1 M) were added. The reaction mixture was cooled over an ice bath then a solution of N,N-diisopropylethylamine (16 µL, 94 µmol, 2.0 equiv) in dichloromethane (2 mL) was added dropwise over 30 minutes. The mixture was allowed to warm to rt then stirred for 18 h. The mixture was then quenched with 1 M hydrochloric acid (5 mL), extracted with dichloromethane (3 x 5 mL) and dried over magnesium sulphate. It was then concentrated in vacuo and the crude product was purified by column chromatography (50% ethyl acetate in petroleum ether) to give **10h** as a yellow oil (12 mg, 31 µmol, 66%). $R_f = 0.16$ (50% ethyl acetate in petroleum ether); $[\alpha]^{32}D - 22.2$ (c 0.12, CHCl₃). IR (film) 2925, 2220, 1675, 1603, 1504, 1175 cm⁻¹; δH (500 MHz; CDCl₃) 7.56 (4H, t, J 7.7, Ar-H), 7.53 (2H, d, J 8.3, Ar-H), 7.45 (2H, t, J 7.6, Ar-H), 7.40-7.34 (3H, m, Ar-H), 7.03 (2H, d, J 8.4, Ar-H), 5.51 (1H, t, J 7.3, CHPh), 4.12-4.04 (1H, br m, NCHH), 3.60-3.52 (1H, m, NCHH), 2.67-2.52 (2H, m, CHPhCHH and CO₂CHH), 2.35-2.20 (2H, m, CHPhCHH and CO₂CHH), 1.12 (3H, t, J 7.4, CH₃); δC (125 MHz; CDCl₃) 153.5 (C=O), 140.7 (Ar-C), 140.5

(Ar-C), 139.1 (Ar-C), 133.5 (Ar-CH), 128.8 (Ar-CH), 128.1 (Ar-CH), 127.4 (Ar-CH), 127.3 (Ar-CH), 127.1 (Ar-CH), 119.2 (Ar-C), 115.3 (Ar-CH), 114.1 (Ar-CH), 104.0 (CN), 61.2 (CH), 53.1 (CH₂), 33.7 (CH₂), 26.4 (CH₂), 8.6 (CH₃); HRMS (ESI⁺) calculated for C₂₅H₂₃N₃O [M+Na]⁺ 404.1733; found 404.1732.

(*R*)-(4-Methoxyphenyl)(6-phenyl-2-(pyridin-2-yl)tetrahydropyridazin-1(2*H*)-yl)methanone (10i). A solution of cyclic hydrazine 9i (53 mg, 155 µmol, 1.0 equiv) in 4M HCl/dioxane (2.5 mL) was stirred for 2 h at rt. The solution was concentrated *in vacuo* and dichloromethane (15 mL) and

saturated NaHCO₃ solution (15 mL) were added. The layers were separated and the aqueous one was extracted with dichloromethane (2 x 15 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was dissolved anhydrous dichloromethane (2.0 mL), cooled to 0 °C, and a solution of 4-methoxybenzoyl chloride (79 mg, 0.47 mmol, 3.0 equiv) and N,N-diisopropylethylamine (54 μL, 0.31 mmol, 2.0 equiv) in anhydrous dichloromethane (1.0 mL) was added slowly. The reaction mixture was allowed to warm to rt then stirred for 26 h. The reaction mixture was quenched with saturated Ammonium chloride solution (10 mL) and extracted with dichloromethane (3 x 10 mL). The combined organic extracts were washed with brine (25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (20-33% EtOAc/petroleum ether) to give 10i as a colourless gum (49 mg, 131 μ mol, 85%). R_f = 0.22 (33% EtOAc in petroleum ether); $[\alpha]^{29}$ D +72.8 (c 0.70, CHCl₃). Enantiomeric excess (91% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 96/4; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 21.2 min; t_R 32.2 min; IR (neat) 2932, 1660, 1590, 1470, 1434, 1301, 1248, 1171, 1027, 840, 756, 697 cm⁻¹; δH (600 MHz; CDCl₃; 233 K) Three confomers in a ratio of 66:27:7 are observed at 233 K: 8.31 (0.14H, d, J 4.3, Ar-H), 8.26 (0.47H, d, J 4.5, Ar-H), 8.00 (0.39H, d, J 4.5, Ar-H), 7.83 (0.14H, t, J 7.6, Ar-H), 7.58 (1.90H, t, J 7.3, Ar-H), 7.54-7.46 (0.88H, m, Ar-H), 7.45-7.41 (0.78, m, Ar-H), 7.41-7.29 (2.66H, m, Ar-H), 7.19-7.15 (1.12H, m, Ar-H), 6.98 (0.39H, t, J7.6, Ar-H), 6.88 (1.07H, d, J8.4, Ar-H), 6.83 (0.47H, d, J 8.5, Ar-H), 6.77-6.70 (1.29H, m, Ar-H), 6.46 (0.39H, dd, J 6.3, 5.7, Ar-H), 6.19 (0.39H, d, J 8.6, Ar-H), 6.04 (0.39H, t, J 5.6, NCH), 5.22 (0.47H, t, J 5.5, NCH), 4.80-4.73 (0.39H, m, NC*H*H), 4.70 (0.14H, br d, *J* 12.7, NC*H*H), 4.53 (0.47H, br s, NC*H*H), 4.46 (0.14H, d, *J* 10.9, NCH), 3.83 (1.41H, s, OCH₃), 3.73 (1.18H, s, OCH₃), 3.72 (0.42H, s, OCH₃), 3.66 (0.47H, br s, NCHH), 3.32-3.25 (0.39H, m, NCHH), 3.04 (0.14H, t, J 10.7, NCHH), 2.63-2.56 (0.14H, m, CH_2), 2.36-2.23 (0.82H, m, CH_2), 2.24-2.11 (0.61H, m, CH_2), 2.11-1.76 (2.30H, m, CH_2), 1.69-1.63 (0.47H, m, CH_2); δC (150 MHz; $CDCl_3$; 233 K) Three confomers are observed at 233 K: 173.8 (C=O), 173.0 (C=O), 172.9 (C=O), 162.1 (Ar-C), 161.7 (Ar-C), 160.9 (Ar-C), 158.3 (Ar-C), 157.9 (Ar-C), 148.5 (Ar-CH), 146.6 (Ar-CH), 140.8 (Ar-C), 140.2 (Ar-C), 139.8 (Ar-C), 139.0 (Ar-CH), 136.6 (Ar-CH), 130.4 (Ar-CH), 130.1 (Ar-CH), 129.4 (Ar-CH), 128.9 (Ar-CH), 128.6 (Ar-CH), 128.2 (Ar-CH), 128.1 (Ar-CH), 127.5 (Ar-CH), 127.4 (Ar-CH), 126.9 (Ar-CH), 126.2 (Ar-CH), 126.0 (Ar-C), 125.6 (Ar-C), 115.5 (Ar-CH), 114.2 (Ar-CH), 114.1 (Ar-CH), 113.7 (Ar-CH), 112.9 (Ar-CH), 112.8 (Ar-CH), 109.0 (Ar-CH), 108.1 (Ar-CH), 107.0 (Ar-CH), 63.2 (NCH), 60.4 (NCH), 55.6 (OCH₃), 55.4 (OCH₃), 55.3 (OCH₃), 55.0 (NCH), 46.3 (NCH₂), 45.8 (NCH₂), 44.2 (NCH₂), 30.7 (CH₂), 25.2 (CH₂), 24.8 (CH₂), 21.8 (CH₂), 19.3 (CH₂), 19.1 (CH₂); HRMS (ESI⁺) calculated for C₂₃H₂₄N₃O₂ [M+H]⁺ 374.1863; found 374.1858.


(R)-(2-Cinnamyl-6-phenyltetrahydropyridazin-1(2H)-yl)(2,3-

dichlorophenyl)methanone (10k). Cyclic hydrazine **9k** (100 mg, 0.26 mmol, 1.0 equiv) was dissolved in 4 M HCl/dioxane solution (2.0 mL) and

stirred for 2 h. It was then concentrated in vacuo and 2,3-dichlorobenzoyl chloride (139 mg, 0.66 mmol, 2.5 equiv) and dichloromethane (100 µL and 2 mL) were added. The reaction mixture was cooled over an ice bath then a solution of N,Ndiisopropylethylamine (93 µL, 0.53 mmol, 2.0 equiv) in dichloromethane (2 mL) was added dropwise over 30 min. The mixture was allowed to warm to rt then stirred for 18 h. The mixture was then quenched with 1.0 M hydrochloric acid (5.0 mL), extracted with dichloromethane (3 x 5.0 mL) and dried over magnesium sulphate. It was then concentrated in vacuo. and the crude product was purified by column chromatography (10% ethyl acetate in petroleum ether) to give **10k** as a clear oil (95 mg, 0.21 mmol, 80%). $R_f = 0.10$ (10% ethyl acetate in petroleum ether); $[\alpha]^{32}_D$ +2.1 (c 0.61, CHCl₃). IR (film) 2934, 2866, 1642, 1414, 970 cm⁻¹; δH (500 MHz; CDCl₃) 7.63 (2H, d, J7.4, Ar-H), 7.47 (1H, d, J7.2, Ar-H), 7.44 (2H, t, J 7.6, Ar-H), 7.35 (1H, t, J 7.3, Ar-H), 7.27-7.18 (5H, m, Ar-H), 7.09 (2H, d, J 7.3, Ar-H), 6.09 (1H, d, J 3.5, C=CH), 5.76 (1H, d, J 15.9, C=CH), 5.43-5.33 (1H, br m, CHPh), 3.14 (1H, dd, J 12.9, 7.6, NCHH), 2.90 (1H, d, J 11.5, NCHHCH=CH), 2.69 (1H, d, J 11.3, NCHH), 2.27-2.15 (2H, m, CHPhCHH and NCHHCH=CH), 1.69-1.50 (2H, m, CHPhCHH and CH_2CHHCH_2), 1.52-1.46 (1H, m, CH_2CHHCH_2); δC (125 MHz; $CDCl_3$) 169.9 (C=O), 140.8 (Ar-C), 136.5 (Ar-C), 133.1 (Ar-C), 131.9 (C=CH) 129.6 (Ar-CH), 128.7 (Ar-CH), 128.5 (Ar-CH), 128.3 (Ar-C), 127.5 (Ar-CH), 127.4 (Ar-CH), 127.3 (Ar-CH), 127.3 (Ar-CH), 126.1 (Ar-CH), 125.5 (Ar-CH), 57.8 (CH₂), 48.4 (CH), 40.8 (CH₂), 24.4 (CH₂), 14.0 (CH₂), 1 Ar-C not seen; HRMS (ESI+) calculated for C₂₆H₂₄N₂O³⁵Cl₂ [M+Na]+ 473.1158; found 473.1151.

(R)-(3-Phenyltetrahydropyridazin-1(2H)-yl)(quinolin-2-yl)methanone

(101). To a solution of cyclic hydrazine 8t (167 mg, 0.40 mmol, 1.0 equiv) in methanol (16 mL) was added activated magnesium turnings (5.0 equiv), and the mixture was stirred (800 rpm) for 2 h at rt. The reaction mixture was quenched with saturated ammonium chloride solution (20 mL) and extracted with dichloromethane (3 x 15 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The residue was dissolved in dichloromethane (12 mL), quinaldoyl chloride (192 mg, 1.0 mmol, 2.5 equiv) was added, and the mixture was stirred at rt for 18 h. The reaction mixture was quenched with saturated ammonium chloride solution (20 mL) and extracted with dichloromethane (3 x 15 mL). The combined organic extracts were wahed with brine (30 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by column chromatography (25-33% ethyl acetate in petroleum ether) to give a white solid. The product was dissolved in 4 M HCl/dioxane solution (4.0 mL) and stirred at rt for 2 h. The solvent was removed in vacuo and dichloromethane (15 mL) and saturated NaHCO₃ solution (15 mL) were added. The layers were separated and the aqueous one was extracted with dichloromethane (2 x 15 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by column chromatography (33-50% EtOAc/petroleum ether) to give 10l as a white solid (91 mg, 0.29 mmol, 73% over three steps). M.p. 154-156 °C; $R_f = 0.49$ (50% EtOAc in petroleum ether); $[\alpha]^{29}D + 22.0$ (c 0.52, CHCl₃); IR (neat) 2937, 1714, 1347, 1158, 1090, 750, 698, 665 cm⁻¹; δH (600 MHz; CDCl₃; 233 K) Three conformers in a ratio of 66:27:7 are observed at 233 K. Only chemical shifts for the major confomer are reported: 8.32 (1H, d, J 8.4, Ar-H), 8.13 (1H, d, J 8.4, Ar-H), 7.90 (1H, d, J 8.1, Ar-H), 7.80 (1H, d, J 8.8, Ar-H), 7.78 (1H, d, J 8.5, Ar-H), 7.65 (1H, t, J 7.4, Ar-H), 7.46 (2H, d, J7.4, Ar-H), 7.40 (2H, t, J7.4, Ar-H), 7.35 (1H, t, J7.2, Ar-H), 6.77 (1H, s, NH), 4.39 (1H, d, J 13.0, NCHH), 4.02 (1H, d, J 10.4, NCH), 3.53-3.47 (1H, m, NCHH), 2.04-1.94 (2H, m, CH₂CHN), 1.92-1.84 (2H, m, CH₂CH₂N); δC (150 MHz; CDCl₃; 233 K) Chemical shifts for the major confomer at 233 K: 163.1 (C=O), 152.4 (Ar-C), 146.5 (Ar-C), 141.2 (Ar-C), 137.5 (Ar-CH), 130.4 (Ar-CH), 129.7 (Ar-CH), 128.6 (Ar-CH), 128.1 (Ar-CH), 128.0 (Ar-C), 127.8 (Ar-CH), 127.2 (Ar-CH), 126.9 (Ar-CH), 120.8 (Ar-CH), 62.3 (NCH), 47.0 (NCH₂), 32.8 (CH₂CHN), 25.2 (CH₂CH₂N); HRMS (ESI⁺) calculated for $C_{20}H_{19}N_3NaO$

[M+Na]+ 340.1420; found 340.1417.

(R)-4-(3-Phenyl-2-(quinoline-2-carbonyl)tetrahydropyridazin-1(2H)-yl)benzonitrile (10m). A solution of cyclic hydrazine 9m (92 mg, 0.25 mmol, 1.0 equiv) in HCl/1,4-dioxane (4M, 5.0 mL) was stirred for

2 h at rt. The solvent was removed in vacuo and dichloromethane (15 mL) and saturated

NaHCO₃ solution (15 mL) were added. The layers were separated and the aqueous one was extracted with dichloromethane (2 x 15 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was dissolved anhydrous dichloromethane (6.0 mL), cooled to 0 °C, and a solution of quinaldoyl chloride (144 mg, 0.75 mmol, 3.0 equiv) and N,N-diisopropylethylamine (88 µL, 0.50 mmol, 2.0 equiv) in anhydrous dichloromethane (2.0 mL) was added slowly. The reaction mixture was allowed to warm to rt then stirred for 16 h. The mixture was quenched with saturated Ammonium chloride solution (10 mL) and extracted with dichloromethane (3 x 10 mL). The combined organic extracts were washed with brine (25 mL), dried over magnesium sulphate, filtered, and concentrated in vacuo. The residue was purified by column chromatography (20-50% EtOAc/petroleum ether) to give **10m** as a pale-yellow oil (77 mg, 0.18 mmol, 73%). $R_f = 0.32$ (50% EtOAc in petroleum ether); $[\alpha]^{25}_D - 108.2$ (c 0.43, CHCl₃); IR (neat) 2930, 2865, 2233, 1666, 1598, 1508, 1371, 1178, 837, 734, 703 cm⁻¹; δH (600 MHz; CDCl₃; 273 K) Two main confomers in a ratio of 67:33 are observed at 273 K. Chemical shifts of the major confomer: 8.02 (1H, d, J 8.5, Ar-H), 7.96 (1H, d, J 8.5, Ar-H), 7.79-7.74 (1H, m, Ar-H), 7.72 (1H, d, J 8.1, Ar-H), 7.69 (1H, t, J 7.7, Ar-H), 7.55-7.50 (4H, m, Ar-H), 7.39 (1H, t, J 7.5, Ar-H), 7.31-7.28 (3H, m, Ar-H), 7.05 (2H, d, J 8.9, Ar-H), 6.32 (2H, d, J 8.9, Ar-H), 5.91 (1H, t, J 7.9, NCH), 4.10 (1H, dt, J9.7, 4.9, NCHH), 3.70 (1H, td, J9.4, 6.7, NCHH), 2.41-2.35 (1H, m, NCHC*H*H), 2.28-2.23 (1H, m, NCH₂C*H*H), 2.16-2.10 (2H, m, NCHC*H*H, NCH₂C*H*H); δ*C* (150 MHz; CDCl₃; 273 K) Chemical shifts of the major confomer at 273 K: 171.6 (C=O), 152.8 (Ar-C), 150.9 (Ar-C), 146.5 (Ar-C), 139.7 (Ar-C), 136.8 (Ar-CH), 132.9 (Ar-CH), 130.1 (Ar-CH), 129.6 (Ar-CH), 128.7 (Ar-CH), 128.5 (Ar-CH), 128.3 (Ar-CH), 128.1 (Ar-C), 127.8 (Ar-CH), 127.6 (Ar-CH), 127.4 (Ar-CH), 120.1 (Ar-C), 119.3 (Ar-CH), 99.8 (CN), 58.5 (NCH), 48.9 (NCH₂), 26.2 (NCHCH₂), 19.8 (NCH₂CH₂); HRMS (ESI⁺) calculated for C₂₇H₂₂N₄NaO [M+Na]+ 441.1686; found 441.1680.

fluorophenyl)tetrahydropyridazine-1(2*H*)-carboxylate (9n). To a solution of cyclic hydrazine 8v (217 mg, 0.50 mmol, 1.0 equiv) in methanol (20 mL) was added activated magnesium turnings (5.0 equiv), and the mixture was stirred (800 rpm) for 2 h at rt. The reaction mixture was quenched with saturated ammonium chloride solution (20 mL) and extracted with dichloromethane (3 × 15 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was dissolved in dichloromethane (15 mL), 2-chloro-3-(trifluoromethyl)benzoyl chloride (304 mg, 1.25 mmol, 2.5 equiv) was added, and the mixture was stirred for 18 h at rt. The reaction mixture was quenched with saturated Ammonium chloride solution (20 mL) and extracted with dichloromethane (3 × 15 mL). The combined

organic extracts were washed with brine (30 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by column chromatography (20-33% ethyl acetate in petroleum ether) to give **9n** as a colourless, viscous oil (174 mg, 0.36 mmol, 71%). $R_f = 0.29$ (33% EtOAc in petroleum ether); $[\alpha]^{29}_D - 8.8$ (c 0.31, CHCl₃); IR (neat) 2976, 1714, 1667, 1511, 1315, 1133, 836, 734 cm⁻¹; δH (600 MHz; d6-DMSO at 373 K) Two main conformers in a ratio of 56:44 are observed at 373 K: 7.90 (0.44H, d, J 7.9, Ar-H), 7.78 (0.56H, d, J7.6, Ar-H), 7.69-7.59 (1.50H, m, Ar-H), 7.53-7.44 (1.32 H, m, Ar-H), 7.13 (1.0H, t, J 8.6, Ar-H), 6.88-6.77 (2.52H, m, Ar-H), 5.40 (0.44H, br. s, 2H, NCH), 5.13-5.09 (0.56H, m, NC*H*), 4.26-4.20 (0,56H, m, NC*H*₂), 3.44-3.31 (1.24H, m, NC*H*₂), 3.25 (0.48H, br s, NC*H*₂), 2.29-2.19 (0.8H, m, CH₂), 2.16-2.01 (1.9H, m, CH₂), 1.94-1.86 (0.74H, m, CH₂), 1.79 (0.53 H, br s, CH_2), 1.52 (9H, s, $(CH_3)_3$); δC (150 MHz; d6-DMSO at 373 K) Only chemical shifts for the major confomer are reported: 161.7 (C=O), 156.0 (Boc-C=O), 137.3 (Ar-C), 135.3 (Ar-C), 129.7 (Ar-CH), 128.3 (d, J7.8, Ar-CH), 127.4 (d, J8.3, Ar-CH), 126.1 (Ar-CH), 122.9 (Ar-C), 113.9 (d, J 21.4, Ar-CH), 82.5 (C), 59.3 (NCH), 41.2 (NCH₂), 27.3 (CH₃), 23.1 (CH₂CHN), 18.3 (CH_2CH_2N); CF and CF₃ are not observed; δF (376 MHz; d6-DMSO) -61.2 (CF₃), -116.3 (CF); HRMS (ESI+) calculated for C₂₃H₂₃CIF₄N₂NaO₃ [M+Na]+ 509.1226; found 509.1229.

(R)-(2-Cinnamyl-7-phenyl-1,2-diazepan-1-yl)(4-

methoxyphenyl)methanone (10o). A solution of cyclic hydrazine **9o** (140 mg, 0.36 mmol, 1.0 equiv) in HCl/dioxane (4M, 5.0 mL) was stirred for 2 h at rt. The solvent was removed *in vacuo* and dichloromethane

(15 mL) and saturated NaHCO₃ solution (15 mL) were added. The layers were separated and the aqueous one was extracted with dichloromethane (2 × 15 mL). The combined organic layers were washed with brine, dried over magnesium sulphate, filtered, and concentrated *in vacuo*. The crude product was dissolved anhydrous dichloromethane (4.0 mL), cooled to 0 °C, and a solution of 4-methoxybenzoyl chloride (182 mg, 1.07 mmol, 3.0 equiv) and *N*,*N*-diisopropylethylamine (125 μ L, 0.72 mmol, 2.0 equiv) in dichloromethane (2.0 mL) was added slowly. The reaction mixture was allowed to warm to rt then stirred for 18 h. The reaction mixture was quenched with saturated Ammonium chloride solution (10 mL) and extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed with brine (25 mL), dried over magnesium sulphate₄, filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (5-10% EtOAc/toluene) to give **10o** as a colourless gum (50 mg, 0.12 mmol, 33%). $R_f = 0.40$ (10% EtOAc in toluene); $[\alpha]^{27}_D$ –2.0 (c 0.55, CHCl₃); Enantiomeric excess (93% *ee*) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 2/98; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 55.2 min; t_R 66.8 min; IR (neat) 2918, 2848,

1635, 1605, 1327, 1252, 1171, 1032, 961, 831, 763, 699 cm⁻¹; δ*H* (400 MHz; CDCl₃) Chemical shifts for the major confomer: 7.61-7.41 (1H, m, Ar-H), 7.36-7.27 (8H, m, Ar-H), 7.25-7.10 (3H, m, Ar-H), 6.86 (2H, d, *J* 8.3, Ar-H), 6.57 (1H, d, *J* 15.8, C=CH), 6.12 (1H, dt, *J* 12.2, 6.3, C=CH), 4.56 (1H, dd, *J* 8.5, 6.0, NC*H*), 4.38 (1H, dd, *J* 14.0, 7.4, C*H*HCH), 3.90-3.84 (1H, m, CH*H*CH), 3.83 (3H, s, OCH₃), 3.76-3.55 (1H, m, NC*H*H), 2.98 (1H, br d, *J* 12.1, NCH*H*), 2.23-2.10 (1H, m, C*H*HCHN), 2.03-1.82 (2H, m, CH*H*CHN, C*H*HCH₂CHN), 1.81-1.67 (2H, m, CH*H*CH₂N), 1.57-1.45 (1H, m, CH*H*CH₂CHN); δ*C* (125 MHz; CDCl₃) Chemical shifts for the major confomer: 172.2 (C=O), 160.5 (Ar-C), 143.3 (Ar-C), 137.4 (Ar-C), 132.0 (alk-CH), 130.2 (Ar-C), 128.6 (Ar-CH), 128.5 (Ar-CH), 128.41 (Ar-CH), 128.37 (Ar-CH), 127.8 (128.41 (Ar-CH), 127.4 (128.41 (Ar-CH), 127.3 (alk-CH), 126.5 (Ar-CH), 113.7 (Ar-CH), 64.7 (NCH), 59.6 (*C*H₂CH), 55.4 (OCH₃), 51.2 (NCH₂), 36.4 (NCH*C*H₂), 30.8 (NCH₂CH₂), 25.3 (NCHCH₂CH₂); HRMS (ESI⁺) calculated for C₂₈H₃₀N₂NaO₂ [M+H]⁺ 449.2199; found 449.2201.

(R)-2-(3-Phenyl-1,2-diazepane-1-carbonyl)phenyl acetate (10p). To a solution of cyclic hydrazine 8u (200 mg, 0.46 mmol, 1.0 equiv) in methanol (20 mL) was added activated magnesium turnings (5.0 equiv), and the mixture was stirred vigorously for 4 h at rt. The reaction mixture was quenched with saturated ammonium chloride solution (20 mL) and extracted with dichloromethane (3 x 15 mL). The combined organic extracts were washed with brine (30 mL), dried over magnesium sulphate, filtered, and concentrated in vacuo. The residue was dissolved in dichloromethane (15 mL), O-acetylsalicyloyl chloride (231 mg, 1.16 mmol, 2.5 equiv) was added, and the mixture was stirred at rt for 20 h. The reaction mixture was quenched with saturated ammonium chloride solution (20 mL) and extracted with dichloromethane (3 x 15 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by column chromatography (20-50% ethyl acetate in petroleum ether) to give a colourless oil. The oil was dissolved in HCl/1,4dioxane solution (4M, 5.0 mL) and stirred at rt for 2 h. The solvent was removed in vacuo and dichloromethane (15 mL) and saturated NaHCO₃ solution (15 mL) were added. The layers were separated and the aqueous one was extracted with dichloromethane (2 x 15 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by column chromatography (33-50% EtOAc/petroleum ether) to give 10p as a colourless, viscous oil (84 mg, 0.25 mmol, 53% over three steps). $R_f = 0.39$ (50% EtOAc in petroleum ether); $[\alpha]^{29}_D + 10.5$ (c 0.41, CHCl₃); IR (film) 2933, 1766, 1626, 1403, 1198, 908, 732 cm⁻¹; δH (400 MHz; CDCl₃) Two confomers in a ratio of 85:15 are observed, only chemical shifts for the major confomer are reported: 7.49 (2H, d, J7.3, Ar-H), 7.44 (1H, d, J8.2, Ar-H), 7.38-7.33 (3H, m, Ar-H), 7.29 (2H, t, J7.6, Ar*H*), 7.20 (1H, d, *J* 8.2, Ar-*H*), 5.61 (1H, br s, N*H*), 4.03 (1H, dd, *J* 10.2, 2.8, NC*H*), 3.48 (2H, dd, *J* 7.7, 5.4, NC*H*₂), 2.28 (3H, s, CH₃), 2.01-1.80 (5H m, C*H*₂CHN, C*H*₂CH₂N, C*H*HCH₂CH₂N), 1.63-1.51 (1H, m, CH*H*CH₂CH₂N); δ*C* (125 MHz; CDCl₃) Chemical shifts for the major conformer: 169.1 (COO), 166.9 (CON), 147.2 (Ar-C), 141.9 (Ar-C), 130.5 (Ar-CH), 129.4 (Ar-C), 128.7 (Ar-CH), 127.9 (Ar-CH), 127.6 (Ar-CH), 127.4 (Ar-CH), 126.1 (Ar-CH), 123.3 (Ar-CH), 65.9 (NCH), 50.6 (NCH₂), 37.8 (*C*H₂CHN), 27.4 (*C*H₂CH₂N), 24.2 (*C*H₂CH₂N), 21.1 (CH₃); HRMS (ESI⁺) calculated for C₂₀H₂₂N₂NaO₃ [M+Na]⁺ 361.1523; found 361.1518.

Buchwald-Hartwig Amination Screen 2 – 48 Well Screen

The reactions were performed in an aluminium heating block with 48 x 750 μ L vials, each with a teflon coated magnetic stirrer bar. These vials were arranged in 12 columns (labelled 1-12) and 4 rows (labelled A-D). The following powders were weighed into the vials using a Mettler Toledo QX96 powder dispenser inside a glovebox.

All vials in row A: Sodium *tert*-butoxide (4.7 mg, 49 µmol, 3.0 equiv).

All vials in rows B, F: Caesium carbonate (15.9 mg, 49 µmol, 3.0 equiv).

All vials in rows C, G: Potassium carbonate (6.8 mg, 49 µmol, 3.0 equiv).

All vials in rows D, H: Potassium phosphate tribasic (10.4 mg, 49 µmol, 3.0 equiv).

All vials in column 1: [XantPhos Pd(allyl)]Cl (1.2 mg, 1.6 µmol, 0.1 equiv).

All vials in column 2: [(R)-BINAP Pd(allyl)]Cl (1.4 mg, 1.6 µmol, 0.1 equiv).

All vials in column 3: Pd(dppf)Cl₂ · Dichloromethane (1.3 mg, 1.6 µmol, 0.1 equiv).

All vials in column 4: $[P(tBu)_3]$ Pd(crotyl) CI (0.7 mg, 2.0 µmol, 0.12 equiv).

All vials in column 5: [BippyPhos Pd(allyl)]OTf (1.3 mg, 1.6 µmol, 0.1 equiv)

All vials in column 6: AdBettPhos (1.3 mg, 2.0 µmol, 0.12 equiv) and palladium (II) acetate (0.5 mg, 2.2 µmol, 0.1 equiv).

All vials in column 7: [tBuBrettPhos Pd(allyl)]OTf (1.3 mg, 1.7 µmol, 0.1 equiv).

All vials in column 8: MorDalPhos (0.9 mg, 2.0 µmol, 0.12 equiv) and palladium (II) acetate (0.5 mg, 2.2 µmol, 0.1 equiv).

All vials in column 9: [BrettPhos Pd(crotyl)]OTf (1.4 mg, 1.7 µmol, 0.1 equiv).

All vials in column 10: [tBuXPhos Pd(allyl)]OTf (1.2 mg, 1.7 µmol, 0.1 equiv).

All vials in column 11: XPhos Pd(crotyl)Cl (1.1 mg, 1.6 µmol, 0.1 equiv).

All vials in column 12: RuPhos Pd(crotyl)Cl (1.1 mg, 1.7 µmol, 0.1 equiv).

Stock Solution: (2-Fluorophenyl)-[(3R)-3-phenylpyrazolidin-1-yl]methanone hydrochloride (**14**) (258 mg, 0.78 mmol) and 3-bromobenzotrifluoride (265 mg, 164 μ L, 1.18 mmol) in toluene (3.60 mL).

All vials were dosed with 75 μ L of Stock Solution which contained (2-fluorophenyl)-[(3*R*)-3-phenylpyrazolidin-1-yl]methanone hydrochloride (**14**) (5.4 mg, 16 μ mol, 1.0 equiv) and 3-bromobenzotrifluoride (5.5 mg, 34 μ L, 25 μ mol, 1.5 equiv).

N.B. **14** was obtained by stirring **9d** (1 g) in HCl/dioxane solution (10 mL) for 2 h. This solution was then concentrated in vacuo to give **14** as a pale yellow solid which was used in the screen without further purification.

The plate was sealed with a silicone and PFA mat and placed on an HEL polyblock. The plate was then heated at 90 °C for 16 h. The vials were the cooled to rt and DMSO (300 μ L) was added to each using a multichannel pipette. A 5 μ L aliquot was extracted from each then added to a 96-well analyical plate and diluted with DMSO (50 μ L). The plate was analyzed by reverse phase LCMS (XBridge C₁₈ 3.5- μ m 2.1 × 35 mm Column, 1.6 mL min⁻¹, 50 °C; gradient 5:95 to 99:1 (pH 9 H₂O + 10 mM NH₄HCO₂) / MeCN over 0.7 min + 0.3 min hold). The LCMS traces were processed using in-house software and the results visualized using Spotfire software to give Figure **S2**:

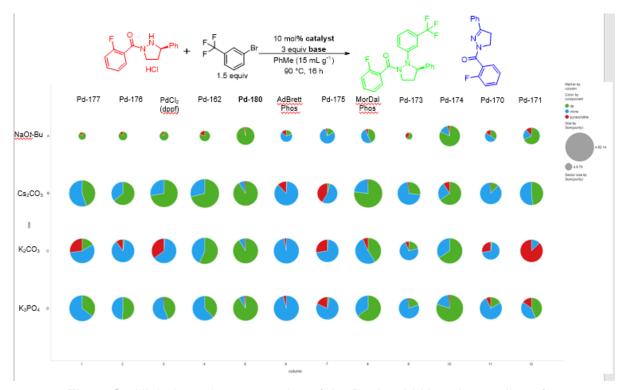


Figure S2 High throughput screening of the Buchwald-Hartwig coupling of 14

The cyclic hydrazine was dissolved in HCl/dioxane solution (4M, 2.0 mL) and stirred for 2 h at rt. It was then concentrated *in vacuo*. To this was added Pd-180 (0.05 equiv), caesium carbonate (3.0 equiv), aryl bromide (1.5 equiv) and toluene (1.0 M), and the solution was stirred at 90 °C for 20 h. The reaction mixture was then quenched with saturated ammonium chloride solution (5.0 mL), extracted with dichloromethane (3 x 5.0 mL) and dried over magnesium sulphate. It was then concentrated *in vacuo* and the crude product was purified by column chromatography (15-25% ethyl acetate in petroleum ether) to give the following compounds.

(R)-(2-Fluorophenyl)(3-phenyl-2-(3-(trifluoromethyl)phenyl)pyrazolidin-1-yl)methanone (10d). Following general method 6, cyclic hydrazine 9d (26 mg, 70 µmol, 1.0 equiv), with Pd-180 (3 mg, 4 µmol, 0.05 equiv), caesium carbonate (68 mg, 0.21 mmol, 3.0 equiv), 3-bromobenzotrifluoride (15 μ L, 0.11 mmol, 1.5 equiv) and toluene (70 μ L) gave **10d** as a clear oil (21 mg, 54 μ mol, 77%). $R_f = 0.15$ (15% ethyl acetate in petroleum ether); $[\alpha]^{32}D - 8.5$ (c 0.14, CHCl₃); Enantiomeric excess (94% ee) was determined by HPLC analysis (25 °C). [Chiralpak IA column 2-propanol/hexane = 1/99; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 33.9 min; t_R 37.8 min; IR (film) 2925, 1659, 1491, 1382, 1211 cm⁻¹; δH (500 MHz; d6-DMSO at 373 K) 7.60-7.03 (13H, m, Ar-H), 5.04 (1H, t, J 5.5, CHPh), 4.09-3.87 (1H, br m, NC*H*H), 3.65 (1H, dd, *J* 17.3, 8.9, NCH*H*), 2.68-2.58 (1H, br m, CHPhC*H*H), 2.34-2.22 (1H, br m, CHPhCHH); δC (125 MHz, d6-DMSO at 373 K) 159.7 (C=O), 157.8 (Ar-C), 145.7 (Ar-CH), 132.2 (Ar-CH), 130.5 (q, J 31.3, Ar-C), 130.5 (Ar-CH), 129.0 (Ar-CH), 127.9 (Ar-CH), 126.8 (Ar-CH), 124.6 (q, J 271, CF₃), 124.5 (d, J 15, Ar-C), 116.2 (d, J 23, Ar-CH), 2 CH₂, 1 CH and 4 Ar-CH not seen; δF (276 MHz; d6-DMSO) -61.1 (minor), -61.4 (CF₃), -114.7 (minor), -115.1 (Ar-CF); HRMS (ESI+) calculated for F₄C₂₃H₁₈N₂O [M+Na]+ 437.1247; found 437.1248.

(*R*)-(4-Methoxyphenyl)(3-phenyl-2-(pyridin-2-yl)pyrazolidin-1-yl)methanone (10g). Following general method 6, cyclic hydrazine 9g (25 mg, 65 μmol, 1.0 equiv), with Pd-180 (3 mg, 3 μmol, 0.05 equiv), coording corrected (64 mg, 0.20 mmol, 3.0 equiv), 2 hydrogenyriding (9)

caesium carbonate (64 mg, 0.20 mmol, 3.0 equiv), 2-bromopyridine (9 μ L, 0.10 mmol, 1.5 equiv) and toluene (65 μ L) gave **10g** as a clear oil (19 mg, 52 μ mol, 80%). R_f = 0.13 (33% ethyl acetate in petroleum ether); $[\alpha]^{32}_D + 9.2$ (c 0.23, dichloromethane).

IR (film) 2932, 1651, 1597, 1461, 1432, 1258, 1173 cm⁻¹; δH (400 MHz; CDCl₃) 8.32 (1H, s, Ar-CH), 7.60 (1H, t, J 7.3, Ar-H), 7.53-6.87 (9H, m, Ar-H), 6.69 (1H, s, Ar-H), 5.88 (1H, t, J 7.5, CHPh), 4.70-3.39 (1H, br m, NCHH), 3.76 (3H, s, CH₃), 3.52-3.49 (1H, br m, NCHH), 2.53-2.31 (2H, br m, CHPhCH₂); δC (100 MHz; CDCl₃) 161.5 (C=O), 148.4 (Ar-C), 138.2 (Ar-C), 130.3 (Ar-CH), 128.4 (Ar-CH), 127.2 (Ar-CH), 126.7 (Ar-CH), 117.5 (Ar-CH), 113.0 (Ar-CH), 109.1 (Ar-CH), 66.1 (CH), 55.2 (CH₃), 44.7 (CH₂), 2 Ar-C, 2 Ar-CH and 1 CH₂ not seen; HRMS (ESI*) calculated for C₂₂H₂₁N₃O₂ [M+H]* 360.1712; found 360.1712.

General method 7: Buchwald-Hartwig Amination with Pd(OAc)2 and Xantphos

N.B. Magnesium turnings were activated by washing them with 1.0 M hydrochloric acid solution (2×20 mL), water (20 mL) and methanol (20 mL).

To a solution of cyclic hydrazine in methanol (0.1 M) was added activated magnesium turnings (5.0 equiv), and the mixture was stirred vigorously (800 rpm) for 2 h at rt. The reaction mixture was quenched with saturated ammonium chloride solution (10 mL) and extracted with dichloromethane (3 x 5 mL). The combined organic extracts were washed with brine (30 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was dissolved in toluene (1.0 M), and palladium acetate (5-10 mol%), Xantphos (10-20 mol%), sodium *tert*-butoxide (2.0 equiv) and aryl bromide (1.5 equiv) were added and the solution was stirred at 90 °C for 20 h. The reaction mixture was then quenched with saturated ammonium chloride solution (5 mL), extracted with dichloromethane (3 x 5 mL), dried over magnesium sulphate and then concentrated *in vacuo*. The crude product was purified by column chromatography (15-25% ethyl acetate in petroleum ether) to give the following compounds.

tert-Butyl (*R*)-5-([1,1'-biphenyl]-4-yl)-2-(4-cyanophenyl)pyrazolidine-1-carboxylate (9h). Following general method 7, **8k** (40 mg, 0.12 mmol, 1.0 equiv), magnesium turnings (15 mg, 0.60 mmol, 5.0 equiv) and methanol (1.2 mL, 0.1 M), then palladium acetate (3 mg, 12 μ mol, 0.1 equiv), Xantphos (14 mg, 25 μ mol, 0.2 equiv), sodium *tert*-butoxide (24 mg, 0.25 mmol, 2.0 equiv) and 4-bromobenzonitrile (45 mg, 0.25 mmol, 2.0 equiv) in toluene (0.12 mL, 1.0 M) yielded **9h** as a clear oil (45 mg, 0.11 mmol, 86%). R_f = 0.23 (25% ethyl acetate in petroleum ether); [α]³²_D-10.7 (*c* 0.42, CHCl₃); IR (film) 2977, 2928, 2218, 1705, 1603, 1509, 1338, 1142 cm⁻¹;

δH (500 MHz; CDCl₃) 7.48 (4H, dd, *J* 8.0, 4.8, Ar-H), 7.44 (2H, d, *J* 8.2, Ar-H), 7.35 (2H, t, *J* 7.6, Ar-H), 7.27 (1H, t, *J* 7.4, Ar-H), 7.21 (2H, d, *J* 8.2, Ar-H), 6.86 (2H, d, *J* 8.8, Ar-H), 5.26 (1H, t, *J* 6.9, CHPh), 3.77-3.70 (1H, m, NC*H*H), 3.66 (1H, dt, *J* 10.5, 7.4, NCH*H*), 2.53 (1H, td, *J* 12.5, 7.1, CHPhC*H*H), 2.23-2.12 (1H, m, CHPhCH*H*), 1.36 (9H, s, C(CH₃)₃); δ*C* (125 MHz; CDCl₃) 152.8 (C=O), 140.5 (Ar-C), 139.8 (Ar-C), 133.2 (Ar-C), 128.8 (Ar-CH), 127.4 (Ar-CH), 127.3 (Ar-CH), 127.0 (Ar-CH), 126.6 (Ar-C), 126.6 (Ar-CH), 119.9 (Ar-C) 114.2 (Ar-CH), 102.1 (CN), 82.3 (C), 62.8 (CH), 50.6 (CH₂), 35.1 (CH₂), 28.2 (CH₃); HRMS (ESI⁺) calculated for C₂₇H₂₇N₃O₂ [M+Na]⁺ 448.1995; found 448.1999.

tert-Butyl (R)-6-phenyl-2-(pyridin-2-yl)tetrahydropyridazine-1(2H)carboxylatemethanone (9i). Following general method 7, 8t (208 mg, 0.50 mmol, 1.0 equiv), methanol (20 mL, 0.1 M), activated magnesium turnings (61 mg, 2.50 mmol, 5.0 equiv), then toluene (1.0 mL, 0.5 M), palladium acetate (5.6 mg, 25 μmol, 5 mol%), Xantphos (29 mg, 50 µmol, 10 mol%), sodium tert-butoxide (96 mg, 1.0 mmol, 2.0 equiv), and 2-bromopyridine (95 µL, 1.0 mmol, 2.0 equiv) yielded 9i as an off-white solid (113 mg, 0,33 mmol, 67%). M.p. 72-74 °C; $R_f = 0.23$ (20% EtOAc in petroleum ether); $[\alpha]^{29}$ _D +68.8 (c 0.53, CHCl₃). Enantiomeric excess (91% ee) was determined by HPLC analysis (25 °C). [Chiralpak OD-H column 2-propanol/hexane = 0.8/99.2; flow rate = 1.0 mL/min; detection wavelength = 254 nm] t_R 6.7 min; t_R 7.3 min; IR (neat) 2967, 2876, 1591, 1476, 1439, 1299, 1153, 1075, 1044, 877, 766, 701 cm⁻¹; δH (500 MHz; CDCl₃) 8.11 (1H, d, J 4.4, Ar-H), 7.40 (2H, d, J7.4, Ar-H), 7.34 (1H, ddd, J8.5, 7.0, 1.3, Ar-H), 7.28 (2H, d, J7.2, Ar-H), 7.22 (1H, t, J7.2, Ar-H), 6.57 (2H, dd, J6.9, 5.3, Ar-H), 5.40 (1H, br s, NCH), 4.42 (1H, br s, NC*H*H), 3.33 (1H, br s, NCH*H*), 2.10-2.00 (3H, m, C*H*₂CHN, C*H*HCH₂N), 1.67-1.60 (1H, m, CHHCH₂N), 1.31 (9H, s, (CH₃)₃); δC (125 MHz; CDCl₃) 159.5 (Ar-C), 147.0 (Ar-CH), 141.3 (Ar-C), 136.9 (Ar-CH), 128.5 (Ar-CH), 127.4 (Ar-CH), 127.3 (Ar-CH), 113.5 (Ar-CH), 107.8 (Ar-CH), 81.6 (C), 59.1 (NCH), 43.5 (NCH₂), 28.2 (Boc-CH₃), 27.3 (CH₂CHN), 20.0 (CH₂CH₂N), Boc C=O not observed; HRMS (ESI+) calculated for C₂₀H₂₆N₃O₂ [M+H]+ 340.2020; found 340.2023.

tert-Butyl (*R*)-2-(4-cyanophenyl)-6-phenyltetrahydropyridazine-1(2*H*)-carboxylate (9m). Following general method 7, 8t (208 mg, 0.50 mmol, 1.0 equiv), methanol (20 mL, 0.1 M), activated magnesium turnings (61 mg, 2.50 mmol, 5.0 equiv), then toluene (1.0 mL, 0.5 M), palladium acetate (5.6 mg, 25 μ mol, 5 mol%), Xantphos (29 mg, 50 μ mol, 10 mol%), sodium *tert*-butoxide (96 mg, 1.0 mmol, 2.0 equiv), and 4-bromobenzonitrile (182 mg, 1.0 mmol, 2.0 equiv) gave 9m as a colourless oil that crystallised upon standing to an off-white solid (104 mg, 0.29 mmol, 57%). M.p. 124-125 °C; R_f = 0.19 (20% EtOAc in petroleum ether); [α]²⁵_D+123.5 (*c* 0.08, CHCl₃); IR (neat)

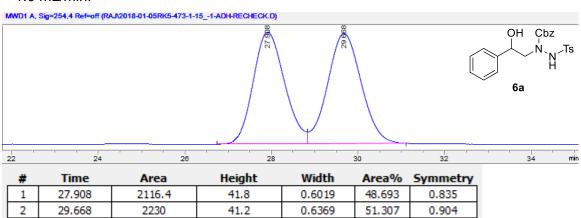
2977, 2860, 2227, 1704, 1606, 1297, 1168, 835, 714 cm⁻¹; δ*H* (400 MHz; CDCl₃) 7.40 (2H, d, *J* 8.9, Ar-*H*), 7.38-7.34 (2H, m, Ar-*H*), 7.33-7.27 (3H, m, Ar-*H*), 6.64 (2H, d, *J* 8.8, Ar-*H*), 5.35 (1H, br s, NC*H*), 3.67 (1H, dd, *J* 16.6, 9.1, NC*H*H), 3.49 (1H, br s, NCH*H*), 2.17-2.05 (2H, m, C*H*HCHN, C*H*HCH₂N), 1.93 (1H, dd, *J* 21.6, 10.8, CH*H*CHN), 1.70-1.63 (1H, m, CH*H*CH₂N), 1.26 (9H, br s, (CH₃)₃); δ*C* (125 MHz; CDCl₃) 155.6 (Boc C=O),152.3 (Ar-C), 141.2 (Ar-C), 133.3 (Ar-CH), 128.7 (Ar-CH), 127.8 (Ar-CH), 127.21 (Ar-CH), 120.4 (Ar-C), 111.5 (Ar-CH), 100.1 (CN), 82.1 (C), 60.1 (NCH), 45.8 (NCH₂), 28.2 (Boc-CH₃), 27.0 (*C*H₂CHN), 20.1 (*C*H₂CH₂N); HRMS (ESI⁺) calculated for C₂₂H₂₅N₃NaO₂ [M+Na]⁺ 386.1839; found 386.1837.

