# Enantioselective synthesis of P-chiral tertiary phosphine oxides with an ethynyl group via Cu(I)-catalyzed azide–alkyne cycloaddition

Ren-Yi Zhu,<sup>a</sup> Long Chen,<sup>a</sup> Xiao-Si Hu,<sup>a</sup> Feng Zhou,<sup>a,b</sup> and Jian Zhou<sup>\*a,b,c</sup>

<sup>a</sup> Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development.

<sup>b</sup> Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China.

<sup>c</sup> State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China.

### Supporting Information (Part I)

| Table of Contents                                                                                                                                       | Page   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1. General information                                                                                                                                  | 1      |
| 2. General procedure for the synthesis of PYBOX ligands L <sub>2-8</sub>                                                                                | 2-5    |
| 3. General procedure for the synthesis of diethynylphosphine oxides 1, racemic monoethynyl-phosphine oxides 4, phosphole oxide-diynes 6 and compound 25 | 6-16   |
| 4. Condition optimization                                                                                                                               | 17-21  |
| 5. Desymmetric CuAAC reaction of diethynylphosphine oxides 1                                                                                            | 22-28  |
| 6. Kinetic resolution of racemic monoethynylphosphine oxides <b>4</b> and their catalytic enantioselective CuAAC reaction                               | 29-39  |
| 7. Remote desymmetric CuAAC reaction of phosphole oxide-diynes 6 and compound 25                                                                        | 40-51  |
| 8. Diversifying reactions of optically active P-chiral ethynylphosphine oxides                                                                          | 52-73  |
| 8.1 The synthesis of compounds 8-9, 11-14                                                                                                               | 52-56  |
| 8.2 The synthesis of P-chiral tertiary phosphines 16 and their application                                                                              | 57-61  |
| 8.3 Diastereodivergent synthesis of P-chiral tertiary phosphine oxides sulfinamide 19                                                                   | 62-64  |
| 8.4 The synthesis of digold Au(I) complex 21                                                                                                            | 65-67  |
| 8.5 The synthesis of compounds <b>22-24</b> and their photophysical properties                                                                          | 68-73  |
| 9. Experimental evidence for synergic desymmetrization and kinetic resolution, and a possible model to explain the stereoselectivity of the progress    | 74-76  |
| 10. X-ray crystallographic data of <b>3b</b> , <b>4a</b> , <b>7o</b> , <b>9</b> , <b>14</b> , <b>19</b> and <b>21</b>                                   | 77-144 |

#### **1. General information**

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. Infrared (IR) spectra were obtained using a Nicolet Nexus 670 FT-IR spectrometer with KBr pellets in the range 4000-400 cmm<sup>-1</sup>. Chiral HPLC analysis was performed on a Shimadzu LC-20AD instrument using Daicel Chiracel columns at 30 °C and a mixture of HPLC-grade hexanes and isopropanol as eluent. Optical rotation was measured using a JASCO P-1030 Polarimeter equipped with a sodium vapor lamp at 589 nm. <sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F NMR spectra were obtained using a Bruker DPX-400 and Bruker DPX-300 spectrometer. The <sup>31</sup>P NMR spectra were recorded at 162 MHz with 85% H<sub>3</sub>PO<sub>4</sub> as external standard. Chemical shifts are reported in ppm from CDCl<sub>3</sub> or (CD<sub>3</sub>)<sub>2</sub>SO with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad.

Unless mentioned, all reactions were performed under an atmosphere of N<sub>2</sub>. Anhydrous halogenated solvents and CH<sub>3</sub>CN were prepared by first distillation over P<sub>2</sub>O<sub>5</sub> and then from CaH<sub>2</sub>. CuBr (99.998%) and CuCl (99.998%) were purchased from Alfa-Aesar and used as received. Other cuprous salts were purchased from Aldrich. Arylphosphonic or alkylphosphonic dichlorides were prepared using the literature procedure.<sup>1</sup>

| Entry | Chemical name                  | Abbreviation                    |
|-------|--------------------------------|---------------------------------|
| 1     | Petroleum ether                | PE                              |
| 2     | Ethyl acetate                  | EtOAc                           |
| 3     | Tetrahydrofuran                | THF                             |
| 4     | Diethylaminosulfur trifluoride | DAST                            |
| 5     | Dichloromethane                | CH <sub>2</sub> Cl <sub>2</sub> |
| 6     | 1,2-Dichloroethane             | DCE                             |

#### List of abbreviation:

<sup>&</sup>lt;sup>1</sup> (a) L.-N. Qin, X.-F. Ren, Y.-P. Lu, Y.-X. Li and J.-R. Zhou, *Angew. Chem.; Int. Ed.*, 2012, **51**, 5915; (b) N. D. Contrella, J. R. Sampson and R. F. Jordan, *Organometallics*, 2014, **33**, 3546; (c) R. C. Grabiak, J. A. Miles and G. M. Schwenzer, *Phosphorus sulfur*, 1980, **9**, 197.

#### 2. General procedure for the synthesis of PYBOX ligands L2-8

Starting from commercially available dimethyl 4-hydroxypyridine-2,6-dicarboxylate I, it is easy to prepare all the ligands  $L_{2-8}$  using the following modified procedures.<sup>2,3</sup> All the aromatic bromides involved are synthesized from the corresponding aromatic aldehyde through a reduction using NaBH4 and a bromination using PBr<sub>3</sub>.<sup>4</sup>

#### 2.1 The synthesis of ligand L<sub>3</sub> and L<sub>6-8</sub>



Ligand L3 was prepared from I in three steps. The corresponding O-benzyl ether II was synthesized according to literature method.<sup>3</sup> The synthesis of III was achieved by using a modified method. To a 50 mL sealed tube was added II (301 mg, 1.0 mmol) and (S)-2-amino-2-phenylethanol (411 mg, 3.0 mmol), and then the mixture was heated 90 °C until the disappearance of II by TLC analysis. The residue was directly subjected to column chromatography using CH<sub>2</sub>Cl<sub>2</sub>/EtOAc (4/1, v/v)as the eluent, affording III in 82% yield. The synthesis of L<sub>3</sub> from III was as follow. To a flame-fried 25 mL Schlenk tube was added III (256 mg, 0.5 mmol), followed by the addition of 5.0 mL of CH<sub>2</sub>Cl<sub>2</sub>. The resulting solution was cooled to -20 °C and was charged with DAST (198 uL, 1.5 mmol) by dropwise addition over 5 min. The reaction was allowed to proceed at -20 °C for 24 h, and then was quenched with aqueous NH4OH, diluted with H2O. The aqueous layer was extracted with CH2Cl2, dried with Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was subjected to column chromatography using CH<sub>2</sub>Cl<sub>2</sub>/EtOAc (20/1, v/v) as the elution to afford L<sub>3</sub> in 63% yield.



White solid. Mp 160-162 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.95 (s, 2H), 7.41-7.28 (m, 15 H), 5.45 (dd, J = 8.0 Hz, 1.6 Hz, 2H), 5.21 (AB, J = 12.0 Hz, 2H), 4.92 (dd, J = 8.0 Hz, 1.6 Hz, 2H), 4.41 (t, J = 8.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 165.75, 163.55, 148.29, 141.68, 135.02, 128.80, 128.71, 128.47, 127.78, 127.49, 126.81, 113.03, 75.54, 70.50, 70.24; IR (KBr): 3024, 2904, 1641, 1471, 697 cm<sup>-1</sup>; MS (EI): 475 (M<sup>+</sup>, 9.7), 91 (100), 104 (17); HRMS (EI): Exact mass calcd for C<sub>30</sub>H<sub>25</sub>N<sub>3</sub>O<sub>3</sub>: 475.1896, Found: 475.1890.

<sup>&</sup>lt;sup>2</sup> N. Madhavan, W. Sommer and M. Weck, J. Mol. Catal. A: Chem., 2011, 334, 1.

<sup>&</sup>lt;sup>3</sup> A. T. Parsons and J. S. Johnson, J. Am. Chem. Soc., 2009, 131, 3122.

<sup>&</sup>lt;sup>4</sup> J. R. Shah, P. D. Mosier, B. L. Roth, G. E. Kellogg and R. B. Westkaemper, *Bioorg. Med. Chem.*, 2009, 17, 6496.



Ligand L<sub>6</sub> is prepared by the same procedure. Column chromatography afforded L<sub>6</sub> in 68% yield as white solid. Mp 212-214 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.04 (s, 2H), 7.99-7.97 (m, 1 H), 7.90-7.87 (m, 2H), 7.60-7.45 (m, 4H), 7.39-7.29 (m, 10H), 5.62 (s, 2H), 5.46 (t, *J* = 13.2 Hz, 2H), 4.93 (t, *J* = 13.6 Hz, 2H), 4.43 (t, *J* = 11.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  165.69, 163.49, 148.30, 141.60,

133.65, 131.28, 130.37, 129.56, 128.74, 128.68, 127.72, 126.92, 126.76, 126.67, 126.04, 125.14, 123.38, 112.98, 70.19, 69.16; IR (KBr): 2962, 1589, 1387, 1009, 698 cm<sup>-1</sup>; HRMS (ESI): Exact mass calcd for C<sub>34</sub>H<sub>28</sub>N<sub>3</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 526.2125, Found: 526.2127.



Ligand L<sub>7</sub> is prepared by the same procedure. Column chromatography afforded L<sub>7</sub> in 70% yield as white solid. Mp 208-210 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.94 (s, 2H), 7.41-7.38 (m, 5H), 7.31-7.27 (m, 4H), 7.08-7.03 (m, 4H), 5.46-5.42 (dd, J = 10.2, 8.6 Hz, 2H), 5.24-5.18 (m, 2H), 4.91 (dd, J = 10.3, 8.7 Hz, 2H), 4.37 (t, J = 8.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  165.82, 163.64, 162.37 (d, J = 246.0 Hz), 148.20, 137.50 (d, J = 3.0 Hz), 134.96, 128.79, 128.58,

128.52 (d, J = 9.0 Hz), 127.56, 115.72 (d, J = 22.0 Hz), 113.12, 75.57, 70.58, 69.58; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ -114.58; IR (KBr): 3442, 2988, 1634, 1562, 1427, 1375, 1157, 1087, 963, 879 cm<sup>-1</sup>; HRMS (EI): Exact mass calcd for C<sub>30</sub>H<sub>23</sub>N<sub>3</sub>O<sub>3</sub>F<sub>2</sub>: 511.1707, Found: 511.1700.



Ligand L<sub>8</sub> is prepared by the same procedure. Column chromatography afforded L<sub>8</sub> in 63% yield as white solid. Mp 222-224 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.02 (s, 2H), 7.98-7.96 (m, 1H), 7.92-7.88 (m, 2H), 7.60-7.45 (m, 4H), 7.31-7.26 (m, 4H), 7.05 (t, *J* = 8.6 Hz, 4H), 5.63 (s, 2H), 5.44 (t, *J* = 9.4 Hz, 2H), 4.91 (dd, *J* = 10.1, 9.0 Hz, 2H), 4.37 (t, *J* = 8.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  165.85, 163.66, 162.38 (d, *J* = 246.0 Hz), 148.28, 137.48

(d, J = 3.0 Hz), 133.76 , 131.39, 130.37, 129.76, 128.83, 128.53 (d, J = 9.0 Hz), 127.10, 126.82, 126.20, 125.26, 123.47, 115.73 (d, J = 22.0 Hz), 113.13, 75.58, 69.61, 69.34; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -114.56; IR (KBr): 3423, 2895, 1733, 1636, 1508, 1473, 1369, 1089, 922, 793 cm<sup>-1</sup>; HRMS (EI): Exact mass calcd for C<sub>34</sub>H<sub>25</sub>N<sub>3</sub>O<sub>3</sub>F<sub>2</sub>: 561.1864, Found: 561.1862.

