Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Identifying Protons Trapped in Hematite Photoanodes Through Structure-Property Analysis

Yutong Liu, Rodney D. L. Smith^{a,b,*}

^aDepartment of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, Ontario, Canada N2L 3G1

^bWaterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W., Waterloo, Ontario, Canada N2L 3G1

Correspondence to:

rodsmith@uwaterloo.ca

Figure S1. Sample of processing protocol used for Raman spectra showing the sampled annealed at 800 $^{\circ}$ C for 10 min. under humidified N₂ environment. (A) The raw spectrum and baseline to be subtracted. (B) Normalized form of the baseline subtracted data.

Figure S2. Infrared spectra for hematite thin film samples annealed at 800 °C 10 min and 2h. The sample annealed under humified N_2 for 10 min is an outlier in all structure-property trends.

Figure S3. X-ray diffraction pattern obtained on the γ -FeOOH precursor powders.

Figure S4. Comparison of Raman spectra for (A) thin film samples and (B) powder samples with (C) K_2SO_4 .

Figure S5. Microscope image of the sample prepared by annealing electrodeposited γ -FeOOH at 800 °C for hours under humidified O₂ atmosphere.

Figure S6. Comparison of the average of all spectra acquired from 2x2 micron squares (27 spectra) and 23 x 24 micron squares (600 spectra).

Figure S7. Method for determining photoelectrocatalytic onset. Samples shown are (A) 800 °C for 2 hours under dry N_2 and (B) 800 °C for 2 hours under dry O_2 , and (C) 800 °C for 10 min under dry O_2 .

Figure S8. Bulk resistance obtained from fitting EIS data on the α -Fe₂O₃ sample series. (A) Resistance as a function of voltage. Resistance at 1.0 V_{RHE} as a function of Raman intensity ratios (B) I₄₉₉/I₆₆₀ and (C) I₆₁₂/I₆₆₀.

Figure S9. Voltammetric behavior of α -Fe₂O₃ photoanodes in the dark (black lines) and under illumination (red lines), and 1 V s⁻¹ cathodic sweeps following equilibration at an oxidizing voltage while under illumination. Data is shown for samples heated at 800 °C for 10 minutes in (A) humidified N₂, (B) dry N₂, (C) humidified O₂, (D) dry O₂, and at 800 °C for 2 hours in (E) humidified N₂, (F) dry N₂, (G) humidified O₂, (H) dry O₂.

Figure S10. Correlations between peak width and intensity ratio for observed features in the Raman spectra.

Sample		A_{lg}	E_g	E_g	E_g	E_g	A_{lg}	E_g	E_u
N ₂ +H ₂ O	Centre	228.02	247.04	294.19	301.02	412.40	497.64	612.93	661.95
10min	Width	4.65	5.25	6.98	7.34	10.54	19.28	16.94	39.52
	Height	0.80	0.14	0.93	0.34	0.50	0.08	0.26	0.15
N_2	Centre	227.38	246.65	293.60	300.33	412.26	497.24	612.98	660.36
10min	Width	4.42	4.90	6.34	7.14	10.35	21.72	16.04	36.55
	Height	0.81	0.17	0.91	0.40	0.57	0.08	0.29	0.10
O_2+H_2O	Centre	228.43	247.60	294.56	301.28	413.25	498.10	613.69	662.70
10min	Width	4.00	4.43	5.49	6.34	9.48	18.57	12.91	38.66
	Height	0.85	0.16	0.93	0.39	0.47	0.07	0.23	0.04
O ₂	Centre	228.06	247.23	294.27	301.07	413.09	497.79	613.71	661.69
10min	Width	4.04	4.54	5.59	6.45	9.48	18.44	13.12	34.31
	Height	0.83	0.16	0.95	0.40	0.48	0.07	0.24	0.06
N ₂ +H ₂ O	Centre	227.96	247.06	294.04	300.86	412.65	498.11	613.05	661.73
2h	Width	4.23	4.64	5.82	6.51	9.90	17.97	13.55	32.29
	Height	0.88	0.14	0.96	0.38	0.44	0.08	0.23	0.05
N ₂	Centre	227.51	246.75	293.67	300.35	412.28	496.59	612.62	663.06
2h	Width	4.04	4.51	5.57	6.34	9.59	18.98	13.07	48.11
	Height	0.81	0.17	0.92	0.40	0.51	0.06	0.25	0.03
O ₂ +H ₂ O	Centre	228.26	247.39	294.32	301.09	412.93	498.15	613.29	660.97
2h	Width	4.06	4.48	5.68	6.54	10.03	18.40	13.34	32.48
	Height	0.85	0.16	0.95	0.38	0.44	0.07	0.23	0.03
O ₂	Centre	228.44	247.60	294.54	301.31	413.18	498.22	613.52	662.74
2h	Width	3.99	4.40	5.51	6.26	9.64	18.53	13.11	38.80
	Height	0.85	0.15	0.94	0.39	0.46	0.07	0.23	0.03

Table S1. Location, intensity and width of peak components for the 800 °C α -Fe₂O₃ films.

Table S2. Carrier concentration values compared to photocurrent densities for α -Fe₂O₃ films prepared at 600 and 800 °C.

Sample	$log(N_d/cm^{-3})$	<i>j_{1.23V}</i> (mA·cm ⁻²)
N ₂ +H ₂ O, 600 °C	20.53	0.0078
N ₂ ,600 °C	21.05	0.0045
O ₂ +H ₂ O, 600 ℃	20.41	0.010
O ₂ , 600 °C	20.34	0.0026
N ₂ +H ₂ O, 10min, 800 °C	22.30	0.08
N ₂ , 10min, 800 °C	22.18	0.04
O ₂ +H ₂ O, 10min, 800 °C	20.56	0.18
O ₂ , 10min, 800 °C	20.32	0.02
N ₂ +H ₂ O, 2h, 800 °C	21.69	0.16
N ₂ , 2h, 800 °C	21.06	0.36
O ₂ +H ₂ O, 2h, 800 °C	20.50	0.41
O ₂ , 2h, 800 °C	20.48	0.48