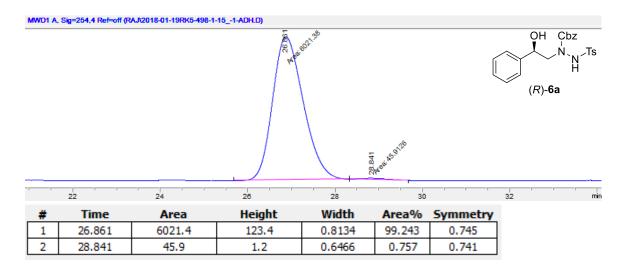
(*R*)-(2-Chloro-3-(trifluoromethyl)phenyl)(3-(4-fluorophenyl)-2-(pyridin-2-yl)tetrahydropyridazin-1(2*H*)-yl)methanone (10n). A solution of cyclic hydrazine 9n (80 mg, 165 µmol, 1.0 equiv) in 4 M HCl/dioxane (2.5 mL) was stirred for 2 h at rt. The solvent was removed

in vacuo and dichloromethane (15 mL) and saturated NaHCO₃ solution (15 mL) were added. The layers were separated and the aqueous one was extracted with dichloromethane (2 x 15 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was dissolved anhydrous toluene (1.0 mL), Pd(OAc)₂ (3.7 mg, 16.5 µmol, 10 mol%), Xantphos (19 mg, 33 µmol, 20 mol%), sodium tertbutoxide (32 mg, 0.33 mmol, 2.0 equiv), and 2-bromopyridine (31 µL, 0.33 mmol, 2.0 equiv) were added and the reaction mixture was stirred at 90 °C for 18 h. The mixture was cooled to rt, then quenched with saturated Ammonium chloride solution (10 mL) and extracted with dichloromethane (3 x 10 mL). The combined organic extracts were washed with brine (25 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (33-50% ethyl acetate in petroleum ether) to give 10n as a paleyellow oil (38 mg, 82 µmol, 50%). $R_f = 0.42$ (50% EtOAc in petroleum ether); $[\alpha]^{29}D = 57.9$ (c 0.12, CHCl₃); IR (neat) 2916, 1659, 1588, 1510, 1467, 1432, 1316, 1222, 1132, 1090, 808, 765, 730, 673 cm⁻¹; δH (600 MHz; CDCl₃) Only chemical shifts for the major confomer are reported: 8.33 (1H, d, J 4.5, Ar-H), 7.72-7.69 (2H, m, Ar-H), 7.55 (1H, d, J 7.8, Ar-H), 7.12 (1H, br s, Ar-H), 6.96-6.90 (2H, m, Ar-H), 6.82-6.78 (2H, m, Ar-H), 6.69 (2H, t, J 8.4, Ar-H), 5.62 (1H, s, NCH), 4.60 (1H, dt, J 13.0, 7.8, NCHH), 3.59-3.50 (1H, m, NCHH), 2.27-2.22 (1H, m, C*H*H), 2.20-2.14 (1H, m, C*H*H), 2.13-2.07 (1H, m, CH*H*), 1.63-1.56 (1H, m, CH*H*); δC (125 MHz; CDCl₃) 169.5 (C=O), 162.1 (d, J 246.0, CF), 160.3 (Ar-C), 148.9 (Ar-CH), 138.5 (d, J 9.0, Ar-CH), 138.0 (Ar-C), 136.1 (Ar-C), 128.1 (d, J 8.0, Ar-CH), 125.7 (Ar-CH), 123.9 (Ar-CH), 122.5 (q, J 273.5, CF₃), 121.3 (Ar-CH), 117.0 (Ar-CH), 115.0 (d, J 21.5, Ar-CH), 108.1 (Ar-CH), 60.6 (NCH), 40.4 (NCH₂), 23.7 (CH₂NCH), 19.5 (CH₂NCH₂), 2 Ar-C not seen; δF (282 MHz; CDCl₃) -61.5 (CF₃), -116.1 (CF); HRMS (ESI⁺) calculated for C₂₃H₁₈CIF₄N₃NaO [M+Na]⁺ 486.0967; found 486.0963.

tert-Butyl (S)-3-phenyl-2-(3-(trifluoromethyl)phenyl)-1,2-diazetidine-1-Boc carboxylate (9q). Following general method 7, cyclic hydrazine 8b (100 mg, 0.26 mmol, 1.0 equiv), magnesium turnings (31 mg, 1.29 mmol, 5.0 equiv) and methanol (5.0 mL) then palladium acetate (6.0 mg, 26 µmol, 0.1 equiv), Xantphos (30 mg, 51 µmol, 0.2 equiv), sodium tert-butoxide (49 mg, 0.51 mmol, 2.0 equiv), 3trifluoromethyl-bromobenzene (71 µL, 0.51 mmol, 2.0 equiv) and toluene (5.0 mL) yielded 9q as an orange oil (35 mg, 90 μ mol, 35%). R_f = 0.78 (25% EtOAc/petroleum ether); $[\alpha]^{24}$ _D +4.6 (c 0.23, CHCl₃); IR (film) 2978, 1715, 1327, 1120, 1028 cm⁻¹; δH (500 MHz; CDCl₃); 7.56 (2H, d, J7.3, Ar-H), 7.48 (2H, t, J7.5, Ar-H), 7.42 (1H, d, J7.2, Ar-H), 7.33 (1H, t, J7.9, Ar-H), 7.22 (1H, d, J7.7, Ar-H), 7.15 (1H, s, Ar-H), 6.94 (1H, d, J8.6, Ar-H), 4.94 (1H, t, J8.4, CHPh), 4.58 (1H, t, J 8.5, NCHH) 4.10 (1H, t, J 7.6, NCHH), 1.56 (9H, s, C(CH₃)₃); δC (125 MHz; CDCl₃) 161.1 (C=O), 153.6 (Ar-C), 139.1 (Ar-C), 130.9 (q, J 31.3, Ar-C), 129.1 (Ar-CH), 129.0 (Ar-CH), 128.7 (Ar-CH), 126.7 (Ar-CH), 124.1 (q, J 271.3, CF₃), 118.4 (q, J 3.8, Ar-CH), 117.4 (Ar-CH), 111.3 (q, J 5.0, Ar-CH), 82.5 (C), 67.7 (CH), 56.8 (CH₂), 28.2 (CH₃); δF (376 MHz; CDCl₃) -62.8 (CF₃); HRMS (ESI⁺) calculated for C₂₀H₂₁N₂O₂F₃ [M+Na]⁺ 401.1447; found 401.1450.

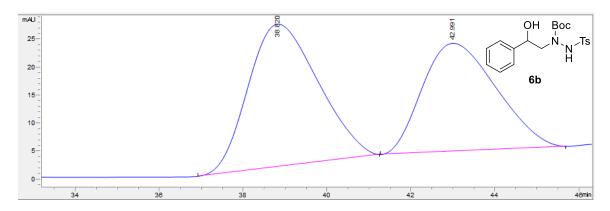
(S)-4-Phenyl-1-(3-trifluoromethyl)phenyl-1,2-diazetidine trifluoroacetic acid (10q). Cyclic hydrazine 9q (14 mg, 38 μmol, 1.0 equiv), trifluoroacetic acid (30 μL, 0.38 mmol, 10.0 equiv) and dichloromethane (1.0 mL) were stirred at rt for 2 h then concentrated *in vacuo* to yield 10q as an orange oil (13 mg, 33 μmol, 88%). [α]²⁴_D-4.8 (*c* 0.36, CHCl₃); IR (film) 2920, 2852 1759, 1460, 1232, 1032 cm⁻¹; δ*H* (500 MHz; CDCl₃); 7.46-7.37 (6H, m, Ar-H), 7.20 (1H, d, *J* 7.6, Ar-H), 7.05 (1H, s, Ar-H), 6.99 (1H, d, *J* 8.1, Ar-H), 5.69 (1H, t, *J* 8.0, CHPh), 4.20 (1H, t, *J* 8.3, NC*H*H), 3.73 (1H, t, *J* 8.3, NCH*H*), δ*C* (125 MHz; CDCl₃) 146.4 (Ar-C), 137.1 (Ar-C), 130.0 (Ar-CH), 129.4 (Ar-CH), 129.1 (Ar-CH), 125.7 (Ar-CH), 118.2 (q, *J* 3.8, Ar-CH), 116.4 (Ar-CH), 109.7 (q, *J* 2.5, Ar-CH), 74.5 (CH), 53.9 (CH₂), 28.2 (CH₃), 1 C=O, 2 CF₃ and 1 Ar-C not seen; δ*F* (376 MHz; CDCl₃) -62.9 (CF₃), -70.8 and -70.9 (1:1 rotamer, CF₃CO₂H); HRMS (ESI⁺) calculated for C₁₅H₁₃N₂F₃ [M+Na]⁺ 301.0929; found 301.0930.

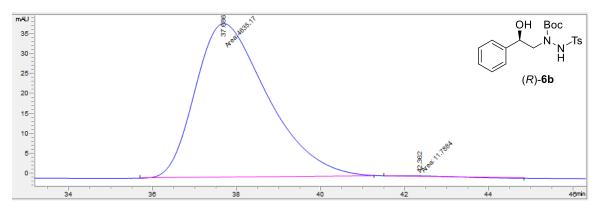

HPLC Profiles of 6a-v, 8a-v, 10b, 10d, 10i and 10o


HPLC analysis was conducted on an Agilent Technologies 1200 Series HPLC, using a ratio of HPLC grade hexane and propan-2-ol as the eluent, and detection by UV at 254 nm. *Racemic* traces were produced by NaBH₄-mediated reduction of the corresponding ketone or mixing of equal quantities of the *R* and *S* enantiomers.

The HPLC profiles of **6h**, **6i**, **6k**, **6r**, and **6s** were not determined, the data for the corresponding hydrazines (**8h**, **8i**, **8k**, **8r**, and **8s**) were used to determine the expected enantiomeric excesses of these compounds.

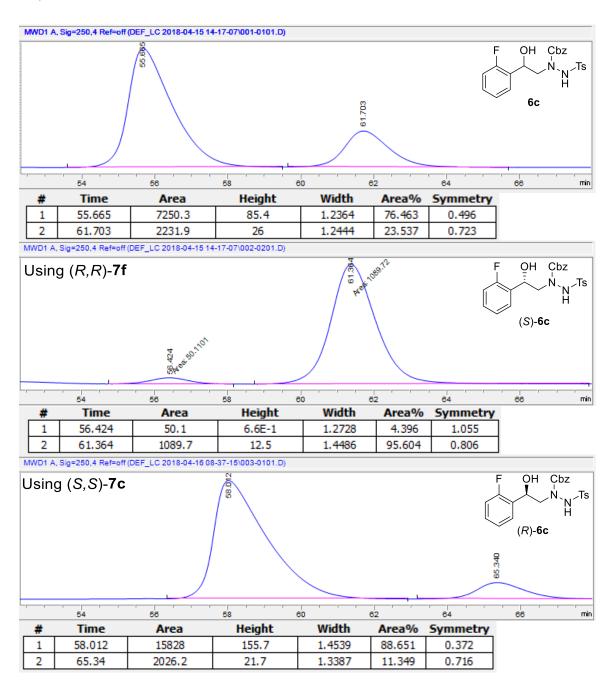
HPLC profile of 6a


Chiralpak AD-H column (0.46 cm \emptyset x 25 cm), 85:15 hexane:propan-2-ol, T = 25°C, flow rate = 1.0 mL/min.

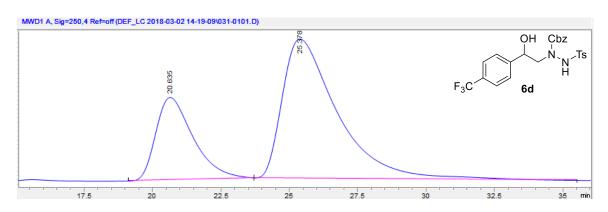


HPLC Trace of 6b

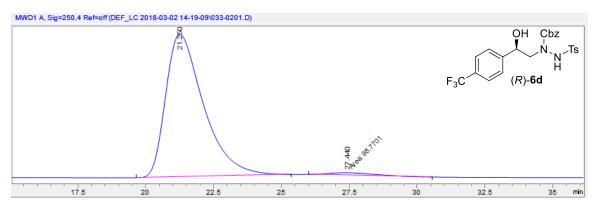
Chiralpak IA column (0.46 cm ø x 25 cm) 98.5:1.5 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.


#	Time	Area	Height	Width	Area%	Symmetry
1	38.82	2943.5	25.5	1.5475	55.505	0.71
2	42.991	2359.6	19.3	1.4556	44.495	0.708

#	Time	Area	Height	Width	Area%	Symmetry
1	37.686	4635.2	38.7	1.9974	99.746	0.632
2	42.362	11.8	1.5E-1	1.3107	0.254	0.45

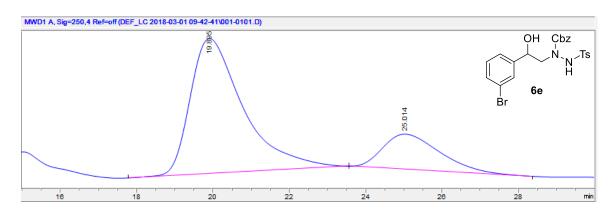

HPLC profile of 6c

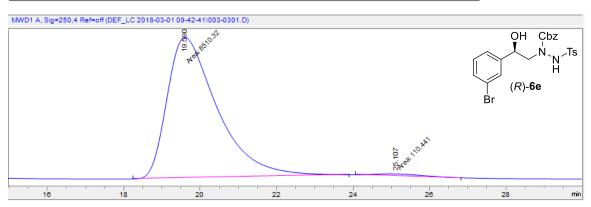
Chiralpak IA column (0.46 cm \emptyset x 25 cm) 95:5 hexane:propan-2-ol, T = 25 °C, flow rate 1.0 mL/min.



HPLC profile of 6d

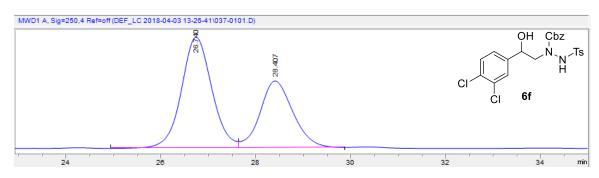
Chiralpak OD-H column (0.46 cm ø x 25 cm) 92:8 hexane:propan-2-ol, T = 25 °C, flow rate 1.0 mL/min.

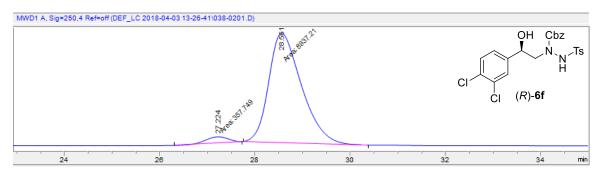

#	Time	Area	Height	Width	Area%	Symmetry
1	20.635	3538.6	37.4	1.3676	28.519	0.594
2	25.378	8869.5	63.1	1.9315	71.481	0.434


#	Time	Area	Height	Width	Area%	Symmetry
1	21.25	4579.6	47.3	1.406	97.889	0.559
2	27.44	98.8	8.4E-1	1.9503	2.111	0.592

HPLC profile of **6e**

Chiralpak OD-H column (0.46 cm ø x 25 cm) 91:9 hexane:propan-2-ol, T = 25 °C, flow rate 1.0 mL/min.


#	Time	Area	Height	Width	Area%	Symmetry
1	19.895	5848	60.5	1.4069	77.980	0.535
2	25.014	1651.3	15.8	1.27	22.020	0.628

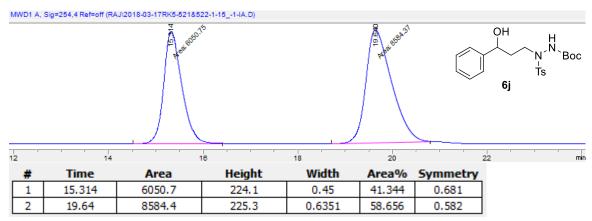

#	Time	Area	Height	Width	Area%	Symmetry
1	19.59	8510.3	93.2	1.522	98.719	0.534
2	25.107	110.4	1.3	1.3682	1.281	0.458

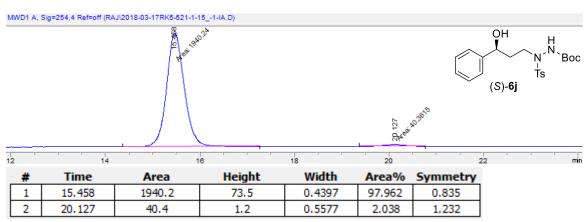
HPLC profile of 6f

Chiralpak IA column (0.46 cm ø x 25 cm) 90:10 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

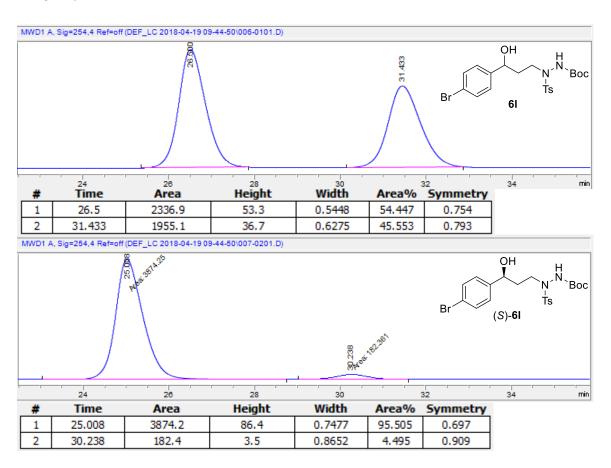

#	Time	Area	Height	Width	Area%	Symmetry
1	26.74	3715.8	83.2	0.6833	60.641	0.92
2	28.407	2411.8	50.1	0.7339	39.359	0.812

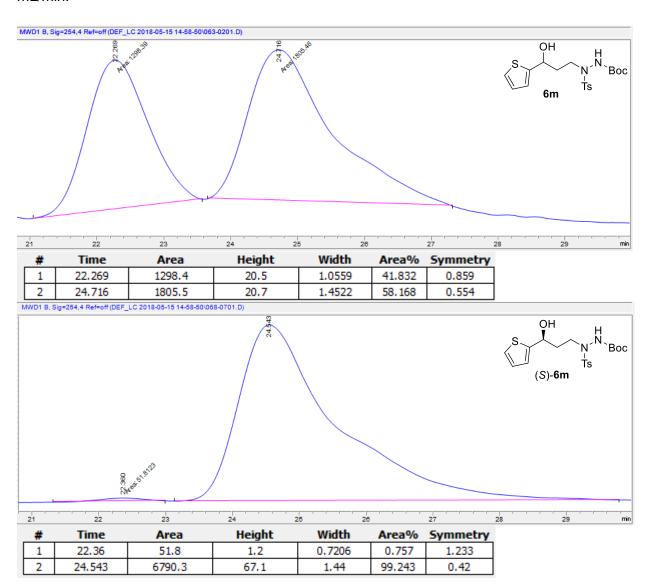
#	Time	Area	Height	Width	Area%	Symmetry
1	27.224	357.7	10.7	0.555	3.849	1.281
2	28.561	8937.2	186.6	0.7984	96.151	0.636


HPLC profile of 6g


Chiralpak IA column (0.46 cm ø x 25 cm) 95:5 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

HPLC profile of 6j

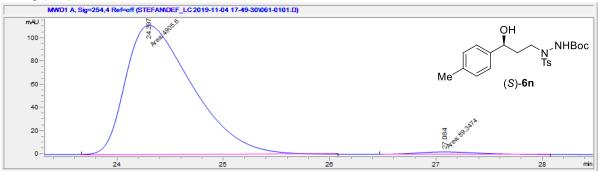

Chiralpak IA column (0.46 cm ø x 25 cm), 85:15 hexane:propan-2-ol, T = 25°C, flow rate = 1.0 mL/min.


HPLC profile of 61

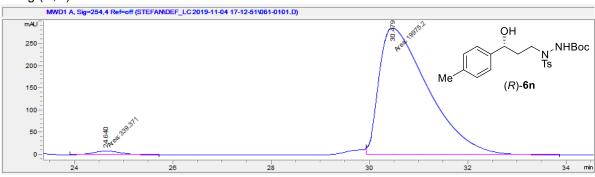
Chiralpak OD-H column (0.46 cm ø x 25 cm) 90:10 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.


HPLC profile of 6m

Chiralpak IA column (0.46 cm ø x 25 cm) 95:5 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

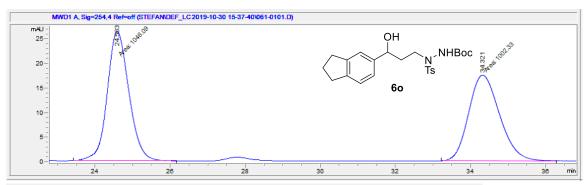

HPLC profile of 6n

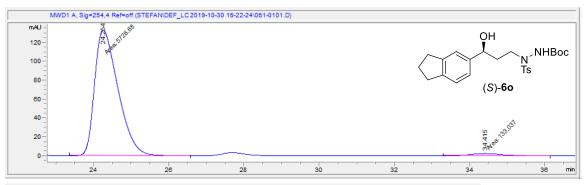
Chiralpak IA column (0.46 cm ø x 25 cm), 90:10 hexane:propan-2-ol, T = 25°C, flow rate = 1.0 mL/min.


#	Time	Area	Height	Width	Area%	Symmetry
1	22.756	5313.1	130.3	0.6794	49.647	0.526
2	28.211	5388.6	102.1	0.8795	50.353	0.523

Using (S,S)-7c

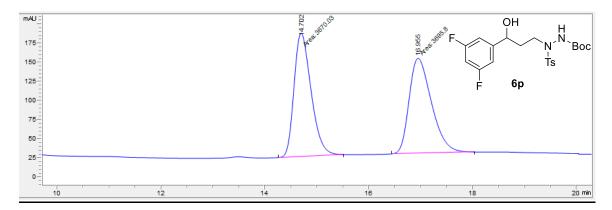
#	Time	Area	Height	Width	Area%	Symmetry
1	24.297	4905.6	111.9	0.7307	98.211	0.524
2	27.084	89.3	2.1	0.6949	1.789	0.76

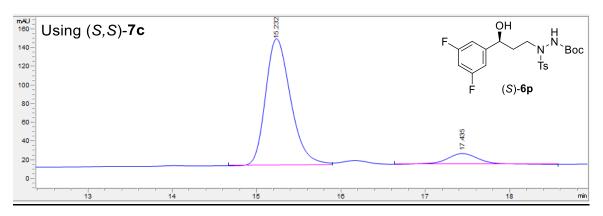

Using (*R*,*R*)-**7c**


#	Time	Area	Height	Width	Area%	Symmetry
1	24.64	339.4	8.4	0.6716	1.671	0.843
2	30.479	19975.2	287.2	1.159	98.329	0.377

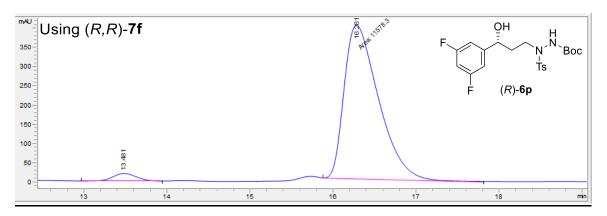
HPLC profile of 60

Chiralpak IA column (0.46 cm ø x 25 cm), 90:10 hexane:propan-2-ol, T = 25°C, flow rate = 1.0 mL/min.

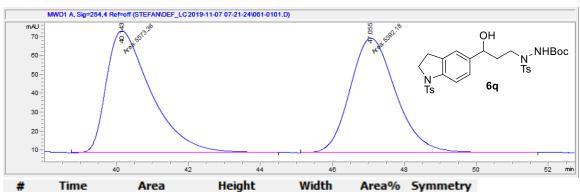

#	Time	Area	Height	Width	Area%	Symmetry
1	24.583	1046.1	26.1	0.6682	51.068	0.84
2	34.321	1002.3	17.3	0.9634	48.932	0.766


	#	Time	Area	Height	Width	Area%	Symmetry
	1	24.254	5726.7	132.8	0.7186	97.730	0.561
ı	2	34.415	133	2.4	0.9216	2.270	0.987

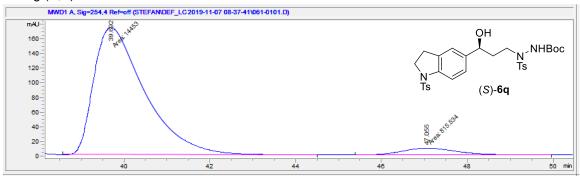
HPLC Trace of 6p


Chiralpak IA column (0.46 cm \emptyset x 25 cm) 90:10 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

_	#	Time	Area	Height	Width	Area%	Symmetry
	1	14.702	3670	160.5	0.381	49.825	0.691
	2	16.955	3695.8	123.4	0.4992	50.175	0.652


#	Time	Area	Height	Width	Area%	Symmetry
1	15.232	2820	135.9	0.32	90.121	0.728
2	17.435	309.1	11.5	0.4044	9.879	0.915

#	Time	Area	Height	Width	Area%	Symmetry
1	13.481	401.3	19.9	0.3136	3.350	0.86
2	16.281	11578.3	399.8	0.4827	96.650	0.538

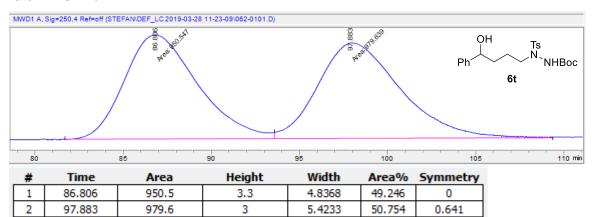

HPLC profile of 6q

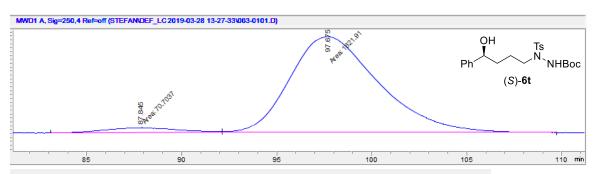
Chiralpak IA column (0.46 cm ø x 25 cm), 80:20 hexane:propan-2-ol, T = 25°C, flow rate = 1.0 mL/min.


Time Area Height Width Area% Symmetry 1 40.143 5573.4 64.8 1.4331 50.826 0.507 2 47.055 5392.2 61 1.4743 49.174 0.797

Using (S,S)-7c

#	Time	Area	Height	Width	Area%	Symmetry
1	39.692	14453	174.6	1.3794	94.659	0.491
2	47.055	815.5	9.2	1.4793	5.341	0.785

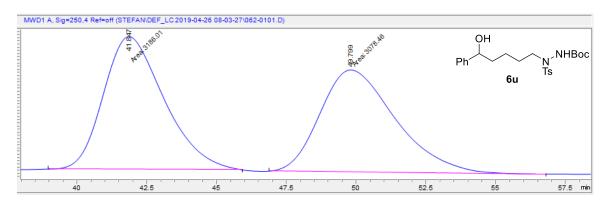

Using (R,R)-7c

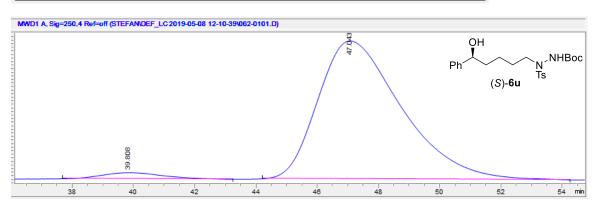


١.	#	Time	Area	Height	Width	Area%	Symmetry
	1	41.289	1716.1	17.3	1.6486	6.208	0.646
	2	46.166	25927.2	291.5	1.1131	93.792	0.951

HPLC profile of 6t

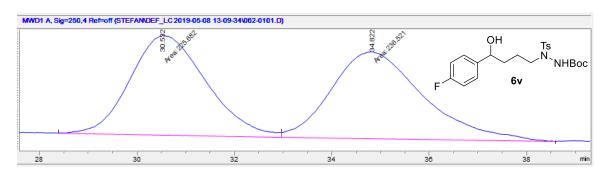
Chiralpak OD-H column (0.46 cm ø x 25 cm), 97.5:2.5 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

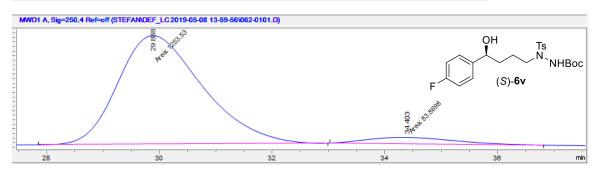



#	Time	Area	Height	Width	Area%	Symmetry
1	87.845	70.7	2.7E-1	4.433	4.177	0.879
2	97.675	1621.9	5	5.448	95.823	0.736

HPLC profile of **6u**

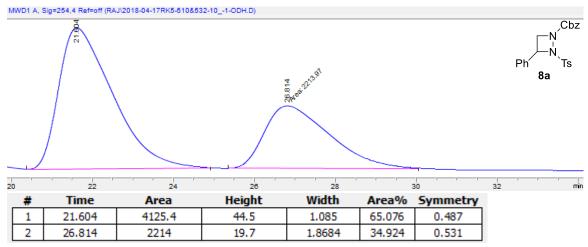
Chiralpak OD-H column (0.46 cm ø x 25 cm), 96:4 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

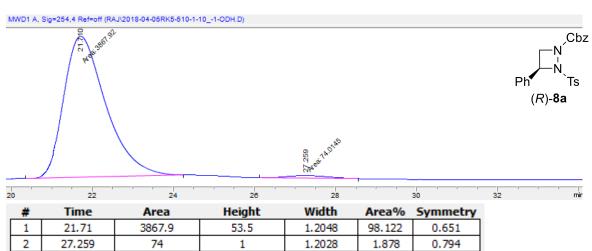

#	Time	Area	Height	Width	Area%	Symmetry
1	41.847	3186	21.1	2.5185	50.858	0.715
2	49.799	3078.5	16.2	3.1634	49.142	0.679


#	Time	Area	Height	Width	Area%	Symmetry
1	39.808	249.3	1.8	1.6541	3.275	0.718
2	47.043	7364.8	38.8	2.418	96.725	0.575

HPLC profile of **6v**

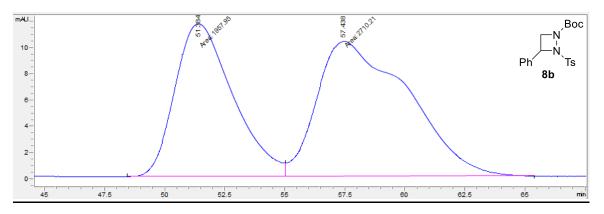
Chiralpak OD-H column (0.46 cm ø x 25 cm), 96:4 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

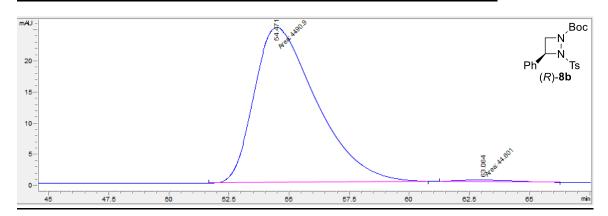

#	Time	Area	Height	Width	Area%	Symmetry
1	30.532	225.7	2.1	1.8276	48.827	0
2	34.822	236.5	1.8	2.1969	51.173	0.771



#	Time	Area	Height	Width	Area%	Symmetry
1	29.888	1253.5	11.9	1.7504	93.729	0.699
2	34.403	83.9	7.4E-1	1.8905	6.271	0.73

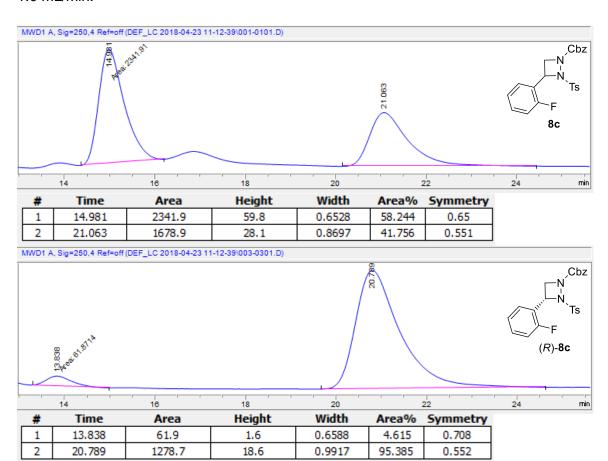
HPLC profile of 8a


Chiralcel OD-H column (0.46 cm \emptyset x 25 cm), 90:10 hexane:propan-2-ol, T = 25°C, flow rate = 1.0 mL/min.

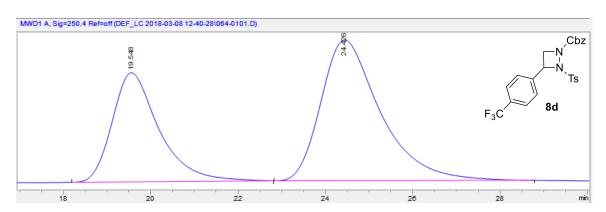


HPLC Trace of 8b

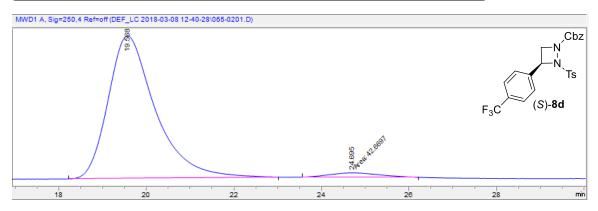
Chiralpak IA column (0.46 cm ø x 25 cm) 99.4:0.6 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.


#	Time	Area	Height	Width	Area%	Symmetry
1	51.384	1958	11.7	2.7922	41.943	0
2	57.438	2710.2	10.3	4.3787	58.057	0.419

#	Time	Area	Height	Width	Area%	Symmetry
1	54.471	4490.9	24.9	3.0044	99.017	0.552
2	63.064	44.6	2.9E-1	2.5884	0.983	0.728


HPLC profile of 8c

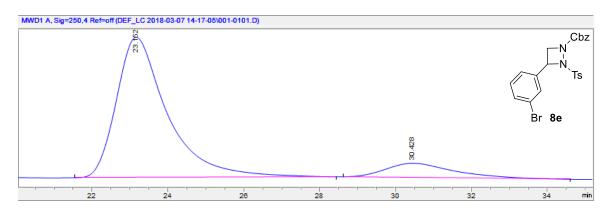
Chiralpak OD-H column (0.46 cm \emptyset x 25 cm) 90:10 hexane:propan-2-ol, T = 25 °C, flow rate 1.0 mL/min.



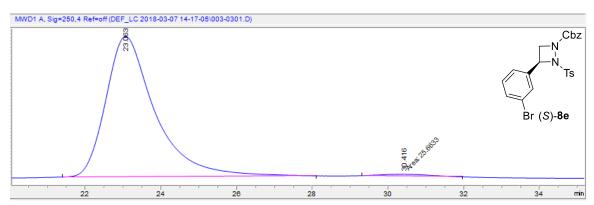
HPLC profile of 8d

Chiralpak OD-H column (0.46 cm ø x 25 cm) 90:10 hexane:propan-2-ol, T = 25 °C, flow rate 1.0 mL/min.

#	Time	Area	Height	Width	Area%	Symmetry
1	19.548	1473.7	19.8	1.0899	37.836	0.648
2	24.426	2421.3	25.6	1.3272	62.164	0.618



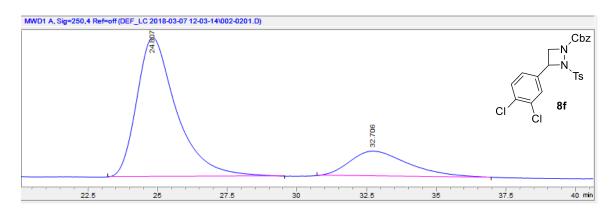
١.	#	Time	Area	Height	Width	Area%	Symmetry
	1	19.568	1326.5	17.7	1.0588	96.884	0.658
	2	24.695	42.7	5.3E-1	1.3305	3.116	0.78


HPLC profile of 8e

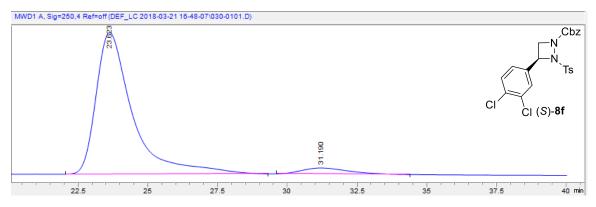
Chiralpak OD-H column (0.46 cm ø x 25 cm) 90:10 hexane:propan-2-ol, T = 25 °C, flow rate 1.0 mL/min.

N.B. The racemic HPLC trace was generated by mixing the (R) and (S) enantiomers.

#	Time	Area	Height	Width	Area%	Symmetry
1	23.152	2653.5	28.5	1.2975	87.914	0.589
2	30.428	364.8	2.9	1.4815	12.086	0.619

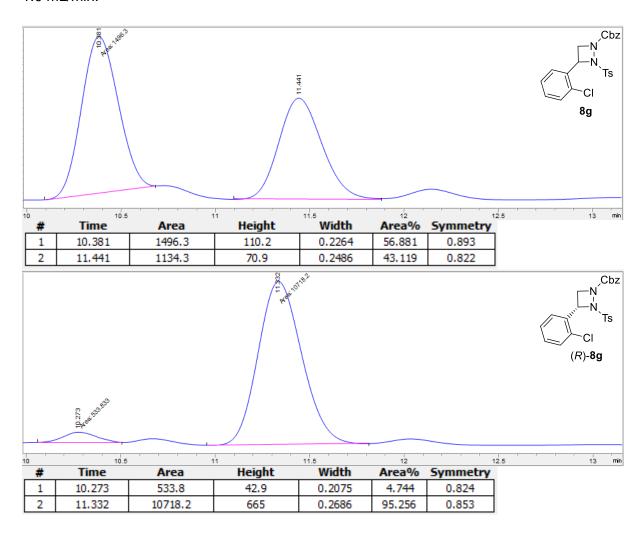


#	Time	Area	Height	Width	Area%	Symmetry
1	23.063	1953.3	21.6	1.2654	98.703	0.626
2	30.416	25.7	2.9E-1	1.4739	1.297	0.716


HPLC profile of 8f

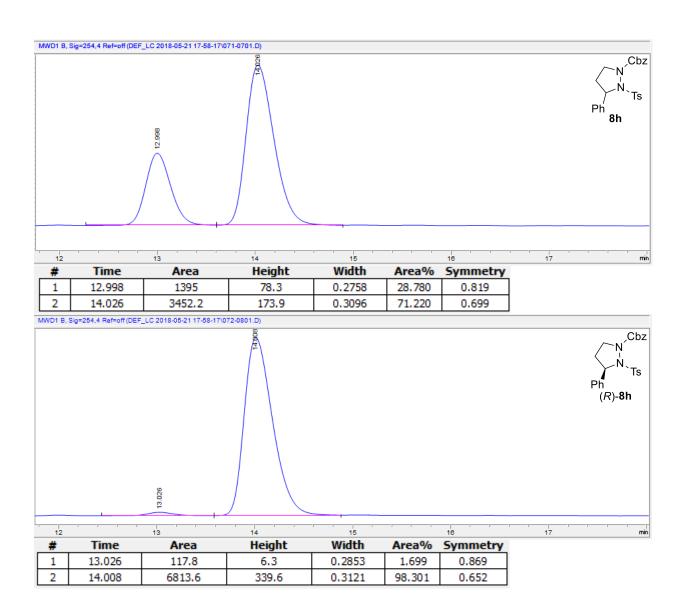
Chiralpak OD-H column (0.46 cm ø x 25 cm) 90:10 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

N.B. The racemic HPLC trace was generated by mixing the (R) and (S) enantiomers.

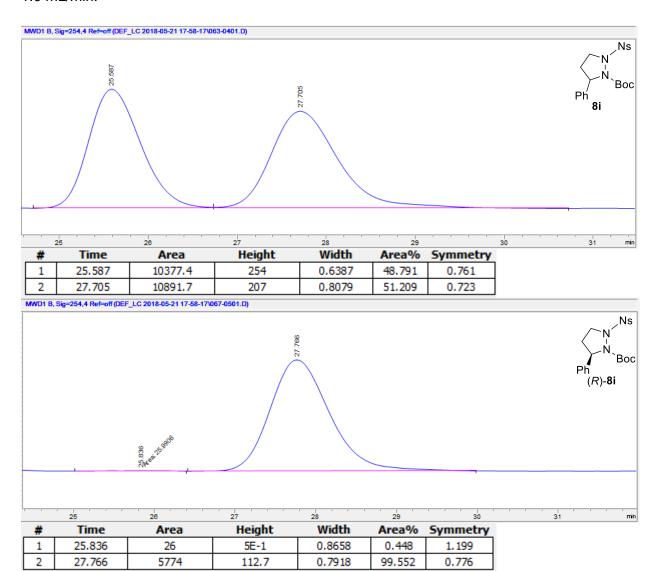

#	Time	Area	Height	Width	Area%	Symmetry
1	24.807	1368.7	13.8	1.25	79.041	0.628
2	32.706	362.9	2.5	1.7194	20.959	0.627

#	Time	Area	Height	Width	Area%	Symmetry
1	23.623	4613.9	50.6	1.3233	94.807	0.532
2	31.19	252.7	2.2	1.3716	5.193	0.657

HPLC profile of 8g

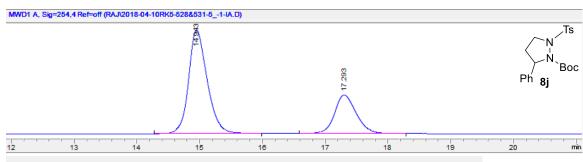

Chiralpak IA column (0.46 cm ø x 25 cm) 90:10 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

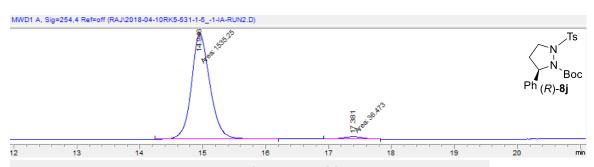
HPLC profile of 8h


Chiralpak IA column (0.46 cm \emptyset x 25 cm) 90:10 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

N.B. The racemic HPLC trace was generated by mixing the (R) and (S) enantiomers.

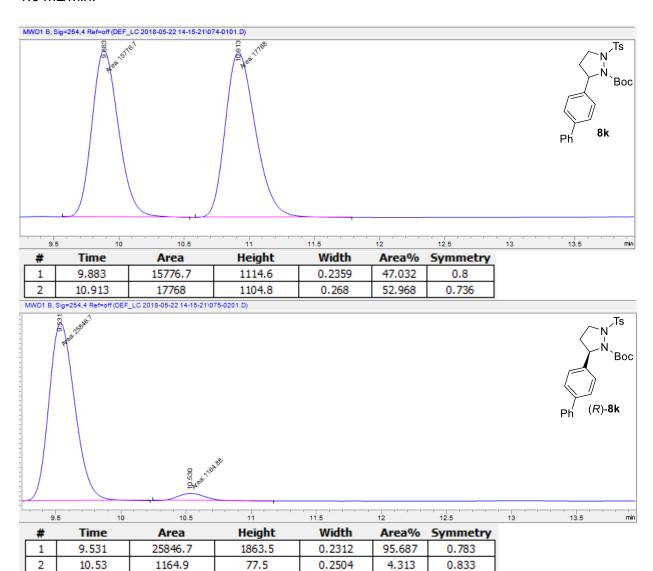
HPLC profile of 8i


Chiralpak IA column (0.46 cm ø x 25 cm) 90:10 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.