#### 2.2 The synthesis of ligand L<sub>4-5</sub>



The compound **IV** was synthesized from **III** by using a reported literature method.<sup>2</sup> The procedure for synthesis of ligand **L**<sub>4</sub> from **IV** as follows: To a 25 mL Schlenk tube was added precursor **IV** (229 mg, 0.5 mmol) and bromide **V** (187.2 mg, 0.6 mmol), followed by the successive addition of 5.0 mL anhydrous CH<sub>3</sub>CN and K<sub>2</sub>CO<sub>3</sub> (82.8 mg, 0.6 mmol). After the mixture was stirred at 70 °C for 1 h, K<sub>2</sub>CO<sub>3</sub> (138 mg, 1.0 mmol) was then added. The resulting mixture was stirred at 70 °C for 24 h, and the solvent was removed under reduced pressure. The residue was directly subjected to column chromatography using CH<sub>2</sub>Cl<sub>2</sub>/EtOAc (20/1, v/v) as the eluent, affording **L**<sub>4</sub> in 46% yield as white solid. Mp 70-72 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.99 (s, 2H), 7.88 (s, 3H), 7.38-7.28 (m, 10 H), 5.45 (dd, *J* = 8.8 Hz, 1.6 Hz, 2H), 5.30 (AB, *J* = 12.8 Hz, 2H), 4.93 (dd, *J* = 8.8 Hz, 1.6 Hz, 2H), 4.43 (t, *J* = 8.8 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.93, 163.33, 148.59, 141.51, 137.69, 132.15 (q, *J* = 33.0 Hz), 128.80, 127.81, 127.13 (q, *J* = 3.0 Hz), 126.77, 123.02 (q, *J* = 271.0 Hz), 122.37-122.29 (m), 112.73, 75.38, 70.23, 68.64; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -62.92; IR (KBr): 2894, 1590, 1362, 1280, 1134, 720 cm<sup>-1</sup>; MS (EI): 611 (M<sup>+</sup>, 8), 135 (100), 44 (41); HRMS (EI): Exact mass calcd for C<sub>32</sub>H<sub>23</sub>N<sub>3</sub>O<sub>3</sub>F<sub>6</sub>: 611.1644, Found: 611.1648.

#### 2.3 The synthesis of ligand L<sub>2</sub>



The intermediate VI was prepared according to a literature report.<sup>5</sup> To a 25 mL Schlenk tube was added Mg(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (32.9 mg, 0.10 mmol), which was dried under vacuum at 130°C for 2 h before use. After cooling to room temperature, IV (458 mg, 1.0 mmol) was added in one portion, followed by addition of 5.0 mL of anhydrous CH<sub>3</sub>CN. Then Boc<sub>2</sub>O (500 mg, 2.3 mmol) was added, and the mixture was stirred at 40 °C until TLC analysis revealed the disappearance of IV. The crude mixture was diluted with water and extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was separated, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed under reduced pressure, affording the crude intermediate VI in 90% yield, which was used directly for the next step.

To a 25 mL Schlenk tube was added precursor VI (256.5 mg, 0.5 mmol) and K<sub>2</sub>CO<sub>3</sub> (207 mg, 1.5 mmol), followed by addition of 5.0 mL anhydrous CH<sub>3</sub>CN. The mixture was stirred at 70 °C for 9 hours, and then the solvent was removed under reduced pressure. The residue was directly subjected to column chromatography using CH<sub>2</sub>Cl<sub>2</sub>/EtOAc (50/1, v/v) as the elution, and afforded the ligand L<sub>2</sub> in 16% yield. White solid, Mp 154-156 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.20 (s, 2H), 7.39-7.30 (m, 10 H), 5.46 (t, *J* = 8.80 Hz, 2H), 4.93 (t, *J* = 12.0 Hz, 2H), 4.21 (t, *J* = 11.6 Hz, 2H), 1.55 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  162.97, 158.81, 149.75, 148.61, 141.50, 128.83, 127.82, 126.82, 119.03, 85.23, 75.64, 70.31, 27.57; IR (neat): 2922, 2850, 1607, 1464, 1245, 1053, 836, 760, 689 cm<sup>-1</sup>; HRMS (ESI): Exact mass calcd for C<sub>28</sub>H<sub>28</sub>N<sub>3</sub>O<sub>5</sub> [M+H]<sup>+</sup>: 486.2023, Found: 486.2026.

<sup>&</sup>lt;sup>5</sup> G. Bartoli, M. Bosco, M. Locatelli, E. Marcantono, P. Melchiorre and L. Sambri, Org. Lett., 2005, 7, 427.

#### 3. General procedure for the synthesis of diethynylphosphine oxides 1, racemic monoethynylphosphine oxides 4 and phosphole oxide-diynes 6

3.1 The synthesis of diethynylphosphine oxides 1



Diethynylphosphine oxide **1a** was prepared from the corresponding phosphonic dichlorides<sup>6</sup> by using the following general procedure: To a solution of 1-naphthyl phosphonic dichloride (2.3 g, 9.5 mmol) in anhydrous THF (20 mL) was slowly added 2-(trimethylsilyl)ethynylmagnesium bromide (40 mL, 20 mmol) at 0°C. The mixture was warmed slowly to room temperature and stirred at 50 °C for 3 h. Then 3.0 mL of TBAF (1 M in THF), 5.0 mL of HCl (3 M, aq) and 20 mL of water were added at 0 °C. The resulting mixture was stirred at 50 °C till the consumption of intermediate VII by TLC analysis. The solvent was removed under vacuum and the residue was dissolved in 100 mL of CH<sub>2</sub>Cl<sub>2</sub> and 100 mL of HCl (3 M, aq). The aqueous phase was extracted with  $CH_2Cl_2$  (2 × 50 mL). The organic phase was combined, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated to give the crude residue, which was purified by flash chromatography using PE/EtOAc (2:1, v/v) as the eluent to provide 1a in 56% yield as a white solid. Other diethynylphosphine oxides 1 were prepared by using the above same procedure.



Characterization of compound 1a (white solid): 56% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.70 (d, J = 8.3 Hz, 1H), 8.35 (dd, J = 20.1, 7.1 Hz, 1H), 8.11 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.69-7.56 (m, 3H), 3.35 (d, J = 11.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  134.68 (d, J = 3.0 Hz), 133.67 (d, J = 11.0 Hz), 132.60 (d, J =13.0 Hz), 131.91 (d, J = 12.0 Hz), 129.23 (d, J = 2.0 Hz), 127.86, 126.92, 126.14 (d, J = 140.0 Hz), 125.65 (d, J = 8.0 Hz), 124.66 (d, J = 17.0 Hz), 93.46 (d, J = 36.0 Hz), 78.54 (d, J = 193.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ -21.23; IR (neat): 3406, 3147, 2054, 1680, 1505, 1335, 1214, 1179, 1026,

986, 832, 798, 770 cm<sup>-1</sup>; HRMS (EI): Exact mass calcd for C<sub>14</sub>H<sub>9</sub>OP: 224.0391, Found: 224.0393.

<sup>&</sup>lt;sup>6</sup> Phosphonic dichlorides were prepared by literature methods: (a) R. C. Grabiak, J. A. Miles and G. M. Schwenzer, *Phosphorus sulfur*, 1980, 9, 197; (b) F. Slowinski, C. Aubert and M. Malacria, J. Org. Chem., 2003, 68, 378.

Characterization of compound **1b** (white solid): 61% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.06 (dd, J = 17.6, 7.2 Hz, 1H), 7.55-7.50 (m, 1H), 7.40-7.28 (m, 2H), 3.34 (d, J = 10.9 **1b** Hz, 2H), 2.77 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  141.77 (d, J = 12.0 Hz), 133.38 (d, J = 3.0 Hz), 131.90 (d, J = 1.0 Hz), 131.76, 128.44 (d, J = 140.0 Hz), 125.96 (d, J = 15.0 Hz), 93.05 (dd, J = 35.0, 1.0 Hz), 78.31 (d, J = 191.0 Hz), 20.89 (dd, J = 6.0, 2.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  -20.77; IR (neat): 3675, 3209, 2901, 2050, 1452, 1406, 1393, 1250, 1190, 1077, 892, 781, 757 cm<sup>-1</sup>; HRMS (EI): Exact mass calcd for C<sub>11</sub>H<sub>9</sub>OP: 188.0391, Found: 188.0394.

Characterization of compound 1c (white solid): 52% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.19-8.11 (m, 1H), 7.75-7.68 (m, 1H), 7.53-7.47 (m, 2H), 3.30 (d, J = 11.4 Hz, 2H); 1c <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  134.68 (d, J = 1.0 Hz), 134.59, 134.58 (d, J = 6.0 Hz), 129.94 (d, J = 148.0 Hz), 127.52 (d, J = 14.0 Hz), 124.98 (d, J = 6.0 Hz), 93.14 (d, J = 37.0 Hz), 77.44 (d, J = 203.0 Hz); <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>)  $\delta$  -23.72; IR (neat): 3173, 2053, 1578, 1450, 1255, 1115, 1025, 754 cm<sup>-1</sup>; HRMS (EI): Exact mass calcd for C<sub>10</sub>H<sub>6</sub><sup>79</sup>BrOP: 251.9340, Found: 251.9341

Characterization of compound 1d (white solid): 47% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.07 (dd, J = 18.4, 6.9 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.44-7.34 (m, 2H), 1d 3.34 (d, J = 10.9 Hz, 2H), 3.18 (q, J = 7.4 Hz, 2H), 1.36 (t, J = 7.5 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  148.19 (d, J = 12.0 Hz), 133.53 (d, J = 3.0 Hz), 131.84 (d, J = 15.0 Hz), 129.94 (d, J = 13.0 Hz), 128.22 (d, J = 141.0 Hz), 125.88 (d, J = 16.0 Hz), 92.94 (d, J = 35.0 Hz), 78.81 (d, J = 191.0 Hz), 26.76 (d, J = 6.0 Hz), 15.24; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  -20.13; IR (neat): 3656, 3149, 2965, 2048, 1476, 1452, 1437, 1205, 1190, 1087, 1053, 776, 751 cm<sup>-1</sup>; HRMS (EI): Exact mass calcd for C<sub>12</sub>H<sub>11</sub>OP: 202.0548, Found: 202.0551.



Characterization of compound **1e** (white solid): 51% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.56-7.41 (m, 3H), 7.15-7.12 (m, 1H), 3.86 (s, 3H), 3.31 (d, *J* = 11.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  159.85 (d, *J* = 19.0 Hz), 132.10 (d, *J* = 141.0 Hz), 130.37 (d, *J* = 18.0 Hz), 122.64 (d, *J* = 13.0 Hz), 119.83 (d, *J* = 4.0 Hz), 114.96

(d, J = 15.0 Hz), 92.94 (d, J = 36.0 Hz), 78.48 (d, J = 193.0 Hz), 55.66; <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  -20.84; IR (neat): 3237, 3161, 2063, 2044, 1594, 1575, 1483, 1420, 1316, 1289, 1246, 1197, 1039, 887, 779 cm<sup>-1</sup>; HRMS (EI): Exact mass calcd for C<sub>11</sub>H<sub>9</sub>O<sub>2</sub>P: 204.0340, Found: 204.0341. Characterization of compound **1f** (white solid): 33% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.07 (dt, J = 16.1, 1.5 Hz, 1H), 7.89 (dd, J = 15.5, 7.6 Hz, 1H), 7.77-7.75 (m, 1H), **1f** 7.43 (td, J = 7.8, 4.3 Hz, 1H), 3.32 (d, J = 11.2 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 136.43 (d, J = 3.0 Hz), 133.35 (d, J = 140.0 Hz), 133.11 (d, J = 14.0 Hz), 130.61 (d, J = 16.0 Hz), 128.92 (d, J = 12.0 Hz), 123.29 (d, J = 19.0 Hz), 93.52 (d, J = 37.0 Hz), 77.91 (d, J = 196.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  -23.12; IR (neat): 3452, 3161, 3141, 2049, 1558, 1464, 1398, 1194, 1127, 1066, 994, 900, 775, 719, 679 cm<sup>-1</sup>; HRMS (EI): Exact mass calcd for C<sub>10</sub>H<sub>6</sub><sup>79</sup>BrOP: 251.9340, Found: 251.9344.



Characterization of compound **1g** (yellow solid): 50% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.92-7.84 (m, 2H), 7.59-7.54 (m, 2H), 3.27 (d, *J* = 10.9 Hz, 2H), 1.35 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  157.21 (d, *J* = 4.0 Hz), 130.30 (d, *J* = 13.0 Hz), 127.57 (d, *J* = 144.0 Hz), 126.00 (d, *J* = 16.0 Hz), 92.52 (d, *J* = 35.0 Hz), 78.69 (d, *J* = 192.0 Hz), 35.20, 31.05; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  -20.54; IR (Neat): 3666, 3190, 2964, 2053, 1679, 1597,

1461, 1392, 1269, 1207, 1190, 1130, 1093, 834, 737 cm<sup>-1</sup>; HRMS (EI): Exact mass calcd for C<sub>14</sub>H<sub>15</sub>OP: 230.0861, Found: 230.0865.



Characterization of compound **1h** (white solid): 60% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  3.21 (d, J = 10.1 Hz, 2H), 1.30 (d, J = 19.6 Hz, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 92.17 (d, J = 28.0 Hz), 76.35 (d, J = 96.0 Hz), 33.90 (d, J = 96.0 Hz), 22.80 (d, J = 2.0Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  6.64; IR (neat): 3364, 3153, 2934, 1474, 1367, 1218,

1168, 1012, 942, 812 cm<sup>-1</sup>; HRMS (EI): Exact mass calcd for C<sub>8</sub>H<sub>11</sub>OP: 154.0548, Found: 154.0546.

#### 3.2 The synthesis of racemic monoethynyl phosphine oxides 4



Procedure for synthesis of racemic monoethynyl phosphine oxides **4a**: To a solution of phenylphosphonic dichloride (1.95 g, 10 mmol) in anhydrous THF (20 mL) was slowly added *o*-tolylmagnesium bromide (10 mL, 1.0 M) at 25 °C. After the resulting mixture was vigorously stirred at the same temperature for 3 h, 2-(trimethylsilyl)ethynylmagnesium bromide (20 mL, 0.5 M) was slowly added. The reaction was kept stirring for another 3 h, and then 3.0 mL of TBAF (1 M in THF), 5.0 mL of HCl (3 M, aq) and 20.0 mL of water were added at 0 °C. The resulting mixture was stirred at 50 °C till the consumption of intermediate **IX** by TLC analysis. The solvent was removed under vacuum and the residue was dissolved in 100 mL of CH<sub>2</sub>Cl<sub>2</sub> and 100 mL of HCl (3 M, aq). The aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 × 50 mL). The organic phase was combined, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated. The residue was purified by flash chromatography using PE:EtOAc (2:1, v/v) as the eluent to give monoethynyl phosphine oxides **4a** as a white solid in 60% yield. All the other racemic monoethynyl phosphine oxides **4** were prepared in about 50% total yield of three steps by such a one-pot procedure. And all other racemic monoethynyl phosphine oxides **4** are also prepared from the corresponding phosphonic dichlorides by using the above procedure.

For the full characterization of all monoethynyl phosphine oxides **4**, please see section 6, including <sup>1</sup>H, <sup>13</sup>C and <sup>31</sup>P NMR data, together with IR and HRMS data.

#### 3.3 The synthesis of phosphole oxide-diynes 6



Phosphole based prochiral phosphole oxide-diynes **6** were prepared from the easily available compound  $\mathbf{X}^7$  by the following procedure, as illustrated by the synthesis of phosphole oxide-diynes **6a**. To an oven-dried three-necked bottle was added **X** (1.2 g, 2 mmol) and then dissolved in 15 mL of anhydrous DMF. NaH (105.6 mg, 4.4 mmol) was added carefully to the mixture at 0 °C with evolution of hydrogen. After the mixture was stirred for 15 min, "PrI (748 mg, 430 uL, 4.4 mmol) was added in one portion with vigorously stirring till full conversion of **X** by TLC analysis. The reaction mixture was then poured into saturated aqueous NH<sub>4</sub>Cl and extracted with ethyl acetate. The combined organic layor was washed with water and brine, dried, filtered and concentrated to afford the crude product **XI** in 88% yield, which was pure enough to be used in the next step. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.03 (s, 2H), 6.70 (s, 2H), 4.02-3.91 (m, 4H), 1.90-1.82 (m, 4H), 1.06 (t, *J* = 7.6 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): 155.50, 148.00, 141.90, 114.18, 112.76, 87.20, 70.81, 22.33, 10.49.

The benzophosphole was synthesized in moderate yield using a modified procedure. To the mixture of **XI** (4.1g, 6.0 mmol) and dry THF (50 mL) was added a 2.4 M *n*-butyllithium/hexane solution (5.0 mL, 12.0 mmol) at -100°C. The resulting mixture was allowed to stir at this temperature for 0.5 h, and then 4-methylphenyl phosphonic dichloride (1.4 g, 7.2 mmol) was added dropwise into the mixture. The mixture was warmed naturally to room temperature with stirring for 2-3 h. Then the reaction mixture was hydrolyzed with water and extracted with CH<sub>2</sub>Cl<sub>2</sub>. H<sub>2</sub>O<sub>2</sub> was then added to the mixture and stirred vigorously for 0.5 h. Water was added and the organic layer was combined, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated to remove the solvent. The resulting crude product was chromatographed on a silica gel with CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate as eluent. Recrystallizing from ethyl

<sup>&</sup>lt;sup>7</sup> R. M. Chalke and V. R. Patil, J. Macromol. Sci. Part A Pure Appl. Chem., 2017, 54, 556.

acetate afforded the pure compound **XII** in 50% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.76 (d, J = 9.2 Hz, 2H), 7.53-7.47 (m, 2H), 7.22-7.16 (m, 4H), 4.21-4.11 (m, 4H), 2.37 (s, 3H), 1.99-1.90 (m, 4H), 1.14 (t, J = 7.6 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  159.60 (d, J = 2.0 Hz), 143.12 (d, J = 3.0 Hz), 142.14 (d, J = 21.0 Hz), 134.14 (d, J = 11.0 Hz), 131.06 (d, J = 12.0 Hz), 129.62 (d, J = 13.0 Hz), 126.48 (d, J = 109.0 Hz), 125.64 (d, J = 111.0 Hz), 113.84 (d, J = 15.0 Hz), 104.99 (d, J = 12.0 Hz), 70.97, 22.44, 21.61, 10.64; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.19.

To a 50 mL sealed tube was added Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (120 mg, 0.17 mmol), CuI (66 mg, 0.34 mmol) and benzophosphole **XII** (955 mg, 1.7 mmol), followed by the addition of 10 mL anhydrous CH<sub>3</sub>CN and 'Pr<sub>2</sub>NH (2.4 mL, 17 mmol). The mixture was then cooled using liquid nitrogen and vacuumized for 10 minutes to exclude oxygen, back-filled with N<sub>2</sub>. After warming back to room temperature, trimethylsilylacetylene (2.4 mL, 17 mmol) was added and the resulting mixture was vigorously stirred in a pre-heated oil bath (90 °C) till full conversion of **XII**. The solvent was removed under reduced pressure and then subjected directly to column chromatography to give the Sonogashira coupling product, which was then dissolved in anhydrous THF (20 mL), followed by the addition of TBAF (1 M in THF). After full conversion, water was added, and the aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 20 mL). The combined organic phase was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated to afford the crude product, which was then subjected to column chromatography to afford the phosphole oxide-diynes **6a** in 54% yield.



Characterization of compound **6a** (brown solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.72 (d, J = 12.8 Hz, 2H), 7.51-7.46 (m, 2H), 7.20-7.18 (m, 4H), 4.21-4.10 (m, 4H), 3.32 (s, 2H), 2.34 (s, 3H), 1.96-1.88 (m, 4H), 1.11 (t, J = 9.6 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.34 (d, J = 2.0 Hz), 143.22 (d, J = 22.0 Hz),

142.84 (d, J = 3.0 Hz), 135.27 (d, J = 11.0 Hz), 131.06 (d, J = 12.0 Hz), 129.51 (d, J = 13.0 Hz), 127.09 (d, J = 108.0 Hz), 125.44 (d, J = 111.0 Hz), 113.50 (d, J = 14.0 Hz), 104.30 (d, J = 11.0 Hz), 83.25, 79.00, 70.68, 22.47, 21.59, 10.54; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  30.87; IR (KBr): 3180, 2950, 1590, 1249, 1159, 1044, 591 cm<sup>-1</sup>; MS (EI): 454 (M<sup>+</sup>, 56), 44 (100), 263 (16), 91 (14); HRMS (EI): Exact mass calcd for C<sub>29</sub>H<sub>27</sub>O<sub>3</sub>P: 454.1698, Found: 454.1696. Characterization of compound **6b** (brown solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.73 (d, J= 9.6 Hz, 2H), 7.53-7.48 (m, 2H), 7.20-7.18 (m, 4H), 4.21-4.11 (m, 4H), 3.33 (s, 2H), 2.60 (t, J = 7.6 Hz, 2H), 1.98-1.89 (m, 4H), 1.60-1.52 (m, 2H), 1.36-1.24 (m, 2H), 1.12 (t, J = 7.2 Hz, 6H), 0.90 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR

(100 MHz, CDCl<sub>3</sub>):  $\delta$  164.29 (d, J = 2.0 Hz), 147.74 (d, J = 3.0 Hz), 143.22 (d, J = 21.0 Hz), 135.29 (d, J = 11.0 Hz), 131.02 (d, J = 11.0 Hz), 128.88 (d, J = 13.0 Hz), 127.16 (d, J = 108.0 Hz), 125.40 (d, J = 111.0 Hz), 113.36 (d, J = 14.0 Hz), 104.20 (d, J = 11.0 Hz), 83.22, 78.94, 70.58, 35.65, 32.23, 22.42, 22.27, 13.86, 10.53; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  30.81; IR (KBr): 3817, 325, 2962, 1596, 1460, 1064, 678, 524 cm<sup>-1</sup>; MS (EI): 496 (M<sup>+</sup>, 1), 172 (100), 108 (91), 244 (71), 216 (46), 440 (6), 356 (5); HRMS (EI): Exact mass calcd for C<sub>32</sub>H<sub>33</sub>O<sub>3</sub>P: 496.2167, Found: 496.2164.