HPLC profile of 8j

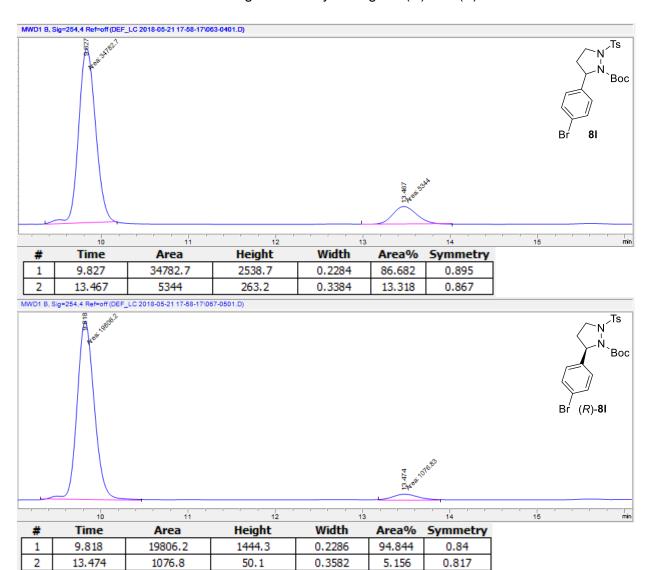
Chiralpak IA column (4.6 cm \emptyset x 250 cm), 95:5 hexane:propan-2-ol, T = 25°C, flow rate = 1.0 mL/min.

N.B. The racemic HPLC trace was generated by mixing the (R) and (S) enantiomers.

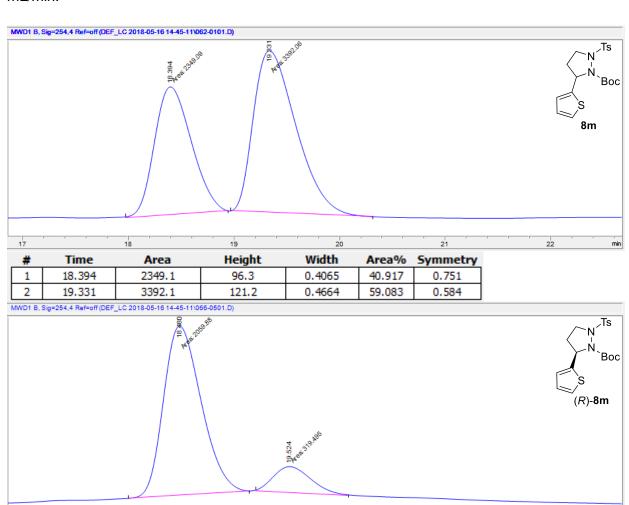

#	Time	Area	Height	Width	Area%	Symmetry
1	14.943	2899.7	140.8	0.3088	69.625	0.719
2	17.293	1265.1	52.5	0.3521	30.375	0.77

#	Time	Area	Height	Width	Area%	Symmetry
1	14.946	1535.2	74.7	0.3426	97.679	0.798
2	17.381	36.5	1.6	0.3732	2.321	1.044

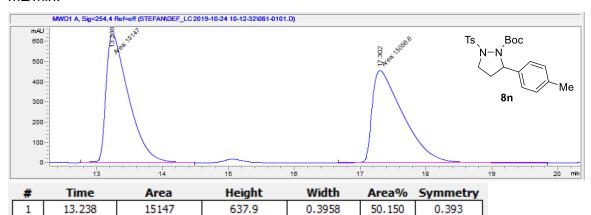
HPLC profile of 8k


Chiralpak IA column (0.46 cm ø x 25 cm) 90:10 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

HPLC profile of 81


Chiralpak OD-H column (0.46 cm ø x 25 cm) 95:5 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

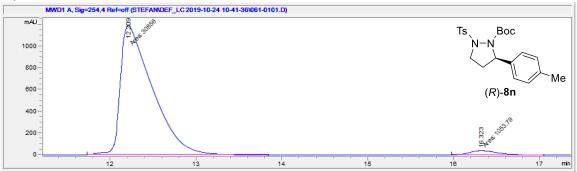
N.B. The racemic HPLC trace was generated by mixing the (R) and (S) enantiomers.


HPLC profile of 8m

Chiralpak IA column (0.46 cm ø x 25 cm) 97:3 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

HPLC profile of 8n

Chiralpak IA column (0.46 cm \emptyset x 25 cm), 95:5 hexane:propan-2-ol, T = 25°C, flow rate = 1.0 mL/min.



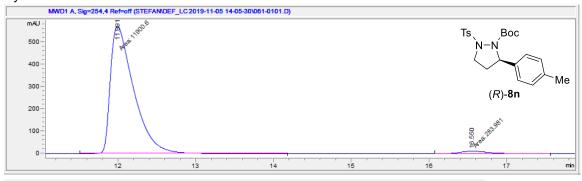
Cyclisation with DEAD

17.302

15056.6

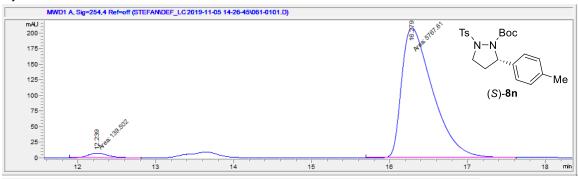
2

0.5478


0.332

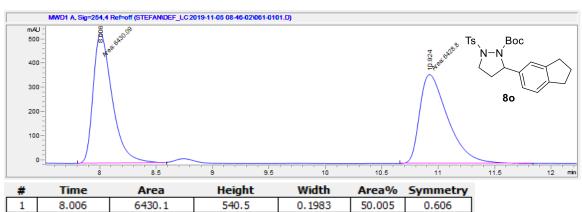
49.850

#	Time	Area	Height	Width	Area%	Symmetry
1	12.209	30856	1193.5	0.4309	96.698	0.331
2	16.323	1053.8	40.7	0.4312	3.302	0.597


458.1

Cyclisation with DIAD

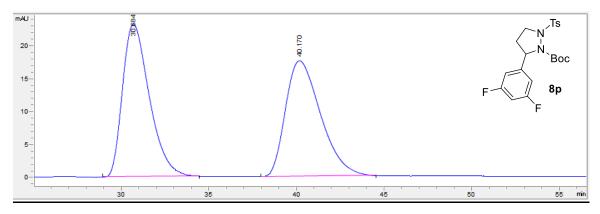
#	Time	Area	Height	Width	Area%	Symmetry
1	11.991	11900.6	570.7	0.3476	97.669	0.419
2	16.55	284	11.2	0.4219	2.331	0.714

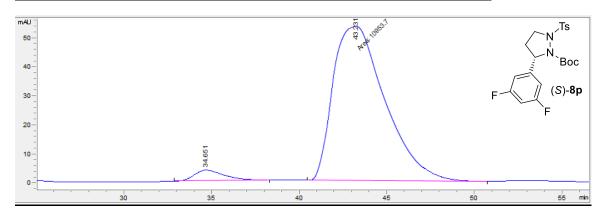

Cyclisation with DIAD

#	Time	Area	Height	Width	Area%	Symmetry
1	12.239	139.5	7.6	0.3069	2.362	0.736
2	16.279	5767.6	208.8	0.4603	97.638	0.475

HPLC profile of 80

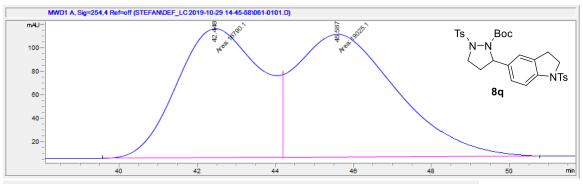
Chiralpak IA column (0.46 cm \emptyset x 25 cm), 90:10 hexane:propan-2-ol, T = 25°C, flow rate = 1.0 mL/min.



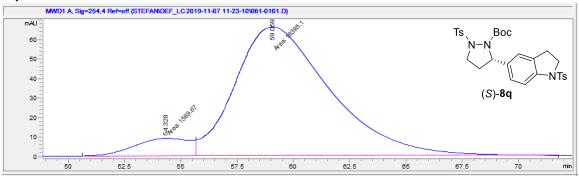

١.	#	Time	Area	Height	Width	Area%	Symmetry
	1	7.925	16852.4	1323.4	0.2122	96.875	0.46
	2	11.061	543.6	33.7	0.2685	3.125	0.754

HPLC traces of 8p

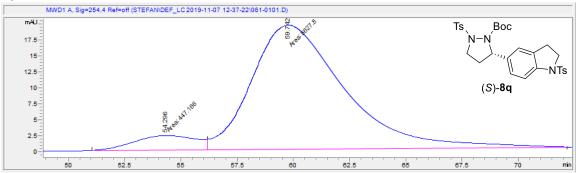
Chiralpak OD-H column (0.46 cm ø x 25 cm) 99:1 hexane:propan-2-ol, T = 15 °C, flow rate = 1.0 mL/min.


#	Time	Area	Height	Width	Area%	Symmetry
1	30.684	2487.5	23.4	1.5484	50.222	0.651
2	40.17	2465.5	17.7	1.6708	49.778	0.63

#	Time	Area	Height	Width	Area%	Symmetry
1	34.651	437.3	3.7	1.4013	3.839	0.613
2	43.231	10953.7	53.1	3.4409	96.161	0.733

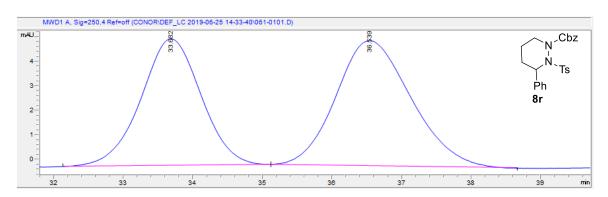

HPLC profile of 8q

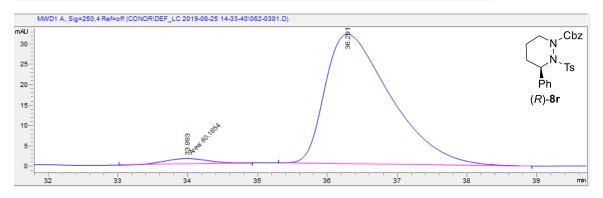
Chiralpak OD-H column (0.46 cm ø x 25 cm), 90:10 hexane:propan-2-ol, T = 25°C, flow rate = 1.0 mL/min.


#	Time	Area	Height	Width	Area%	Symmetry
1	42.448	16790.1	110.7	2.5269	46.880	0
2	45.587	19025.1	105.6	3.0041	53.120	0.648

Cyclisation with DEAD

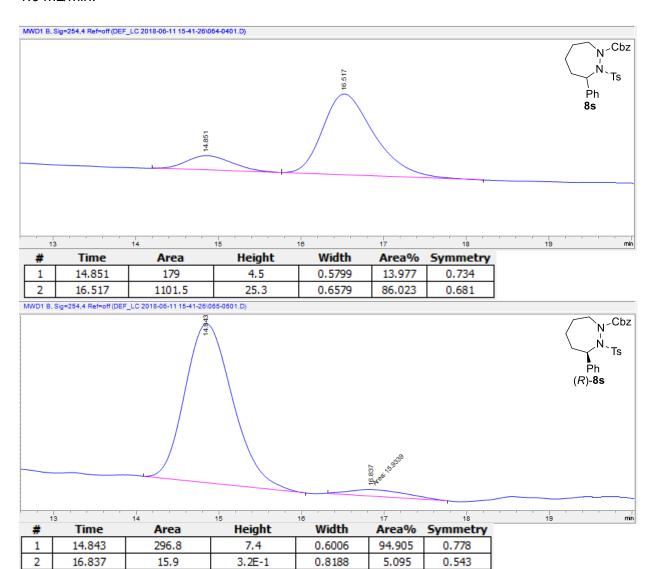
#	Time	Area	Height	Width	Area%	Symmetry
1	54.328	1569.7	9	2.8925	7.487	0
2	59.059	19395.1	66.3	4.8778	92.513	0.632


Cyclisation with DIAD

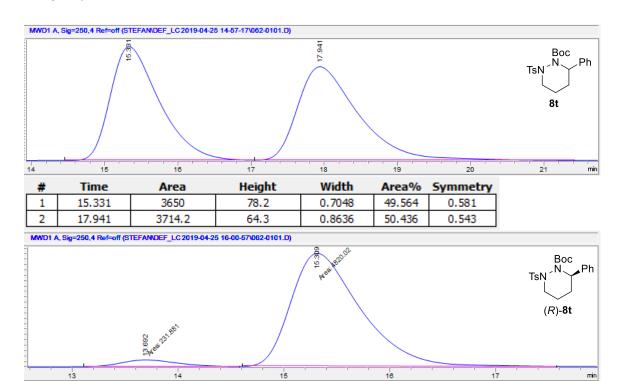

#	Time	Area	Height	Width	Area%	Symmetry
1	54.296	447.2	2.3	3.2436	7.361	1.02
2	59.742	5627.8	19.5	4.8176	92.639	0.617

HPLC profile of compound 8r

Chiralpak IA column (0.46 cm ø x 25 cm) 98.5:1.5 hexane:propan-2-ol, T = 25 °C, flow rate 1.0 mL/min.

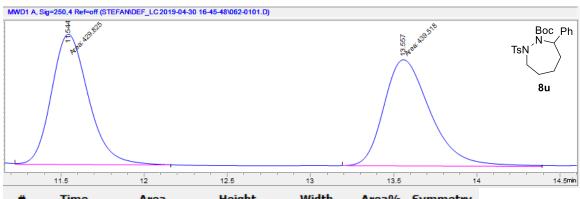

#	Time	Area	Height	Width	Area%	Symmetry
1	33.682	312.1	5.2	0.8328	44.629	0.993
2	36.539	387.3	5.1	0.9262	55.371	0.8

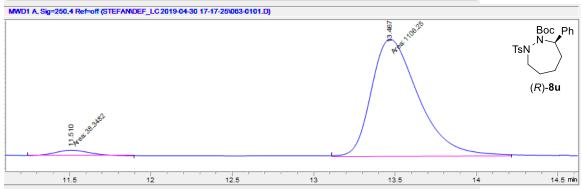
#	Time	Area	Height	Width	Area%	Symmetry
1	33.993	60.2	1.3	0.5574	2.829	1.134
2	36.291	2066.8	31.6	0.9822	97.171	0.486


HPLC profile of compound 8s

Chiralpak OD-H column (0.46 cm ø x 25 cm) 98:2 hexane:propan-2-ol, T = 25 °C, flow rate 1.0 mL/min.

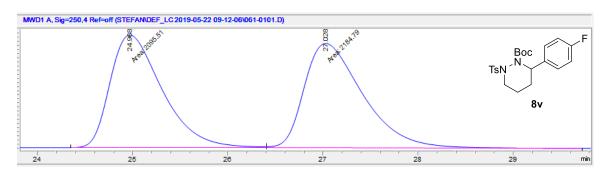
HPLC profile of 8t

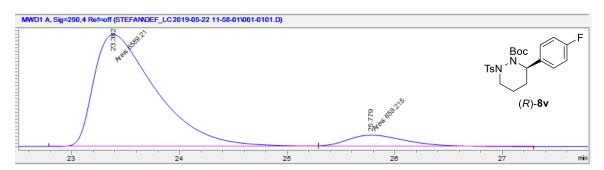

Chiralpak OD-H column (0.46 cm ø x 25 cm), 98:2 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.


#	Time	Area	Height	Width	Area%	Symmetry
1	13.692	231.9	6.2	0.6204	4.590	0.708
2	15,309	4820	105.4	0.7621	95.410	0.588

HPLC profile of 8u

Chiralpak IA column (0.46 cm ø x 25 cm), 98:2 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

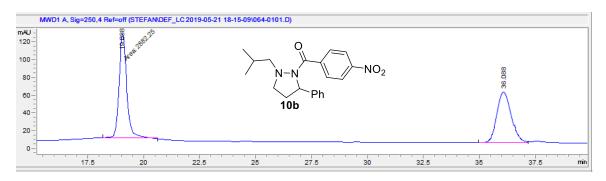

#	Time	Area	Height	Width	Area%	Symmetry
1	11.544	429.8	27.7	0.259	49.442	0.803
2	13.557	439.5	22.5	0.3251	50.558	0.698


#	Time	Area	Height	Width	Area%	Symmetry
1	11.51	38.3	2.5	0.2524	3.350	0.825
2	13.467	1106.3	54.8	0.3362	96.650	0.633

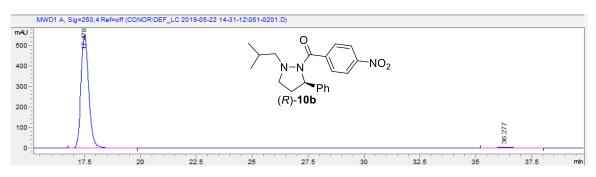
HPLC profile of 8v

Chiralpak IA column (0.46 cm \emptyset x 25 cm), 99.2:0.8 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

#	Time	Area	Height	Width	Area%	Symmetry
1	24.968	2095.5	54.9	0.6367	48.957	0
2	27.028	2184.8	50.9	0.7158	51.043	0.56

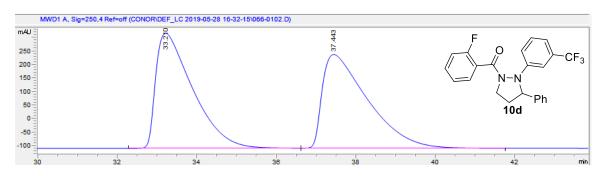


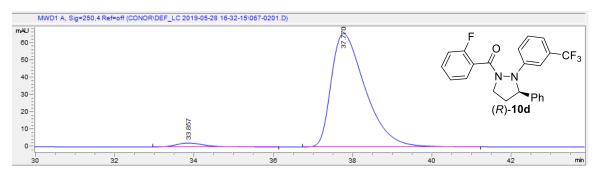
#	Time	Area	Height	Width	Area%	Symmetry
1	23.382	6589.2	164.1	0.6692	90.905	0
2	25.779	659.2	16.8	0.6527	9.095	0.657


HPLC profiles of functionalised hydrazines 10b, 10d and 10i and 10o

HPLC profile of compound 10b

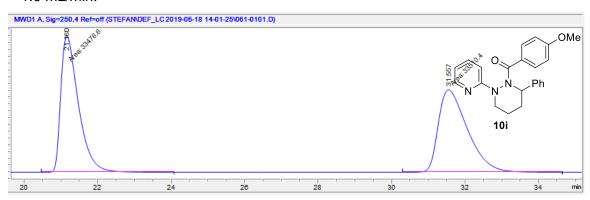
Chiralpak IA (0.46 cm ø x 25 cm) column, 90:10 Hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

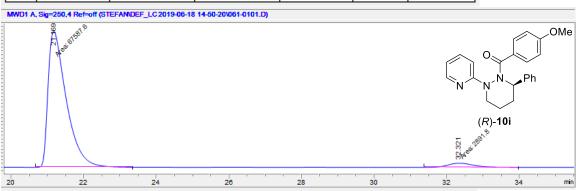

#	Time	Area	Height	Width	Area%	Symmetry
1	19.038	2882.2	117.7	0.4082	52.816	0.816
2	36.088	2574.9	57.5	0.6948	47.184	0.849


#	Time	Area	Height	Width	Area%	Symmetry
1	17.478	13396.2	554.8	0.3737	97.868	0.78
2	36.277	291.8	5.5	0.751	2.132	0.805

HPLC profile of compound 10d

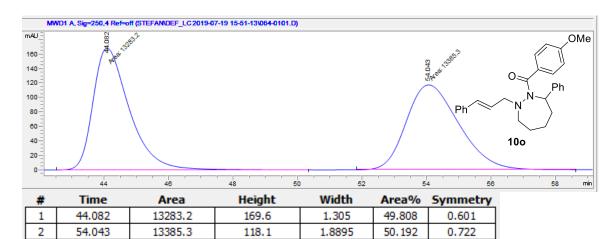
Chiralpak IA column (0.46 cm ø x 25 cm), 99:1 hexane:propan-2-ol, T = 25 °C, flow rate 1.0 mL/min.

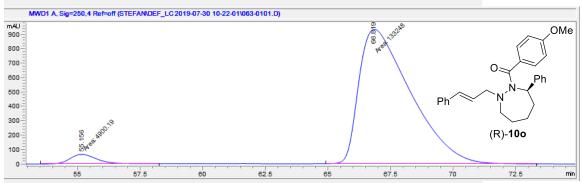

#	Time	Area	Height	Width	Area%	Symmetry
1	33.21	27393.1	424.6	0.9567	49.997	0.339
2	37.443	27396.3	345.6	1.1707	50.003	0.31


#	Time	Area	Height	Width	Area%	Symmetry
1	33.857	117.6	2.3	0.6426	2.901	0.721
2	37.77	3934.5	65.9	0.9085	97.099	0.532

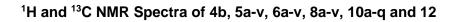
HPLC profile of 10i

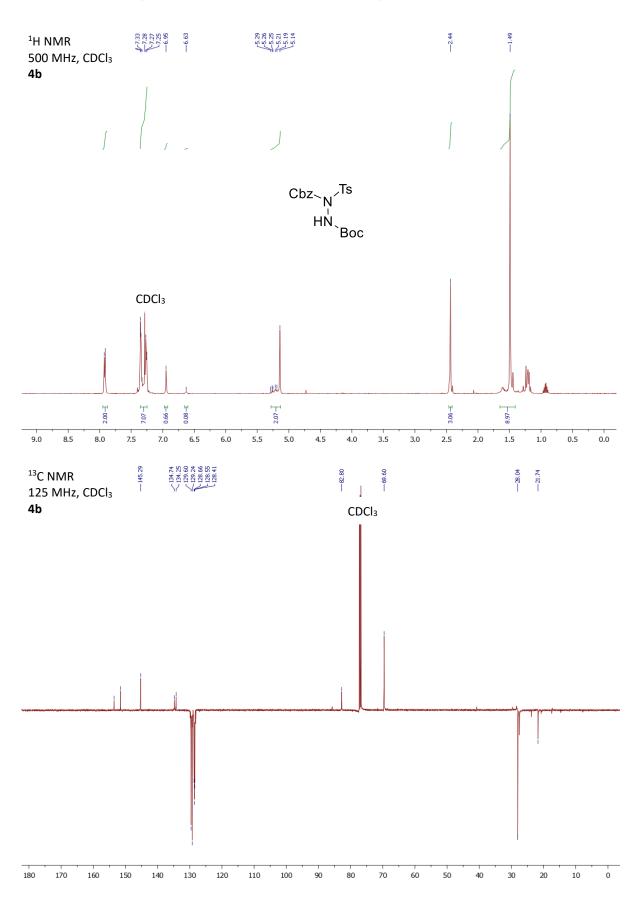
Chiralpak IA column (0.46 cm \emptyset x 25 cm), 96:4 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

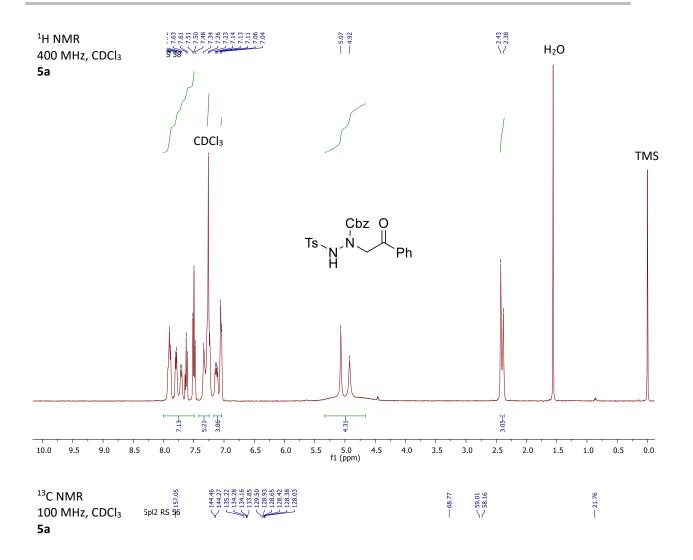

#	Time	Area	Height	Width	Area%	Symmetry
1	21.16	33476.6	1005.1	0.5551	49.975	0.504
2	31.557	33510.4	606.3	0.9212	50.025	0.522

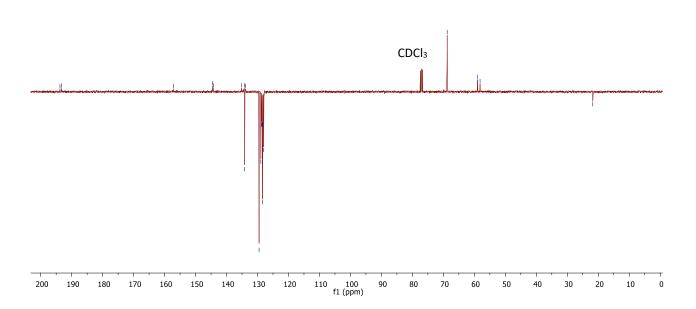


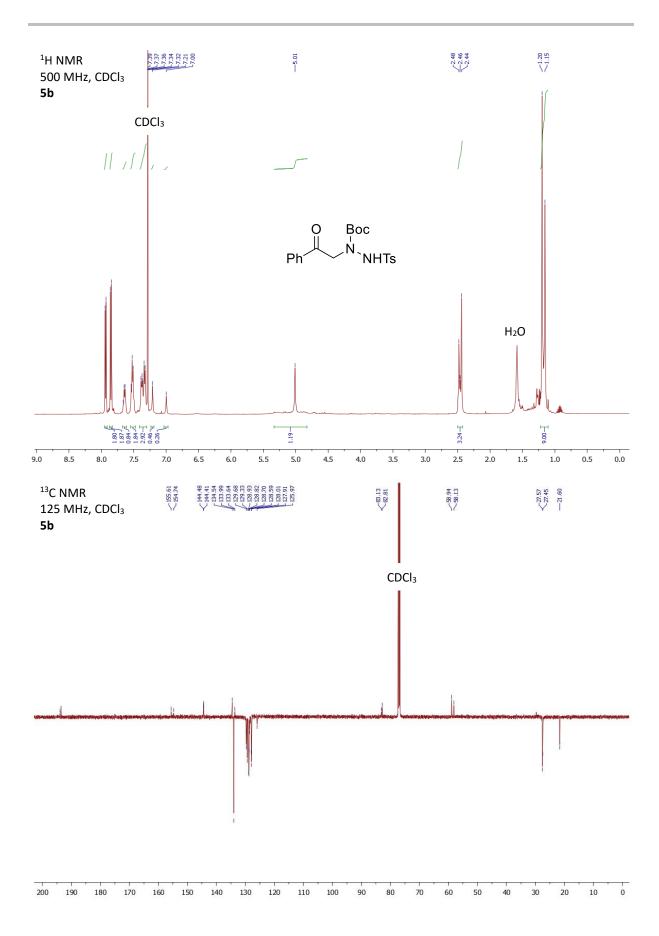
#	Time	Area	Height	Width	Area%	Symmetry
1	21.169	67587.6	1942.2	0.58	95.897	0.441
2	32.321	2891.8	59.2	0.814	4.103	0.779

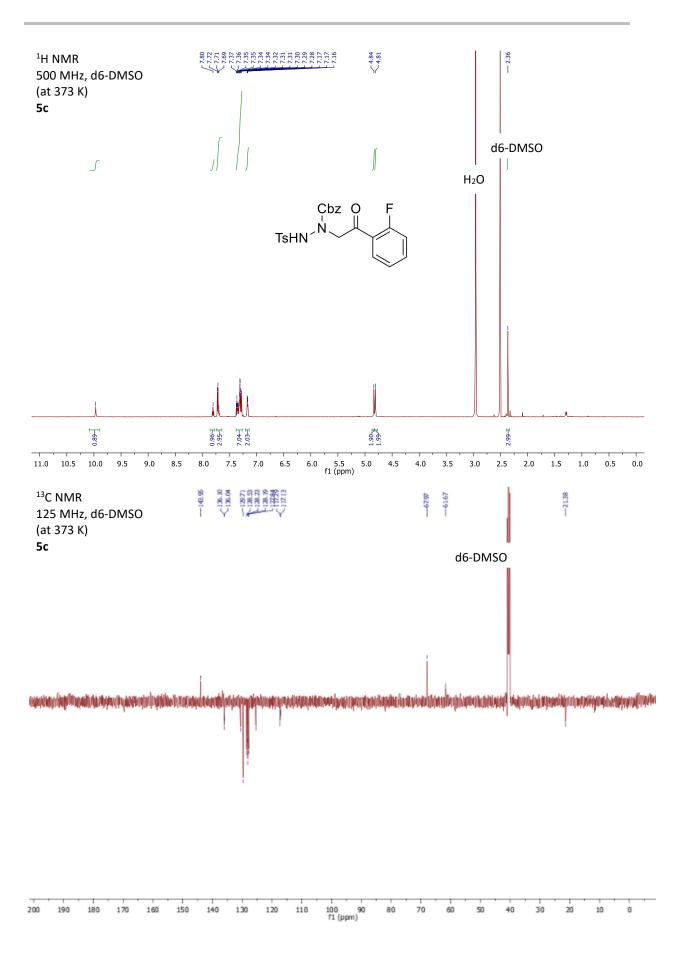

HPLC profile of 10o

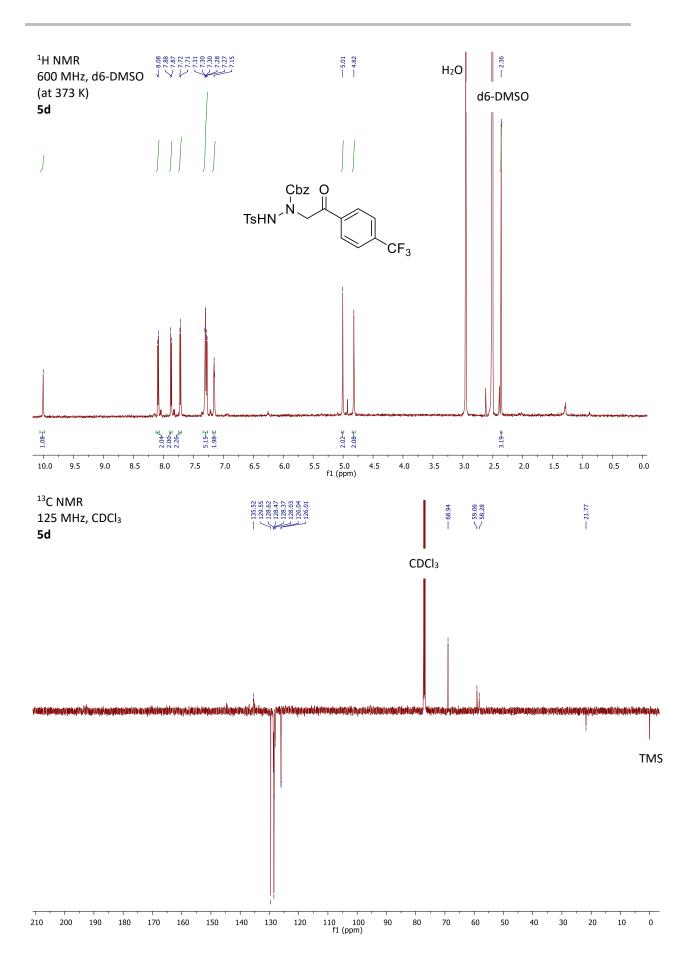

Chiralpak OD-H column (0.46 cm \emptyset x 25 cm), 98:2 hexane:propan-2-ol, T = 25 °C, flow rate = 1.0 mL/min.

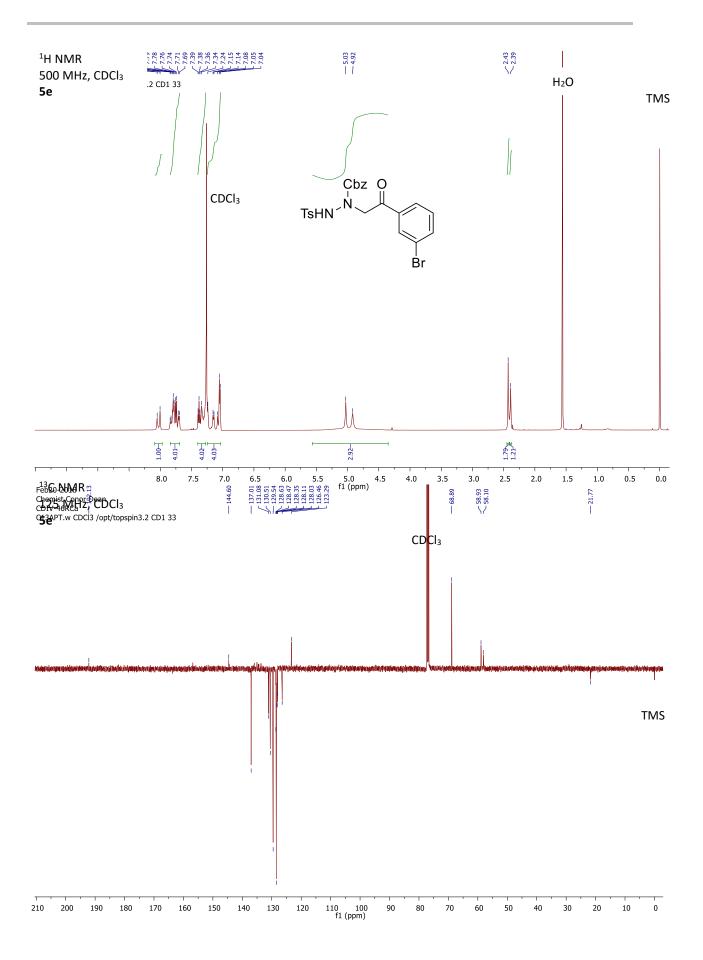


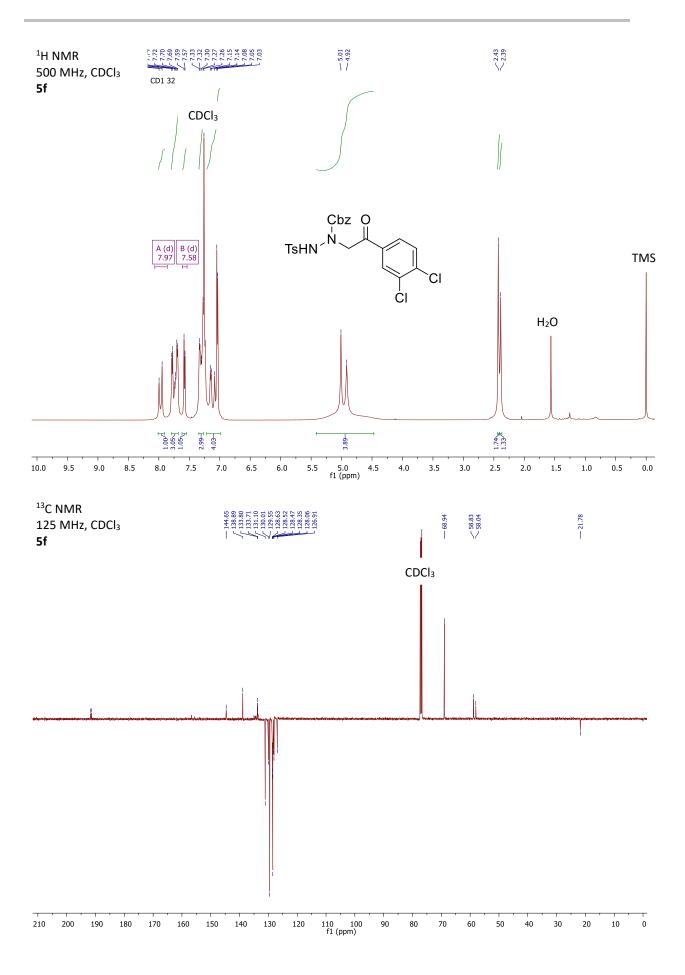


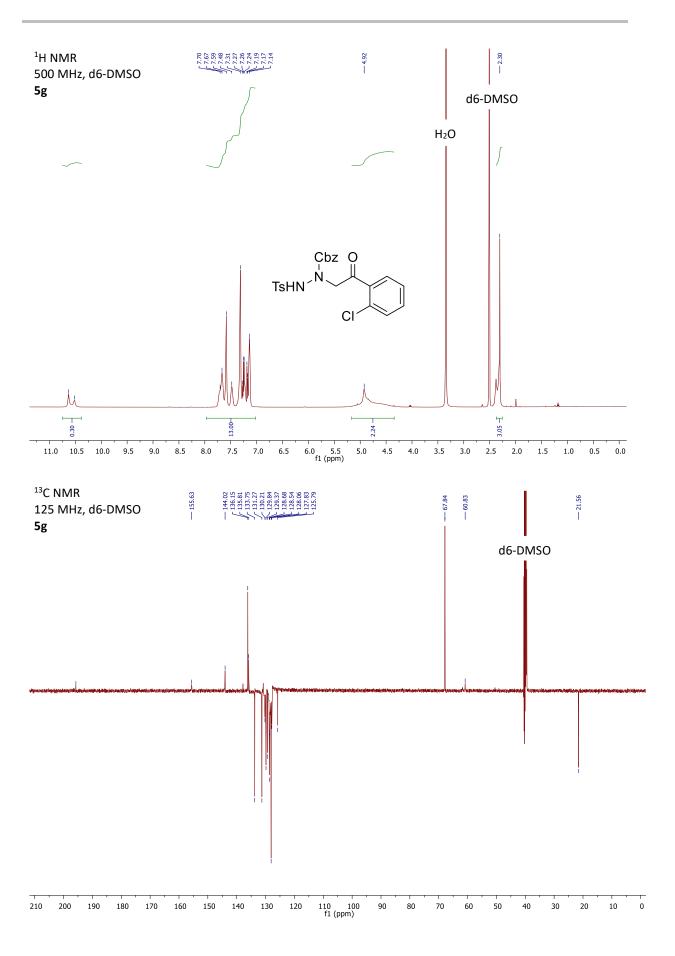

#	Time	Area	Height	Width	Area%	Symmetry
1	55.156	4900.2	66.1	1.2349	3.547	0.744
2	66.819	133248	932.6	2.3814	96.453	0.415