о́ 6b

<sup>n</sup>PrC

Characterization of Compound **6c** (brown solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.72 (d, J = 9.6 Hz, 2H), 7.56-7.51 (m, 2H), 7.18 (d, J = 2.0 Hz, 2H), 6.91-6.88 (m, 2H), 4.20-4.14 (m, 4H), 3.81 (s, 3H), 3.33 (s, 2H), 1.98-1.89 (m, 4H), 1.12 (t, J = 7.2 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.32 (d, J = 2.0

Hz), 162.87 (d, J = 3.0 Hz), 143.15 (d, J = 21.0 Hz), 135.25 (d, J = 11.0 Hz), 132.94 (d, J = 12.0 Hz), 125.60 (d, J = 111.0 Hz), 121.16 (d, J = 107.0 Hz), 114.41 (d, J = 14.0 Hz), 113.50 (d, J = 11.0 Hz), 104.26 (d, J = 11.0 Hz), 83.23, 78.97, 70.65, 55.34, 22.45, 10.52; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  30.61; IR (KBr): 3186, 2986, 1595, 1388, 1249, 1159, 1044, 661cm<sup>-1</sup>; HRMS (ESI): Exact mass calcd for C<sub>29</sub>H<sub>28</sub>O<sub>4</sub>P [M+H]<sup>+</sup>: 471.1720, Found: 471.1721.



Characterization of compound **6d** (brown solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.73-7.70 (m, 2H), 7.64-7.58 (m, 2H), 7.19-7.18 (m, 2H), 7.10-7.05 (m, 2H), 4.22-4.12 (m, 4H), 3.33 (s, 2H), 1.98-1.89 (m, 4H), 1.12 (t, *J* = 7.6 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  166.60 (d, *J* = 4.0 Hz), 164.54 (d, *J* = 1.0 Hz),

164.08 (d, J = 4.0 Hz), 143.18 (d, J = 22.0 Hz), 135.22 (d, J = 11.0 Hz), 133.62 (d, J = 9.0 Hz), 133.50 (d, J = 9.0 Hz), 126.51 (d, J = 106.0 Hz), 124.87 (d, J = 112.0 Hz), 116.26 (d, J = 14.0 Hz), 116.04 (d, J = 14.0 Hz), 113.72 (d, J = 13.0 Hz), 104.42 (d, J = 11.0 Hz), 83.41, 78.82, 70.71, 22.44, 10.49; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  29.64; <sup>19</sup>F (376 MHz, CDCl<sub>3</sub>):  $\delta$  -106.25; IR (KBr): 3290, 2985, 1595, 1273, 1160, 1040, 710, 528 cm<sup>-1</sup>; HRMS (EI): Exact mass calcd for C<sub>28</sub>H<sub>24</sub>O<sub>3</sub>FP: 458.1447, Found: 458.1450.

Characterization of compound **6e** (brown solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): O<sup>n</sup>P  $\delta$  7.70 (d, J = 9.6 Hz, 2H), 7.55-7.50 (m, 2H), 7.37-7.34 (m, 2H), 7.18 (d, J =1.6 Hz, 2H), 4.22-4.11 (m, 4H), 3.34 (s, 2H), 1.96-1.83 (m, 4H), 1.12 (t, J = 7.2 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.55 (d, J = 3.0 Hz), 143.20 (d, J =

22.0 Hz), 138.80 (d, J = 4.0 Hz), 135.22 (d, J = 12.0 Hz), 132.45 (d, J = 12.0 Hz), 129.22 (d, J = 12.0 Hz), 129.20 (d, 107.0 Hz), 129.10 (d, J = 13.0 Hz), 124.59 (d, J = 112.0 Hz), 113.66 (d, J = 14.0 Hz), 104.38 (d, J = 12.0 Hz), 83.47, 78.75, 70.67, 22.42, 10.51; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 29.52; IR (KBr): 3289, 2967, 1595, 1273, 1087, 708, 528 cm<sup>-1</sup>; MS (EI): 474, 476 (M<sup>+</sup>, 100, 34), 263 (30), 279 (22), 308 (9), 390 (16); HRMS (EI): Exact mass calcd for C<sub>28</sub>H<sub>24</sub>O<sub>3</sub>P<sup>35</sup>Cl: 474.1152, Found: 474.1151.



<sup>n</sup>PrC

ò

6g

ò

6e

<sup>n</sup>PrO

Characterization of compound **6f** (brown solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.91 (d, J = 10.4 Hz, 2H), 7.34-7.28 (m, 3H), 7.15 (d, J = 2.0 Hz, 2H), 4.22-4.11 (m, 4H), 3.34 (s, 2H), 1.96-1.91 (m, 4H), 1.13 (t, J = 7.2 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.58 (d, J = 2.0 Hz), 143.38 (d, J = 24.0 Hz), 139.53 (d,

J = 4.0 Hz), 135.25 (d, J = 11.0 Hz), 132.58, 130.66 (d, J = 6.0 Hz), 127.62 (d, J = 101.0 Hz), 124.96 (d, *J* = 119.0 Hz), 113.27 (d, *J* = 14.0 Hz), 104.57 (d, *J* = 12.0 Hz), 83.20, 79.03, 70.61, 22.45, 10.54; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  28.45; IR (KBr): 3292, 2965, 1595, 1419, 1194, 1050, 778, 526 cm<sup>-1</sup>; MS (EI): 508 510, 512 (M<sup>+</sup>, 100, 57, 12), 279 (82), 389 (28), 424 (8), 466 (7); HRMS (EI): Exact mass calcd for C<sub>28</sub>H<sub>23</sub>O<sub>3</sub>P<sup>35</sup>Cl<sub>2</sub>: 508.0762, Found: 508.0756.

> Characterization of compound 6g (brown solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $O^{n}Pr$ δ 7.72 (d, J = 9.2 Hz, 2H), 7.48-7.45 (m, 1H), 7.35-7.28 (m, 2H), 7.25-7.24 (m, 1H), 7.19 (d, J = 2.0 Hz, 2H), 4.22-4.12 (m, 4H), 3.33 (s, 2H), 2.32 (s, 3H), 1.96-1.91 (m, 4H), 1.12 (t, J = 7.2 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$

164.37 (d, J = 2.0 Hz), 143.27 (d, J = 22.0 Hz), 138.67 (d, J = 13.0 Hz), 135.39 (d, J = 12.0 Hz), 133.07 (d, J = 3.0 Hz), 131.44 (d, J = 10.0 Hz), 130.30 (d, J = 106.0 Hz),128.62 (d, J = 14.0 Hz), 128.00 (d, J = 12.0 Hz), 125.28 (d, J = 111.0 Hz), 113.48 (d, J = 14.0 Hz), 104.32 (d, J = 13.0 Hz), 83.25, 78.95, 70.63, 22.44, 21.31, 10.51; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 30.73; IR (KBr): 3290, 2966, 1695, 1272, 1062, 691 cm<sup>-1</sup>; MS (EI): 454 (M<sup>+</sup>, 100), 143 (18), 263 (17), 279 (13), 322 (10), 370 (8); HRMS (EI): Exact mass calcd for C<sub>29</sub>H<sub>27</sub>O<sub>3</sub>P: 454.1698, Found: 454.1693.

<sup>PPrO</sup> <sup>PPrO</sub> <sup>PPrO</sup> <sup>PPrO</sup> <sup>PPrO</sub> <sup>PPrO</sup> <sup>PPrO</sup> <sup>PPrO</sub> <sup>PPrO</sup> <sup>PPrO</sup> <sup>PPrO</sub> <sup>PPrO</sup> <sup>PPrO</sup> <sup>PPrO</sup> <sup>PPrO</sup> <sup>PPrO</sup> <sup>PPrO</sup> <sup>PPrO</sup> <sup>PPrO</sup> <sup>PPrO</sup> <sup>PPrO</sub> <sup>PPrO</sup> <sup>PPrO</sup> <sup>PPrO</sub> <sup>PPrO</sup> <sup>PPrO</sub> <sup>PPrO</sub> <sup>PPrO</sub> <sup>PPrO</sub> <sup>PPrO</sub> <sup>PPrO</sub> <sup>PPrO</sup> <sup>PPrO</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.25 (d, J = 2.0 Hz), 142.20 (d, J = 21.0 Hz), 134.48 (d, J = 11.0 Hz), 125.54 (d, J = 8.0 Hz), 113.30 (d, J = 13.0 Hz), 104.30 (d, J = 11.0 Hz), 83.32, 78.93, 70.63, 22.41, 16.42 (d, J = 74.0 Hz), 10.49; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  35.92; IR (KBr): 3296, 2980, 1695, 1270, 1044, 698 cm<sup>-1</sup>; HRMS (ESI): Exact mass calcd for C<sub>23</sub>H<sub>23</sub>O<sub>3</sub>NaP [M+Na]<sup>+</sup>: 401.1283, Found: 401.1272.

<sup>*p*</sup>Pro <sup>*p*</sup>

<sup>n</sup>PrO Phr<sup>P</sup>O **Gi C**haracterization of compound **6j** (brown solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.73 (d, J = 9.6 Hz, 2H), 7.63-7.58 (m, 2H), 7.51-7.47 (m, 1H), 7.40-7.36 (m, 2H), 7.18 (d, J = 2.4 Hz, 2H), 4.22-4.17 (m, 4H), 3.33 (s, 2H), 1.98-1.89 (m, 4H), 1.12 (t, J = 7.2 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.38 (d, J = 2.0 Hz), 143.23 (d, J = 22.0 Hz), 135.20 (d, J = 11.0 Hz), 132.15 (d, J = 2.0 Hz), 131.07 (d, J = 10.0 Hz), 130.48 (d, J = 84.0 Hz), 128.69 (d, J = 12.0 Hz), 124.98 (d, J = 111.0 Hz), 113.48 (d, J = 13.0 Hz), 104.35 (d, J = 11.0 Hz), 83.28, 78.88, 70.61, 22.39, 10.49; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  30.54; IR (KBr): 3228, 2966, 2875, 1590, 1246, 1064, 842, 730, 690 cm<sup>-1</sup>; MS (EI): 440 (M<sup>+</sup>, 100), 263 (19), 279 (15), 356 (12), 398 (6); HRMS (EI): Exact mass calcd for C<sub>28</sub>H<sub>25</sub>O<sub>3</sub>P: 440.1541, Found: 440.1543. Eto Ph<sup>P</sup>O GK Characterization of compound **6k** (brown solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.75 (d, J = 9.6 Hz, 2H), 7.64-7.58 (m, 2H), 7.52-7.48 (m, 1H), 7.41-7.37 (m, 2H), 7.19 (d, J = 2.4 Hz, 2H), 4.33-4.25 (m, 4H), 3.35 (s, 2H), 1.55 (t, J = 6.8Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.24 (d, J = 2.0 Hz), 143.27 (d, J = 22.0 Hz), 135.39 (d, J = 12.0 Hz), 132.22 (d, J = 3.0 Hz), 131.01 (d, J = 11.0 Hz), 130.02, 128.74 (d, J = 12.0 Hz), 125.17 (d, J = 111.0 Hz), 113.48 (d, J = 14.0 Hz), 104.31 (d, J = 12.0 Hz), 83.38, 78.97, 64.91, 14.56; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  30.56; IR (KBr): 3669, 3213, 2931, 1593, 1255, 1048, 822, 731, 692 cm<sup>-1</sup>; MS (EI): 412 (M<sup>+</sup>, 100), 263 (14), 279 (12), 319 (8); HRMS (EI): Exact mass calcd for C<sub>26</sub>H<sub>21</sub>O<sub>3</sub>P: 412.1228, Found: 412.1226.

<sup>*n*</sup>Buo <sup>*n*</sup>Characterization of compound **61** (brown solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ <sup>*n*</sup>Buo <sup>*n*</sup>Buo <sup>*n*</sup>Buo <sup>*n*</sup>Characterization of compound **61** (brown solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ <sup>*n*</sup>Buo <sup>*n*</sup>Buo <sup>*n*</sup>Characterization of compound **61** (brown solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ <sup>*n*</sup>Buo <sup>*n*</sup>Buo <sup>*n*</sup>Characterization of compound **61** (brown solid). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ <sup>*n*</sup>Characterization (*n*, 2H), 7.19 (*d*, J = 2.0 Hz, 2H), 4.26-4.16 (*m*, 4H), 3.33 (*s*, 2H), 1.93-1.86 (*m*, 4H), 1.63-1.54 (*m*, 4H), 1.02 (*t*, J = 7.2 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.44 (*d*, J = 2.0Hz), 143.28 (*d*, J = 22.0 Hz), 135.34 (*d*, J = 11.0 Hz), 132.18 (*d*, J = 3.0 Hz), 131.02 (*d*, J = 85.0 Hz), 130.64 (*d*, J = 105.0 Hz), 128.72 (*d*, J = 13.0 Hz), 125.18 (*d*, J = 111.0 Hz), 113.52 (*d*, J = 13.0 Hz), 104.29 (*d*, J = 11.0 Hz), 83.30, 78.93, 68.92, 31.02, 19.17, 13.83; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$ 30.44; IR (KBr): 3290, 2955, 2872, 1591, 1246, 1042, 900, 731, 691 cm<sup>-1</sup>; MS (EI): 468 (M<sup>+</sup>, 100), 263 (21), 356 (20), 412 (9); HRMS (EI): Exact mass calcd for C<sub>30</sub>H<sub>29</sub>O<sub>3</sub>P: 468.1854, Found: 468.1857.

#### 3.4 The synthesis of diethynylphosphine oxides 25



Diethynylphosphine oxide **25** was synthesized by two steps: to a solution of 1-naphthyl phosphonic dichloride (2.3 g, 9.5 mmol) in anhydrous THF (20 mL) was slowly added (4-bromophenyl)magnesium bromide (20 mmol) at 0°C. The mixture was warmed slowly to room temperature and stirred at 50 °C for 3 h. The solvent was removed under vacuum and the residue was dissolved in 100 mL of CH<sub>2</sub>Cl<sub>2</sub> and 100 mL of HCl (3 M, aq). The aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> (2 × 50 mL). The organic phase was combined, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and

concentrated to give the crude residue, which was purified by a short flash chromatography using PE/EtOAc (2:1, v/v) as the eluent to provide crude **XIII** in 68% yield as a white solid.

To a 50 mL sealed tube was added Pd(PPh<sub>3</sub>)<sub>4</sub> (231 mg, 0.2 mmol), CuI (38 mg, 0.2 mmol) and crude XIII (972 mg, 2 mmol), followed by the addition of 5 mL anhydrous DMF and Et<sub>3</sub>N (2.02 g, 20 mmol). The mixture was then cooled using liquid nitrogen and vacuumized for 10 minutes to exclude oxygen, back-filled with N<sub>2</sub>. After warming back to room temperature, trimethylsilylacetylene (1.96 g, 20 mmol) was added and the resulting mixture was vigorously stirred in a pre-heated oil bath (50 °C) till full conversion of XIII. The solvent was removed under reduced pressure and then subjected directly to a short column chromatography to give the Sonogashira coupling product, which was then dissolved in anhydrous THF (20 mL), followed by the addition of TBAF (20 mL, 1 M in THF). After full conversion, water was added, and the aqueous phase was extracted with  $CH_2Cl_2$  (3 × 20 mL). The combined organic phase was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated to afford the crude product, which was then subjected to column chromatography to afford the 25 in 54% yield. Characterization of compound **25** (white solid, Mp: 198-200 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.50 (d, J = 8.0 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.66-7.56 (m, 8H), 7.54-7.50 (m, 1H), 7.48-7.43 (m, 1H), 7.42-7.37 (m, 1H), 7.31-7.25 (m, 1H), 3.21 (s, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 133.94 (d, J = 9.0 Hz), 133.73 (d, J = 12.0 Hz), 133.68 (d, J = 3.0 Hz), 133.57 (d, J = 8.0 Hz), 132.99 (d, J = 104.0Hz), 132.24 (d, J = 12.0 Hz), 131.94 (d, J = 10.0 Hz), 128.93, 128.04 (d, J = 103.0 Hz), 127.59, 127.35 (d, J = 6.0 Hz), 126.71, 126.07 (d, J = 3.0 Hz), 124.19 (d, J = 15.0 Hz), 82.60 (d, J = 1.0 Hz), 80 .06; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 31.27; IR (KBr): 3275, 2974, 2893, 1597, 1489, 1386, 1265, 1190, 1147, 1095, 985, 804, 775 cm<sup>-1</sup>; HRMS (EI): Exact mass calcd for C<sub>26</sub>H<sub>17</sub>OP: 376.1017, Found: 376.1014.

#### 4. Condition optimization

#### 4.1 Desymmetrizing CuAAC reaction of diethynylphosphine oxide 1a

We first examined the solvent effects of the reaction of **1a** and **2a** by running the reaction at 25 °C, in the presence of chiral complex  $L_1$ /CuCl, as shown in Table S1. Of several typical solvents we screened (entries 1-6), MeCN turned out to be the best, affording the desired monotriazole **3a** in 60% yield and 78% ee, with the **3a/3a'** ratio as 4.5:1 (entry 6). Then we evaluated the effect of temperature by running the reaction in CH<sub>3</sub>CN (entries 6-9), and found that lowering reaction temperature could further improve the enantioselectivity and **3a/3a'** ratio (entries 7-8). The reaction running at -20 °C could finish within 96 h, affording **3a** in 83% ee, with the ratio of **3a/3a'** improved to 6.8:1 (entry 8). Further lowering the temperature to -30 °C failed to afford better result (entry 9).

|   | 1a<br>(0.1 mmol) | ₩ + R-N₃<br><b>2a</b><br>(0.1 mmol) | Ph $L_1$ (12 mol <sup>9</sup> )<br>CuCl (10 mol<br>Solvent, Tempe<br>R = 4-MeC <sub>6</sub> | $H_2$<br>$H_2$<br>$H_3$<br>$H_4$ CH <sub>2</sub><br>$H_2$<br>$H_3$ CH <sub>2</sub><br>$H_2$<br>$H_3$ CH <sub>2</sub><br>$H_3$ CH <sub>2</sub> CH <sub>2</sub><br>$H_3$ CH <sub>2</sub><br>$H_3$ CH <sub>2</sub> CH <sub>2</sub><br>$H_3$ CH <sub>2</sub> CH <sub>2</sub><br>$H_3$ CH <sub>2</sub> CH <sub>2</sub><br>$H_3$ CH <sub>2</sub> CH <sub>2</sub><br>$H_3$ CH <sub>3</sub> |                            | N, +<br>N<br>N<br>R                               | N <sup>,N</sup> ,N <sup>-</sup> R<br>O <sub>2</sub> →<br>N <sup>-</sup> N <sup>-</sup> N <sup>-</sup> R<br>N <sup>-</sup> N <sup>-</sup> N <sup>-</sup> R |
|---|------------------|-------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| - | entry            | solvent                             | temp. (°C)                                                                                  | time<br>(h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>3a:3a'</b> <sup>a</sup> | NMR yield<br>of <b>3a</b> (%) <sup><i>a</i></sup> | ee of <b>3a</b> (%) <sup><i>b</i></sup>                                                                                                                   |
|   | 1                | THF                                 | 25                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0:1                      | 42                                                | 49                                                                                                                                                        |
|   | 2                | Toluene                             | 25                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.1:1                      | 42                                                | 6                                                                                                                                                         |
|   | 3                | Acetone                             | 25                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.6:1                      | 54                                                | 74                                                                                                                                                        |
|   | 4                | EtOAc                               | 25                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.3:1                      | 47                                                | 49                                                                                                                                                        |
|   | 5                | CH <sub>2</sub> Cl <sub>2</sub>     | 25                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.6:1                      | 51                                                | 67                                                                                                                                                        |
|   | 6                | MeCN                                | 25                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5:1                      | 60                                                | 78                                                                                                                                                        |
|   | 7                | MeCN                                | 0                                                                                           | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.8:1                      | 62                                                | 80                                                                                                                                                        |
|   | 8                | MeCN                                | -20                                                                                         | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.8:1                      | 63                                                | 83                                                                                                                                                        |
|   | 9                | MeCN                                | -30                                                                                         | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.5:1                      | 62                                                | 81                                                                                                                                                        |

Table S1. Condition optimization of the reaction of 1a and 2a

<sup>*a*</sup> Determined by <sup>1</sup>H NMR using 1,3,5-trimethoxybenzene as the internal standard. <sup>*b*</sup> Determined by chiral HPLC analysis.

In the following, we evaluated the performance of our newly developed PYBOX ligands  $L_2-L_8$  with different size of C4 shielding groups, and the results were summarized in Table S2. Interestingly, PYBOX  $L_6$  bearing a C4 1-naphthyl group afforded the promising result, showing a suitable shielding group could indeed improve the enantioselectivity and inhibiting achiral triazole formation. It could

achieve a high 3a/3a' ratio (13.9:1) and 93% ee for 3a, obviously better than unmodified ligand  $L_1$  (entry 6 vs 1). The variation of the substituent at the chiral center of the ligand also influenced the result, as exemplified by the good result obtained by using ligand  $L_{7-8}$  (entries 7 and 8).

Table S2. Evaluation of the influence of the C4 shielding group of PYBOX/CuCl

| (0.1  | 0<br>+ R-N <sub>3</sub>                                                   | L (12 mol%)<br>CuCl (10 mol%)<br>MeCN, -20 °C, 4 d<br>R = 4-MeC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub>                                                                 | $ \begin{array}{c}                                     $         | J <sup>N</sup> . <sub>N</sub> . <sub>R</sub><br>→<br>N-R<br>N=N<br>3a' |
|-------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|
|       | $Ph$ $R$ $N$ $N$ $N$ $N$ $Ph$ $R = H;$ $L_{2}, R = OBoc$ $L_{3}, R = OBn$ | $\begin{array}{c} OCH_{2}Ar \\ \hline \\ Ph \\ H_{4}, Ar = 3,5-(CF_{3})_{2}C_{6}H_{3} \\ L_{5}, Ar = 2-MeO-3,5-^{t}Bu_{2}-C_{6}H_{2} \\ L_{6}, Ar = 1-naphthyl \end{array}$ | OCH <sub>2</sub> Ar<br>N $NF L_7, Ar = PhL_8, Ar = 1-naphthyl F$ |                                                                        |
| entry | ligand                                                                    | <b>3a:3a'</b> <sup>a</sup>                                                                                                                                                  | NMR yield<br>of <b>3a</b> (%) <sup>a</sup>                       | ee of <b>3a</b> (%) <sup>b</sup>                                       |
| 1     | L <sub>1</sub>                                                            | 6.8:1                                                                                                                                                                       | 63                                                               | 83                                                                     |
| 2     | $L_2$                                                                     | 5.1:1                                                                                                                                                                       | 51                                                               | 84                                                                     |
| 3     | $L_3$                                                                     | 10.4:1                                                                                                                                                                      | 71                                                               | 90                                                                     |
| 4     | $L_4$                                                                     | 6.4:1                                                                                                                                                                       | 60                                                               | 84                                                                     |
| 5     | $L_5$                                                                     | 12.0:1                                                                                                                                                                      | 79                                                               | 91                                                                     |
| 6     | L <sub>6</sub>                                                            | 13.9:1                                                                                                                                                                      | 80                                                               | 93                                                                     |
| 7     | $L_7$                                                                     | 11.4:1                                                                                                                                                                      | 77                                                               | 91                                                                     |
| 8     | $L_8$                                                                     | 9.3:1                                                                                                                                                                       | 74                                                               | 89                                                                     |

<sup>*a*</sup> Determined by <sup>1</sup>H NMR using 1,3,5-trimethoxybenzene as the internal standard. <sup>*b*</sup> Determined by chiral HPLC analysis.