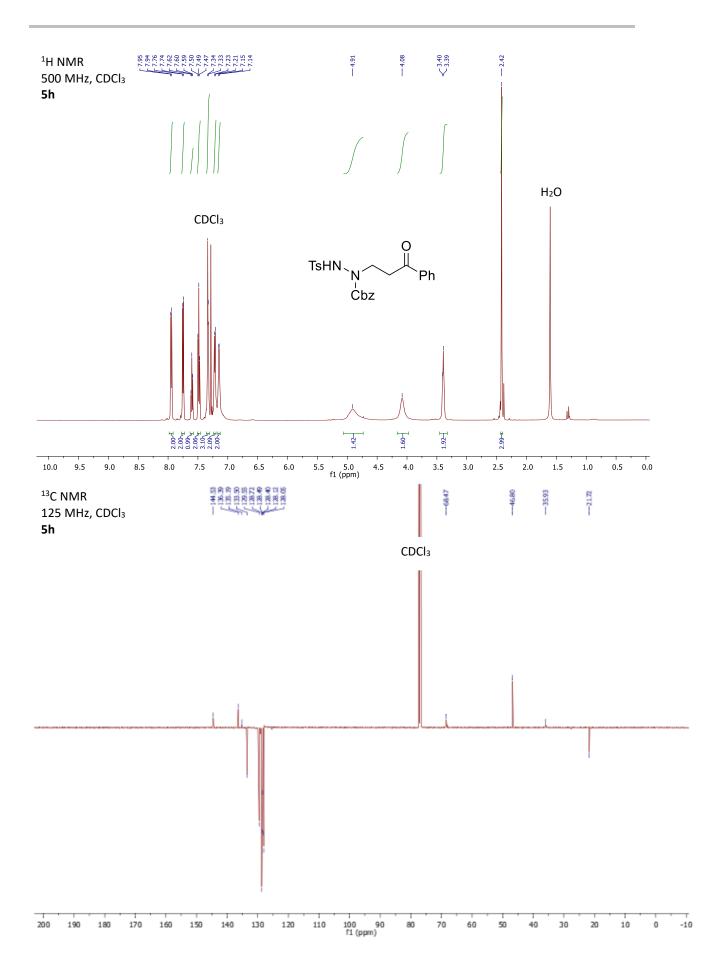


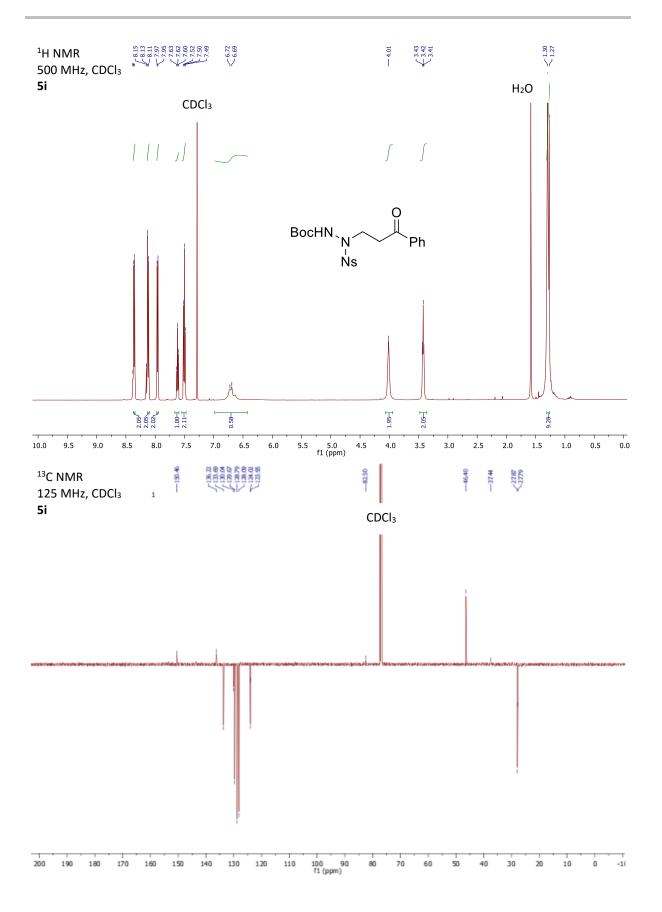


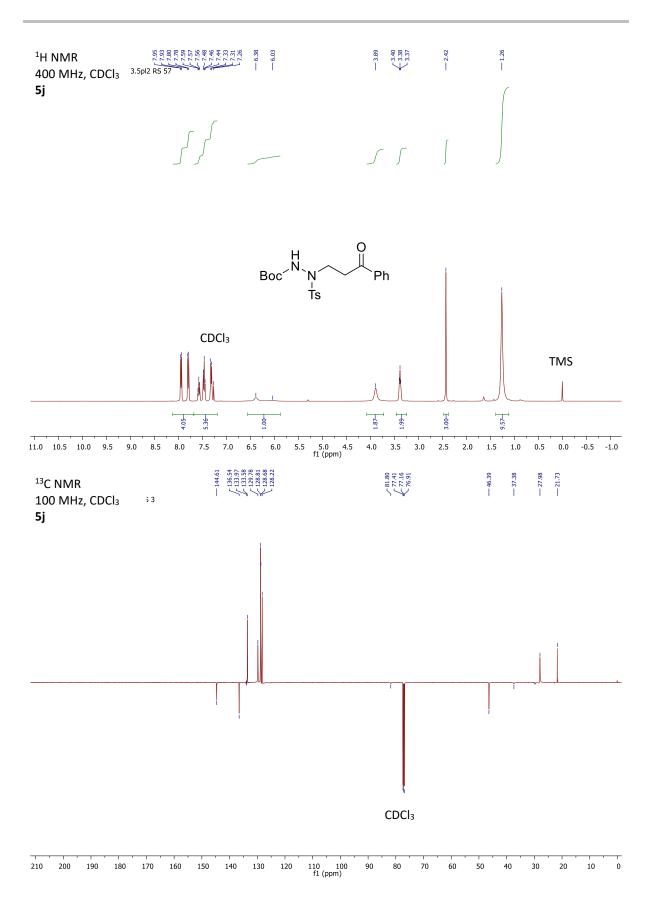


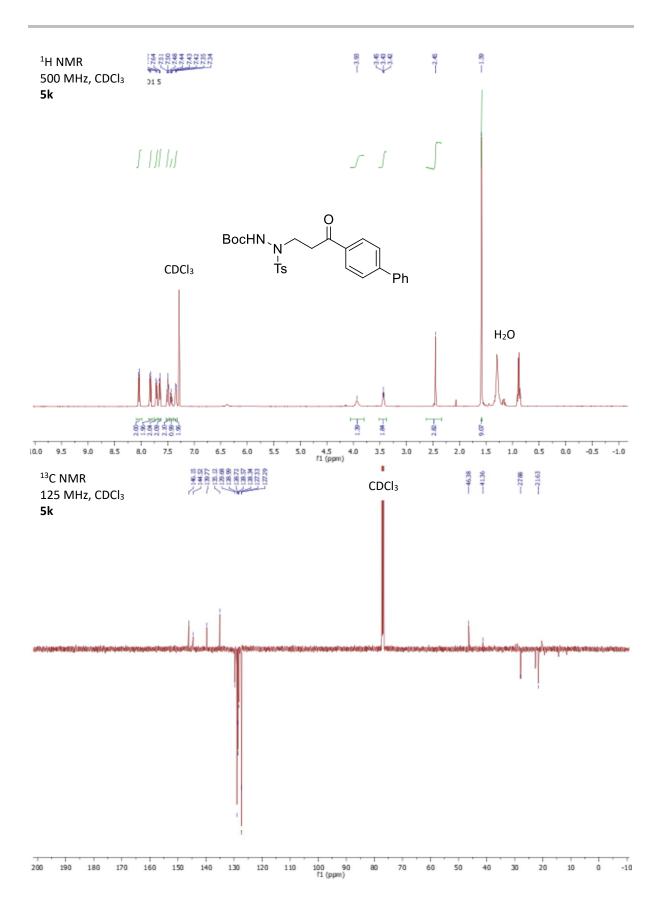


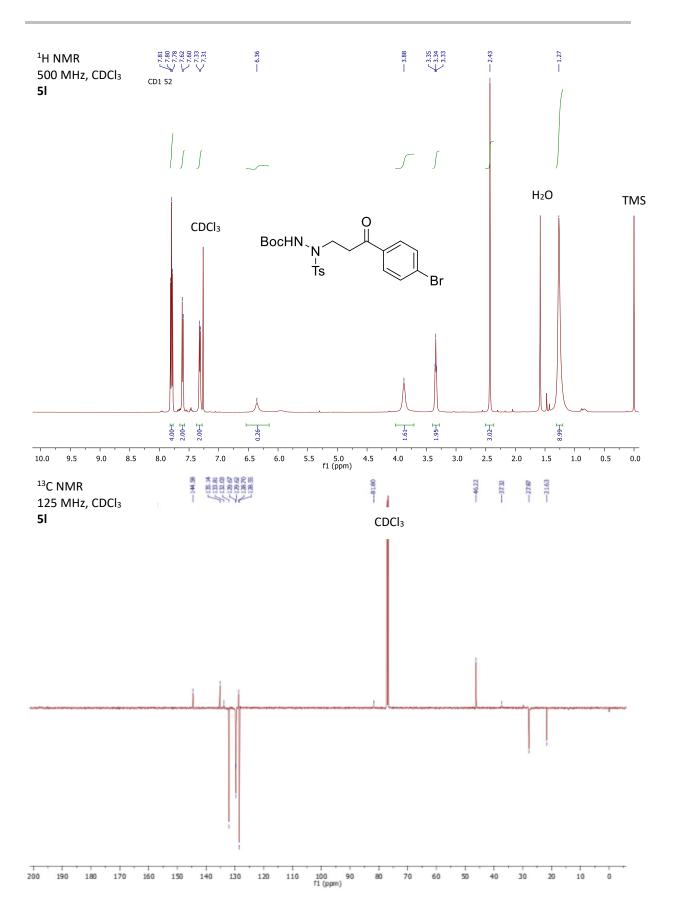


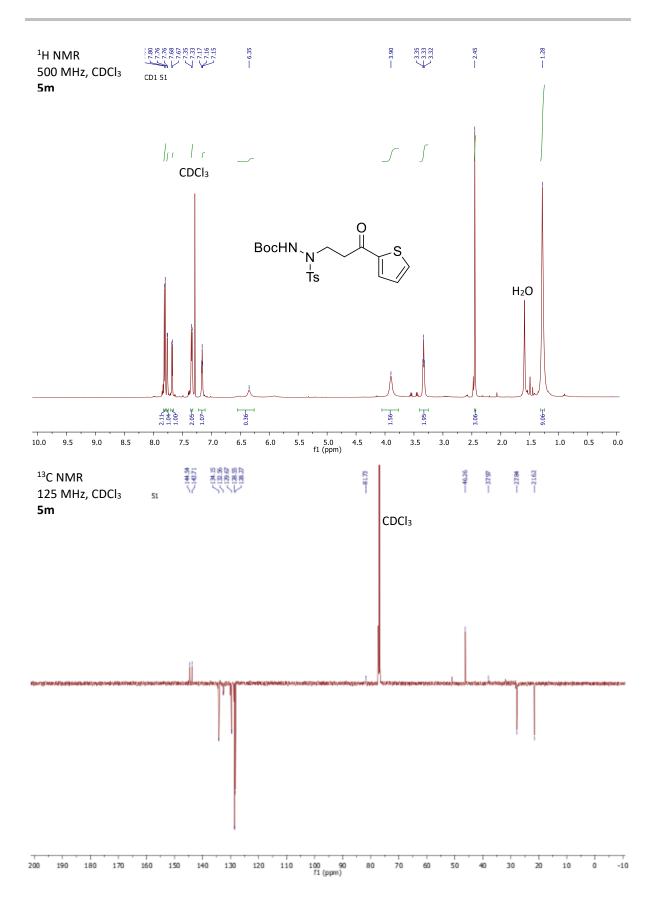


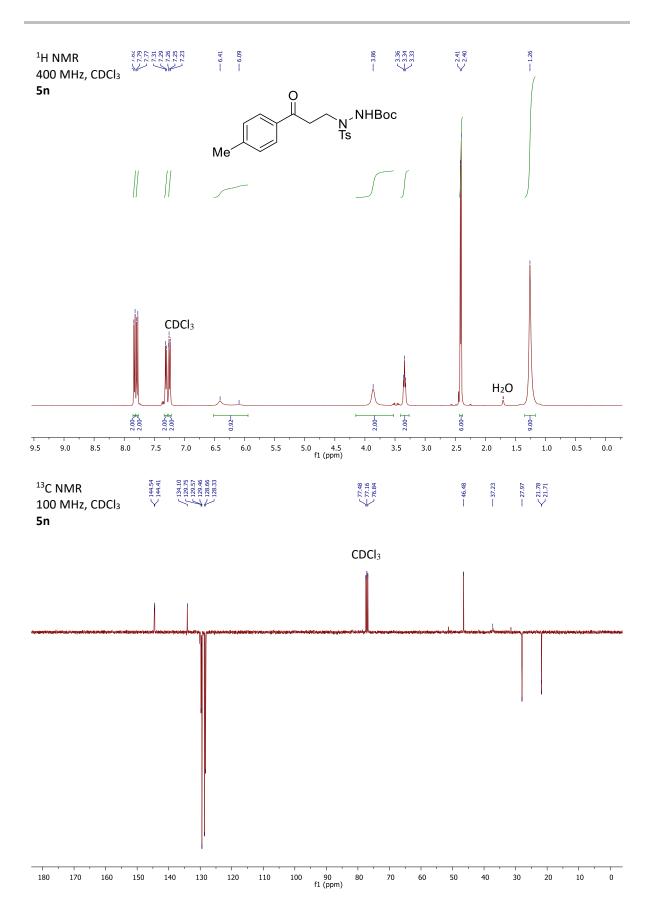


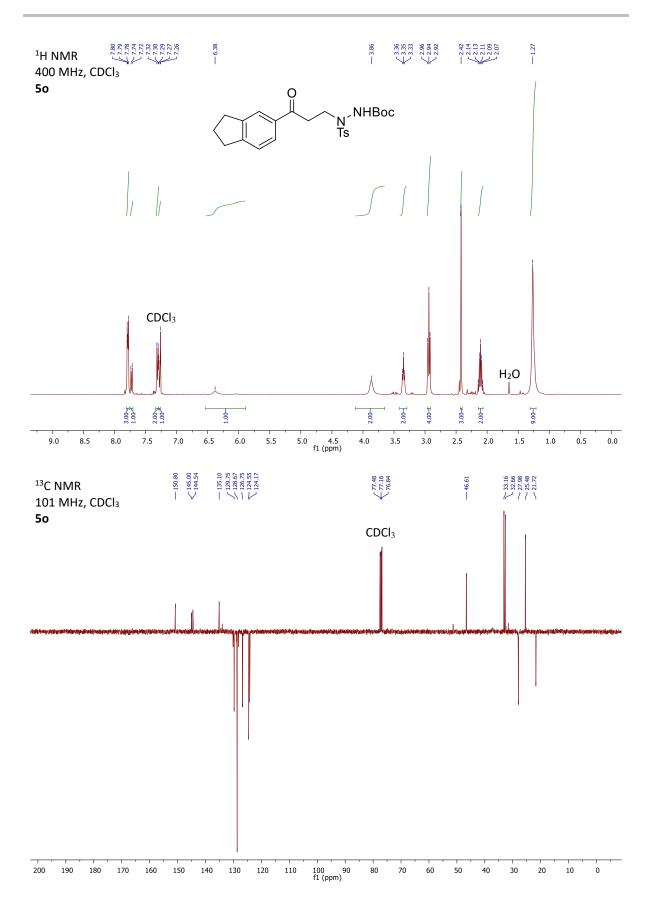


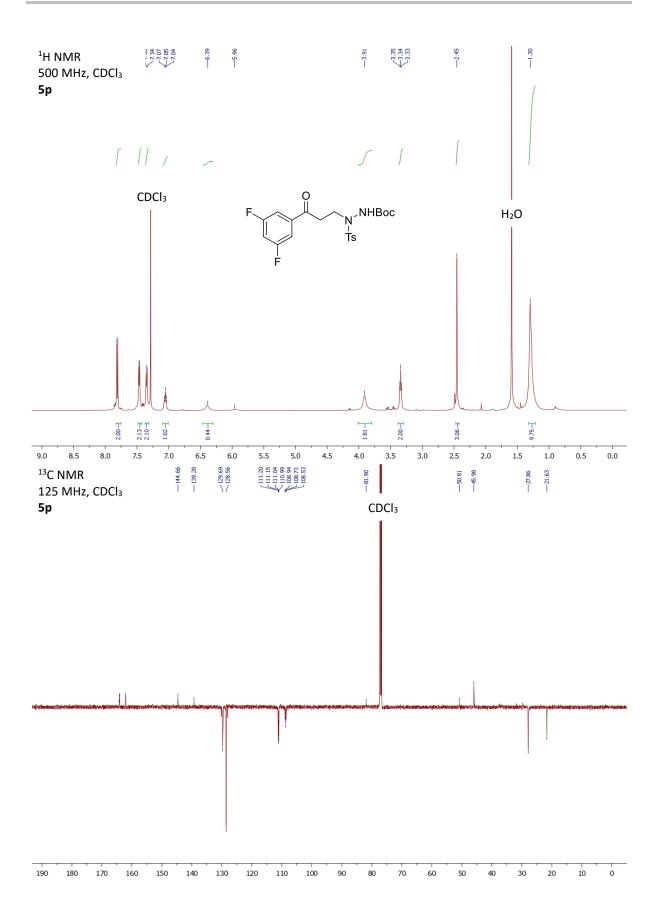


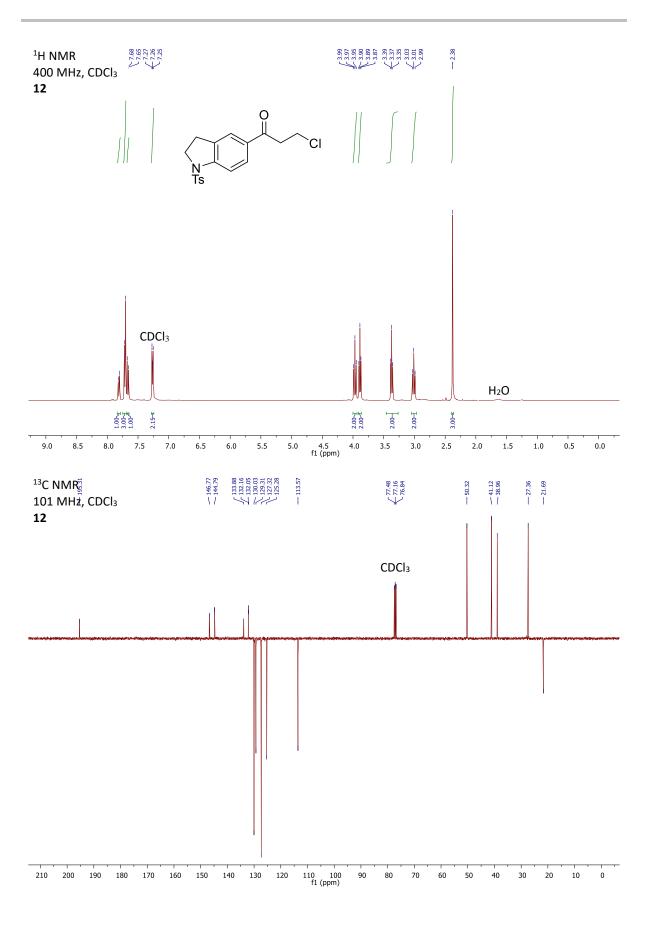


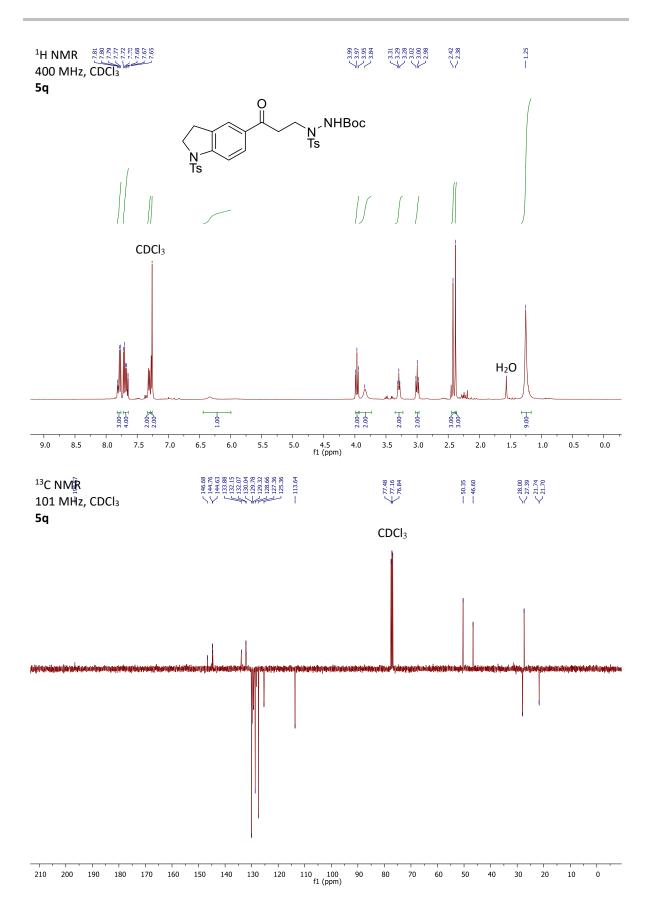


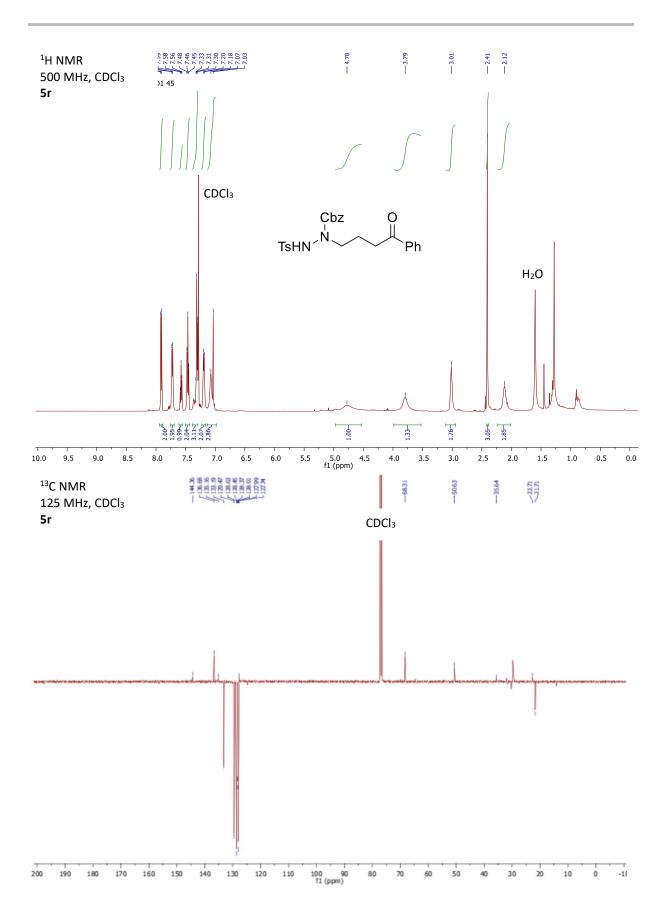


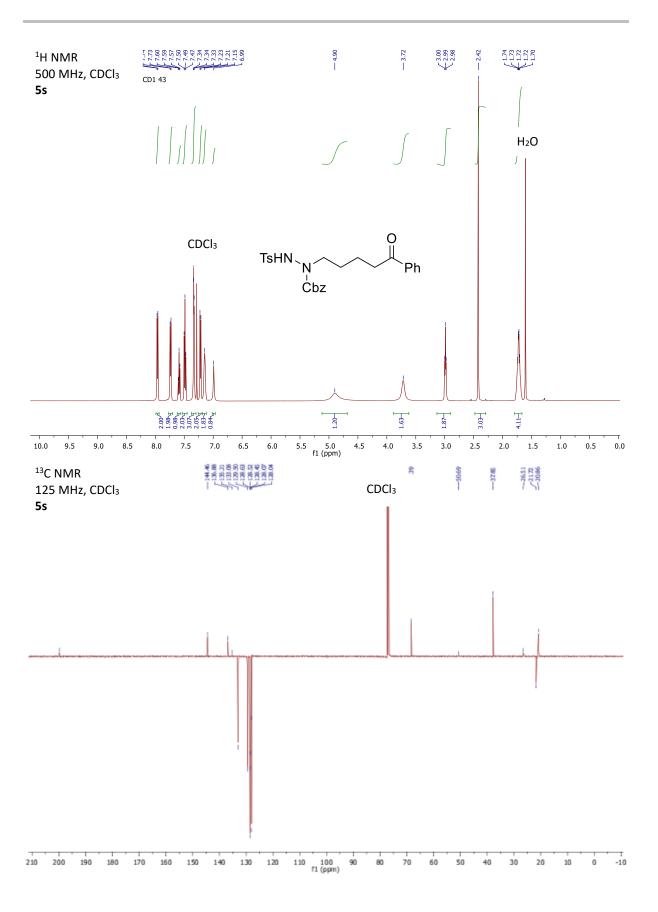


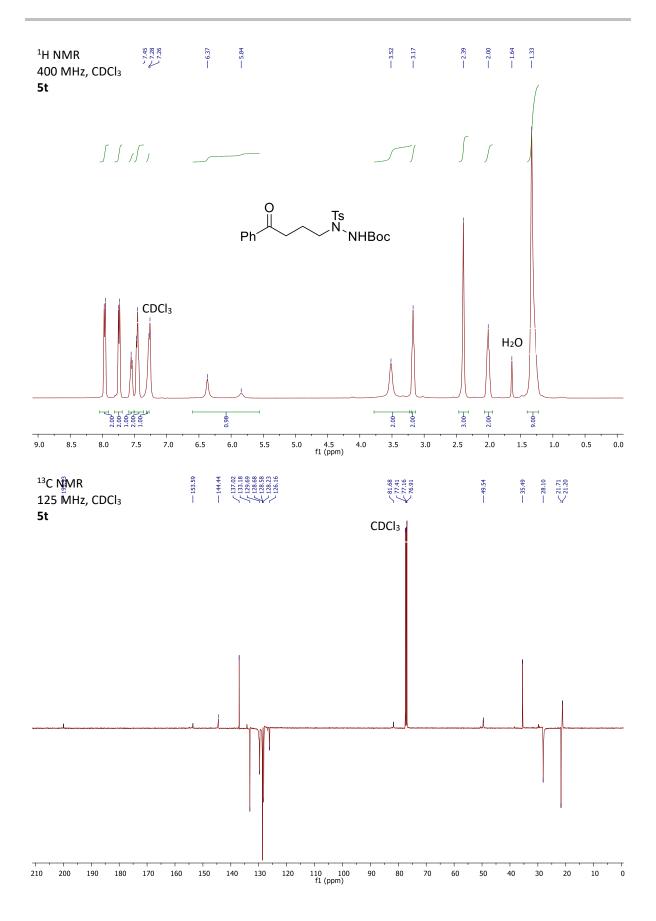


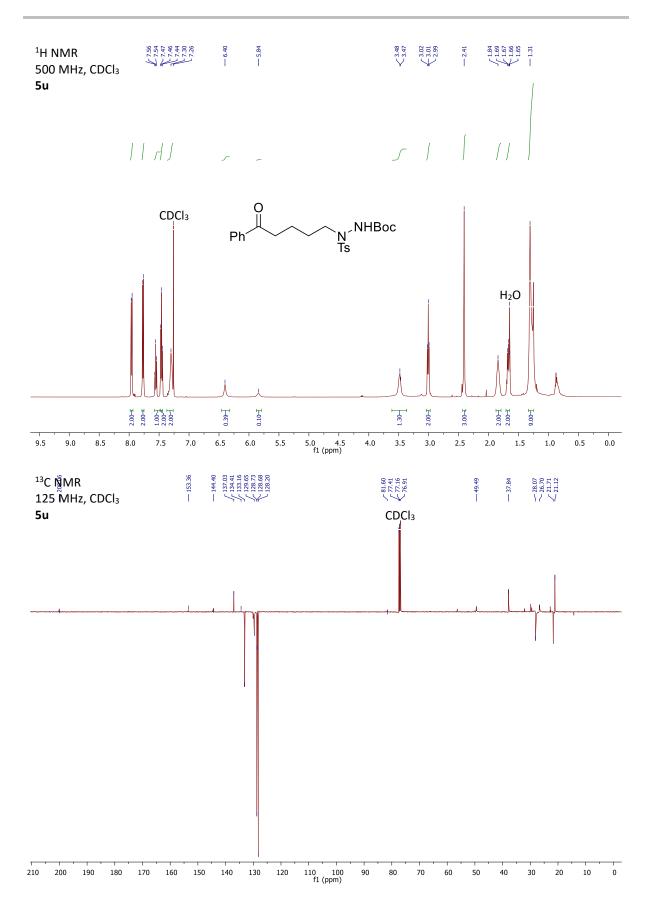


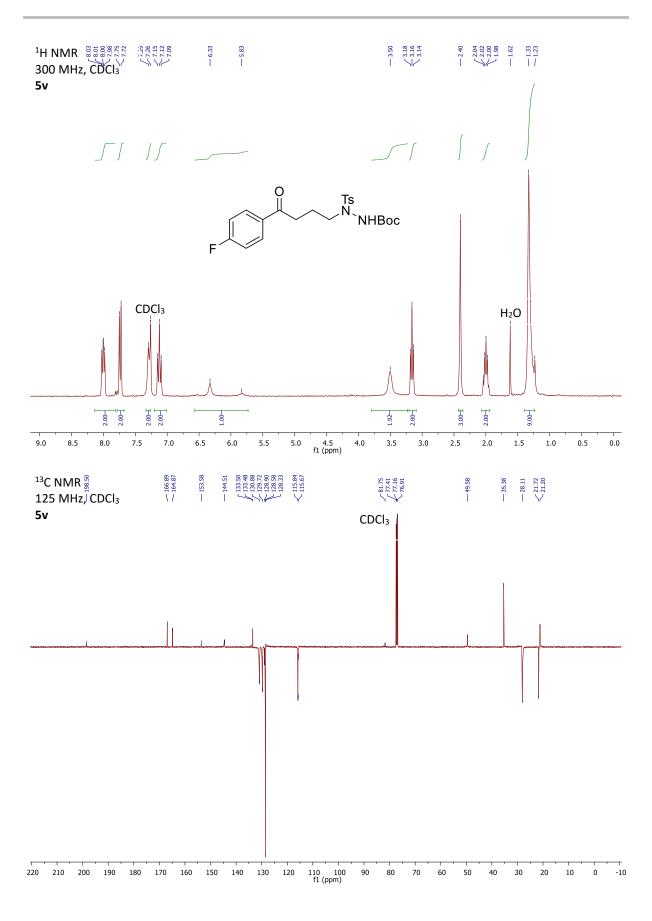


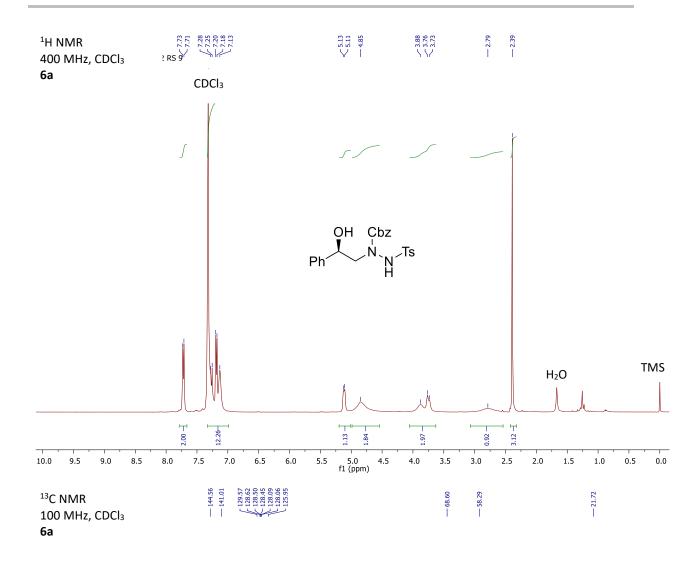


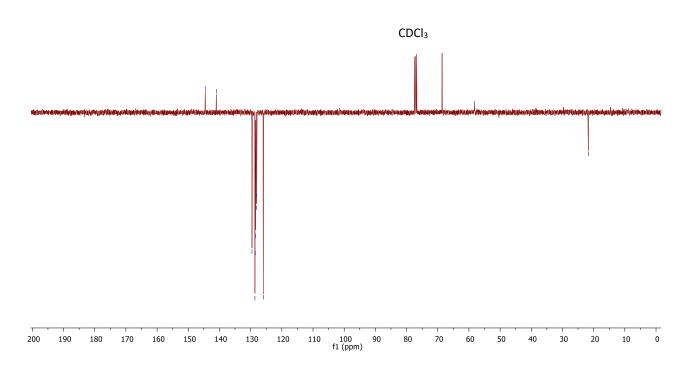


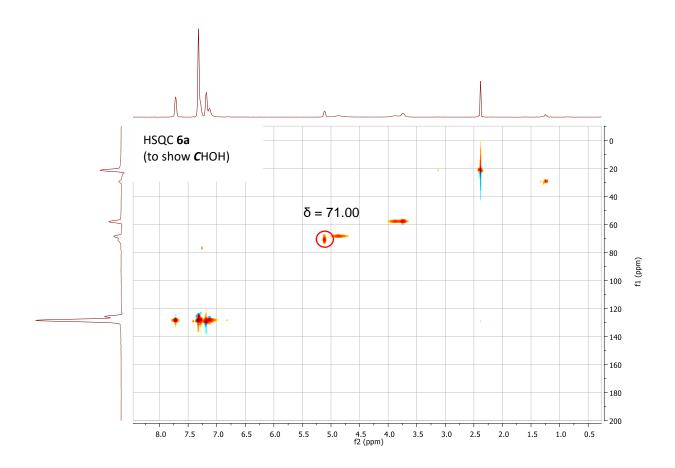


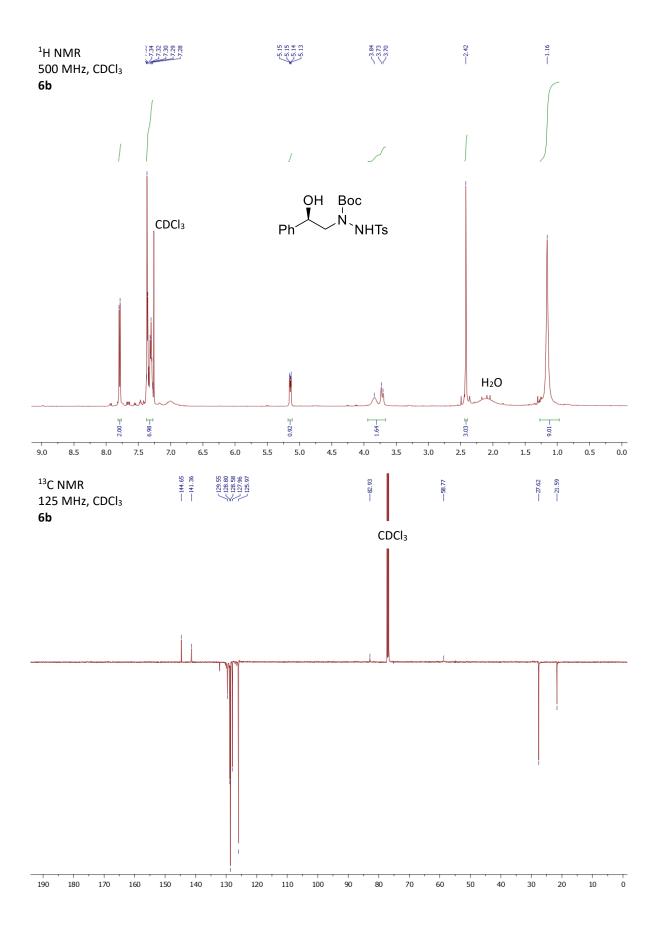


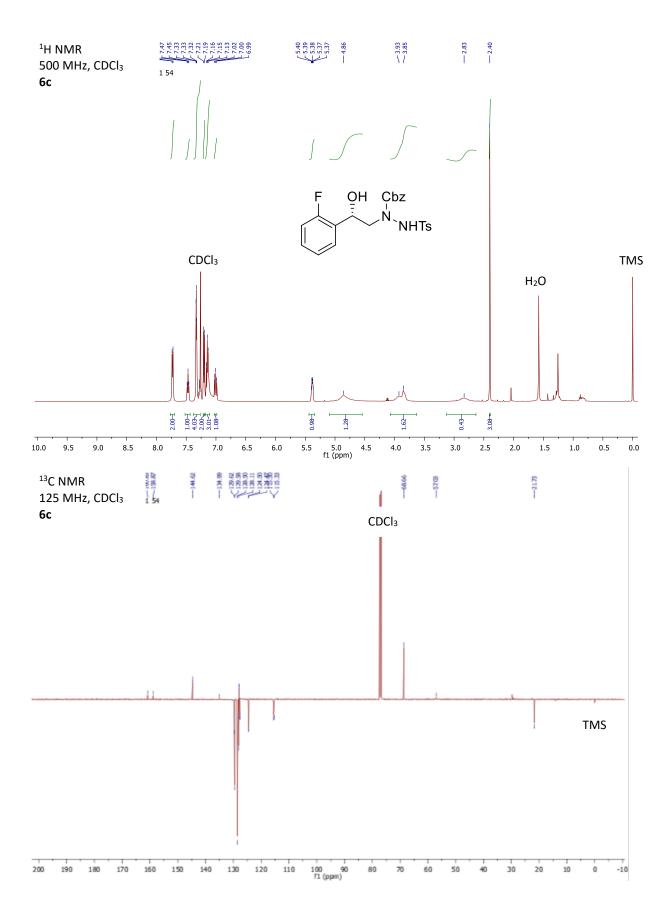


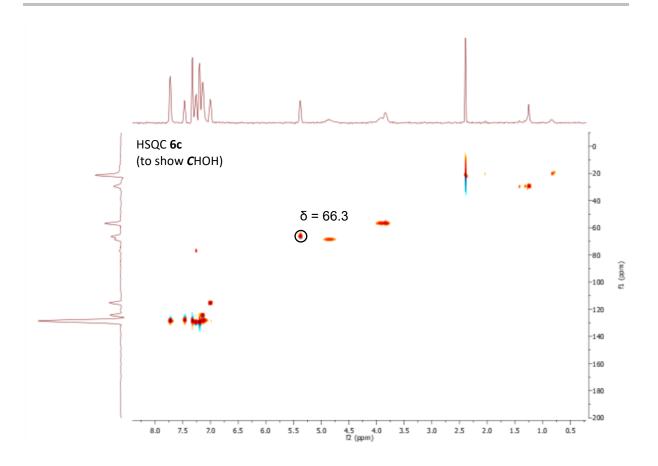


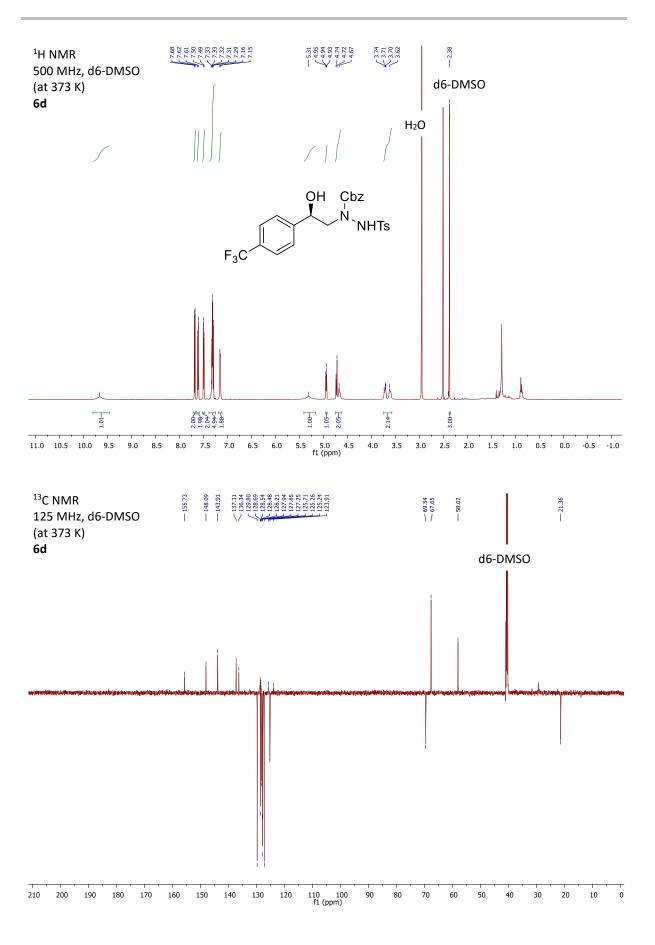


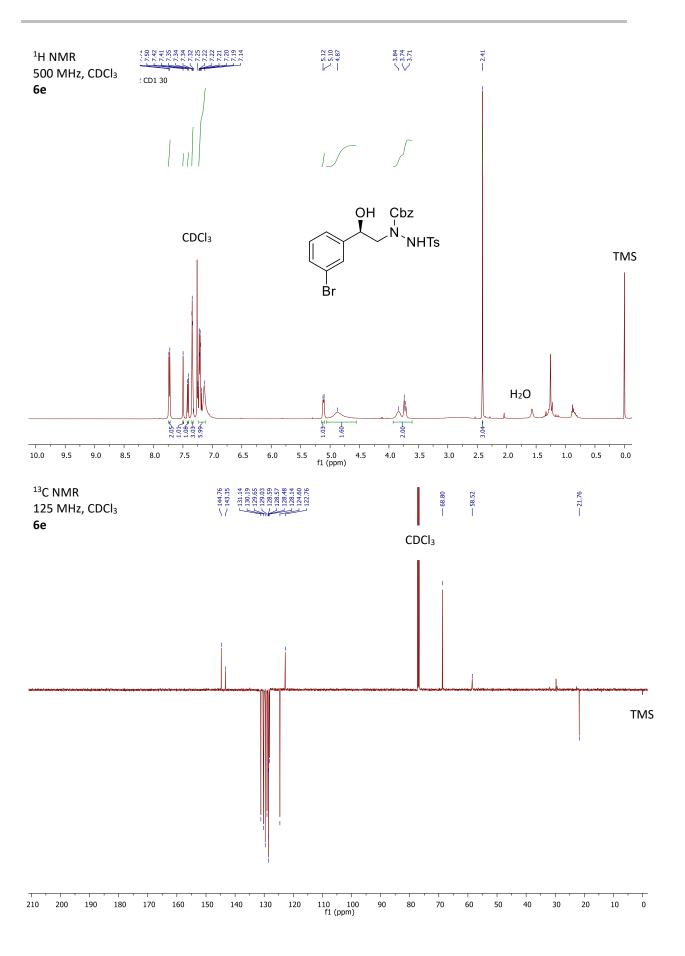


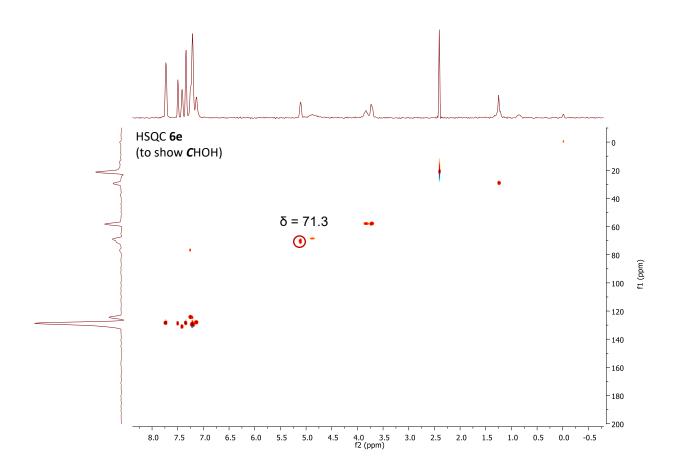


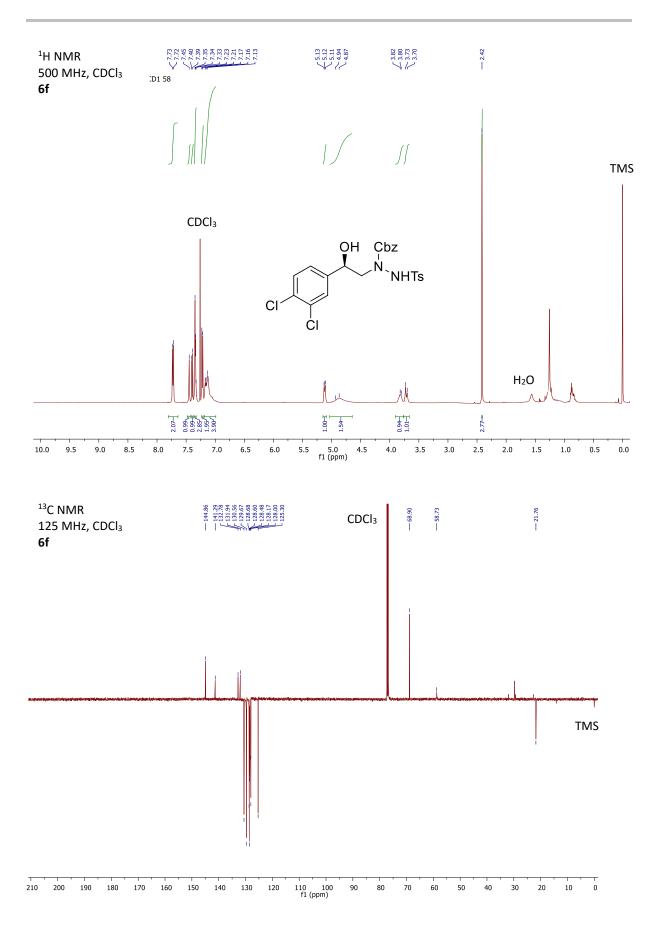


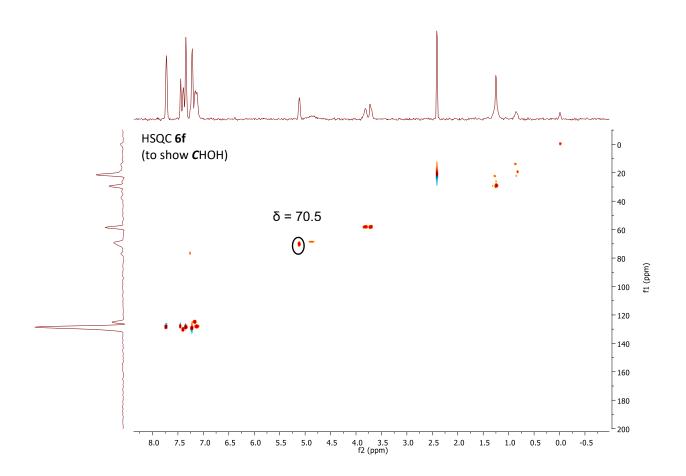


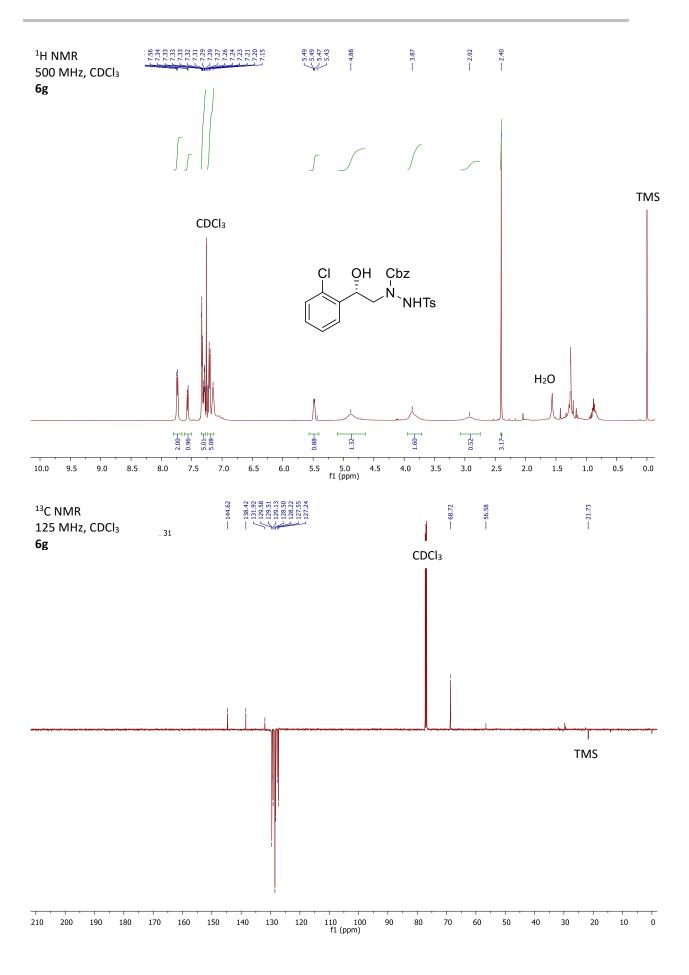


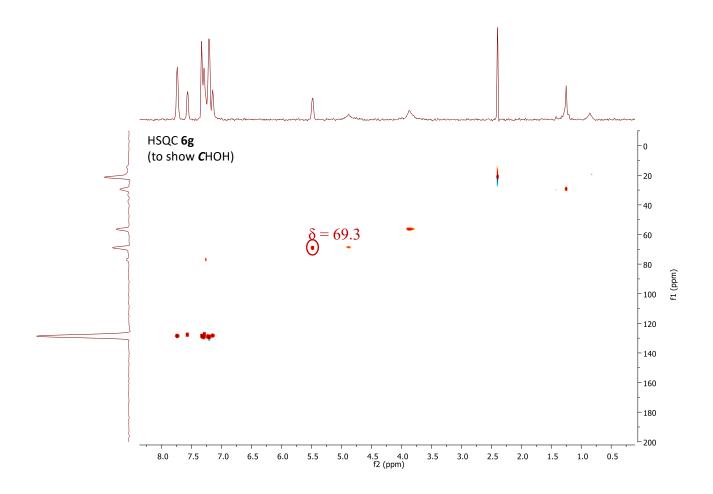


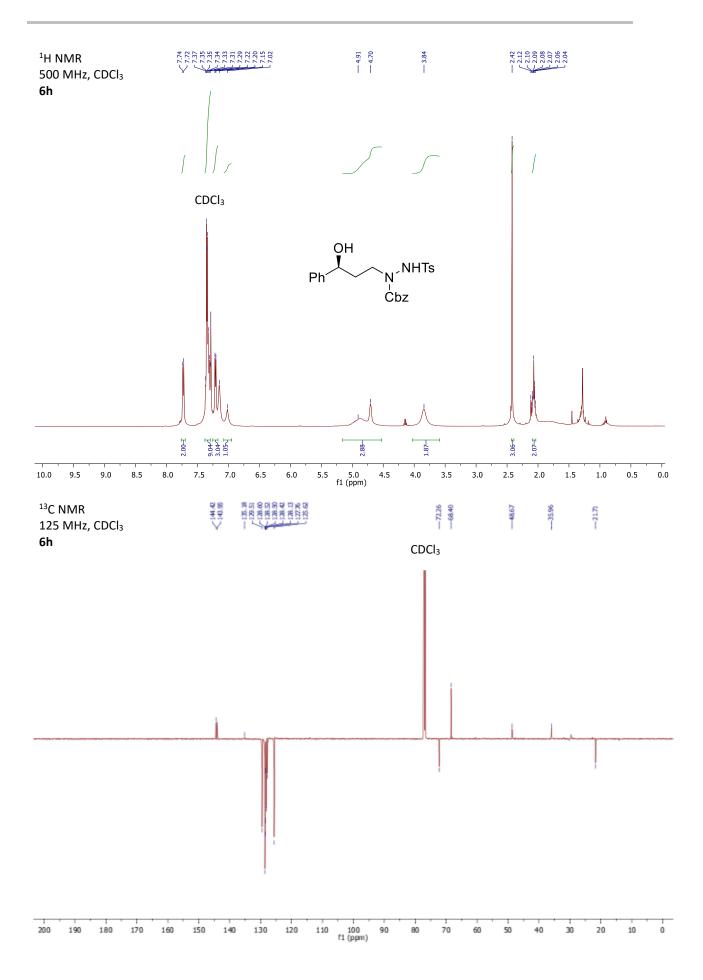


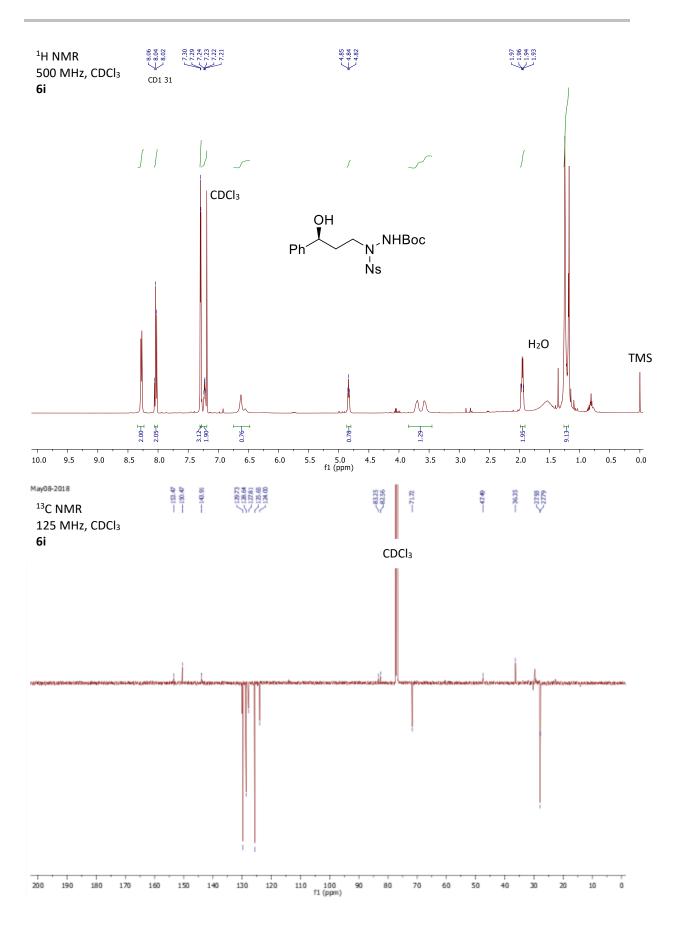


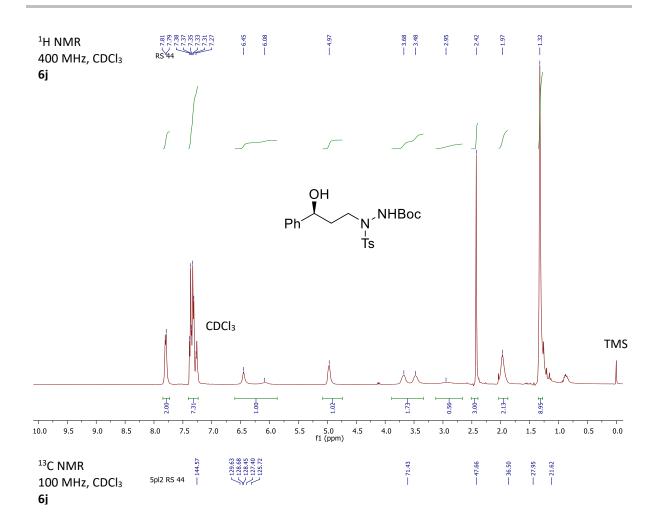


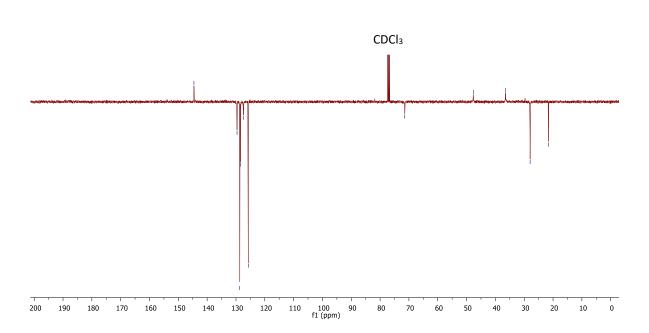


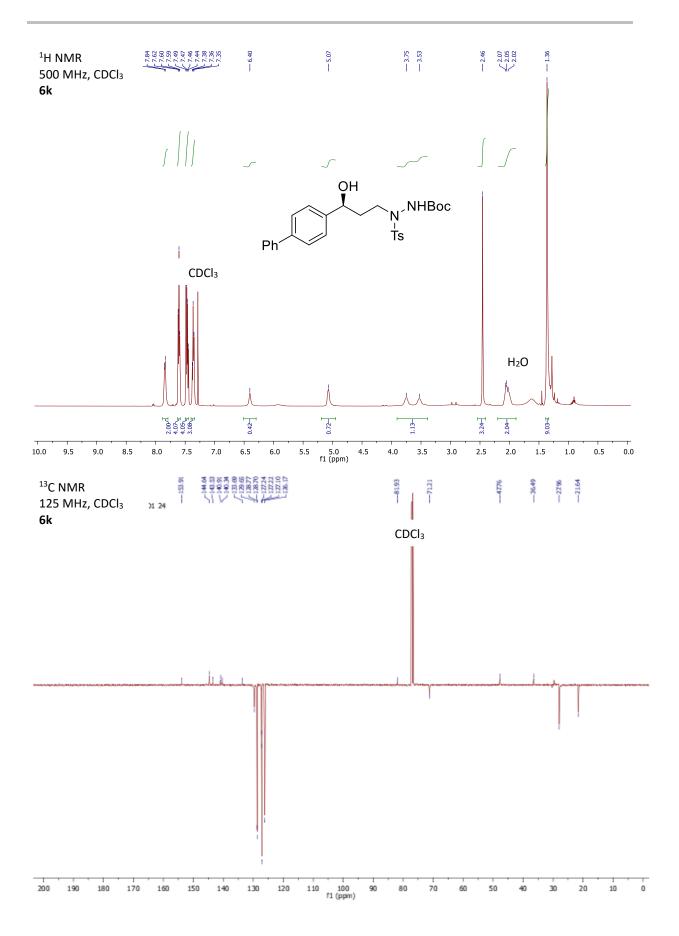


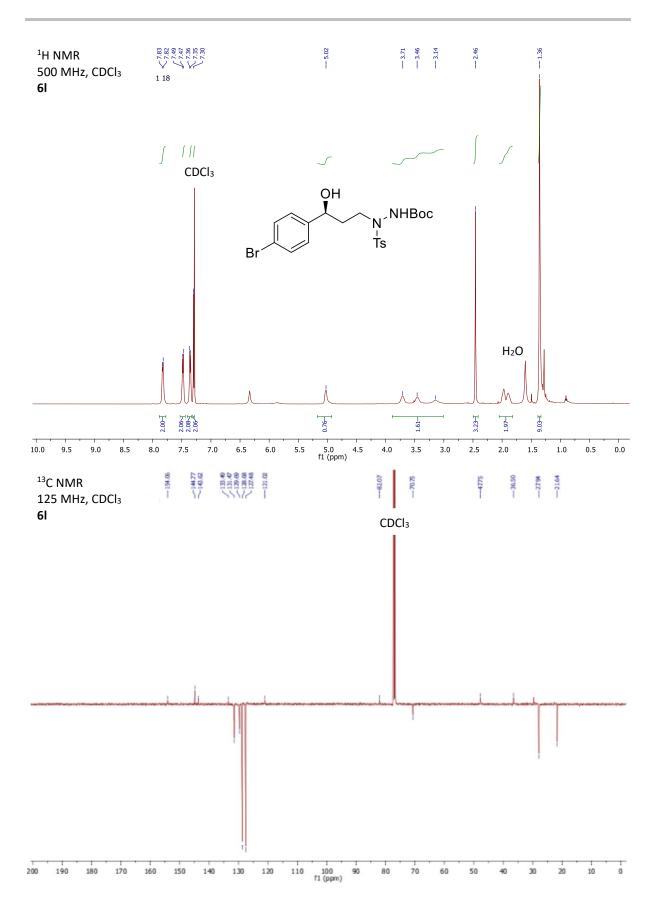


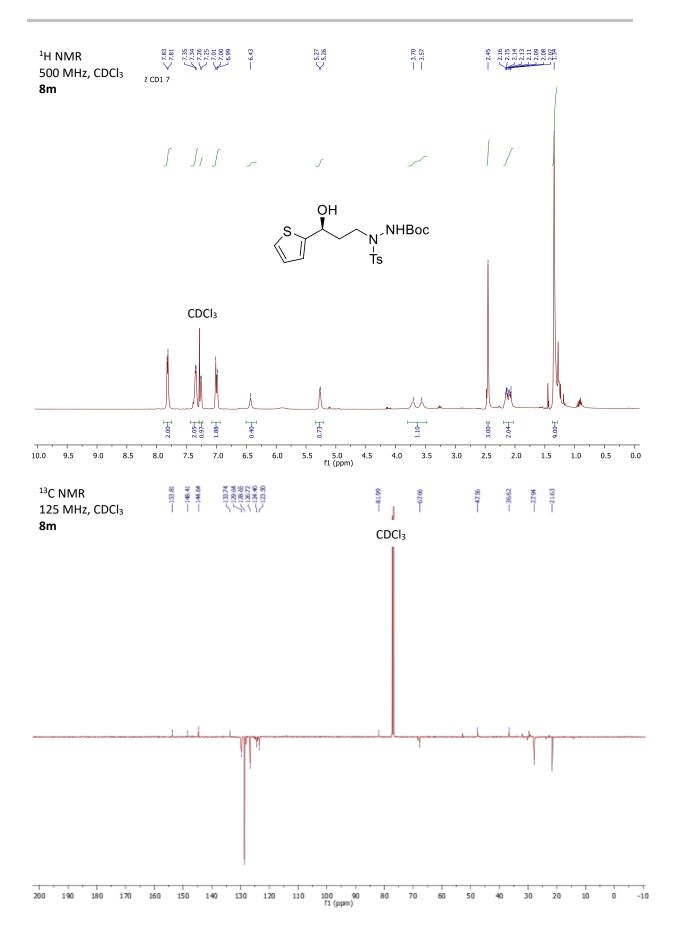


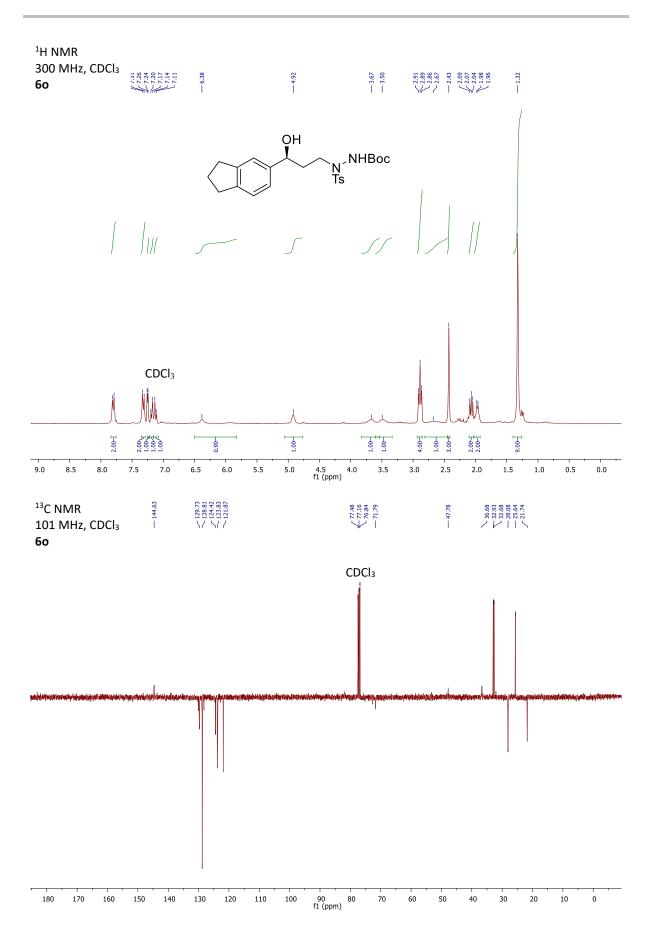


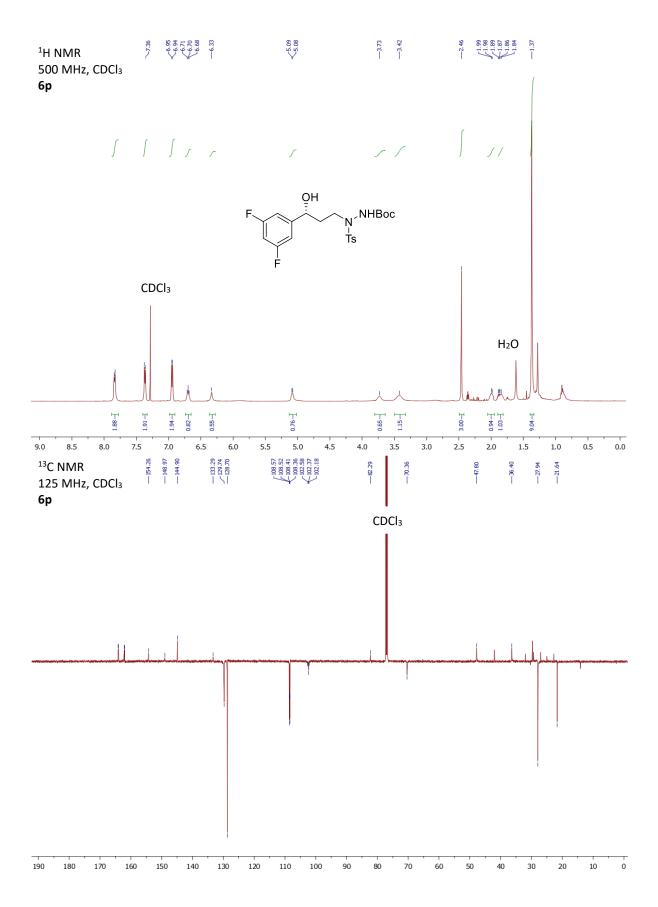


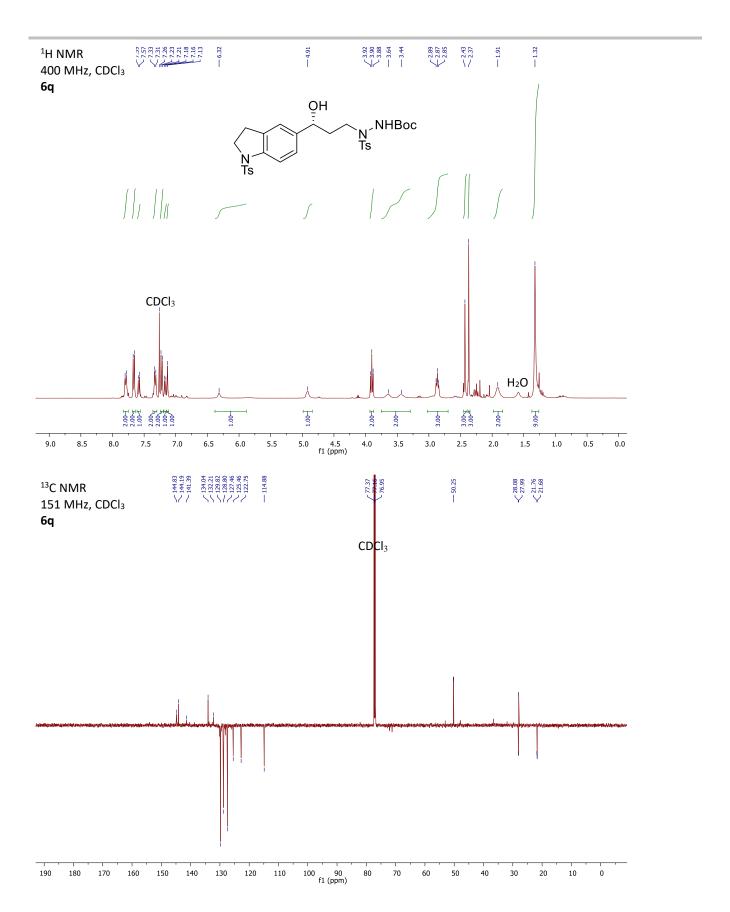


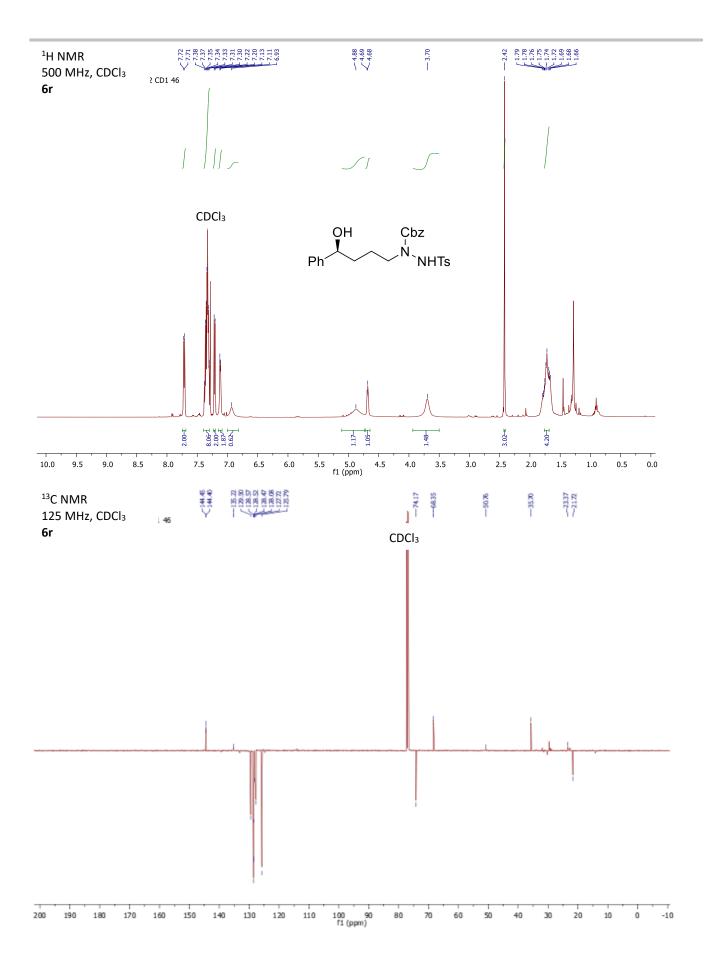


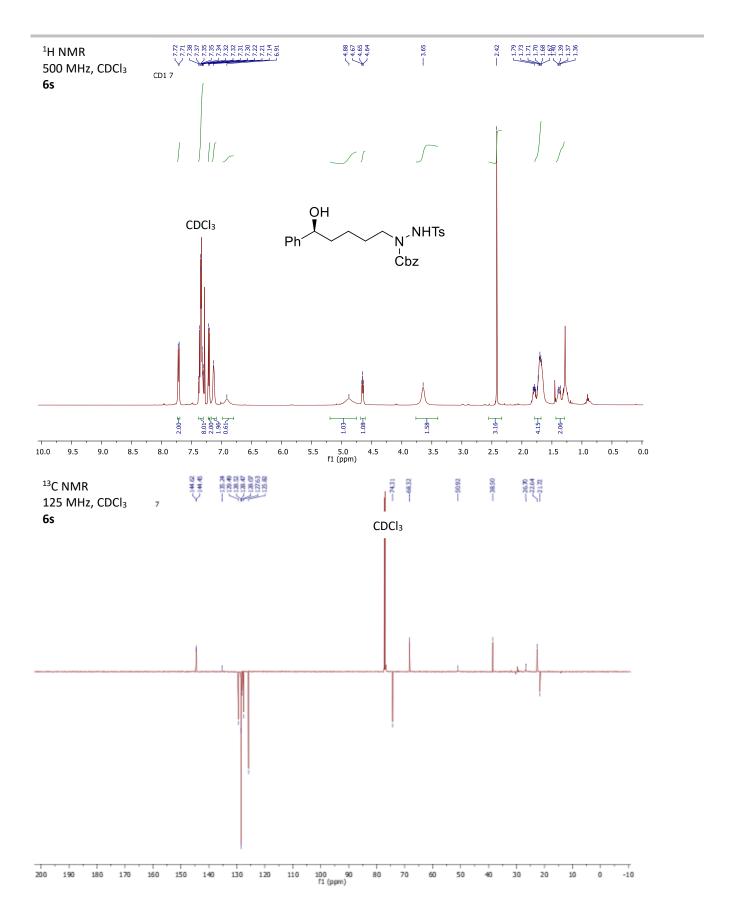


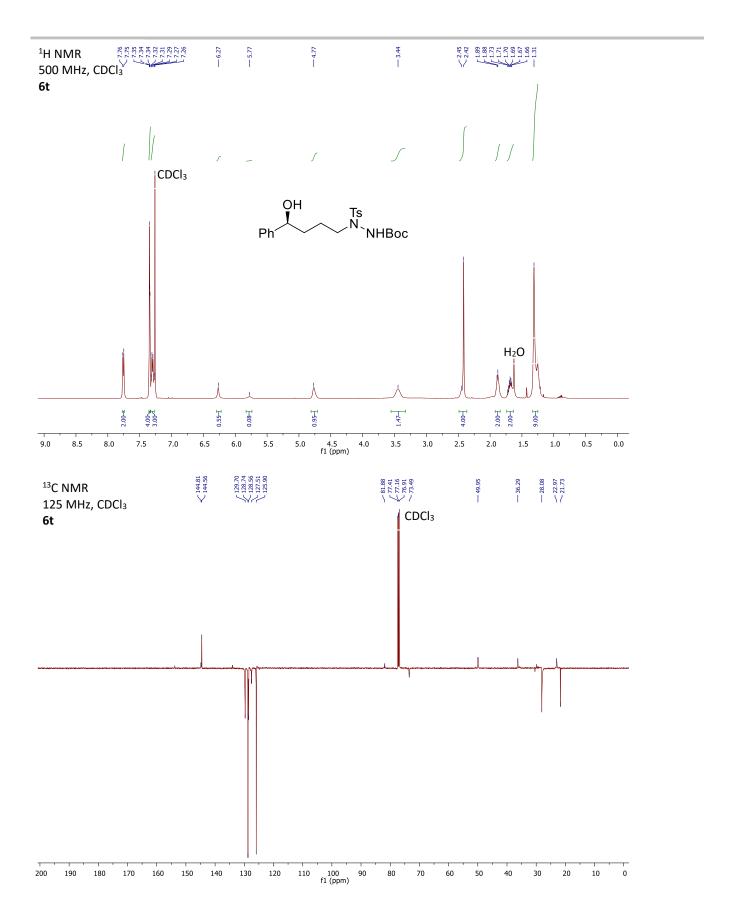


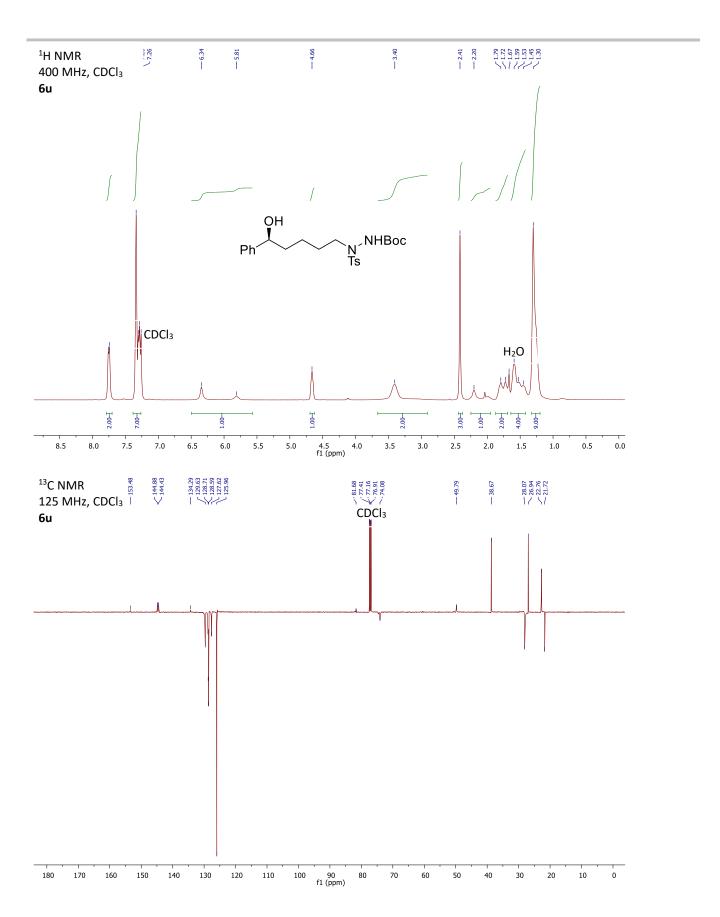


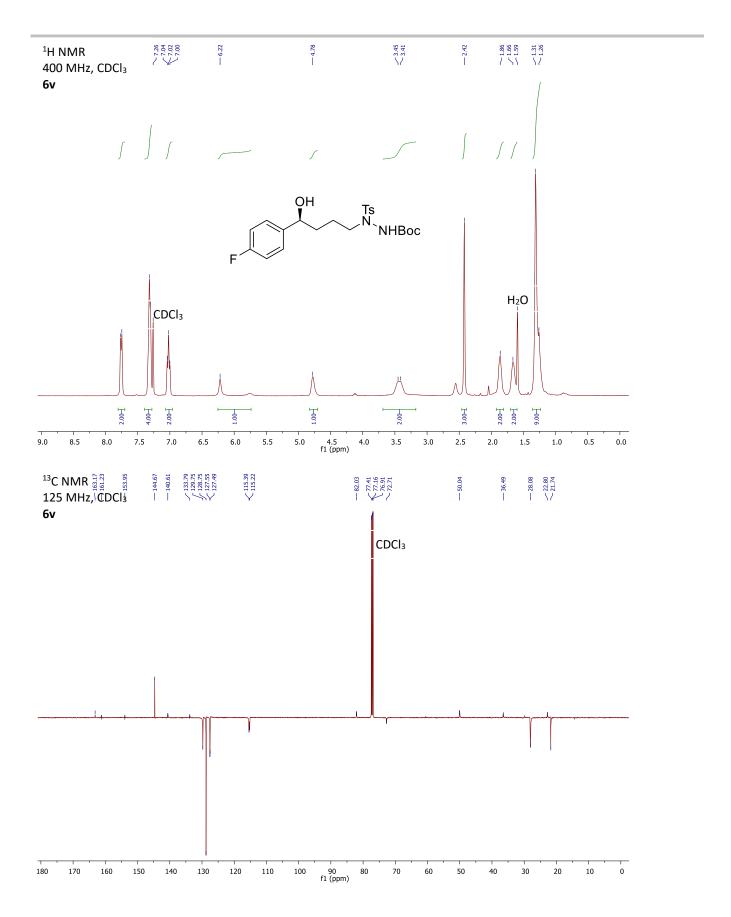


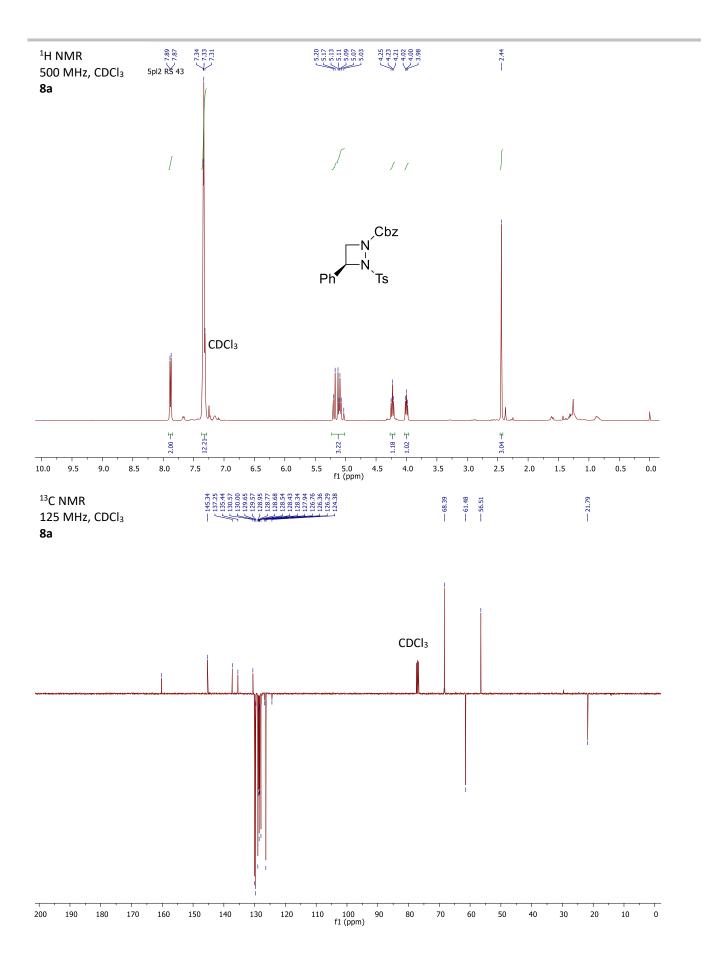


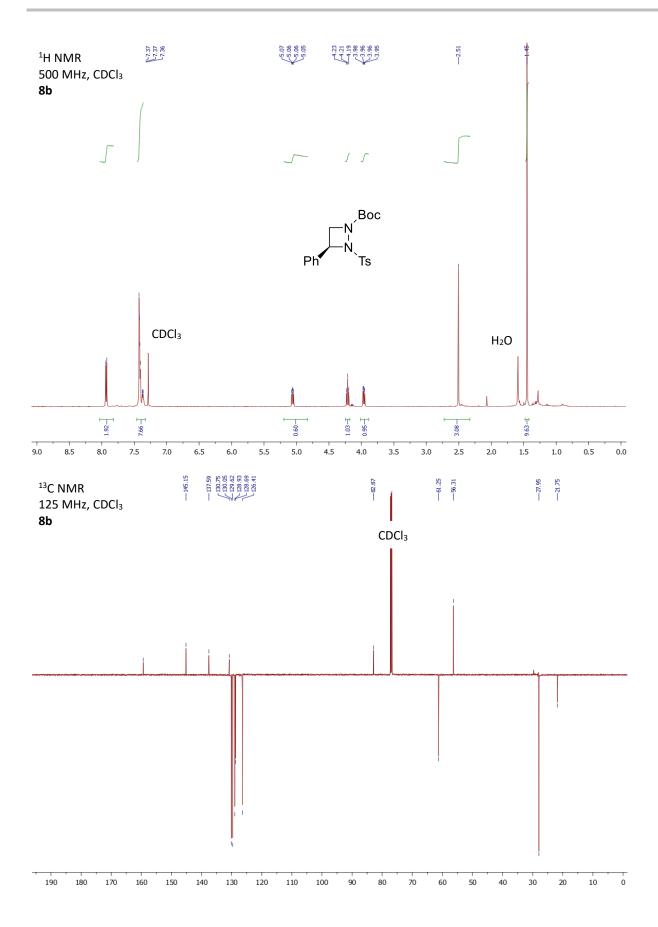


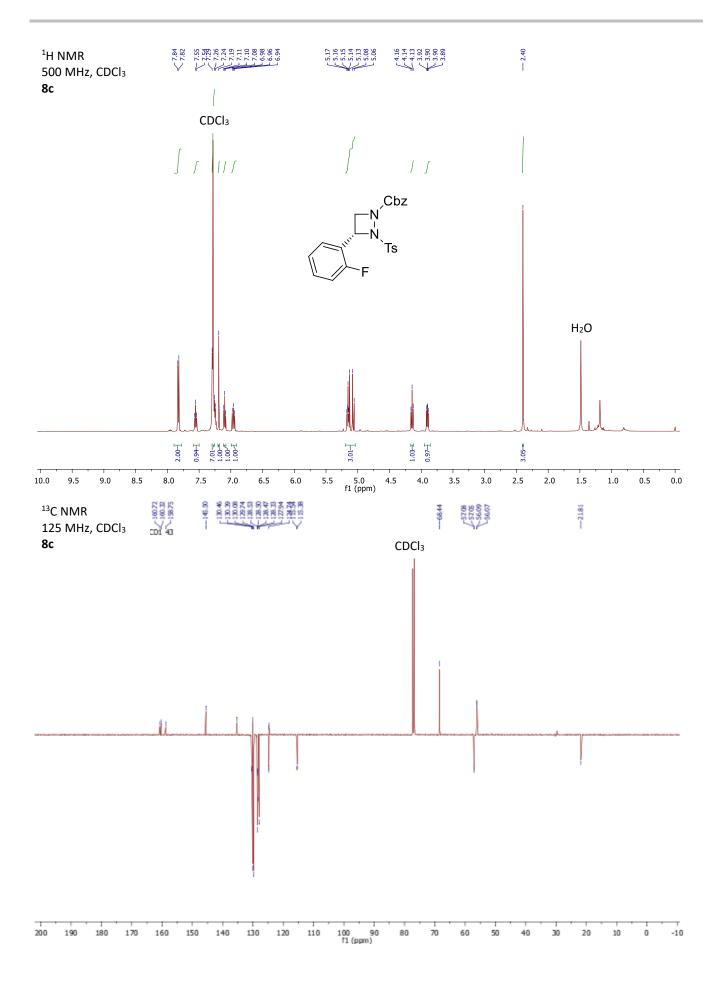


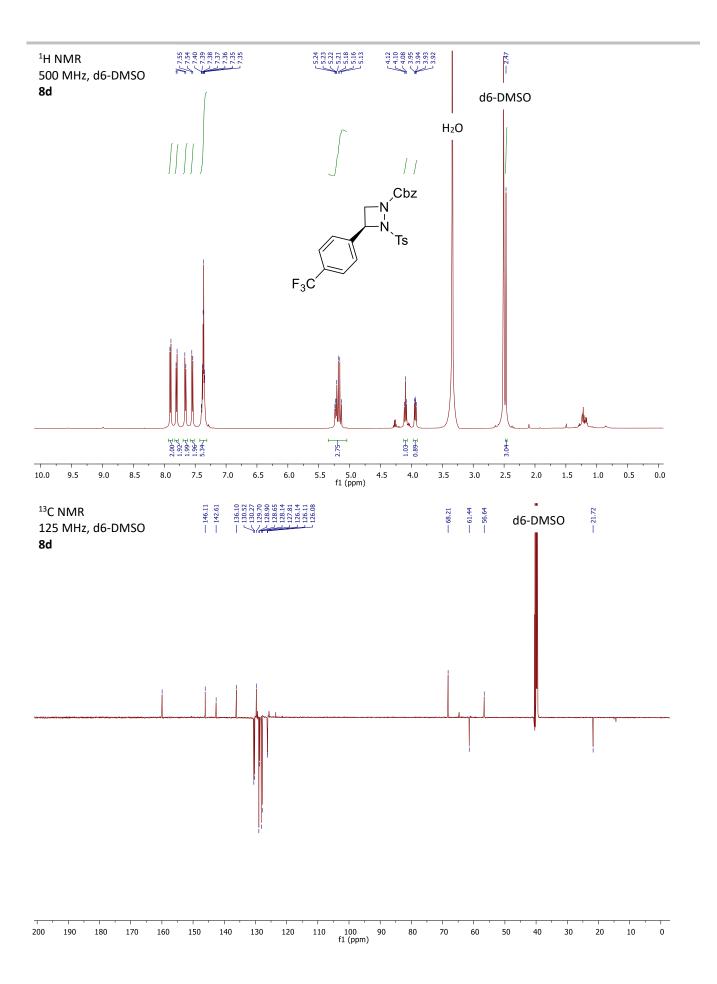


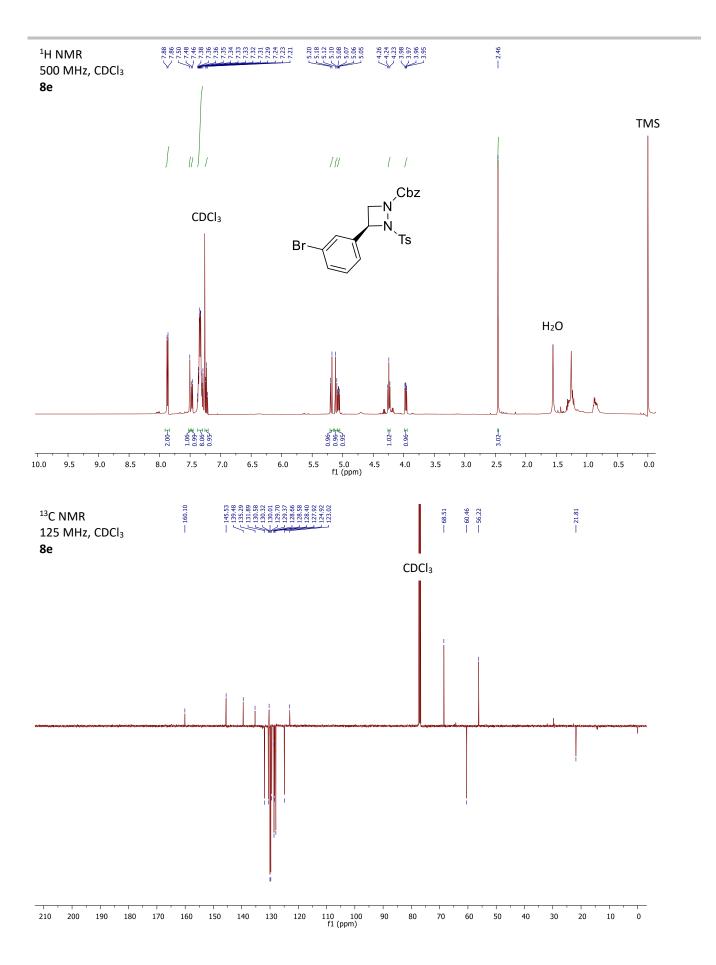


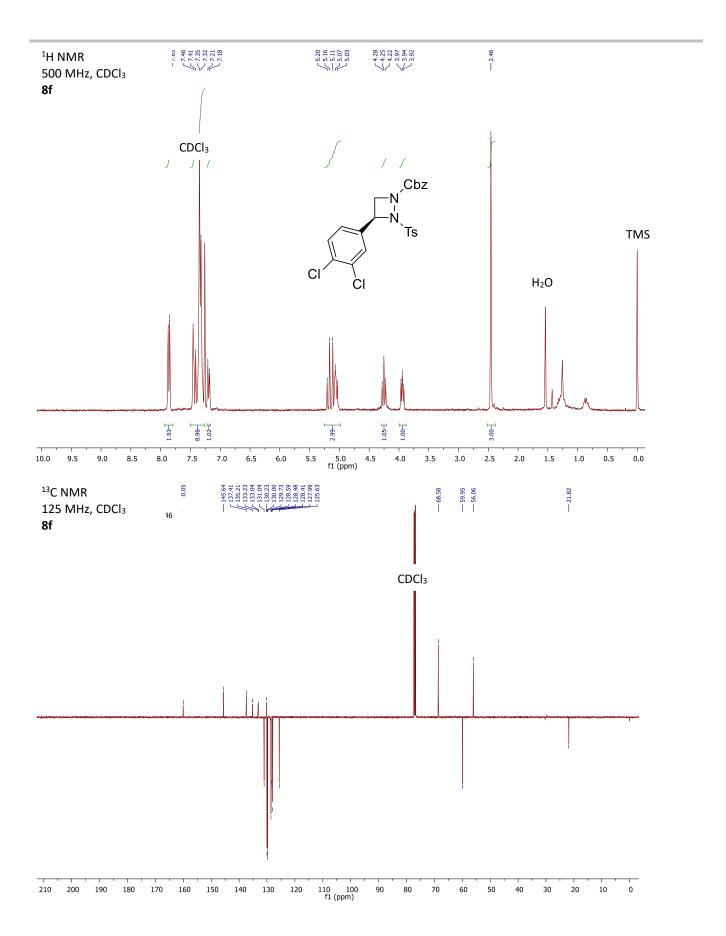


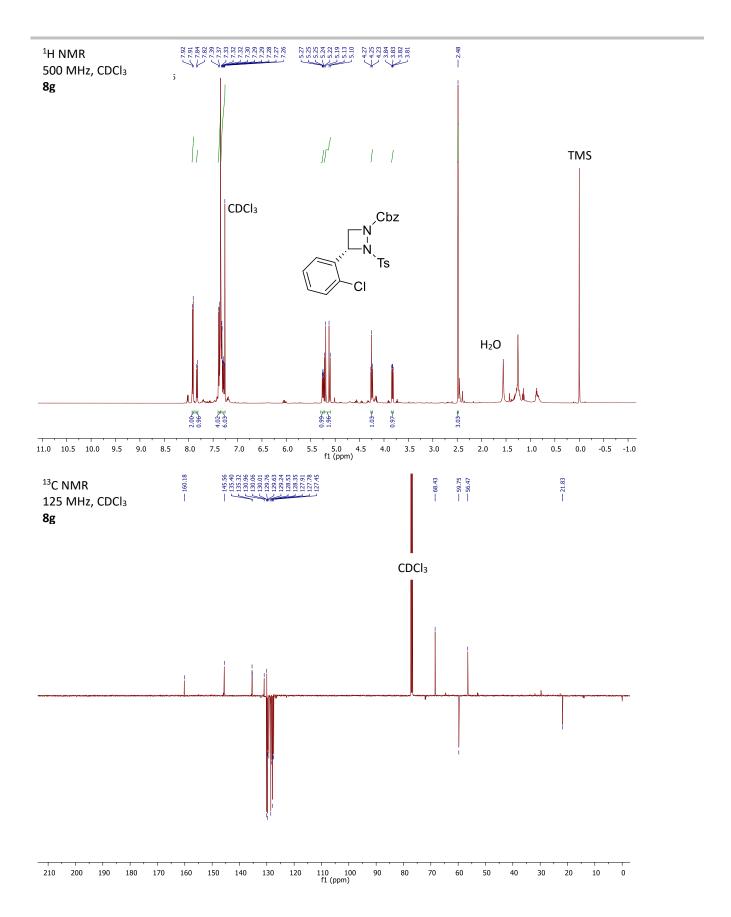


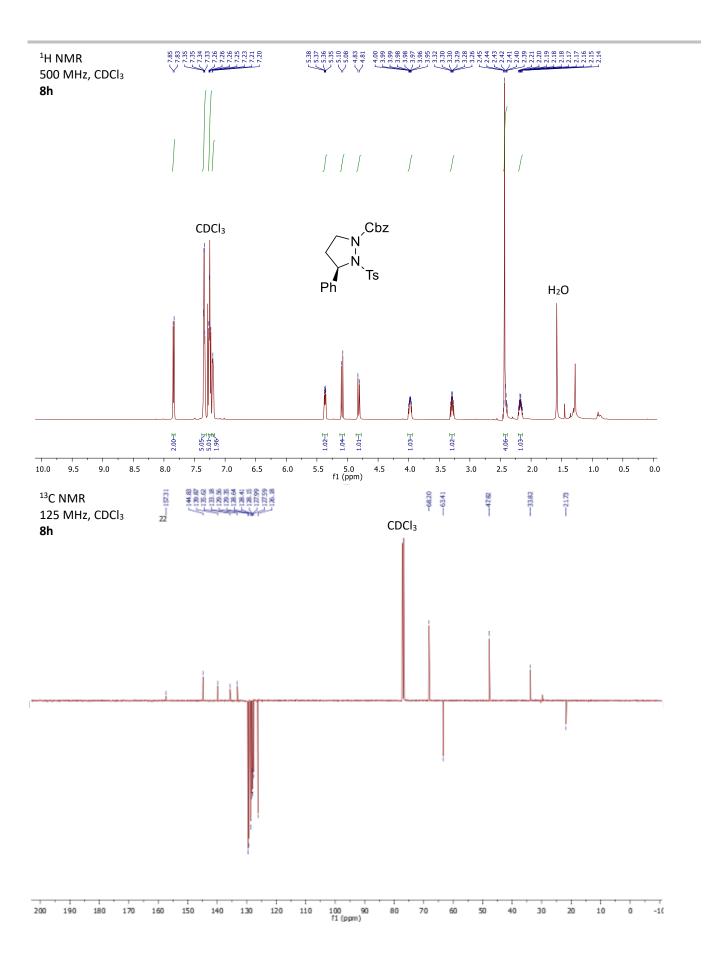


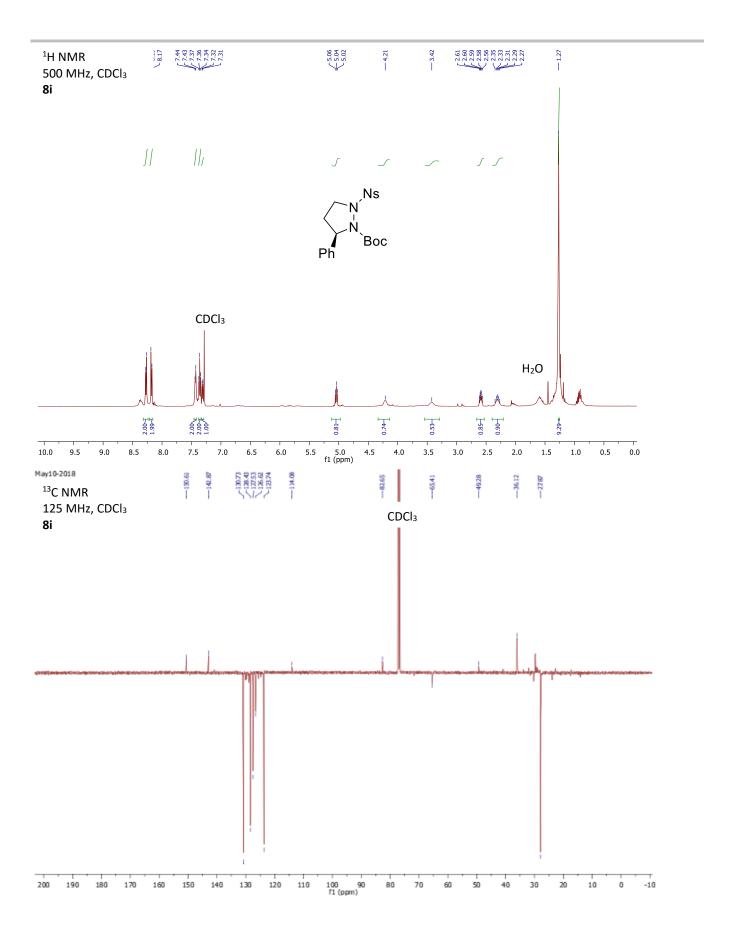


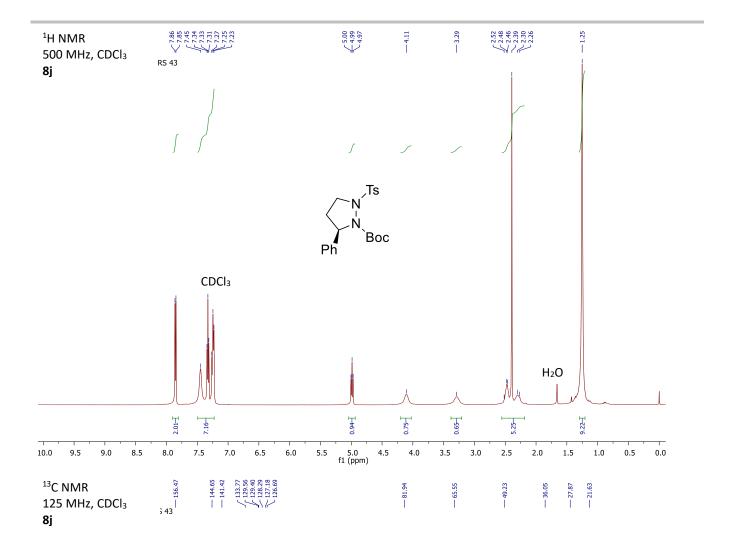


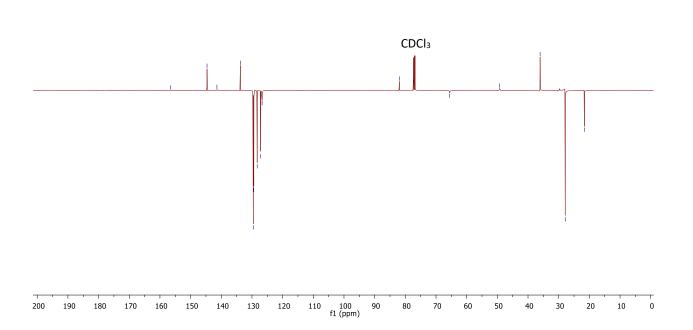


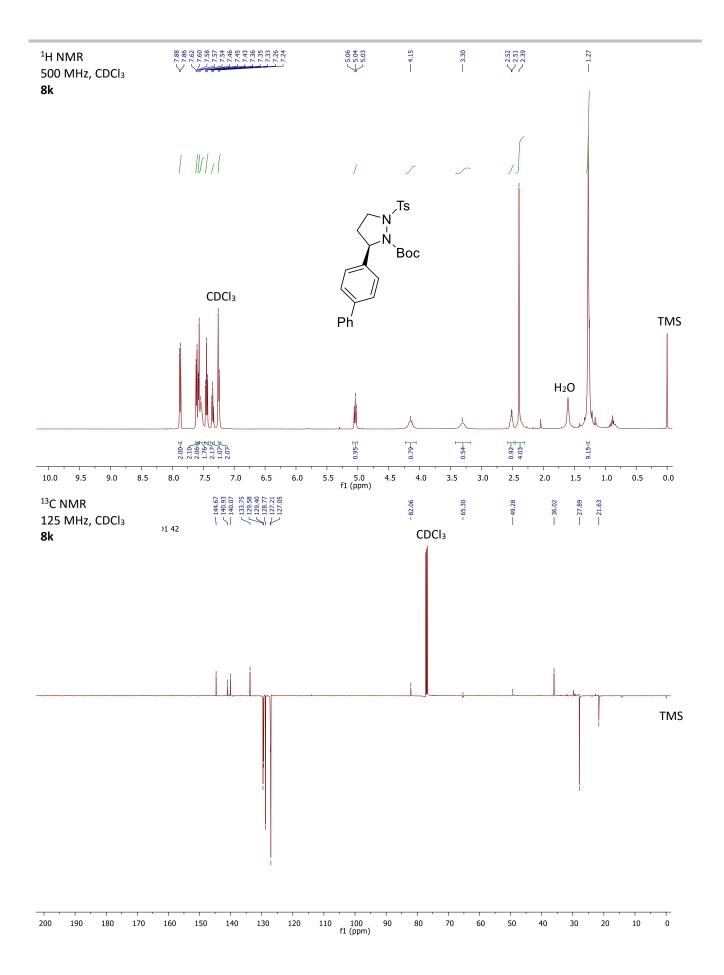


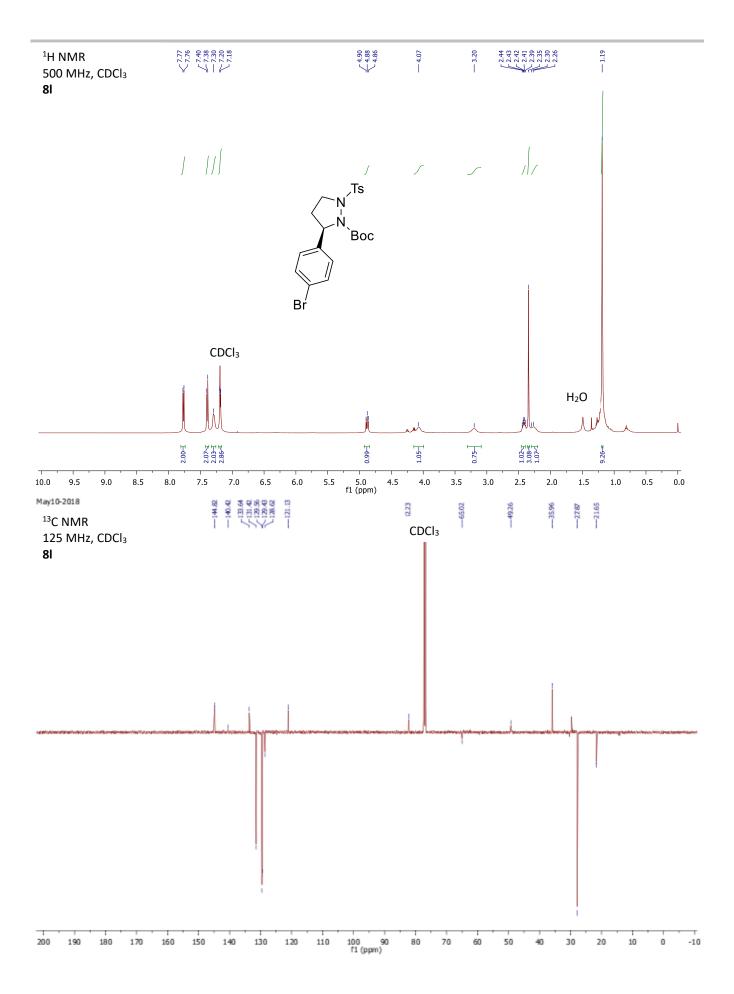


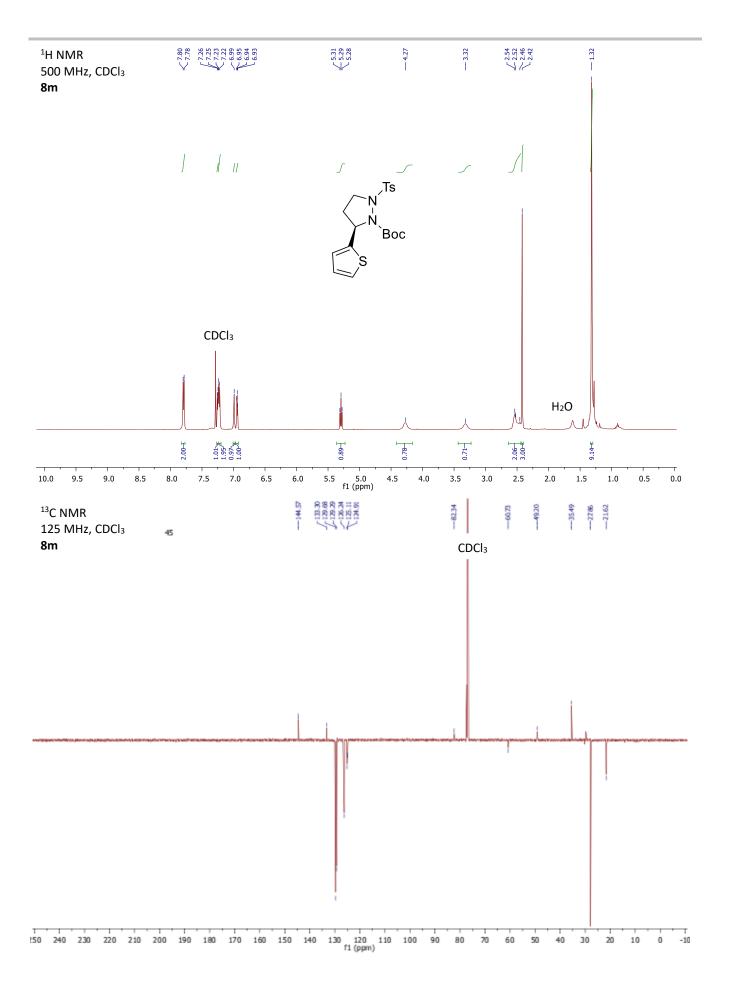


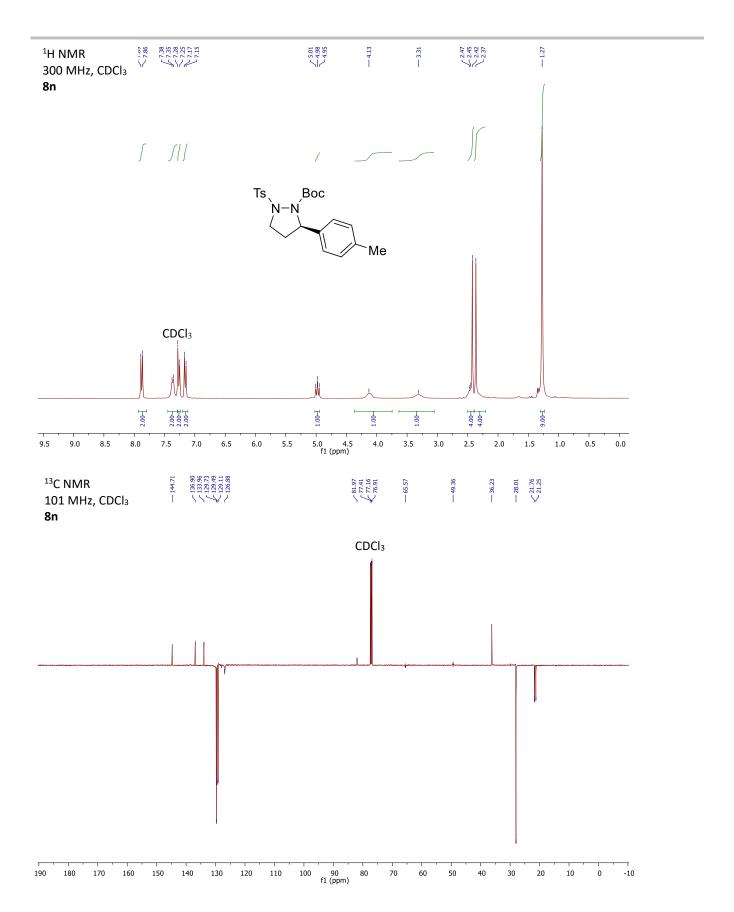


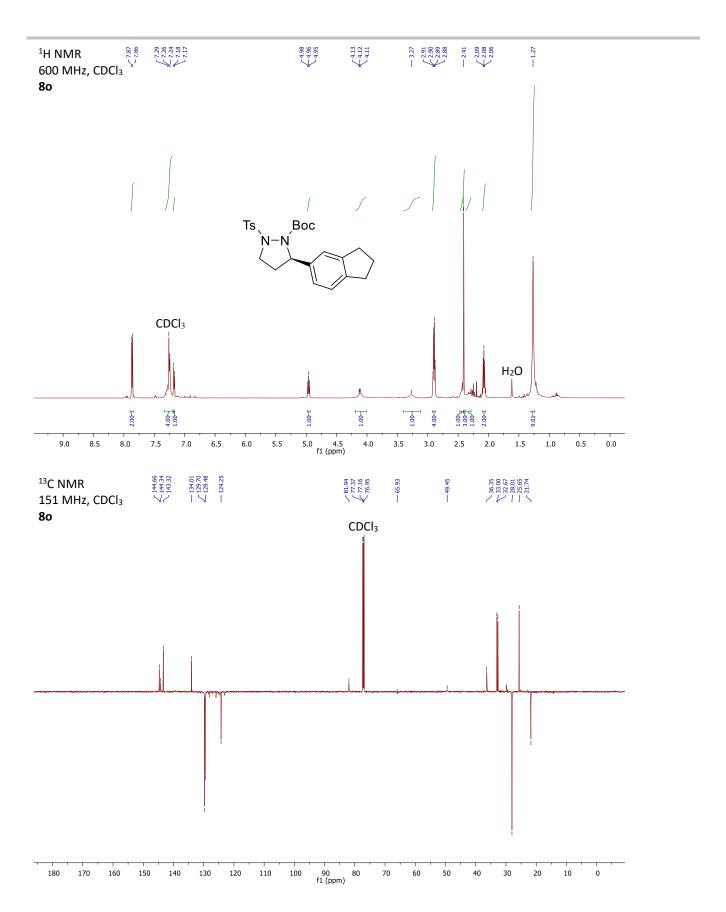


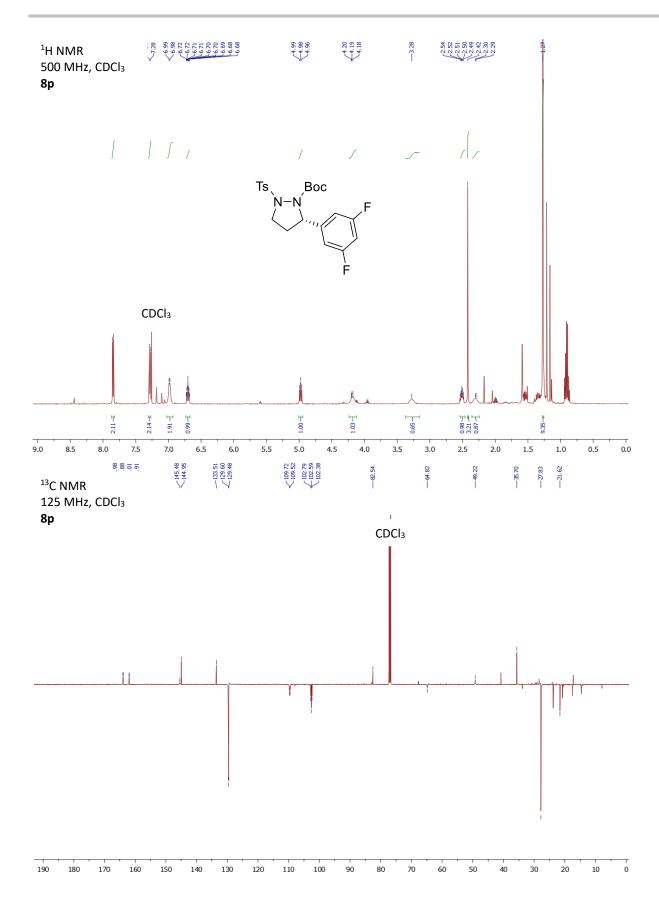


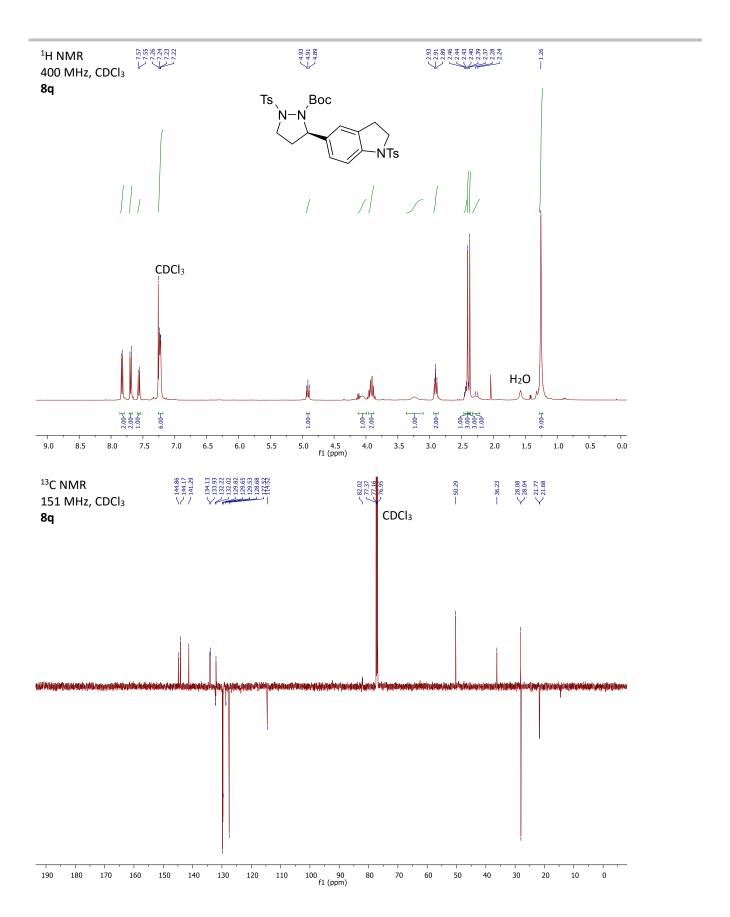


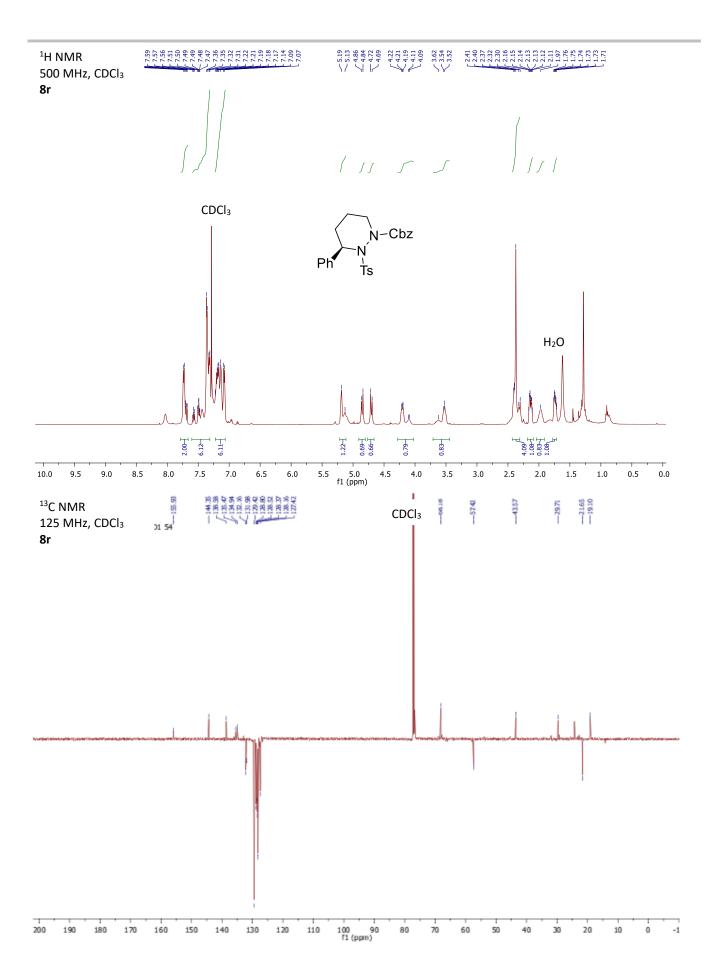


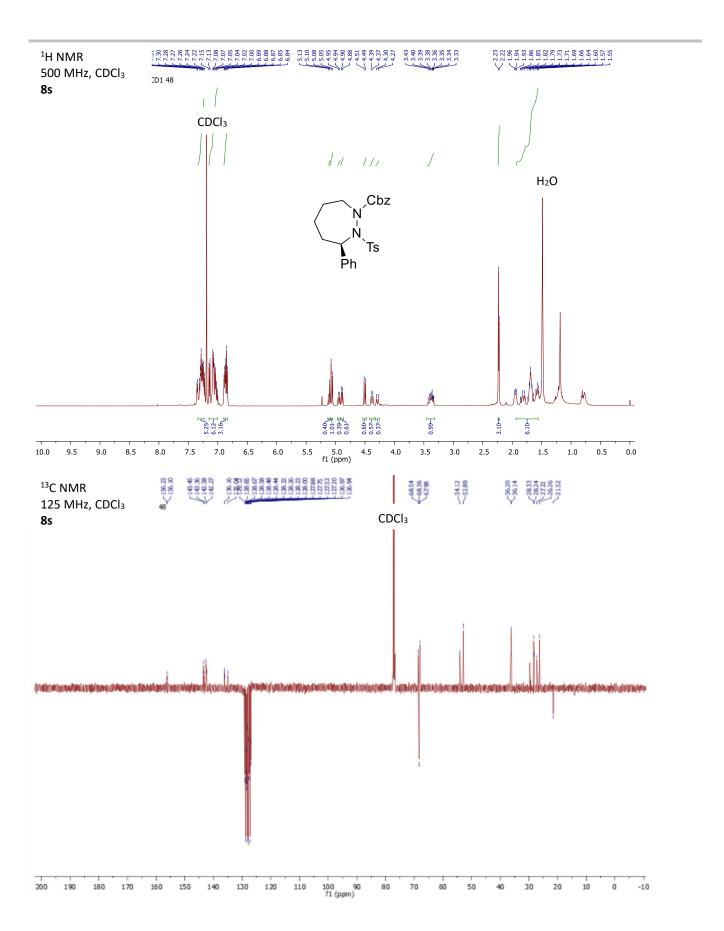


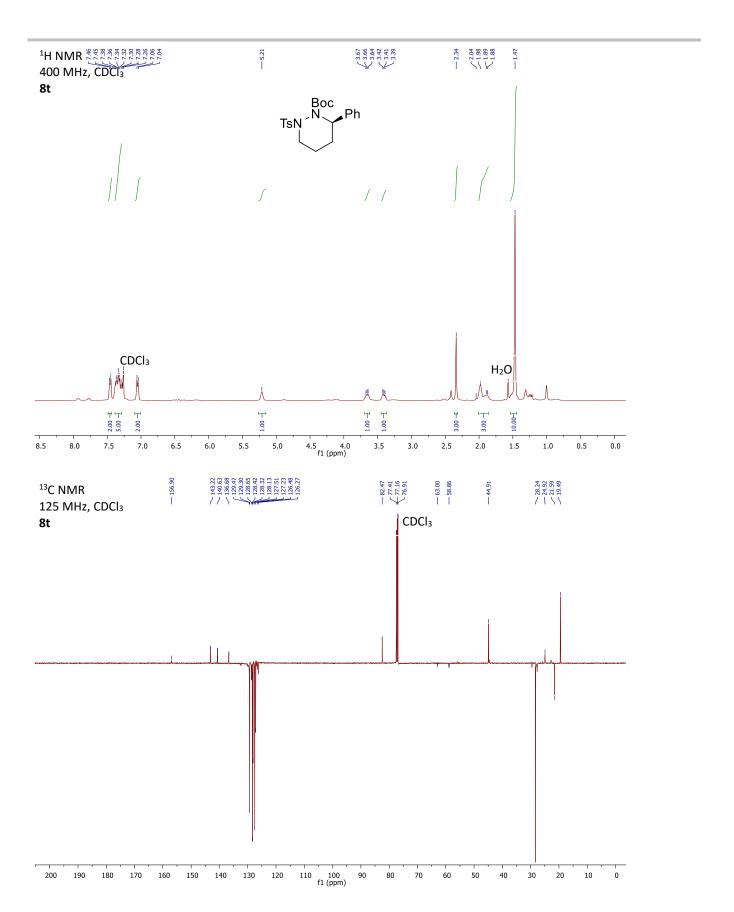


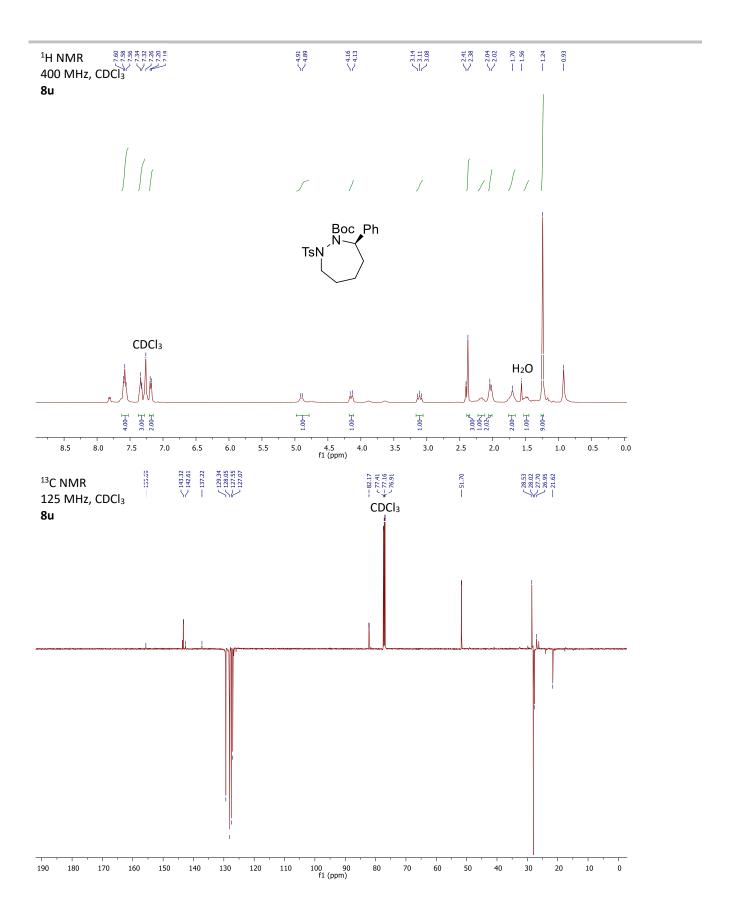


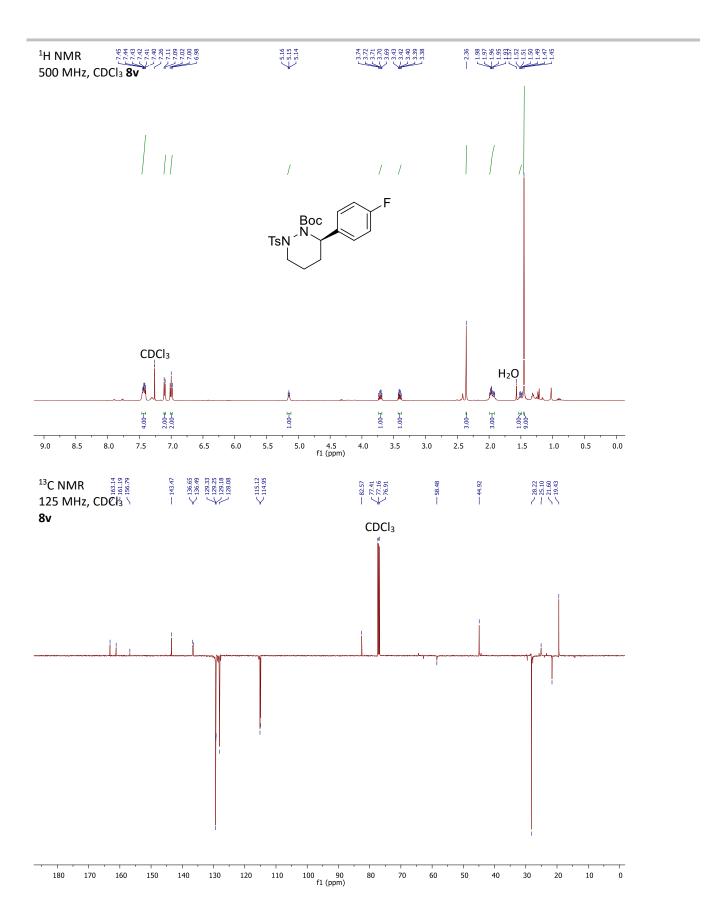


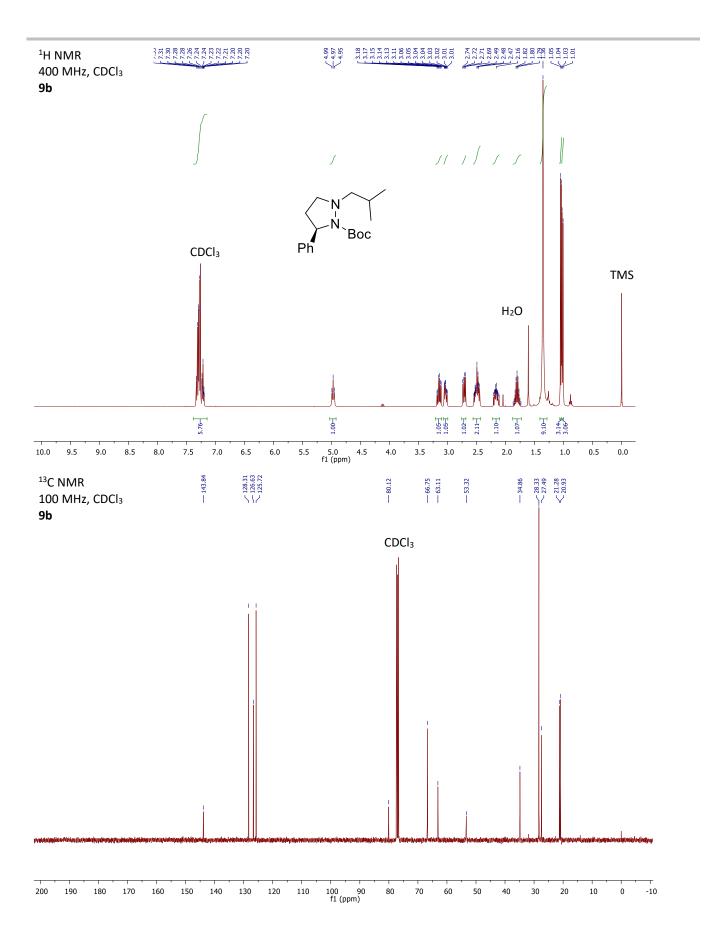


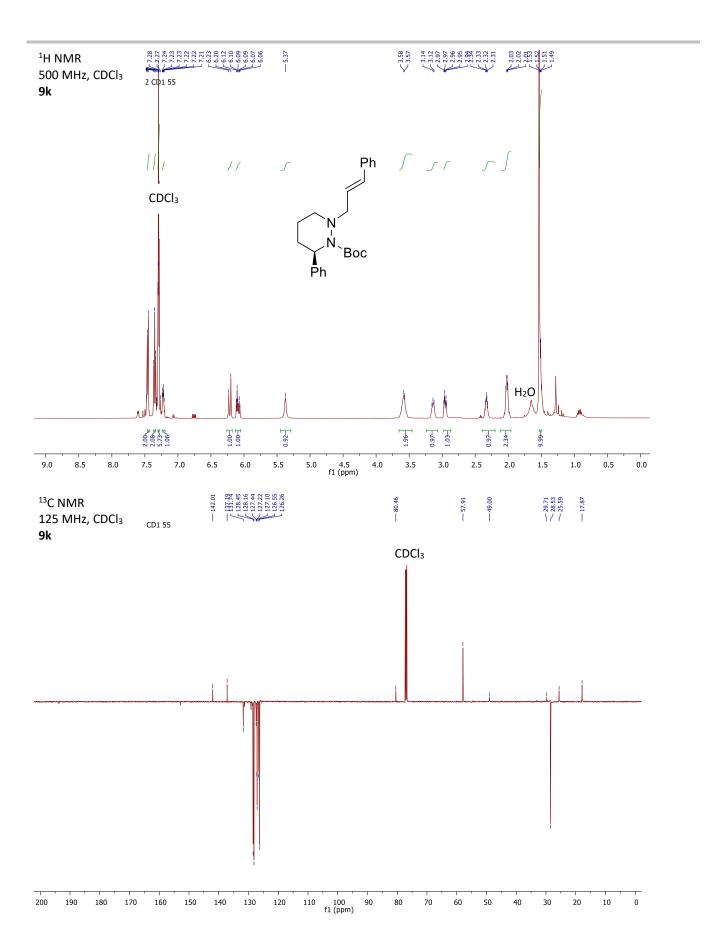


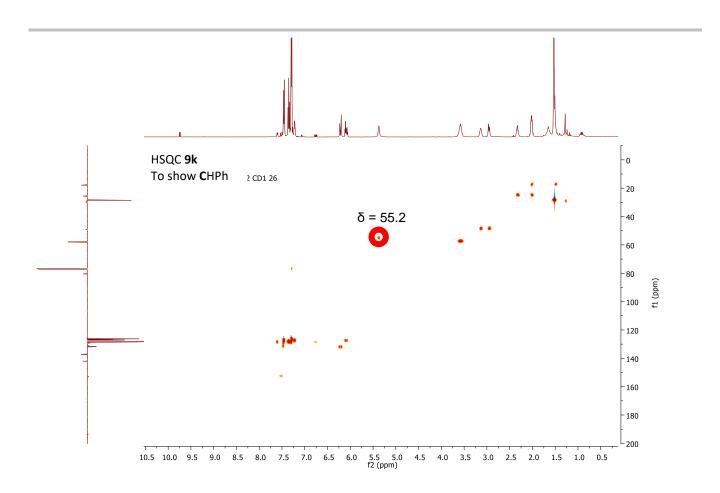


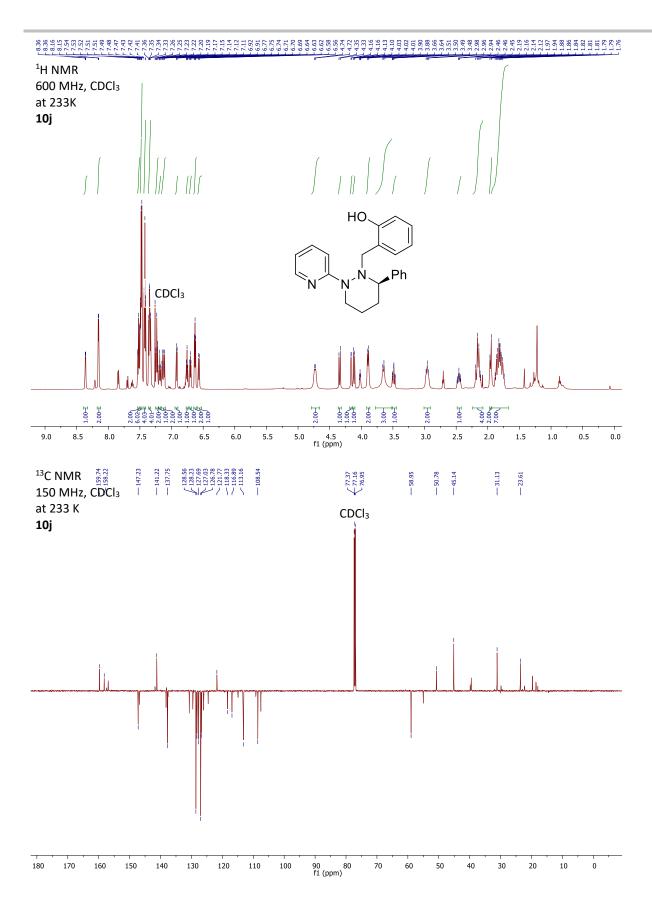


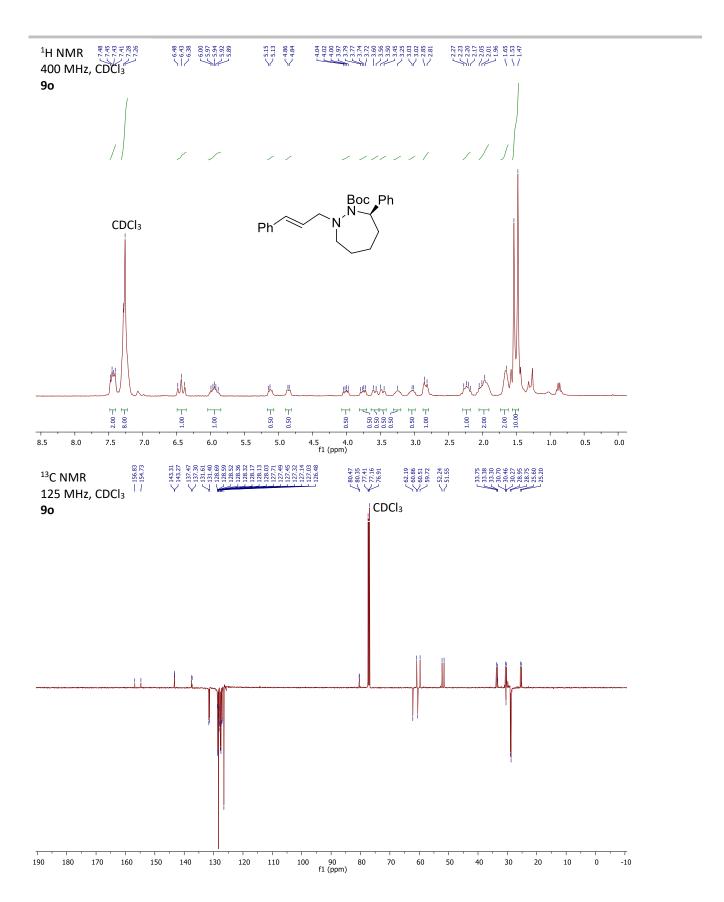


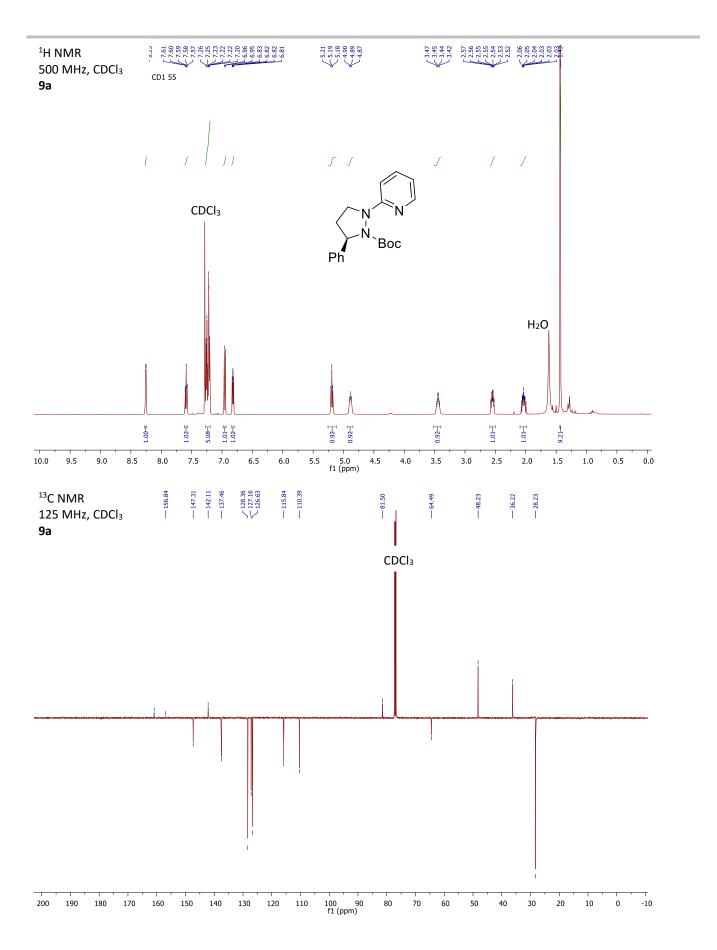


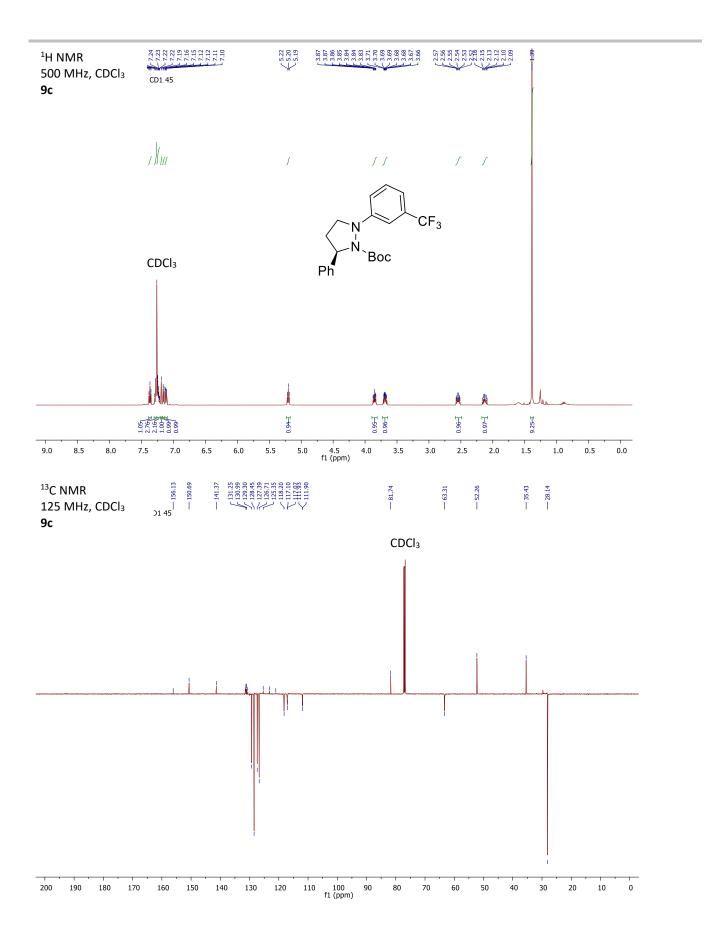


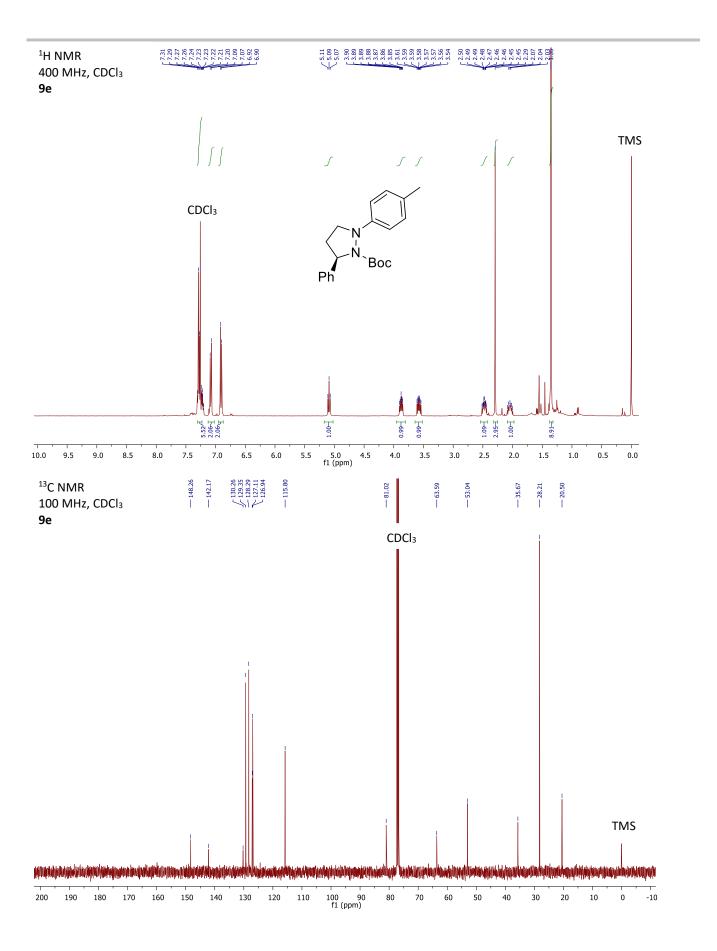


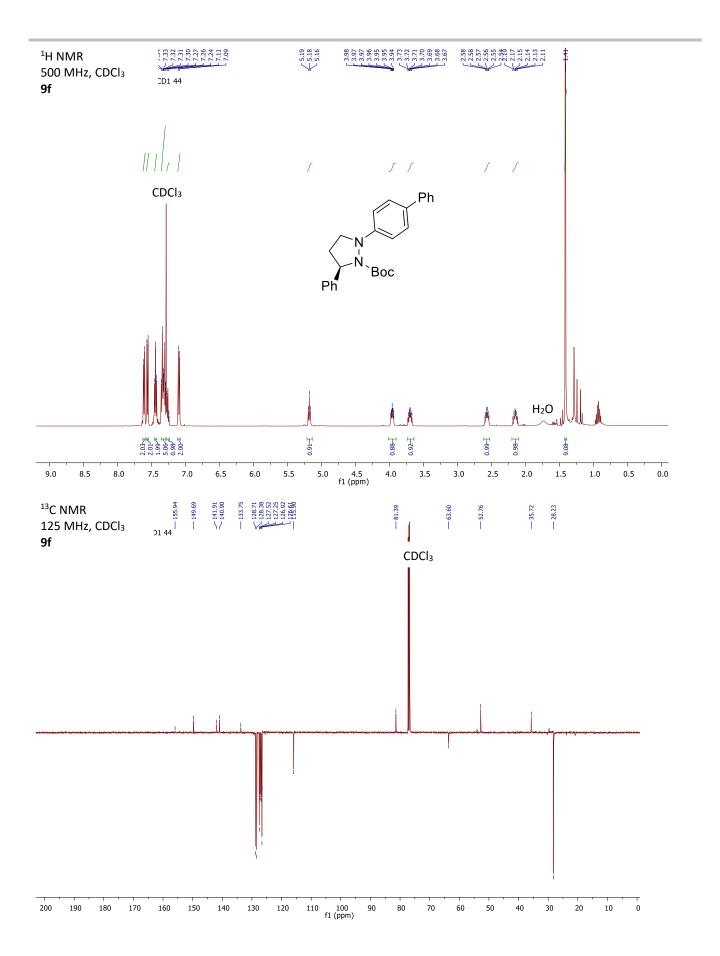


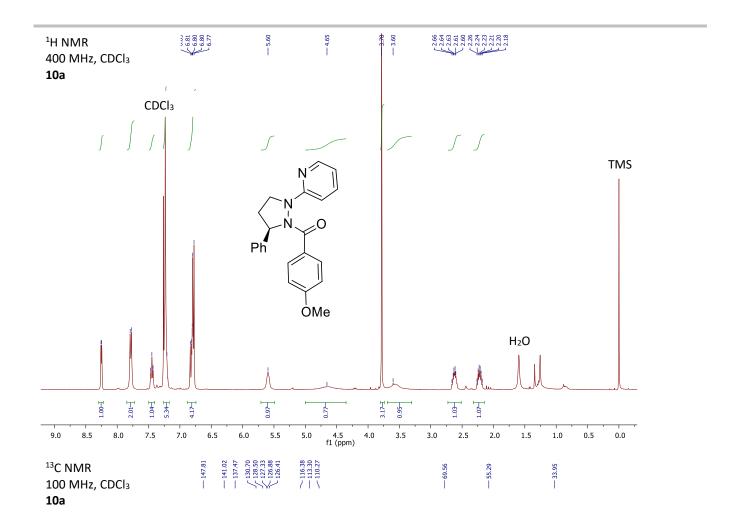


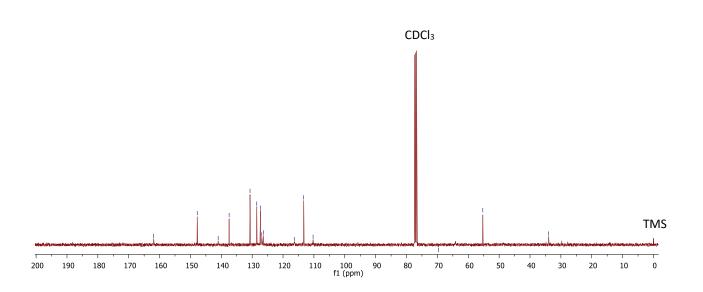


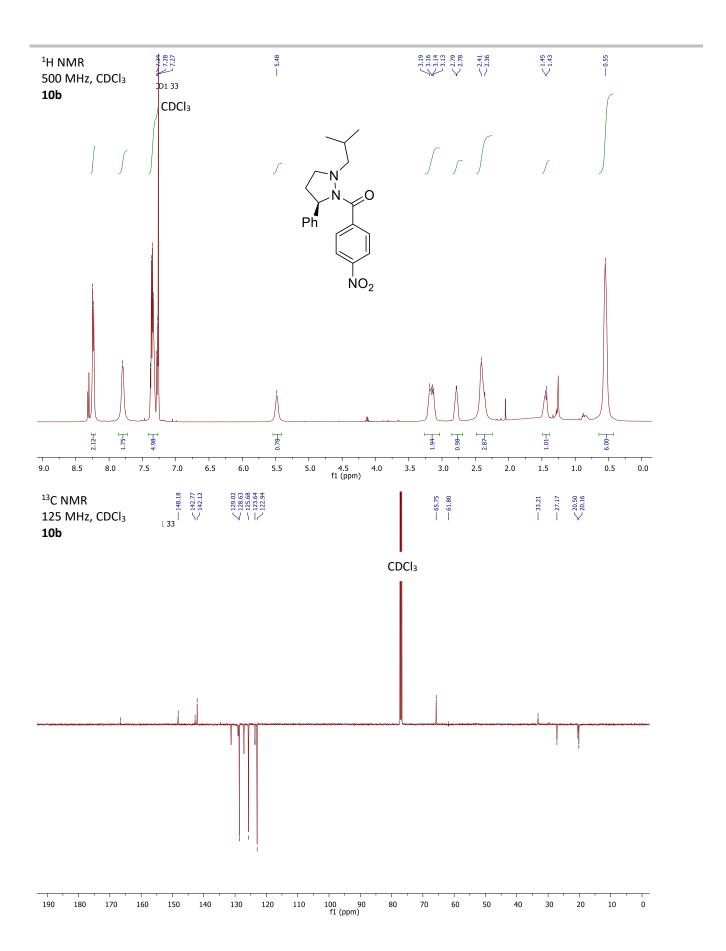


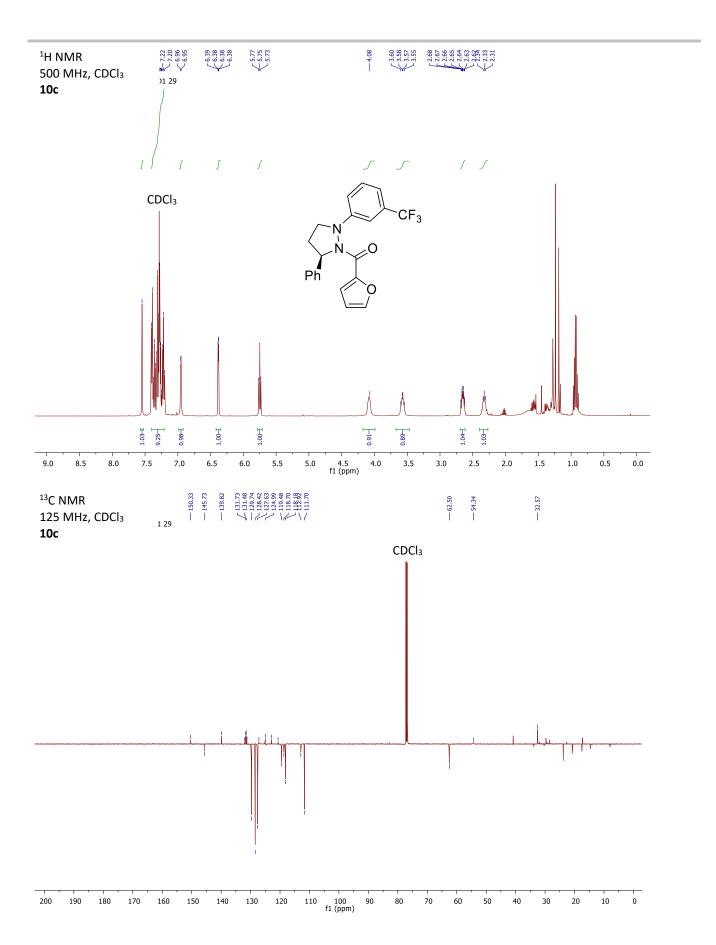


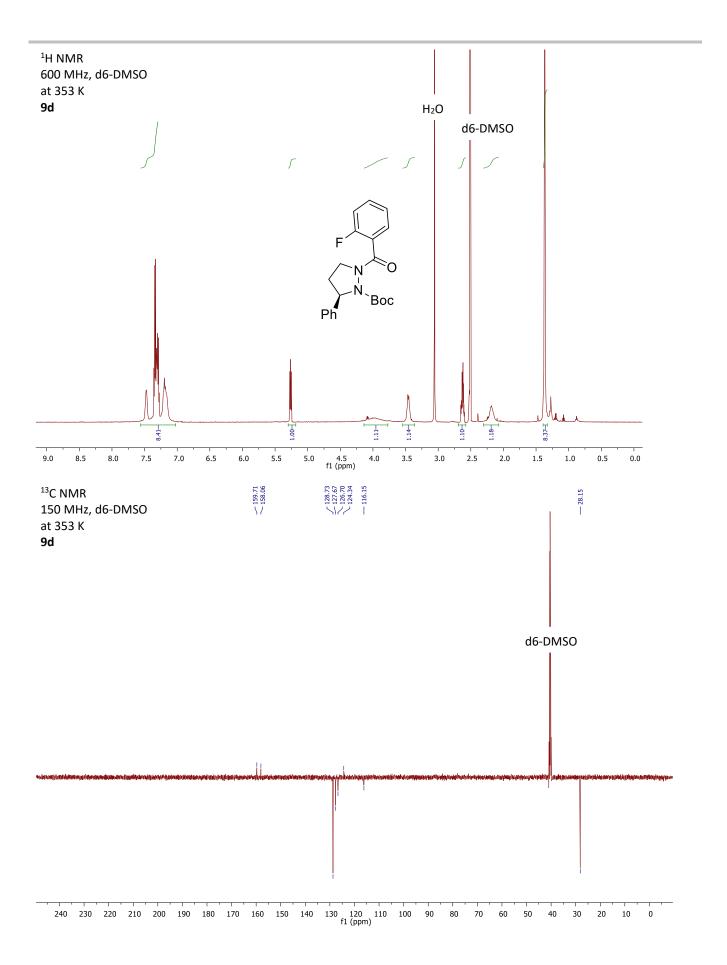


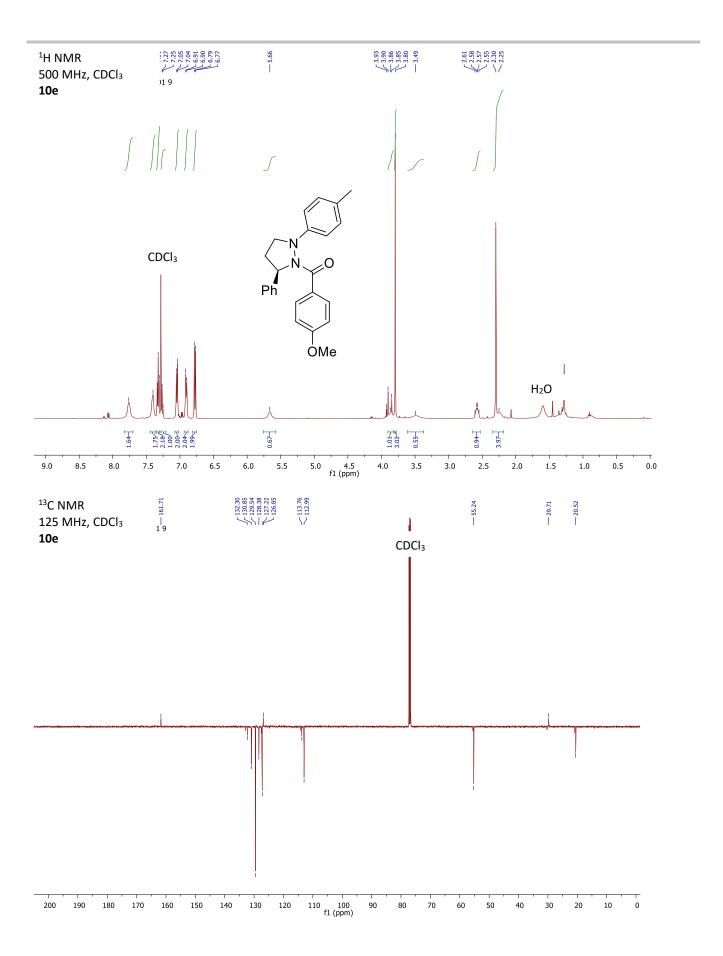


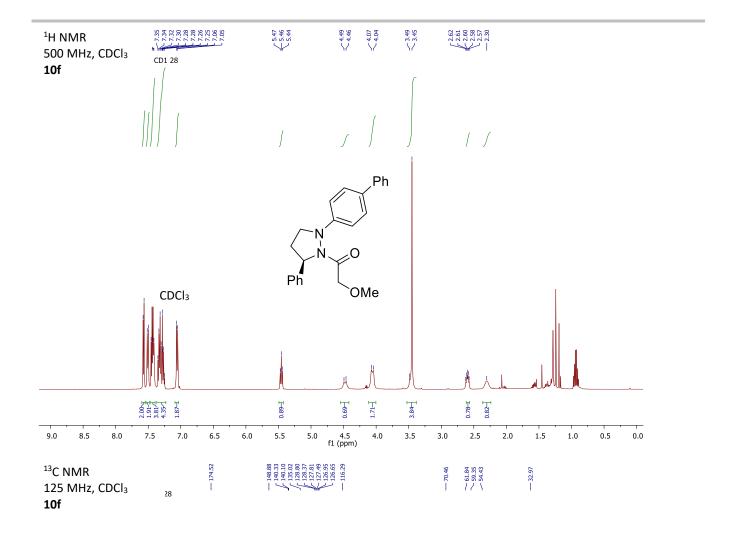


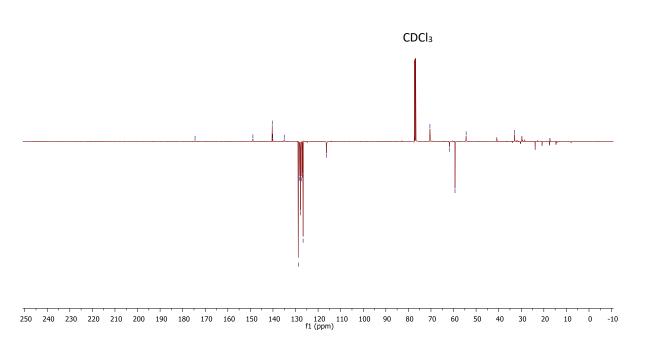


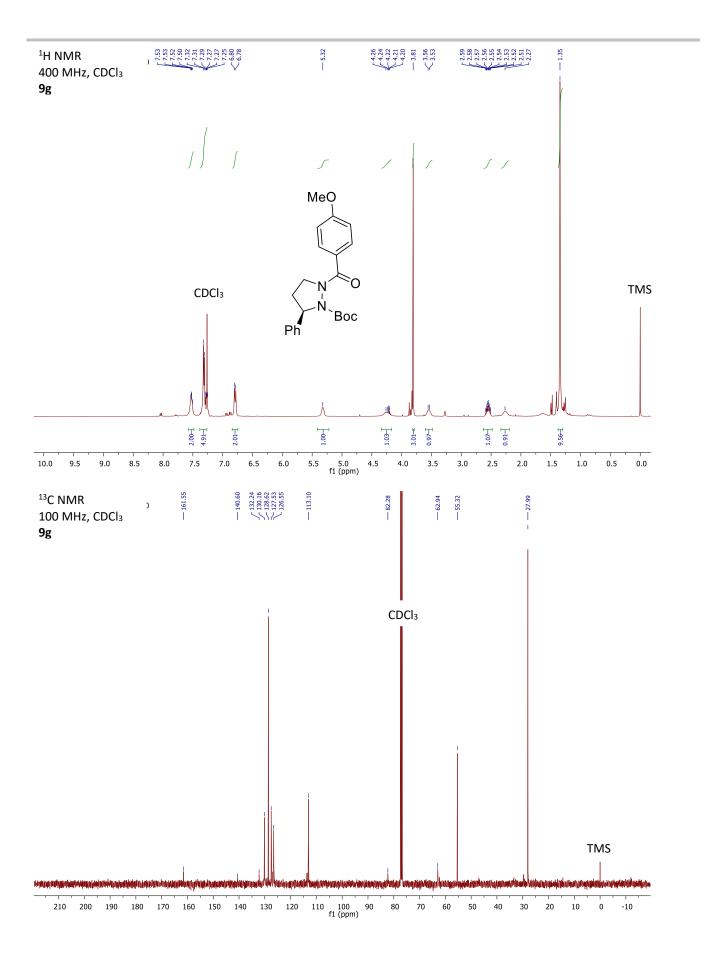


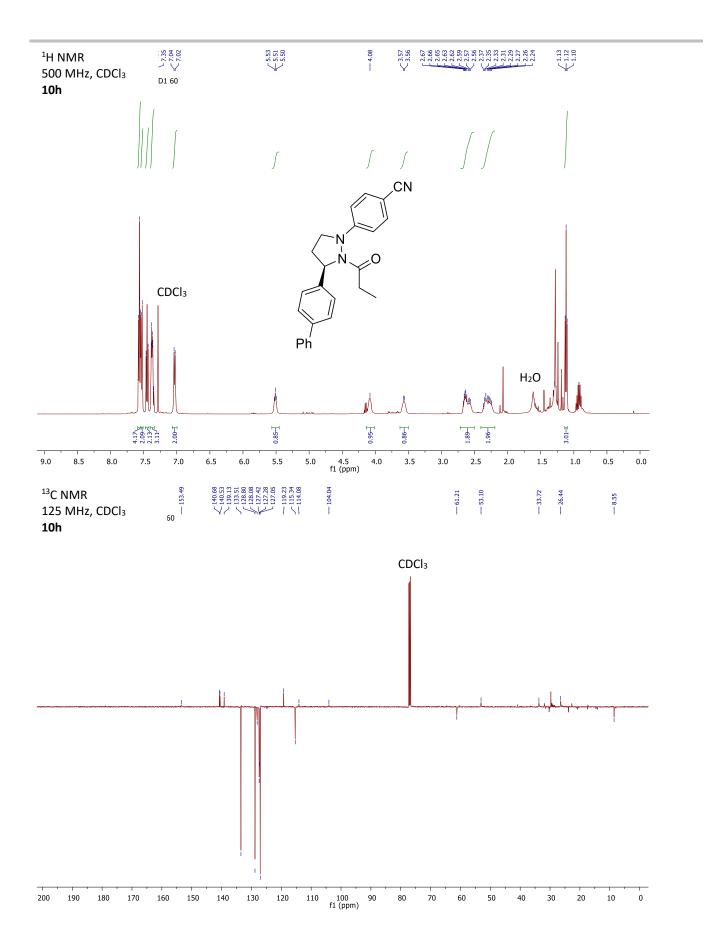


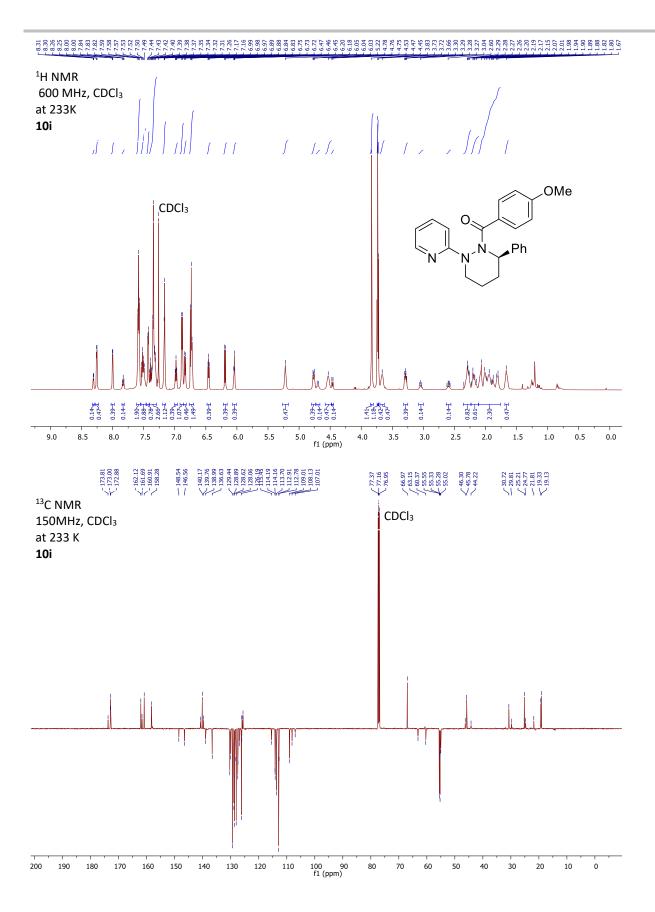


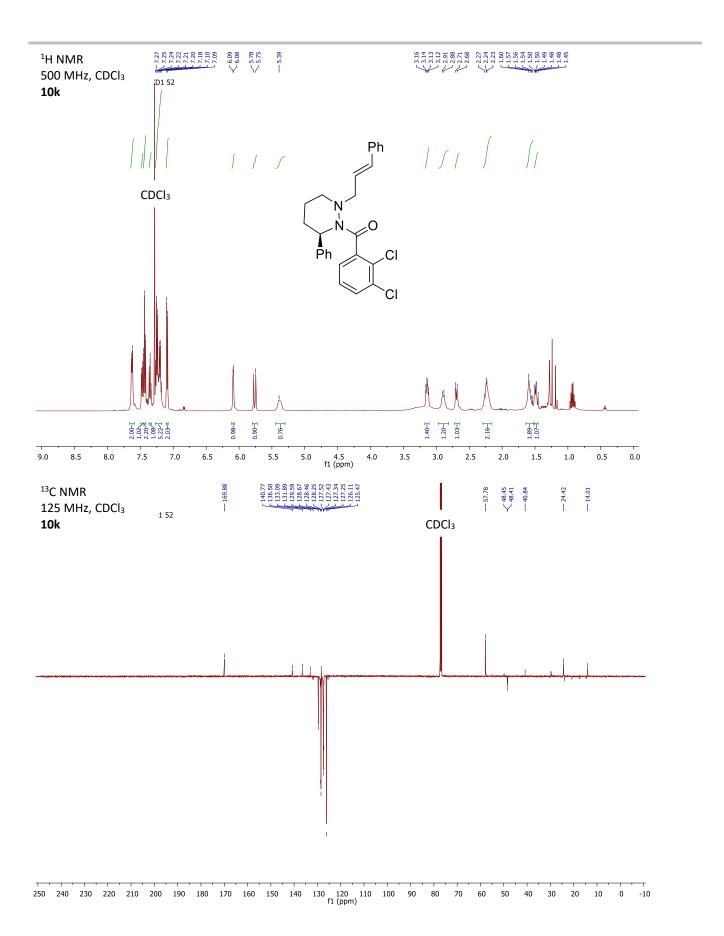


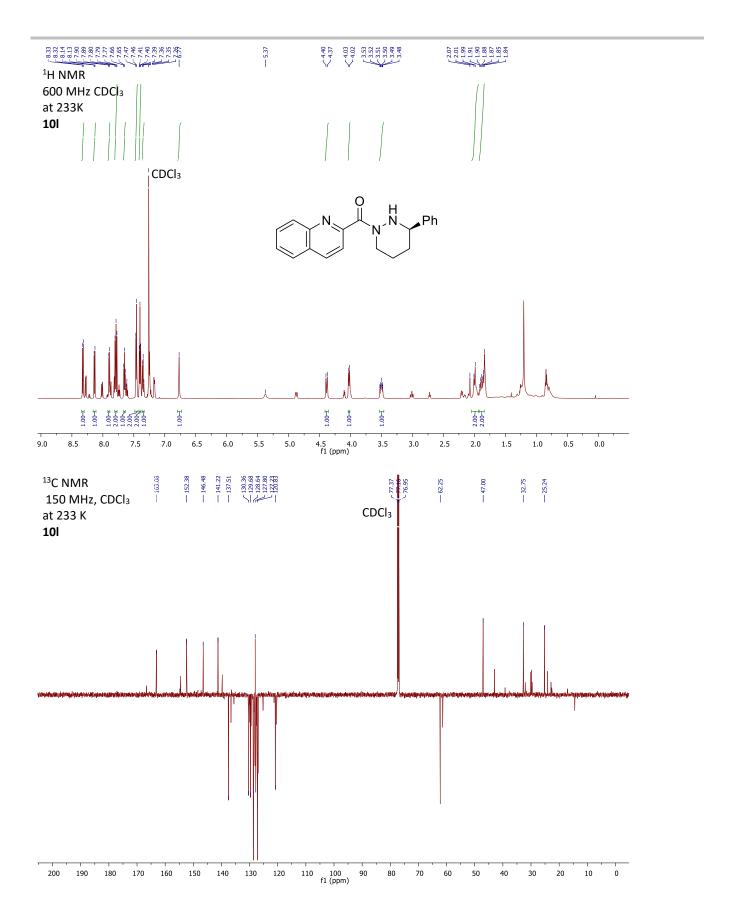


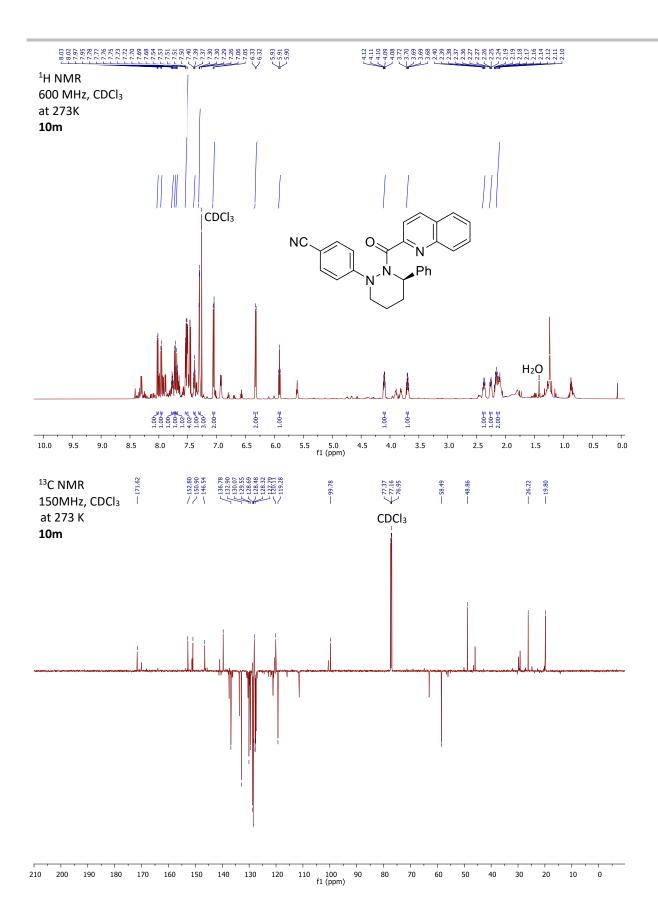


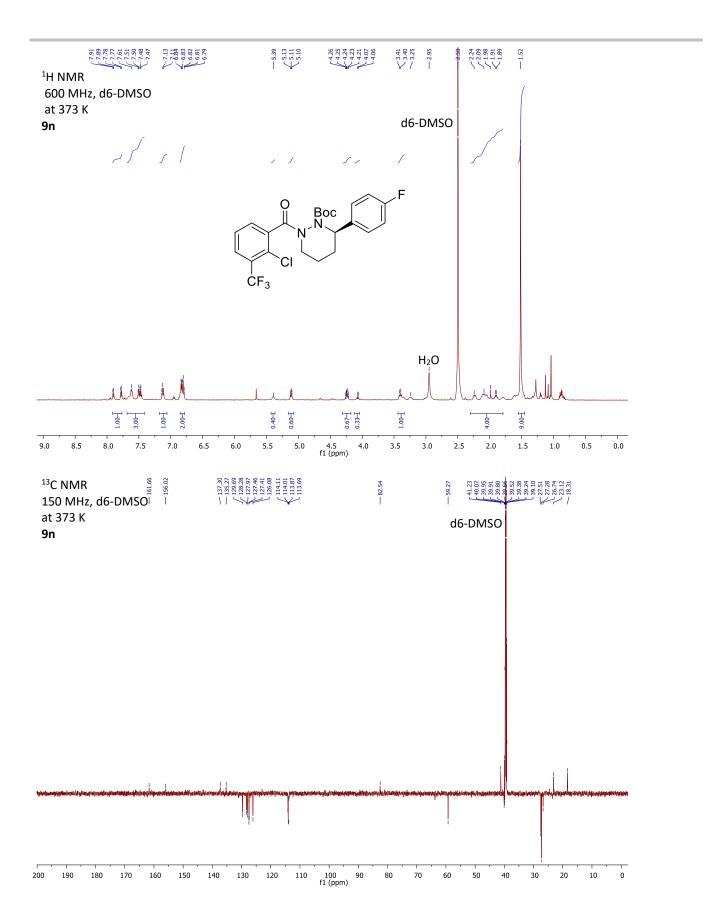


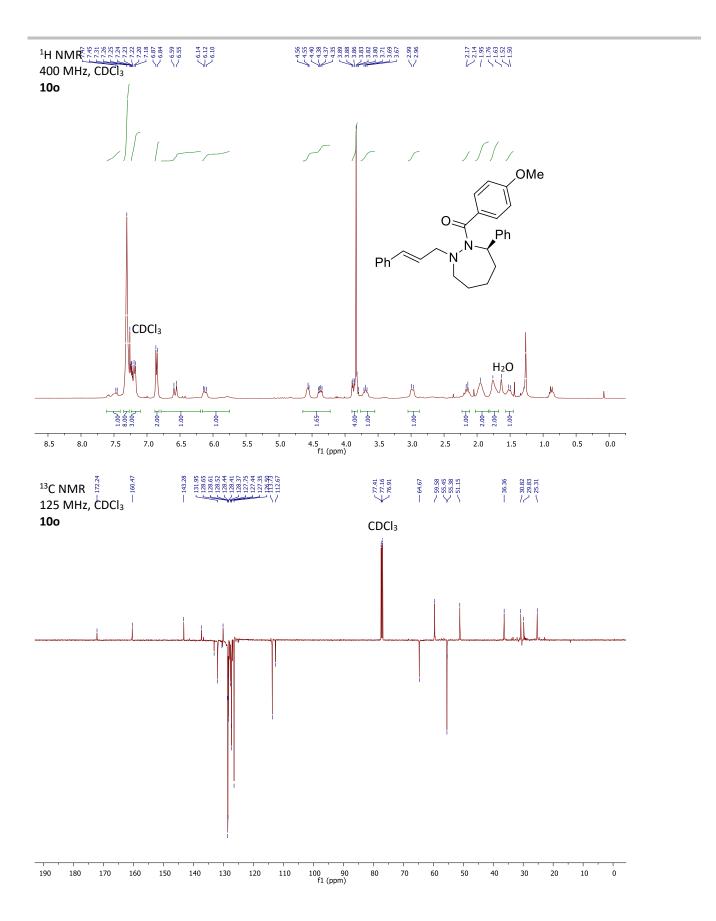


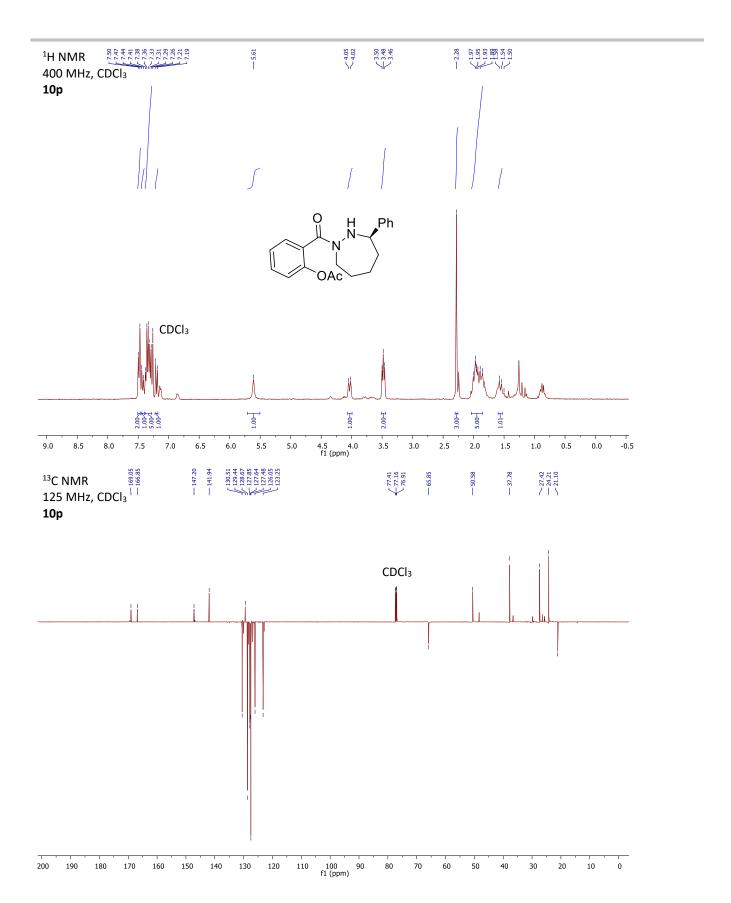


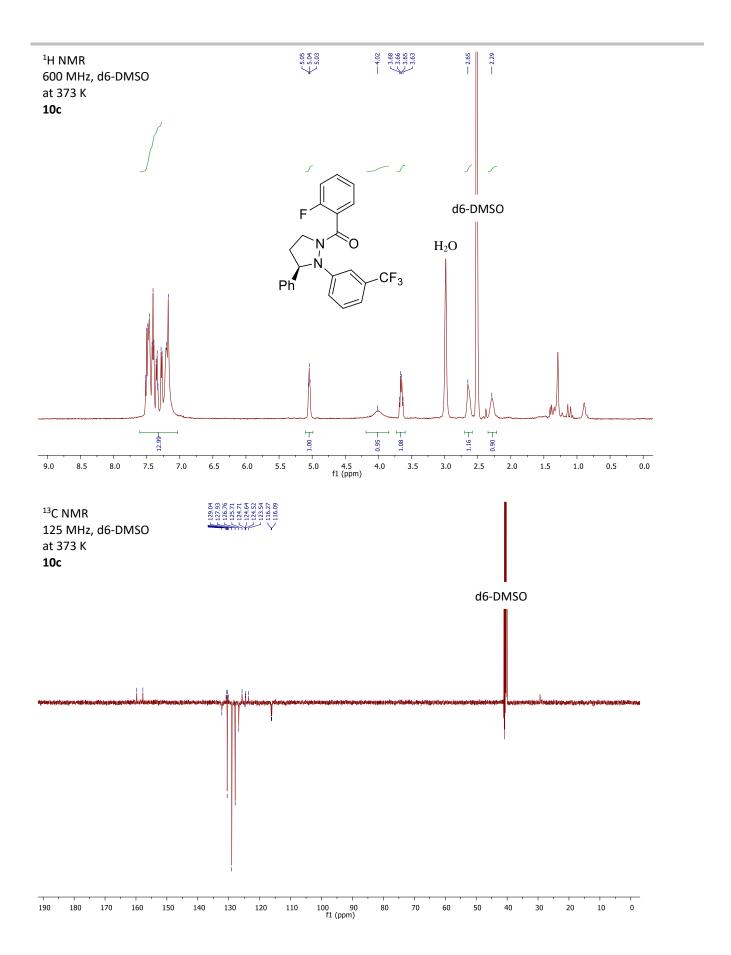


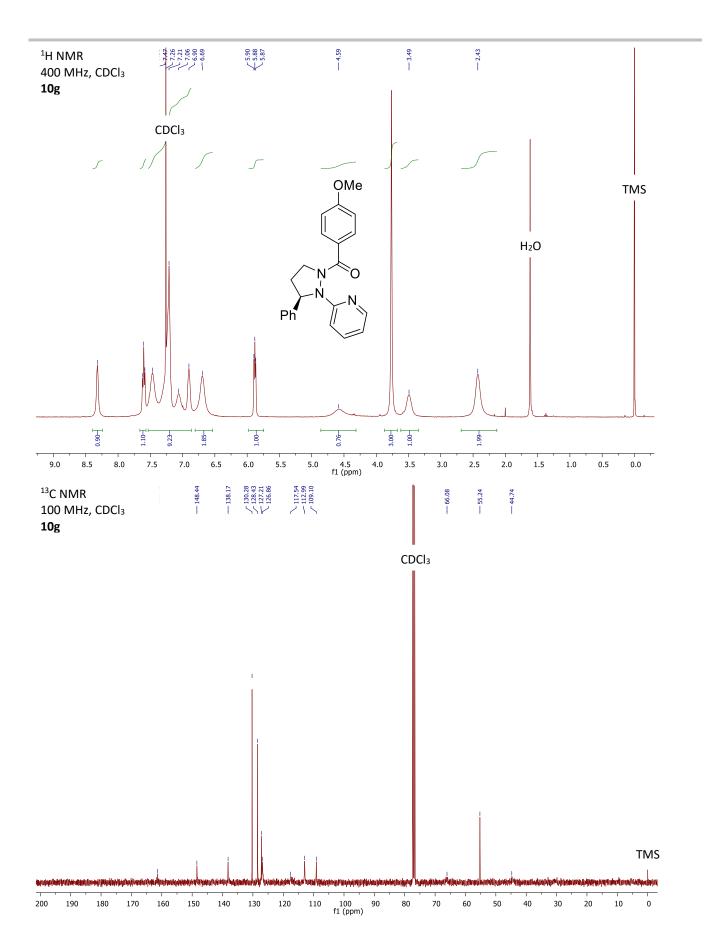


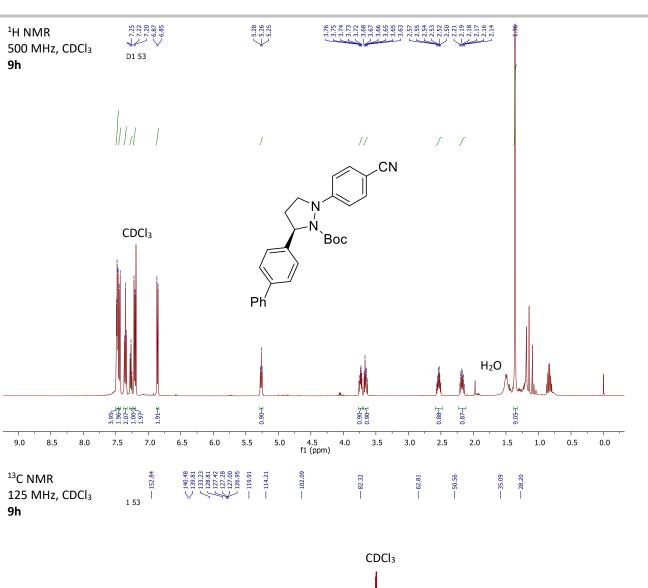


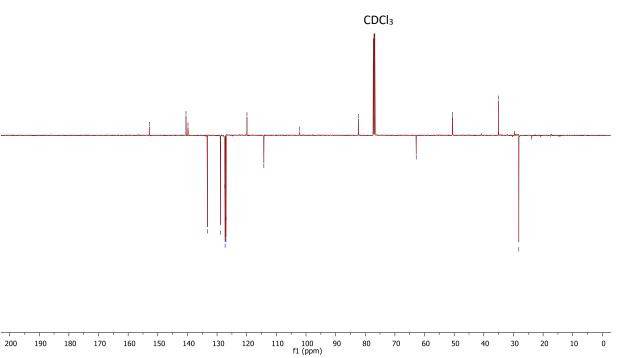


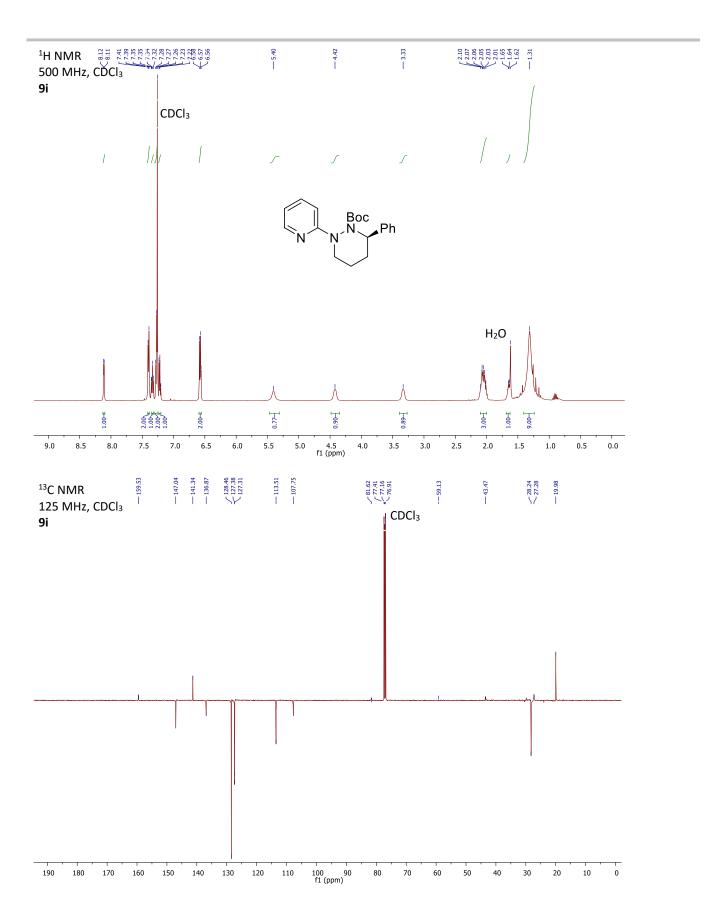


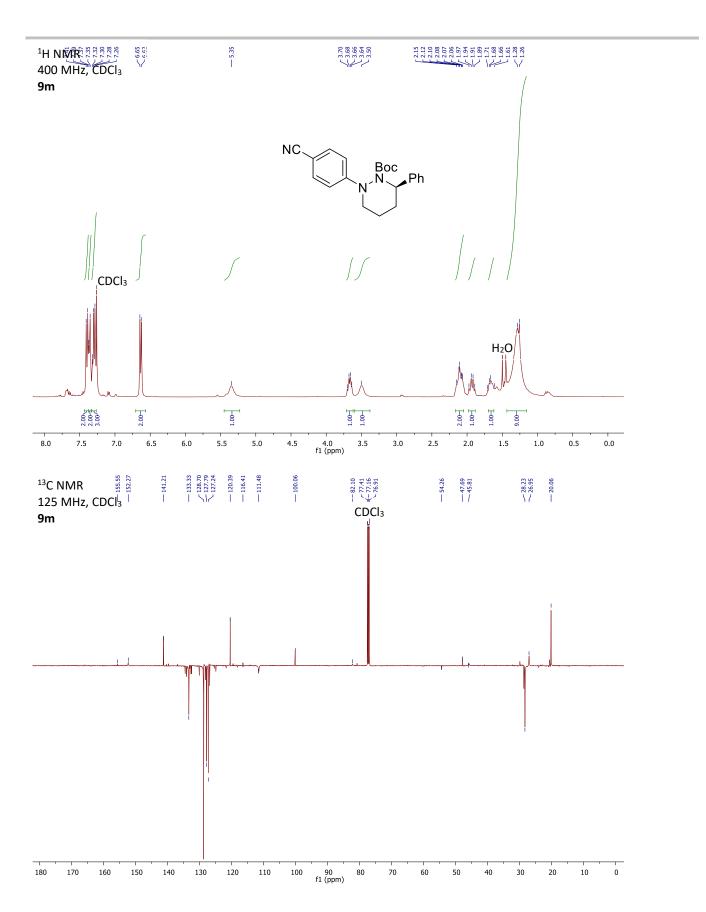


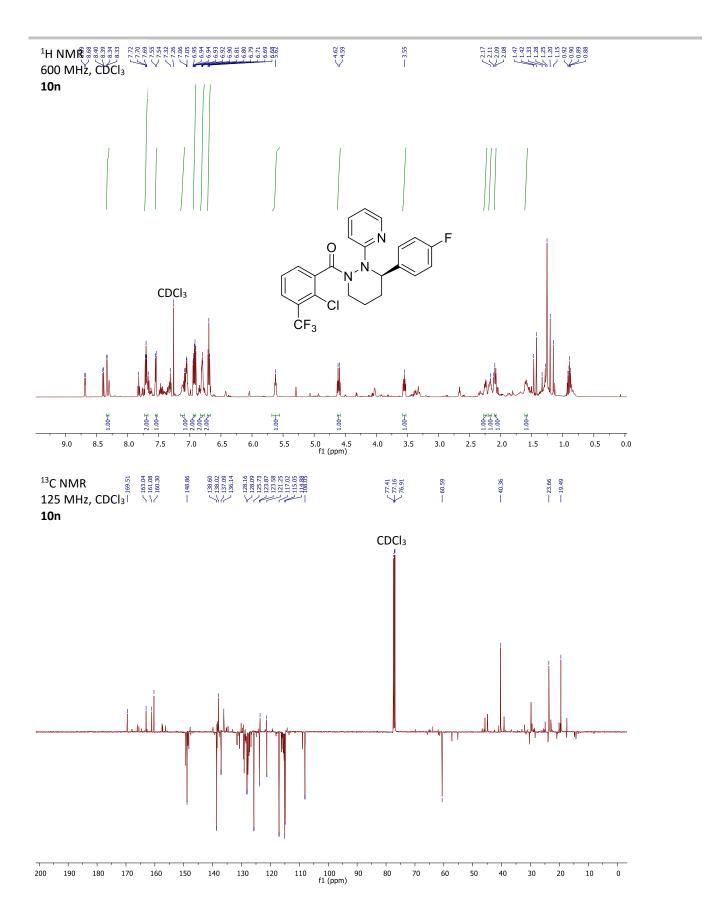


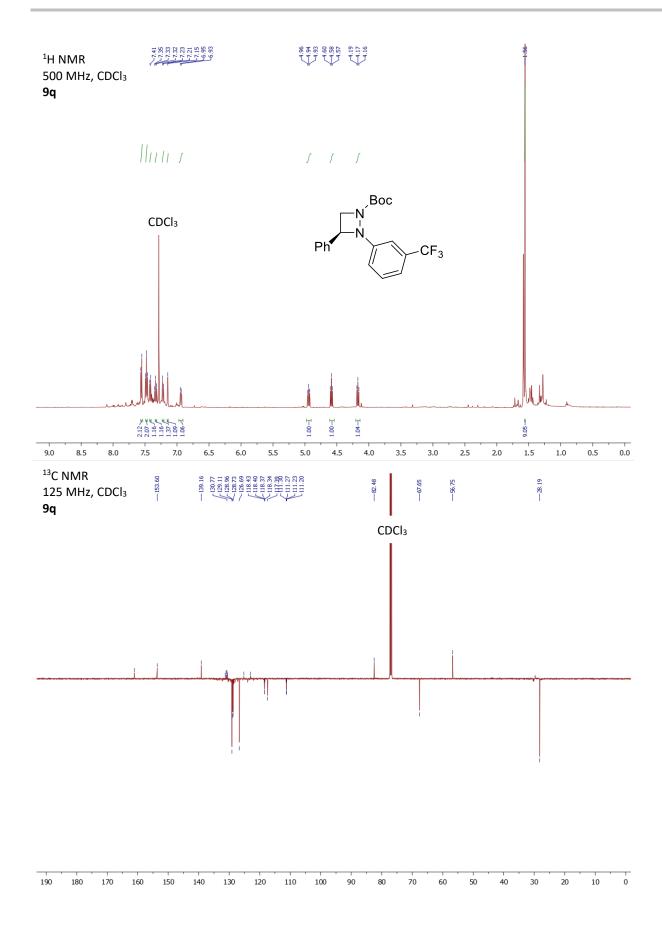


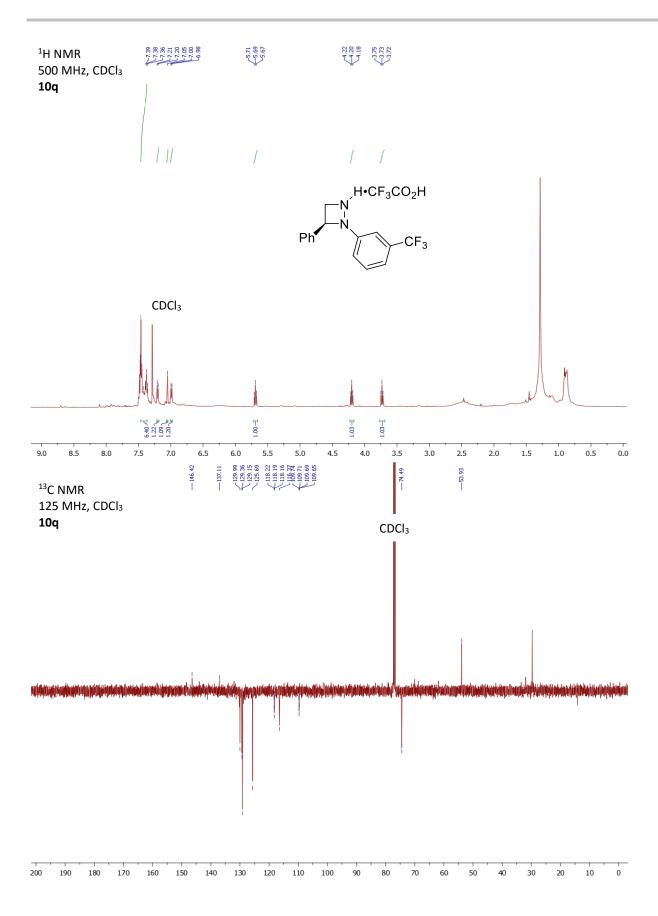


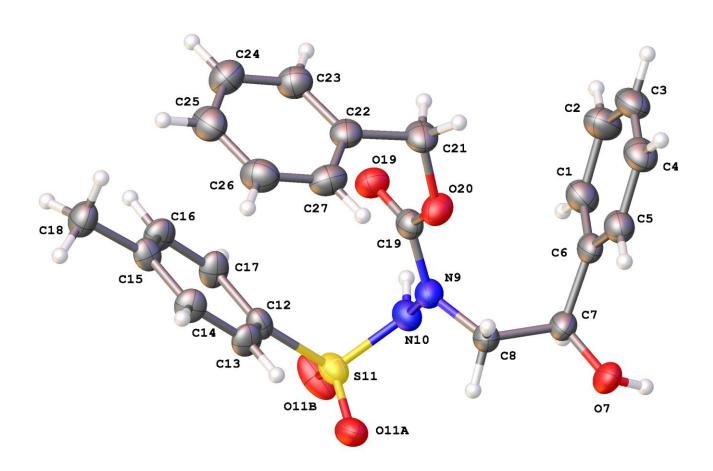


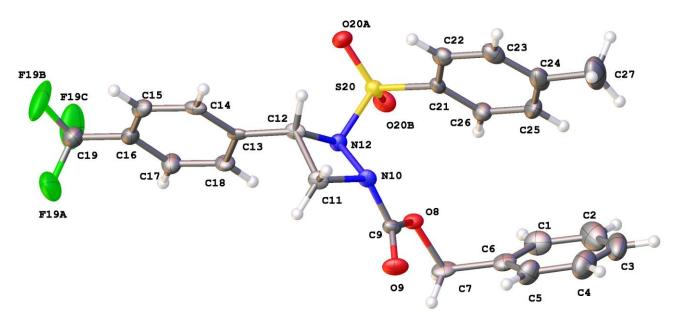




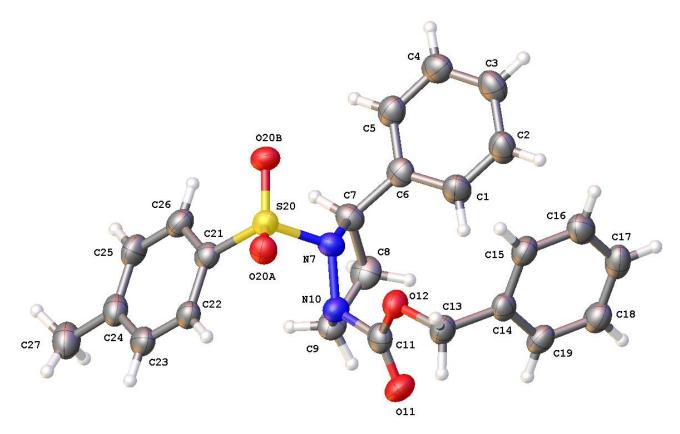




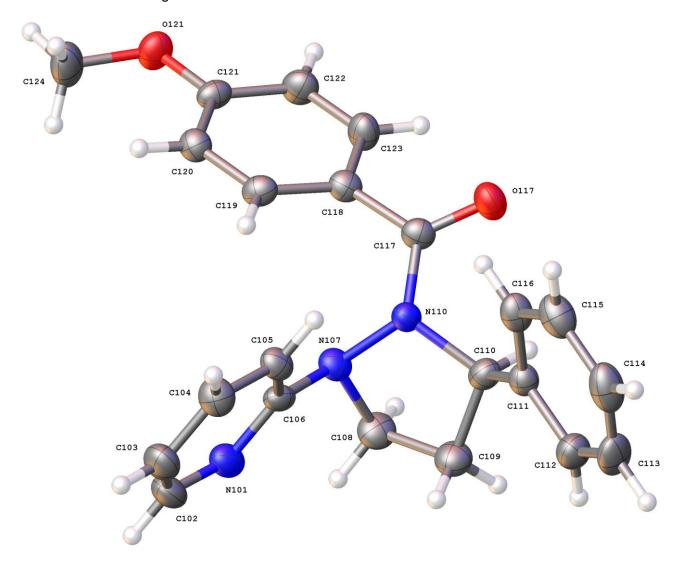