Finally, we evaluated different copper salts by running the reaction in MeCN (entries 1-5), and the results were summarized in Table S3. We found that the use of CuBr could slightly improve the enantioselectivity of **3a** to 95%, with unchanged 13.9:1 **3a/3a'** ratio (entry 2 vs 1). Lower **3a/3a'** ratio and enantioselectivity of **3a** were obtained when using CuI or CuCN (entries 3, 4). Further varying CuCl to CuPF<sub>6</sub> (MeCN)<sub>4</sub> decreased the ee to 91%, with the **3a/3a'** ratio of 9.2:1 (entry 5).

|       | O<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | L <sub>6</sub> (12 mol%)<br>CuX (10 mol%)<br>MeCN, -20 °C, 4 d<br>R = 4-MeC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> | $ \begin{array}{c}                                     $ | $N^{N} N^{R}$ $D_{P}$ $N = N^{N-R}$ $3a'$ |
|-------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|
| entry | CuX                                                                | <b>3a:3a'</b> <sup>a</sup>                                                                                              | NMR yield of <b>3a</b> (%) <sup><i>a</i></sup>           | ee of <b>3a</b> (%) <sup>b</sup>          |
| 1     | CuCl                                                               | 13.9:1                                                                                                                  | 80                                                       | 93                                        |
| 2     | CuBr                                                               | 13.9:1                                                                                                                  | 80 <sup>c</sup>                                          | 95                                        |
| 3     | CuI                                                                | 4.4:1                                                                                                                   | 51                                                       | 66                                        |
| 4     | CuCN                                                               | 2.2:1                                                                                                                   | 36                                                       | 32                                        |
| 5     | CuPF6 (MeCN)4                                                      | 9.2:1                                                                                                                   | 66                                                       | 91                                        |

### Table S3. Evaluation of the different copper salts

<sup>*a*</sup> Determined by <sup>1</sup>H NMR using 1,3,5-trimethoxybenzene as the internal standard. <sup>*b*</sup> Determined by chiral HPLC analysis. <sup>*c*</sup> Isolated yield.

#### 4.2 Kinetic resolution of ethynylphosphine oxide 4a via CuAAC reaction

Typical results for the kinetic resolution of **4a** via CuAAC were shown in Table S4. Our ligand L<sub>6</sub> proved to be better than L<sub>1</sub> once again, as it allowed the recovery of (*S*)-**4a** in higher ee value (80% vs 70%, entry 3 vs 1). Ligand L<sub>7</sub> was found to be the best in the kinetic resolution of **4a**, with (*S*)-**4a** being recovered in 91% ee (entry 4). On the other hand, L<sub>8</sub> was more suitable for the CuAAC reaction of **4a**, giving (*R*)-**5a** in 86% ee (entry 5). The screening of different copper salts and solvents afforded no better result (entry 6-10). The use of 15 mol% L<sub>7</sub>/CuBr enabled the recovery of (*S*)-**4a** in 93% ee (entry 11). By increasing the usage of **2a** from 0.5 equiv to 0.52 equiv, (*S*)-**4a** was recovered in 96% ee with 42% recovery (entry 12). The use of 15 mol% L<sub>8</sub>/CuBr also improve the ee value of the CuAAC reaction of **4a**, affording (*R*)-**5a** in 89% ee (entry 13). By decreasing the amount of **2a** to 0.48 equiv, (*R*)-**5a** could be obtained in 90% ee with 47% yield (entry 14).

| ĺ                        |                                 | $ \begin{array}{c} L (12 \text{ mol}\%) \\ L (12 \text{ mol}\%) \\ L (10 \text{ mol}\%) \\ MeCN, -20 ^{\circ}C, 4 \text{ d} \\ R = 4 \text{MeC}_{\circ}H_{\circ}CH_{\circ} \end{array} $ |        |                                               |                                     | O<br>P<br>N<br>N<br>N<br>R                 |                              |
|--------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------|-------------------------------------|--------------------------------------------|------------------------------|
| (±)                      | )- <b>4a (</b> 0.2 mmol)        | <b>2a</b> (0.50 equiv)                                                                                                                                                                   |        | (8                                            | S)- <b>4</b> a                      | ( <i>R</i> )- <b>5a</b>                    |                              |
| entry                    | solvent                         | CuX                                                                                                                                                                                      | ligand | Recovery of <b>4a</b> (%) <sup><i>a</i></sup> | ee of<br><b>4a</b> (%) <sup>b</sup> | yield of <b>5a</b> (%) <sup><i>a</i></sup> | ee of<br>5a (%) <sup>b</sup> |
| 1                        | MeCN                            | CuBr                                                                                                                                                                                     | $L_1$  | 48                                            | 70                                  | 41                                         | 85                           |
| 2                        | MeCN                            | CuBr                                                                                                                                                                                     | $L_3$  | 47                                            | 73                                  | 43                                         | 86                           |
| 3                        | MeCN                            | CuBr                                                                                                                                                                                     | $L_6$  | 44                                            | 80                                  | 44                                         | 85                           |
| 4                        | MeCN                            | CuBr                                                                                                                                                                                     | $L_7$  | 45                                            | 91                                  | 47                                         | 81                           |
| 5                        | MeCN                            | CuBr                                                                                                                                                                                     | $L_8$  | 44                                            | 84                                  | 47                                         | 86                           |
| 6                        | MeCN                            | CuCl                                                                                                                                                                                     | $L_7$  | 45                                            | 83                                  | 45                                         | 73                           |
| 7                        | MeCN                            | CuPF6 <sup>.</sup> (MeCN)4                                                                                                                                                               | $L_7$  | 55                                            | 66                                  | 37                                         | 82                           |
| 8                        | CH <sub>2</sub> Cl <sub>2</sub> | CuBr                                                                                                                                                                                     | $L_7$  | 44                                            | 59                                  | 47                                         | 48                           |
| 9                        | Acetone                         | CuBr                                                                                                                                                                                     | $L_7$  | 42                                            | 85                                  | 48                                         | 68                           |
| 10 <sup>c</sup>          | MeCN                            | CuBr                                                                                                                                                                                     | $L_7$  | 47                                            | 93                                  | 45                                         | 81                           |
| <b>11</b> <i>c,d</i>     | MeCN                            | CuBr                                                                                                                                                                                     | $L_7$  | 42                                            | 96                                  | >49                                        | 77                           |
| 12 <sup>c</sup>          | MeCN                            | CuBr                                                                                                                                                                                     | $L_8$  | 44                                            | 84                                  | 47                                         | 89                           |
| <b>13</b> <sup>c,e</sup> | MeCN                            | CuBr                                                                                                                                                                                     | $L_8$  | >49                                           | 80                                  | 47                                         | 90                           |

Table S4. The condition optimization for the kinetic resolution of 4a

<sup>*a*</sup> Isolated yield. <sup>*b*</sup> Determined by chiral HPLC analysis. <sup>*c*</sup> 15 mol% catalytic loading. <sup>*d*</sup> 0.52 equiv of **2a**. <sup>*e*</sup> 0.48 equiv of **2a**.

#### 4.3 Remote desymmetric enantioselective CuAAC of phosphole oxide-diyne 6a

As shown in Table S5, the reaction of **6a** and azide **2h** catalyzed by  $L_1/CuCl$  was first run at 25 °C in 2,5-hexanedione, but product **7a** was obtained in only 73% ee, with **7a/7a'** ratio as 3.7:1 (entry 1). After screening some typical solvents, it was found that diyne **6a** had a good solubility in halogenated solvent, but dissolved poorly in other solvents. Fortunately, the reaction run in CH<sub>2</sub>Cl<sub>2</sub> afforded chiral monotriazole **7a** in 88% ee, although the **7a/7a'** ratio decreased to 1.9:1 (entry 3). Then modified PYBOX ligands  $L_3$ - $L_6$  were examined by using CH<sub>2</sub>Cl<sub>2</sub> as the solvent (entries 5-8), and  $L_5$  proved to be the best (entry 7). By using  $L_5$  was the optimized ligand, we further evaluated different copper salts, and the use of CuBr could afford **7a/7a'** ratio up to 6.6:1 and 98% ee for **7a** (entry 11). Varying the ratio of diyne **6a** and azide **2h** from 1:1 to 1.2:1 enhanced the **7a/7a'** ratio to 12:1 (entry 12). Lowering the catalyst loading to 10 mol% resulted in slightly diminished yield and **7a/7a'** ratio (Entry 18).

| $\begin{array}{c} {}^{n} PrO \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | 0<br>N-+/<br>0<br>2h (0.08 mmol) | L <sub>1</sub> (18 mol%)<br>CuX (15 mol%)<br>Solvent (0.04 M)<br>25 °C, 48-96 h | $ \begin{array}{c}                                     $ | + ditriazole <b>7a'</b> |
|----------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------|
|                                                                                        |                                  |                                                                                 | NIMD1-14                                                 |                         |

| entry           | ligand | CuX               | solvent                              | 4a:4a' <sup>a</sup> | NMR yield<br>of <b>4a</b> (%) <sup>a</sup> | ee of <b>4a</b> (%) <sup><i>b</i></sup> |
|-----------------|--------|-------------------|--------------------------------------|---------------------|--------------------------------------------|-----------------------------------------|
| 1               | $L_1$  | CuCl              | 2,5-hexanedione                      | 3.7:1               | 50                                         | 73                                      |
| 2               | $L_1$  | CuCl              | Toluene                              | 1.4:1               | 19                                         | 49                                      |
| 3               | $L_1$  | CuCl              | $CH_2Cl_2$                           | 1.9:1               | 45                                         | 88                                      |
| 4               | $L_1$  | CuCl              | CH <sub>2</sub> ClCH <sub>2</sub> Cl | 1.5:1               | 40                                         | 89                                      |
| 5               | $L_3$  | CuCl              | $CH_2Cl_2$                           | 3.6:1               | 57                                         | 92                                      |
| 6               | $L_4$  | CuCl              | $CH_2Cl_2$                           | 4.4:1               | 61                                         | 97                                      |
| 7               | $L_5$  | CuCl              | $CH_2Cl_2$                           | 4.6:1               | 62                                         | 96                                      |
| 8               | $L_6$  | CuCl              | $CH_2Cl_2$                           | 3.5:1               | 57                                         | 93                                      |
| 9               | $L_5$  | CuI               | $CH_2Cl_2$                           | 3.9:1               | 60                                         | 87                                      |
| 10              | $L_5$  | CuPF <sub>6</sub> | $CH_2Cl_2$                           | 5.4:1               | 64                                         | 99                                      |
| 11              | $L_5$  | CuBr              | $CH_2Cl_2$                           | 6.6:1               | 66                                         | 98                                      |
| 12 <sup>c</sup> | $L_5$  | CuBr              | $CH_2Cl_2$                           | 12.0:1              | $81^d$                                     | 96                                      |
| 13 <sup>e</sup> | $L_5$  | CuBr              | $CH_2Cl_2$                           | 10.5:1              | $75^d$                                     | 97                                      |

<sup>*a*</sup> Determined by <sup>1</sup>H NMR (800 MHz) analysis, NMR yield using anisole as the internal standard; <sup>*b*</sup> Determined by chiral HPLC analysis. <sup>*c*</sup> 6a/2h = 1.2/1; 0.15 mmol of 2h used (reaction time 2 d). <sup>*d*</sup> Isolated yield. <sup>*e*</sup> 10 mol% CuBr and 12 mol% L<sub>5</sub> used.