Single Crystal X-Ray Structure of 6a. Single crystals of $C_{23}H_{24}N_2O_5S$ were grown from a 9:1 mixture of hexane and isopropyl alcohol. A suitable crystal was selected and mounted on a glass fibre with Fomblin oil and placed on a Rigaku Oxford Diffraction SuperNova diffractometer with a duel source (Cu at zero) equipped with an AtlasS2 CCD area detector. The crystal was kept at 150(2) K during data collection. Crystal Data for $C_{23}H_{24}N_2O_5S$ (M = 440.50 g/mol): orthorhombic, space group P2₁2₁2 (no. 18), a = 30.4605(6) Å, b = 11.6596(2) Å, c = 6.11590(10) Å, V = 2172.11(7) ų, Z = 4, T = 150(2) K, μ(CuKα) = 1.643 mm⁻¹, Dcalc = 1.347 g/cm³, 21406 reflections measured (5.802° ≤ 2Θ ≤ 146.864°), 4351 unique (R_{int} = 0.0524, R_{sigma} = 0.0377) which were used in all calculations. The final R₁ was 0.0362 (I > 2σ(I)) and wR_2 was 0.0904 (all data). Data has been deposited at the Cambridge Crystallographic Data Centre as CCDC 1944266.

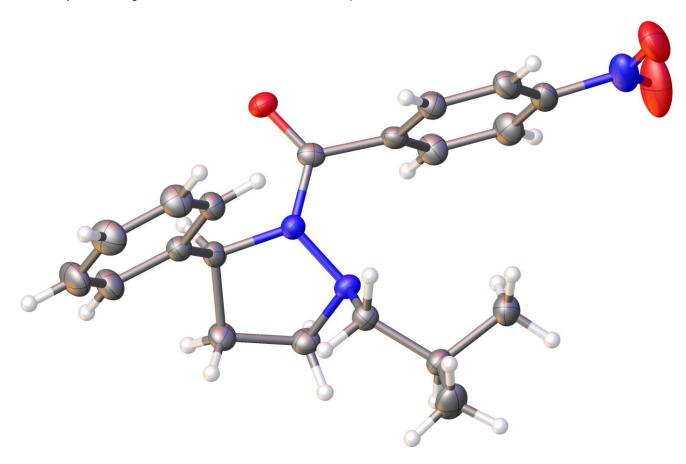
Flack x: 0.004(13) Shelx2018, Hooft y: 0.005(10) Olex2. Both the Flack parameter and associated Hooft y parameter are small, so confidence in the handedness of the chiral centre is high.


Single Crystal X-Ray Structure of 8d. Single crystals of $C_{24}H_{21}F_3N_2O_4S$ were grown from a 9:1 ratio of hexane and isopropyl alcohol. A suitable crystal was selected and mounted on a glass fibre with Fomblin oil and placed on a Rigaku Oxford Diffraction SuperNova diffractometer with a duel source (Cu at zero) equipped with an AtlasS2 CCD area detector. The crystal was kept at 150(2) K during data collection. Crystal Data for $C_{24}H_{21}F_3N_2O_4S$ (M = 490.49 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), a = 32.8358(3) Å, b = 11.60538(10) Å, c = 5.85758(7) Å, V = 2232.16(4) ų, Z = 4, T = 150(2) K, $\mu(CuK\alpha) = 1.827$ mm⁻¹, Dcalc = 1.460 g/cm³, 72297 reflections measured ($8.08^{\circ} \le 2\Theta \le 147.05^{\circ}$), 4499 unique ($R_{int} = 0.0917$, $R_{sigma} = 0.0256$) which were used in all calculations. The final R_1 was 0.0616 (I > $2\sigma(I)$) and wR_2 was 0.1478 (all data). Data has been deposited at the Cambridge Crystallographic Data Centre as CCDC 1944267.

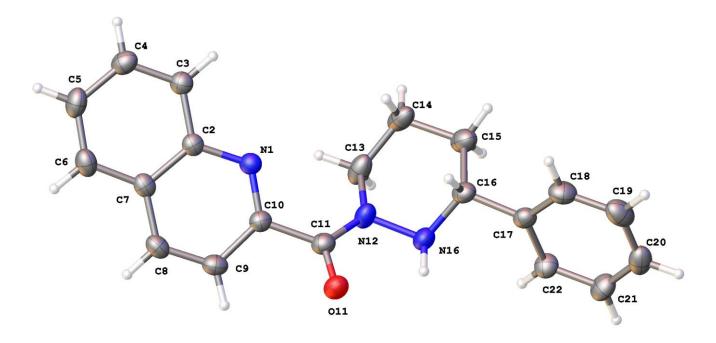
Flack x: 0.015(9) Shelx2018, Hooft y: 0.009(5) Olex2. Both the Flack parameter and associated Hooft y parameter are small, so confidence in the handedness of the chiral centre is high.


Single Crystal X-Ray Structure of 8h. Single crystals of $C_{24}H_{24}N_2O_4S$ were grown from a 9:1 mix of hexane and isopropyl alcohol. A suitable crystal was selected and mounted on a Mitegen loop with Fomblin oil and placed on a Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector. The crystal was kept at 100(2) K during data collection. Crystal Data for $C_{24}H_{24}N_2O_4S$ (M = 436.51 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), a = 6.0985(4) Å, b = 11.5023(5) Å, c = 30.8387(15) Å, V = 2163.2(2) Å3, Z = 4, T = 100(2) K, μ(CuKα) = 1.610 mm⁻¹, Dcalc = 1.340 g/cm³, 17168 reflections measured (5.732° ≤ 2Θ ≤ 136.448°), 3915 unique (R_{int} = 0.1033, R_{sigma} = 0.0835) which were used in all calculations. The final R₁ was 0.0624 (I > 2σ(I)) and wR_2 was 0.1773 (all data). Data has been deposited at the Cambridge Crystallographic Data Centre as CCDC 1944268.

Flack x: -0.03(3) Shelx2018, Hooft y: -0.05(2) Olex2. Both the Flack parameter and associated Hooft y parameter are small, so confidence in the handedness of the chiral centre is high.


Single Crystal X-Ray Structure of 10a. Single crystals of $C_{44}H_{42.5}N_6O_{4.25}$ were grown from a 9:1 mix of hexane and isopropanol. A suitable crystal was selected and mounted on a glass fibre with Fomblin oil and placed on a Rigaku Oxford Diffraction SuperNova diffractometer with a duel source (Cu at zero) equipped with an AtlasS2 CCD area detector. The crystal was kept at 150(2) K during data collection. Crystal Data for $C_{44}H_{42.5}N_6O_{4.25}$ (M =723.34 g/mol): monoclinic, space group P2₁ (no. 4), a = 10.18405(5) Å, b = 9.71457(5) Å, c = 18.82762(9) Å, b = 93.0169(4), b =

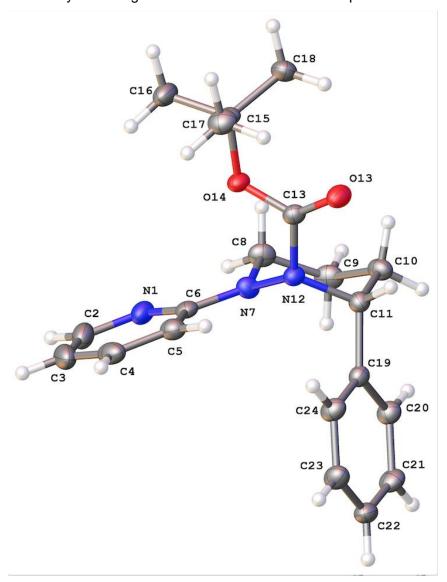
Flack x: -0.05(3) Shelx2018, Hooft y: -0.045(2) Olex2. Both the Flack parameter and associated Hooft y parameter are realtively small for a structure with no heavy atoms, so confidence in the handedness of the chiral centre is high.