#### 5. Desymmetric CuAAC reaction of diethynylphosphine oxides 1



To a 25 mL Schlenk tube was added  $L_6$  (18.9 mg, 0.036 mmol) and CuBr (4.3 mg, 0.030 mmol), followed by the addition of 6.0 mL of anhydrous MeCN. The solution was stirred at 25 °C for 2 h, and then diethynylphosphine oxides 1 (0.30 mmol) was added. After the mixture was cooled to -20 °C for 0.5 h, azide 2 (0.30 mmol) was added. The resulting mixture was stirred at -20 °C for 48 h to 96 h till full conversion of 2 by TLC analysis. After the solvent was removed under reduced pressure, the residue was directly subjected to a short column chromatography to remove the copper salt, using an eluent of CH<sub>2</sub>Cl<sub>2</sub>/EtOAc (2:1, v/v). A portion of the combined homogenous solution was used to determine the ratio of 3/3' by <sup>1</sup>H NMR (400 MHz) analysis. And then the sample for NMR analysis and the remaining mixture were combined for column chromatography purification using CH<sub>2</sub>Cl<sub>2</sub>/EtOAc (2:1, v/v) as the eluent, to afford the desired monotriazole 3.



Product **3a** was obtained in 80% yield as white solid, Mp: 188-190 °C. IR (neat): 3101, 2923, 2349, 2048, 1653, 1547, 1437, 1361, 1216, 1047, 986, 801 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 11.39 min,  $t_r$  (minor) = 7.82 min) gave the isomeric

composition of the product: 95% ee.  $[\alpha]_D^{25} = -25.5$  (c = 1.04, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 8.67-8.65 (m, 1H), 8.30 (dd, J = 18.7, 7.1 Hz, 1H), 8.06 (d, J = 8.2 Hz, 1H), 8.01 (s, 1H), 7.90-7.89 (m, 1H), 7.58-7.51 (m, 3H), 7.18-7.14 (m, 4H), 5.56-5.45 (m, 2H), 3.39 (d, J = 10.3 Hz, 1H), 2.34 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  141.82 (d, J = 161.0 Hz), 139.19, 134.30 (d, J = 3.0 Hz), 133.70 (d, J = 11.0 Hz), 133.17 (d, J = 11.0 Hz), 132.41 (d, J = 11.0 Hz), 130.45, 130.17 (d, J = 30.0 Hz), 129.96, 129.07 (d, J = 2.0 Hz), 128.44, 127.56, 126.64, 126.52 (d, J = 127.0 Hz), 126.07 (d, J = 7.0Hz), 124.68 (d, J = 16.0 Hz), 94.54 (d, J = 31.0 Hz), 78.73 (d, J = 173.0 Hz), 54.24, 21.16; <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  -4.07; HRMS (EI): Exact mass calcd for C<sub>22</sub>H<sub>18</sub>N<sub>3</sub>OP: 371.1188, Found: 371.1192. Product **3b** was obtained in 81% yield as white solid, Mp: 120-122 °C. IR (neat): 3121, 2988, 2049, 1591, 1514, 1452, 1360, 1259, 1048, 862, 807 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 20% 'PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 15.94 min, tr (minor) = 14.45 min) gave the isomeric composition of

the product: 94% ee.  $[\alpha]_{D}^{25} = -13.0$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.00 (s, 1H), 7.99 (dd, J = 15.6 Hz, 8.0 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.31 (td, J = 7.6, 2.5 Hz, 1H), 7.26-7.23 (m, 1H), 7.21-7.16 (m, 4H), 5.58-5.50 (m, 2H), 3.34 (d, J = 10.2 Hz, 1H), 2.56 (s, 3H), 2.35 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.10 (d, J = 11.0 Hz), 141.77 (d, J = 160.0 Hz), 139.19, 133.07 (d, J = 2.0 Hz), 132.56 (d, J = 13.0 Hz), 131.76 (d, J = 12.0 Hz), 130.41 (d, J = 21.0 Hz), 130.02, 129.98, 128.52 (d, J = 128.0 Hz), 128.45, 125.84 (d, J = 14.0 Hz), 94.13 (d, J = 31.0 Hz), 78.62 (d, J = 171.0 Hz), 54.24, 21.17, 21.16; <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  -3.34; HRMS (EI): Exact mass calcd for C<sub>19</sub>H<sub>18</sub>N<sub>3</sub>OP: 335.1188, Found: 335.1192.



Product **3c** was obtained in 77% yield as white solid, Mp: 152-154 °C. IR (neat): 3367, 3127, 2050, 2054, 1574, 1493, 1420, 1202, 1048, 805, 757 cm<sup>-1</sup>; HPLC analysis (Chiralcel OD-H, 30% 'PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 17.00 min, tr (minor) = 21.56 min) gave the isomeric composition

of the product: 95% ee.  $[\alpha]_D^{25} = -8.0$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.25-8.19 (m, 1H), 8.02 (s, 1H), 7.64-7.61 (m, 1H), 7.52-7.42 (m, 2H), 7.20-7.16 (m, 4H), 5.56 (s, 2H), 3.37 (d, J = 10.6 Hz, 1H), 2.35 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  140.76 (d, J = 168.0 Hz), 139.12, 135.44 (d, J = 10.0 Hz), 134.56 (d, J = 9.0 Hz), 134.46 (d, J = 2.0 Hz), 130.82 (d, J = 30.0 Hz), 130.63, 130.23 (d, J = 134.0 Hz), 129.95, 128.30, 127.48 (d, J = 13.0 Hz), 125.30 (d, J = 6.0 Hz), 94.85 (d, J = 32.0 Hz), 77.32 (d, J = 181.0 Hz), 54.20, 21.20; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  -5.75; HRMS (EI): Exact mass calcd for C<sub>18</sub>H<sub>15</sub>N<sub>3</sub><sup>79</sup>BrOP: 399.0136, Found: 399.0134.



Product **3d** was obtained in 72% yield as white solid, Mp: 98-100 °C. IR (neat): 3120, 2989, 2050, 1868, 1716, 1559, 1494, 1258, 1075, 929, 718 cm<sup>-1</sup>; HPLC analysis (Chiralcel OD-H, 20% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 17.07 min, t<sub>r</sub> (minor) = 23.75 min) gave the isomeric composition

of the product: 92% ee.  $[\alpha]_D^{25} = -16.3$  (c = 1.03, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.04-7.96 (m, 2H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.37-7.29 (m, 2H), 7.25-7.18 (m, 4H), 5.56 (s, 2H), 3.37 (d, *J* = 10.2 Hz, 1H), 3.01 (q, *J* = 7.4 Hz, 2H), 2.38 (s, 3H), 1.15 (t, *J* = 7.5 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 

148.48 (d, J = 11.0 Hz), 142.20 (d, J = 159.0 Hz), 139.22, 133.20 (d, J = 3.0 Hz), 132.57 (d, J = 13.0 Hz), 130.34 (d, J = 34.0 Hz), 129.98, 129.88, 129.86, 128.47, 128.22 (d, J = 128.0 Hz), 125.79 (d, J = 15.0 Hz), 94.01 (d, J = 31.0 Hz), 79.07 (d, J = 171.0 Hz), 54.26, 26.95 (d, J = 6.0 Hz), 21.16, 15.31; <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  -2.90; HRMS (EI): Exact mass calcd for C<sub>20</sub>H<sub>20</sub>N<sub>3</sub>OP: 349.1344, Found: 349.1339.



Product **3e** was obtained in 65% yield as white solid, Mp: 122-124 °C. IR (neat): 3138, 2922, 2349, 2053, 1600, 1573, 1483, 1294, 1153, 925, 784 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 7.53 min, t<sub>r</sub> (minor) = 6.59 min) gave the isomeric

composition of the product: 92% ee.  $[\alpha]_D^{25} = -22.8$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.97 (s, 1H), 7.58-7.48 (m, 2H), 7.40 (td, *J* = 7.9, 4.7 Hz, 1H), 7.22-7.14 (m, 4H), 7.10-7.07 (m, 1H), 5.56-5.46 (m, 2H), 3.83 (s, 3H), 3.32 (d, *J* = 10.3 Hz, 1H), 2.35 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  159.66 (d, *J* = 18.0 Hz), 141.45 (d, *J* = 161.0 Hz), 139.21, 132.10 (d, *J* = 128.0 Hz), 130.28 (d, *J* = 27.0 Hz), 130.00, 129.97, 129.72, 128.55, 123.14 (d, *J* = 12.0 Hz), 119.43 (d, *J* = 3.0 Hz), 115.30 (d, *J* = 13.0 Hz), 93.92 (d, *J* = 32.0 Hz), 78.67 (d, *J* = 173.0 Hz), 55.49 (d, *J* = 2.0 Hz), 54.22, 21.15; <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  -5.35; HRMS (EI): Exact mass calcd for C<sub>19</sub>H<sub>18</sub>N<sub>3</sub>O<sub>2</sub>P: 351.1137, Found: 351.1138.



Product **3f** was obtained in 60% yield, Mp: 150-152 °C. IR (neat): 3123, 2972, 2901, 1559, 1395, 1257, 1067, 784 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 20% 'PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 17.00 min,  $t_r$  (minor) = 14.14 min) gave the isomeric composition of the product: 83% ee.

[α] $_{D}^{25}$  = - 27.9 (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.11 (d, *J* = 14.7 Hz, 1H), 8.00-7.91 (m, 2H), 7.70 (d, *J* = 7.5 Hz, 1H), 7.38 (td, *J* = 7.8, 4.1 Hz, 1H), 7.24-7.14 (m, 4H), 5.57-5.49 (m, 2H), 3.34 (d, *J* = 10.5 Hz, 1H), 2.36 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 140.76 (d, *J* = 163.0 Hz), 139.30, 136.00 (d, *J* = 3.0 Hz), 133.56 (d, *J* = 13.0 Hz), 133.40 (d, *J* = 127.0 Hz), 130.46 (d, *J* = 15.0 Hz), 130.28 (d, *J* = 10.0 Hz), 130.02, 129.99, 129.48 (d, *J* = 11.0 Hz), 128.62, 123.14 (d, *J* = 18.0 Hz), 94.71 (d, *J* = 32.0 Hz), 78.24 (d, *J* = 175.0 Hz), 54.31, 21.21; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ -7.21; HRMS (EI): Exact mass calcd for C<sub>18</sub>H<sub>15</sub><sup>79</sup>BrN<sub>3</sub>OP: 399.0136, Found: 399.0138.

Product **3g** was obtained in 80% yield as white solid, Mp: 220-222 °C. IR (neat): 3152, 2973, 2924, 2055, 1658, 1513, 1465, 1393, 1131, 1066, 757 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 20% <sup>i</sup>PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 12.27 min, tr (minor) = 11.62 min) gave the isomeric composition of the product: 90% ee.  $[\alpha]_D^{25} = -45.0$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz,

CDCl<sub>3</sub>):  $\delta$  7.99 (s, 1H), 7.97-7.90 (m, 2H), 7.54 (dd, J = 8.0, 2.3 Hz, 2H), 7.24-7.17 (m, 4H), 5.59-5.48 (m, 2H), 3.31 (d, J = 10.2 Hz, 1H), 2.38 (s, 3H), 1.34 (s, 9H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  156.62 (d, J = 3.8 Hz), 141.68 (d, J = 161.3 Hz), 139.18, 130.81 (d, J = 12.5 Hz), 130.10 (d, J = 87.5 Hz), 129.97, 129.75, 128.59, 127.46 (d, J = 132.5 Hz), 125.86 (d, J = 13.8 Hz), 93.76 (d, J = 31.2 Hz), 78.88 (d, J = 171.2 Hz), 54.21, 35.13, 31.06, 21.19; <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  -5.05; HRMS (EI): Exact mass calcd for C<sub>22</sub>H<sub>24</sub>N<sub>3</sub>OP: 377.1657, Found: 377.1660.