Single Crystal X-Ray Structure of rac-10b. Single crystals of $C_{20}H_{23}N_3O_3$ were grown from 9:1 hexane and isopropanol. A suitable crystal was selected and mounted on a glass fibre with Fomblin oil and placed on a Rigaku Oxford Diffraction SuperNova diffractometer with a duel source (Cu at zero) equipped with an AtlasS2 CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation. Crystal Data for $C_{20}H_{23}N_3O_3$ (M =353.41 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 7.19100(10) Å, b = 13.50450(10) Å, c = 18.6644(2) Å, V = 1812.52(3) ų, Z = 4, T = 150(2) K, μ (CuKα) = 0.716 mm⁻¹, Dcalc = 1.295 g/cm³, 10496 reflections measured (8.082° ≤ 2Θ ≤ 147.174°), 3514 unique (R_{int} = 0.0227, R_{sigma} = 0.0229) which were used in all calculations. The final R1 was 0.0325 (I > 2σ(I)) and wR2 was 0.1083 (all data). Data has been deposited at the Cambridge Crystallographic Data Centre as CCDC 1944270.

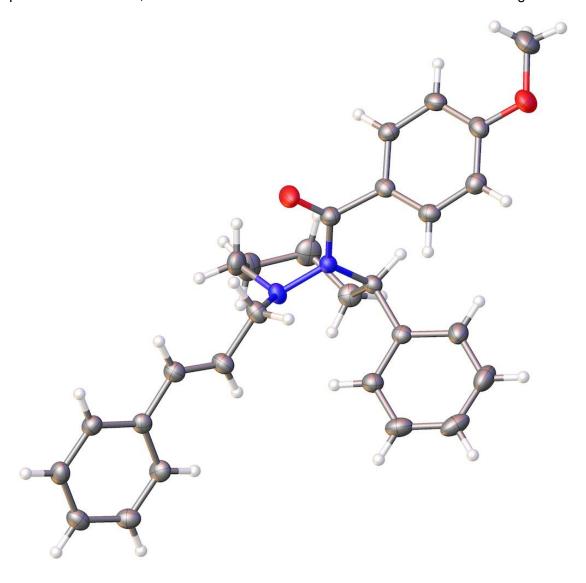
As the crystal was grown from a racemate the Flack parameter was not determined.

Single crystal X-Ray structure of 10I. Single crystals of $C_{20}H_{19}N_3O$ were grown from ethyl acetate. A suitable crystal was selected and mounted on a glass fibre with Fomblin oil and placed on a Rigaku Oxford Diffraction SuperNova diffractometer with a duel source (Cu at zero) equipped with an AtlasS2 CCD area detector. The crystal was kept at 150(2) K during data collection. Crystal Data for $C_{20}H_{19}N_3O$ (M=317.38 g/mol): monoclinic, space group P2₁ (no. 4), a = 10.10659(11) Å, b = 5.94958(5) Å, c = 13.62038(10) Å, β = 99.5974(8)°, V = 807.530(13) ų, Z = 2, T = 150.00(10) K, μ(CuKα) = 0.652 mm⁻¹, Dcalc = 1.305 g/cm³, 15974 reflections measured (6.582° ≤ 2Θ ≤ 147.044°), 3240 unique (R_{int} = 0.0310, R_{sigma} = 0.0200) which were used in all calculations. The final R1 was 0.0274 (I > 2σ(I)) and wR2 was 0.0705 (all data). Data has been deposited at the Cambridge Crystallographic Data Centre as CCDC 1944272.

Flack x: -0.00(8) Shelx2018, Hooft y: -0.04(8) Olex2. Both the Flack parameter and associated Hooft y parameter are small, so confidence in the handedness of the chiral centre is high.


Single crystal X-Ray structure of 9m. Single crystals of C₂₂H₂₅N₃O₂ were grown from chloroform. A suitable crystal was selected and mounted on a glass fibre with Fomblin oil and placed on a Rigaku Oxford Diffraction SuperNova diffractometer with a duel source (Cu at zero) equipped with an AtlasS2 CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation. Crystal data for C₂₂H₂₅N₃O₂ (*M* =363.45 4), a = 12.47130(5) Å, b = 9.02632(4) Å, c =P2₁ (no. g/mol): monoclinic, space group 17.84198(7) Å, $\beta = 92.8702(4)^{\circ}$, V = 2005.951(14) Å³, Z = 4, T = 150(2) K, $\mu(CuK\alpha) = 0.622$ mm⁻ 1 , Dcalc = 1.203 g/cm 3 , 60499 reflections measured (7.096 $^{\circ}$ ≤ 2 Θ ≤ 147.262 $^{\circ}$), 8067 unique (R_{int} = 0.0352, $R_{\text{sigma}} = 0.0200$) which were used in all calculations. The final R_1 was 0.0280 (I > 2 σ (I)) and wR₂ was 0.0743 (all data). Data has been deposited at the Cambridge Crystallographic Data Centre as CCDC 1944271.

Flack x: -0.01(6) Shelx2018, Hooft y: -0.01(3) Olex2. Both the Flack parameter and associated Hooft y parameter are small, so confidence in the handedness of the chiral centre is high.

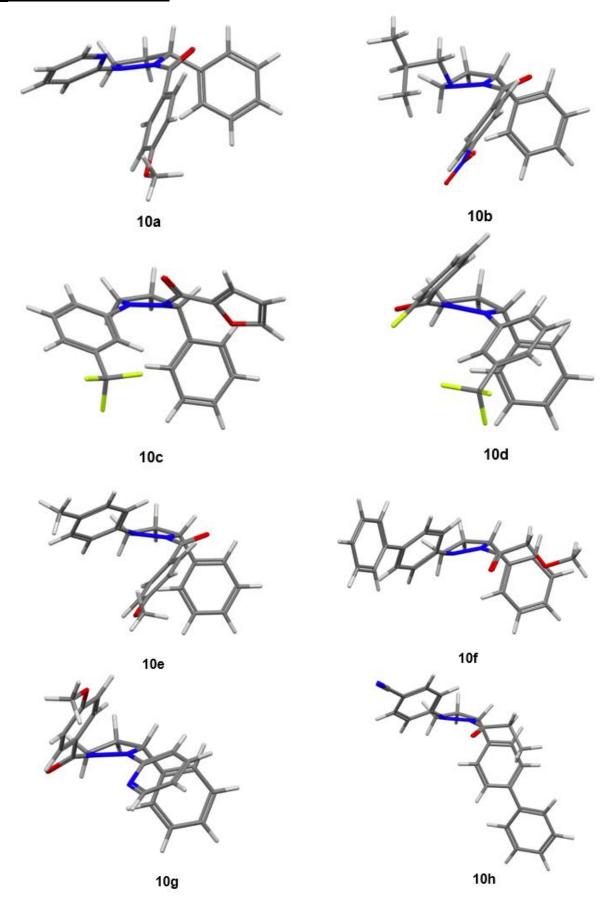

Single crystal X-Ray structure of rac-9i. Single crystals of $C_{20}H_{25}N_3O_2$ were grown from chloroform. A suitable crystal was selected and mounted on a glass fibre with Fomblin oil and placed on a Rigaku Oxford Diffraction SuperNova diffractometer with a duel source (Cu at zero) equipped with an AtlasS2 CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation. Crystal data for $C_{20}H_{25}N_3O_2$ (M =339.43 g/mol): monoclinic, space group P2₁/n (no. 14), a = 6.81180(10) Å, b = 17.54950(10) Å, c = 15.11130(10) Å, b = 91.4270(10)°, b = 1805.90(3) ų, b = 4, b = 150(2) K, b µ(CuKα) = 0.652 mm⁻¹, b Dcalc = 1.248 g/cm³, 15714 reflections measured (7.722° ≤ 2Θ ≤ 147.218°), 3594 unique (b = 0.0208, b R_{sigma} = 0.0152) which were used in all calculations. The final b was 0.0330 (b > 2σ(b) and b was 0.0846 (all data). Data has been deposited at the Cambridge Crystallographic Data Centre as CCDC 1944273.

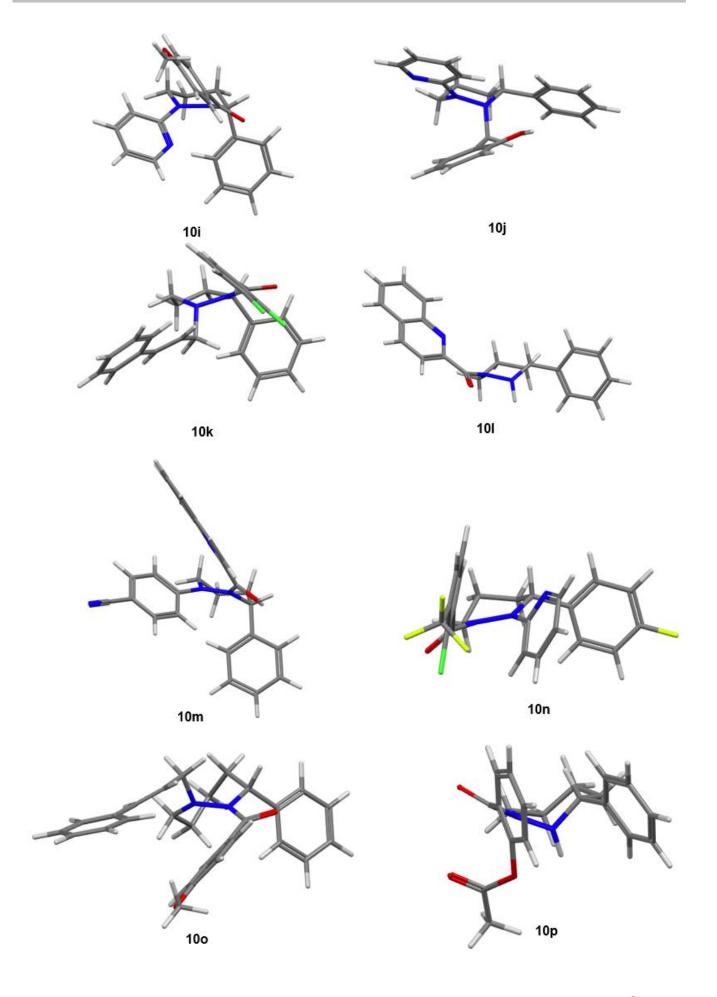
As the crystal was grown from a racemate the Flack parameter was not determined.

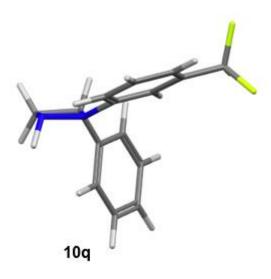
Single crystal X-Ray structure of 10o. Single crystals of C₂₈H₃₀N₂O₂ were grown from MeOH. A suitable crystal was selected and mounted on a glass fibre with Fomblin oil and placed on a Rigaku Oxford Diffraction SuperNova diffractometer with a duel source (Cu at zero) equipped with an AtlasS2 CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the Least Squares refinement package using minimisation. Crystal $C_{28}H_{30}N_2O_2$ (M=426.54 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), a = 8.33247(2) Å, b =15.71709(6) Å, c = 17.93381(5) Å, V = 2348.651(13) Å³, Z = 4, T = 150(2) K, $\mu(CuK\alpha) = 0.595$ mm⁻ ¹, Dcalc = 1.206 g/cm³, 70707 reflections measured (7.48° ≤ 2Θ ≤ 147.328°), 4736 unique (R_{int} = 0.0275, $R_{sigma} = 0.0106$) which were used in all calculations. The final R_1 was 0.0277 (I > 2 σ (I)) and wR₂ was 0.0705 (all data). Data has been deposited at the Cambridge Crystallographic Data Centre as CCDC 1955341.

Flack x: 0.01(3) Shelx2018, Hooft y: 0.02(3) Olex2. Both the Flack parameter and associated Hooft y parameter are small, so confidence in the handedness of the chiral centre is high.

LLAMA, NOESY and VT NMR Data

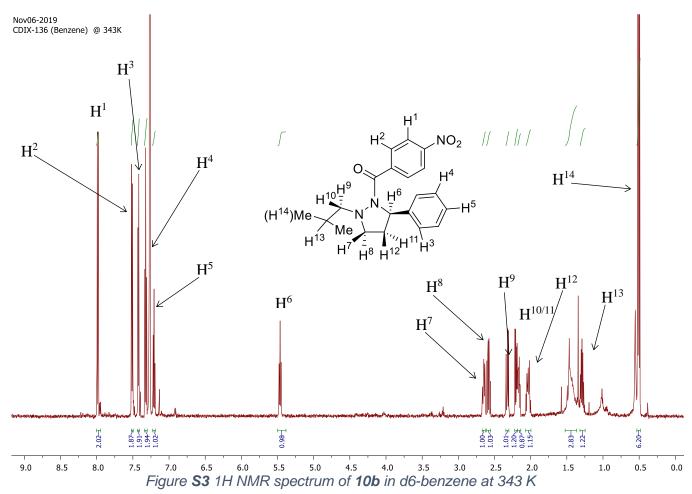

LLAMA Data - for PMI Plot

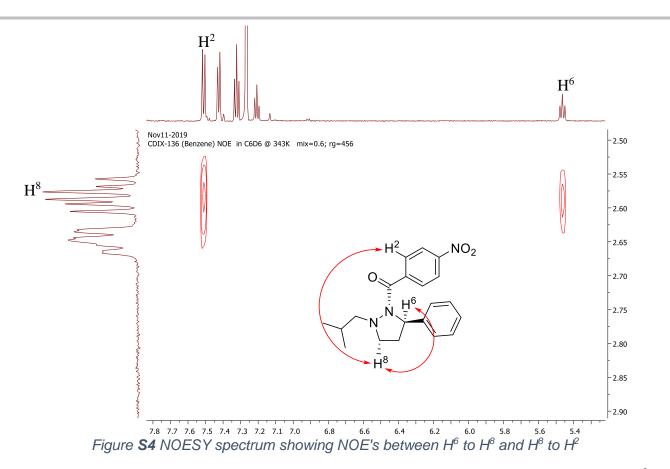

LLAMA (Lead Likeness And Molecular Analysis – see https://llama.leeds.ac.uk/ for more information^[12]) was used to generate the PMI plot. The structures **10a-q** were uploaded to a new database, which then automatically analysed their molecular shape. This tool randomly selects a number of 3D-conformers for each molecule, minimises their energy and selects the lowest-energy one (see page **S224-S226**). LLAMA then calculates the moments of inertia in the x, y and z axes. The PMI I1 coordinates are calculated by dividing inertia(x) by inertia(z). The I2 coordinates are calculated by dividing inertia(y) by inertia(z). The raw data was exported as a csv file and then processed using Microsoft Excel to give the following data table:


	PMI x	PMI y
Compound	(11)	(12)
10 a	0.44197	0.71524
10b	0.38056	0.78138
10 c	0.51087	0.93768
10d	0.51368	0.78822
10e	0.40762	0.76545
10f	0.14534	0.94549
10 g	0.27492	0.87452
10h	0.14647	0.98991
10i	0.46902	0.83825
10 j	0.34134	0.94557
10k	0.42656	0.79292
10 l	0.16026	0.95099
10m	0.29528	0.87679
10 n	0.3883	0.87605
10 o	0.25736	0.8502
10p	0.64152	0.74401
10q	0.35298	0.776
Average	0.363	0.855

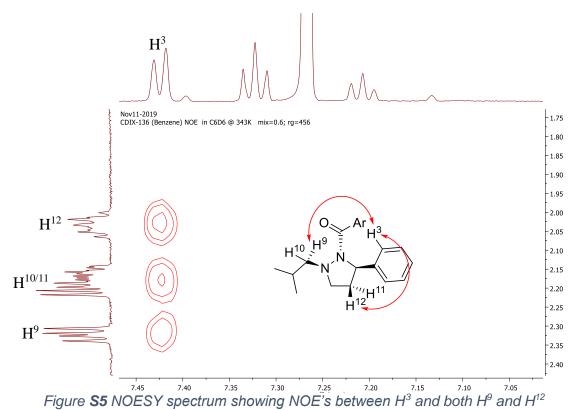
This raw data was then used to generate a scatter plot (Figure 5 in main paper).

LLAMA Structures for 10a-q

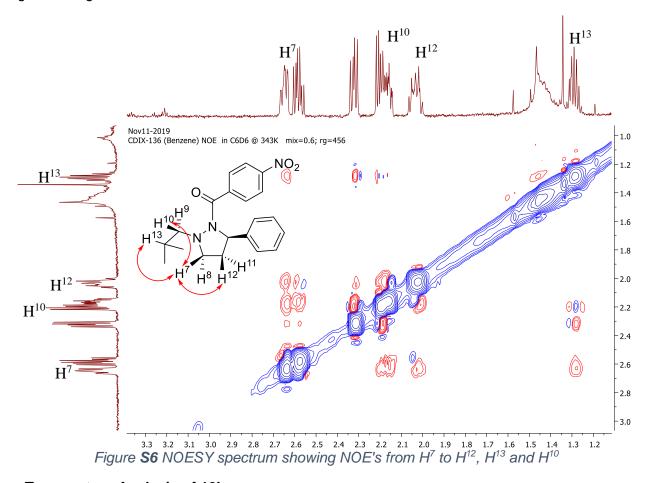



Analysis of 10b by NOESY to Determine Solution State Configuration

10b was chosen for analysis by NOESY as a solid-state structure had already been obtained by X-ray diffraction (see page **S218**). In order to get a suitable NOESY spectrum the compound was first analysed by ¹H NMR in order to find a suitable solvent that would resolve the numerous diastereotopic CH₂ protons (labelled as H⁷, H⁸, H⁹, H¹⁰, H¹¹ and H¹² – see below). d6-Benzene heated to 343 K on a 600 MHz spectrometer gave a suitable spectrum, which was assigned using a COSY. *N.B.* Complete assignment of diastereotopic protons was done in conjunction with NOESY data.



 δH (600 MHz, C₆D₆ at 343 K) 7.99 (2H, d, J 8.5, H¹), 7.51 (2H, d, J 8.4, H²), 7.42 (2H, d, J 7.7, H³), 7.32 (2H, t, J 7.6, H⁴), 7.21 (1H, t, J 7.3, H⁵), 5.46 (1H, t, J 8.4, H⁶), 2.67-2.63 (1H, m, H⁷), 2.58 (1H, td, J 11.1, 6.7, H⁸), 2.32 (1H, dd, J 11.8, 7.7, H⁹), 2.23-2.17 (2H, m, H¹⁰, H¹¹), 2.03-1.99 (1H, m, H¹²), 1.29 (1H, septet, J 7.2, H¹³), 0.51 (6H, dd, J 9.0, 6.9, H¹⁴).


Analysis of the compound by NOESY showed several important NOE's which would be expected if the compound was in the *anti,anti*-configuration. An NOE between H⁶ and H⁸ confirmed that they are on the same face of the molecule (Figure **S4**, see also Figure **7**). An NOE is also observed between H⁸ and H², which shows that they are also on the same face. Taken together this gives evidence that H⁶ and H⁸ are on the opposite face of the molecule to the phenyl group, along with the *p*-methoxybenzoyl substituent.

Evidence for the position of the isobutyl group can also be seen (Figure **\$5**, see also Figure **7**). H³ (of the phenyl group) shows an NOE to H³ and possibly H¹0.

H¹³ also shows an NOE to H⁷, H⁷ also NOE's to H¹² and H¹⁰ (Figure **S6**). These are consistent with the assigned configuration

Low Temperature Analysis of 10b

Cooling sample to 233 K in both CDCl₃ (Figure **S7**) and d6-acetone gave a complex spectrum, which appeared to have one major isomer and two minor isomers in an approximately 84:11:5 ratio.

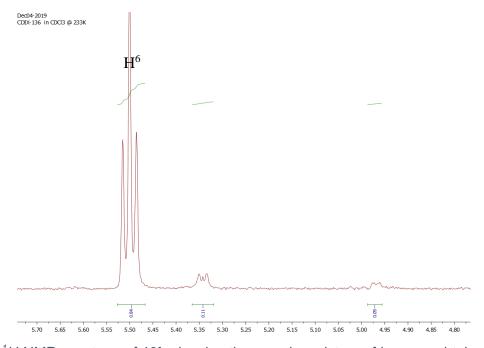
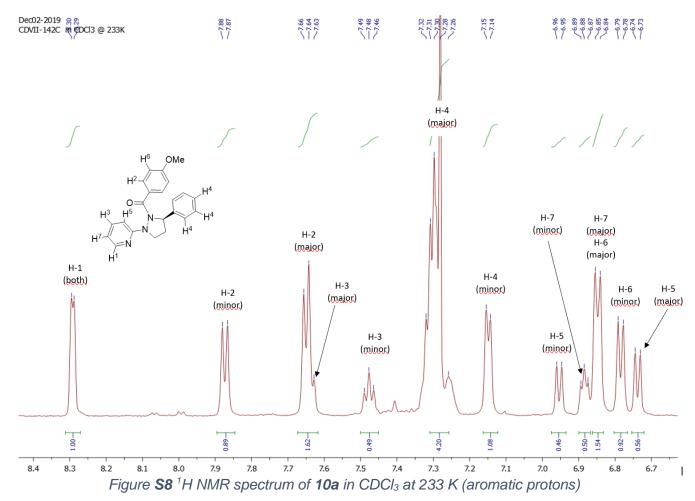
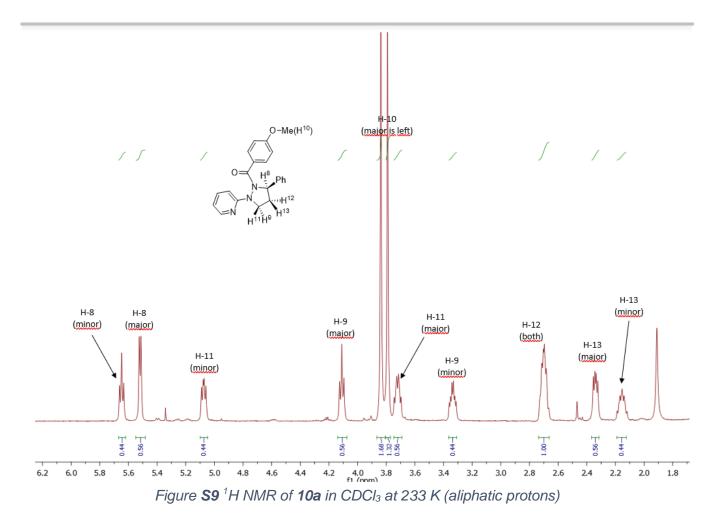




Figure **S7** ¹H NMR spectrum of **10b** showing the complex mixture of isomers obtained at 233 K (H⁶)

Analysis of 10a by NOESY to Determine Solution State Configuration

10a was chosen for analysis by NOESY as a solid-state structure had already been obtained by X-ray diffraction (see page **\$217**). Upon cooling to 233 K in CDCl₃ two isomers were observed in an a 56:44 ratio (see figure **\$9**). Using the COSY and NOESY spectra, complete assignment of both isomers was completed (Figure **\$8** and **\$9**).

δ*H* (600 MHz, CDCl₃ at 233 K) 8.29 (1Hx2, d, *J* 4.0, H¹ both), 7.87 (2H, d, *J* 8.5, H² minor), 7.66-7.61 (3H, m, H² major and H³ major), 7.48 (1H, t, *J* 7.7, H³ minor), 7.31-7.26 (5H, m, H⁴ major), 7.15 (5H, d, *J* 6.8, H⁴ minor), 6.95 (1H, d, *J* 8.3, H⁵ minor), 6.88 (1H, t, J 4.0, H⁷ minor), 6.85 (3H, d, *J* 8.4, H⁶ major, H⁷ major), 6.78 (2H, d, *J* 8.5, H⁶ minor), 6.74 (1H, *J* 8.4, H⁵ major), 5.64 (1H, t, *J* 8.6, H⁸ minor), 5.52 (1H, d, *J* 7.0, H⁸ major), 5.07 (1H, dd, *J* 11.1, 7.3, H¹¹ minor), 4.11 (1H, t, *J* 9.1, H⁹ major), 3.84 (3H, s, H¹⁰ major), 3.79 (1H, s, H¹⁰ minor), 3.72 (1H, dd, *J* 17.6, 10.4, H¹¹ major), 3.33 (1H, td, *J* 11.5, 5.7, H⁹ minor), 2.74-2.65 (1Hx2, m, H¹² both), 2.34 (1H, dd, *J* 11.9, 6.7, H¹³ major), 2.16 (1H, dd, *J* 18.8, 10.7, H¹³ minor).

Analysis by NOESY was done in CDCl₃ at 233 K. Initially a mixing time of 0.6 s was used and this gave a clear NOESY spectrum with a number of cross peaks. However, due to the long mixing time cross peaks were seen between major and minor isomers, suggesting that interconversion between isomers was occuring on this timescale. Reducing the mixing time to 0.3 s showed a clear NOE from H² to H⁸ in the major isomer (**A**), which was not seen in the corresponding minor isomer (**B**) (Figure **S10**, see also Scheme **2**).

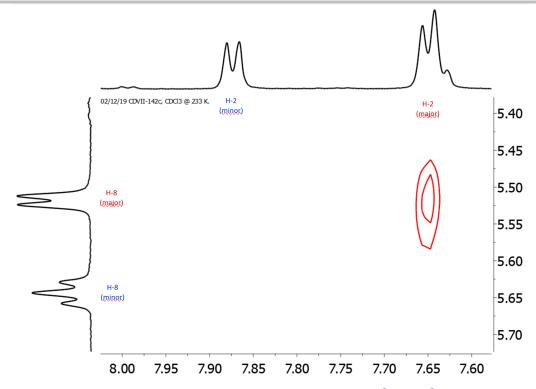


Figure \$10 NOESY (0.3 s mix) of 10a showing an NOE between H⁸ and H² in the major isomer only

At the 0.3 s mixing time, no NOE's are seen from the pyridyl substituent and the rest of the molecule. At 0.6 s mixing time there is a weak NOE between H⁴ and H⁵ suggesting they are on the same face of the molecule (Figure **S11**). However, some caution needs to be applied as the two isomers **A** and **B** are interconverting under the experimental conditions.

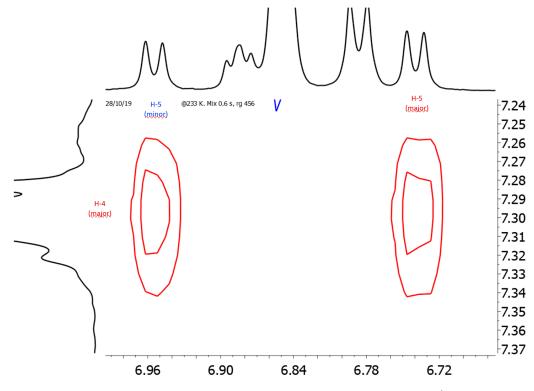


Figure \$11 NOESY (0.6 s mix) spectrum of 10a showing an NOE between H⁴ and both isomers of H⁵

Calculation of Barrier to Inversion for 10a Using VT NMR

The barrier of inversion for **10a** was calculated using H⁹. In order to calculate the coalescence temperature (T_c) **10a** was analysed by VT NMR in CDCl₃. Spectra were collected from 223 K to 293 K in 10 K increments (Figure **S12**).

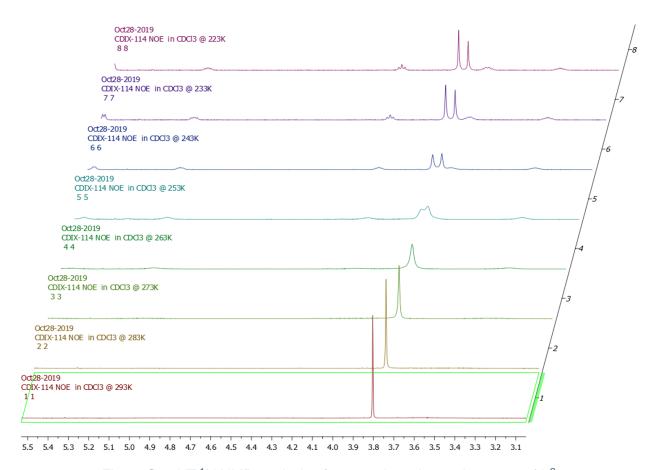


Figure S12 VT 1H NMR analysis of 10a to show the coalescence of H9

From this Tc was estimated to be 258 K, which was used to calulate ΔG_A^{\ddagger} :

The barrier to inversion was calculated using Eyring's equations, modified by Shanan Atidi and Bar-Eli to account for unequal populations of isomers.^[13]

$$\Delta G_A^{\ddagger} = RT_C \left[10.62 + \log \frac{X}{2\pi (1 - \Delta P)} + \log \frac{T_C}{\Delta v} \right]$$

R = 4.57 cal mol⁻¹ K⁻¹, T_C = 258 K, Δu = 30 Hz (peak difference is 0.05 ppm on a 600 MHz spectrometer), $log \frac{X}{2\pi(1-\Delta P)} = -0.567$

$$\Delta G_A^{\ddagger} = 12.9 \ kcal \ mol^{-1} = 54.1 \ kJ \ mol^{-1}$$

References

- [1] L. Grehn, B. Nyasse, U. Ragnarsson, Synthesis 1997, 1429–1432.
- [2] F. J.-J. Bihel, M. Hellal, J.-J. Bourgignon, *Synthesis* **2007**, 3791–3796.
- [3] L. Grehn, T. Pehk, U. Ragnarsson, Tetrahedron Lett. 2014, 55, 7019–7022.
- [4] F. Yu, J.-N. Zhou, X.-C. Zhang, Y.-Z.Sui, F.-F. Wu, L.-J. Xie, A. S. C. Chan, J. Wu, *Chem. Eur. J.* **2011**, *17*, 14234–14240.
- [5] M. Salla, M. S. Butler, R. Pelingon, G. Kaeslin, D. E. Croker, J. C. Reid, J. M. Baek, P. V. Bernhardt, E. M. J. Gillam, M. A. Cooper, A. A. B. Robertson, ACS Med. Chem. Lett. 2016, 7, 1034–1038.
- [6] S. Ortgies, A. Breder, Org. Lett. 2015, 17, 2748–2751.
- [7] C. Gronnier, S. Kramer, Y. Odabachian, F. Gagosz, J. Am. Chem. Soc. 2012, 134, 828-831.
- [8] S. K. Murphy, V. M. Dong, J. Am. Chem. Soc. 2013, 135, 5553–5556.
- [9] J. S. Zhou, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 14726-14727.
- [10] F. S. Davis, L. Huang, L. Bauer, J. Heterocyclic Chem. 1995, 32, 915–920.
- [11] D. Wang, J. Mao, C. Zhu, Chem. Sci. 2018, 9, 5205-5809.
- [12] I. Colomer, C. J. Empson, P. Craven, Z. Owen, R. G. Doveston, I. Churcher, S. P. Marsden, A. Nelson, Chem. Commun., 2016, 52, 7209-7212.
- [13] H. Shanan-Atidi, K. H. Bar-Eli, J. Phys. Chem. 1970, 74, 961-963.