Product **3h** was obtained in 51% yield as white solid, Mp: 114-116 °C. IR (neat): 3160, 2962, 2050, 1516, 1496, 1473, 1365, 1219, 1169, 1106, 1051, 882, 815, 759 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 15% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 13.26 min,  $t_r$  (minor) = 11.70 min) gave the isomeric

composition of the product: 75% ee.  $[\alpha]_D^{25} = -11.5$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ 7.97 (s, 1H), 7.17 (s, 4H), 5.57-5.46 (m, 2H), 3.17 (d, *J* = 9.5 Hz, 1H), 2.33 (s, 3H), 1.26 (d, *J* = 18.1 Hz, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  139.26 (d, *J* = 143.0 Hz), 139.16, 131.11 (d, *J* = 24.0 Hz), 130.51, 129.97, 128.44, 93.12 (d, *J* = 25.0 Hz), 77.88 (d, *J* = 150.0 Hz), 54.17, 33.73 (d, *J* = 87.0 Hz), 23.25, 21.16; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  19.36; HRMS (EI): Exact mass calcd for C<sub>16</sub>H<sub>20</sub>N<sub>3</sub>OP: 301.1344, Found: 301.1346.



Product **3i** was obtained in 85% yield as white solid, Mp: 227-229 °C. IR (neat): 3146, 2051, 2049, 1591, 1495, 1454, 1360, 1275, 1076, 865, 757 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 20% 'PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 17.64 min,  $t_r$  (minor) = 15.83 min) gave the isomeric composition of the product:

96% ee.  $[\alpha]_D^{25} = -6.70$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.03 (s, 1H), 7.99 (dd, J = 17.0, 7.8 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.40-7.38 (m, 3H), 7.33-7.24 (m, 4H), 5.63-5.55 (m, 2H), 3.34 (d, J = 10.2 Hz, 1H), 2.57 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  141.44 (d, J = 161.2 Hz), 139.24, 132.96 (d, J = 3.8 Hz), 130.90 (d, J = 11.3 Hz), 130.20 (d, J = 43.8 Hz), 129.99, 129.50 (d, J = 77.5 Hz), 129.34, 128.77 (d, J = 15.0 Hz), 128.59, 128.42, 125.88 (d, J = 15.0 Hz), 94.02 (d, J = 31.2

Hz), 78.65 (d, J = 172.5 Hz), 54.24, 21.19; <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  -3.42; HRMS (EI): Exact mass calcd for C<sub>18</sub>H<sub>16</sub>N<sub>3</sub>OP: 321.1031, Found: 321.1034.



Product **3j** was obtained in 83% yield as white solid, Mp: 190-192 °C. IR (neat): 3119, 2349, 2049, 1620, 1494, 1453, 1324, 1197, 1066, 857, 774 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 20% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 16.74 min,  $t_r$  (minor) = 14.85 min) gave the isomeric

composition of the product: 95% ee.  $[\alpha]_D^{25} = -6.1$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 8.13 (s, 1H), 7.99 (dd, *J* = 16.9, 7.7 Hz, 1H), 7.65 (d, *J* = 8.1 Hz, 2H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.41 (d, *J* = 8.1 Hz, 2H), 7.32 (td, *J* = 7.5, 2.5 Hz, 1H), 7.28-7.25 (m, 1H), 5.70-5.62 (m, 2H), 3.37 (d, *J* = 10.2 Hz, 1H), 2.57 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.36 (d, *J* = 158.0 Hz), 142.09 (d, *J* = 11.0 Hz), 137.63, 133.20 (d, *J* = 3.0 Hz), 132.54 (d, *J* = 13.0 Hz), 131.83 (d, *J* = 13.0 Hz), 131.40 (q, *J* = 33.0 Hz), 130.50 (d, *J* = 28.0 Hz), 128.56, 128.31 (d, *J* = 128.0 Hz ), 126.27 (q, *J* = 4.0 Hz), 125.90 (d, *J* = 15.0 Hz), 123.68 (q, *J* = 271.0 Hz), 94.28 (d, *J* = 30.0 Hz), 78.51 (d, *J* = 172.0 Hz), 53.67, 21.15 (d, *J* = 5.0 Hz); <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  -3.60; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>):  $\delta$  -62.84; HRMS (EI): Exact mass calcd for C<sub>19</sub>H<sub>15</sub>F<sub>3</sub>N<sub>3</sub>OP: 389.0905, Found: 389.0907.



Product **3k** was obtained in 84% yield as white solid, Mp: 122-124 °C. IR (neat): 3133, 2921, 2349, 2045, 1593, 1491, 1454, 1284, 1097, 842, 787 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 20% 'PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 25.44 min,  $t_r$  (minor) = 21.39 min) gave the isomeric composition of the product:

21.55 mm) give the isometre composition of the product. 91% ee.  $[\alpha]_{D}^{25} = -16.1$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.97-7.87 (m, 5H), 7.54-7.42 (m, 5H), 7.30-7.26 (m, 1H), 7.23-7.20 (m, 1H), 6.07-6.00 (m, 2H), 3.31 (d, J = 10.2 Hz, 1H), 2.48 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 142.08 (d, J = 11.0 Hz), 141.72 (d, J = 159.0 Hz), 134.07, 133.06 (d, J = 3.0 Hz), 132.55 (d, J = 13.0 Hz), 131.74 (d, J = 13.0 Hz), 131.07, 130.56, 130.27 (d, J = 29.0 Hz), 129.13, 128.79, 128.44, 127.87, 127.49, 126.54, 125.81 (d, J = 15.0 Hz), 125.38, 122.59, 94.11 (d, J = 31.0 Hz), 78.56 (d, J = 171.0 Hz), 52.52, 21.07 (d, J = 6.0 Hz); <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>): δ -3.26; HRMS (EI): Exact mass calcd for C<sub>22</sub>H<sub>18</sub>N<sub>3</sub>OP: 371.1188, Found: 371.1190. Product **31** was obtained in 77% yield as sticky oil. IR (Neat): 3130, 2955, 2053, 1750, 1593, 1498, 1453, 1384, 1192, 959, 791 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 20% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 26.18 min, t<sub>r</sub> (minor) = 20.32 min) gave the isomeric composition of the product: 90% ee.  $[\alpha]_D^{25} = -$ 

1.58 (c = 1.14, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.29 (s, 1H), 8.01 (dd, J = 17.0, 6.9 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.39-7.31 (m, 6H), 7.28-7.24 (m, 1H), 5.34-5.28 (m, 2H), 5.23 (s, 2H), 3.37 (d, J = 10.2 Hz, 1H), 2.55 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  165.80, 142.06 (d, J = 11.0 Hz), 141.81 (d, J =160.0 Hz), 134.47, 133.20 (d, J = 3.0 Hz), 132.57 (d, J = 13.0 Hz), 132.34 (d, J = 29.0 Hz), 131.83 (d, J = 13.0 Hz), 128.80, 128.73, 128.49, 128.33 (d, J = 128.0 Hz), 125.92 (d, J = 15.0 Hz), 94.86 (dd, J = 31.0, 2.0 Hz), 78.28 (d, J = 171.0, Hz), 68.10, 50.87, 21.04 (dd, J = 6.0, 2.0 Hz); <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  -3.65; HRMS (EI): Exact mass calcd for C<sub>20</sub>H<sub>18</sub>N<sub>3</sub>O<sub>3</sub>P: 379.1086, Found: 379.1082.

Product **3m** was obtained in 80% yield as white solid, Mp: 161-163 °C. IR (neat): 3107, 2923, 2356, 2047, 1703, 1657, 1493, 1357, 1192, 1046, 747 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 20% 'PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 14.91 min, t<sub>r</sub> (minor) = 13.54 min) gave the isomeric composition of the product:

93% ee.  $[\alpha]_D^{25} = -15.5$  (c = 1.04, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.03 (s, 1H), 7.99 (dd, J = 17.0, 7.8 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.34-7.31 (m, 1H), 7.29-7.24 (m, 2H), 7.20-7.18 (m, 1H), 7.10-7.08 (m, 2H), 5.58-5.50 (m, 2H), 3.36 (d, J = 10.2 Hz, 1H), 2.57 (s, 3H), 2.34 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.10 (d, J = 11.0 Hz), 141.8 5 (d, J = 160.0 Hz), 139.24, 133.42, 133.07 (d, J = 3.0 Hz), 132.57 (d, J = 13.0 Hz), 131.76 (d, J = 13.0 Hz), 130.23 (d, J = 29.0 Hz), 129.94, 129.21, 129.12, 128.54 (d, J = 128.0 Hz), 125.84 (d, J = 15.0 Hz), 125.49, 94.05 (d, J = 31.0 Hz), 78.65 (d, J = 172.0 Hz), 54.46, 21.31, 21.15 (d, J = 4.0 Hz); <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  -3.43; HRMS (EI): Exact mass calcd for C<sub>19</sub>H<sub>18</sub>N<sub>3</sub>O<sub>3</sub>P: 335.1188, Found: 335.1191.



CO<sub>2</sub>Bn

Product **3n** was obtained in 72% yield as white solid, Mp: 114-116 °C. IR (neat): 3217, 2925, 2349, 2054, 1627, 1503, 1456, 1381, 1349, 1278, 1124, 1001, 910,  $CF_3$  887 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 5% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 36.81 min, tr (minor) = 34.37 min) gave the isomeric composition of the product: 91% ee.  $[\alpha]_D^{25} = -4.6$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR

(400 MHz, CDCl<sub>3</sub>): δ 8.33 (s, 1H), 8.00 (dd, *J* = 17.4, 7.3 Hz, 1H), 7.90 (s, 1H), 7.78 (s, 2H), 7.49 (t,

*J* = 7.6 Hz, 1H), 7.33 (td, *J* = 7.6, 2.5 Hz, 1H), 7.29-7.26 (m, 1H), 5.76 (s, 2H), 3.39 (d, *J* = 10.3 Hz, 1H), 2.56 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 142.32 (d, *J* = 159.0 Hz), 141.98 (d, *J* = 11.0 Hz), 136.77, 133.31 (d, *J* = 3.0 Hz), 132.58 (q, *J* = 34.0 Hz), 132.48 (d, *J* = 14.0 Hz), 131.87 (d, *J* = 12.0 Hz), 131.15 (d, *J* = 28.0 Hz), 128.49 (d, *J* = 2.0 Hz), 128.15 (d, *J* = 128.0 Hz), 125.94 (d, *J* = 14.0 Hz), 123.00 – 122.86 (m), 122.84 (q, *J* = 271.0 Hz), 94.74 (d, *J* = 31.0 Hz), 78.19 (d, *J* = 181.0 Hz), 52.92, 20.93; <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>): δ -3.49; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>): δ -62.95; HRMS (EI): Exact mass calcd for C<sub>20</sub>H<sub>14</sub>F<sub>6</sub>N<sub>3</sub>OP: 457.0779, Found: 457.0783.



Product **30** was obtained in 73% yield as sticky oil. IR (neat): 3126, 2925, 2052, 2049, 1768, 1702, 1496, 1362, 1284, 1081, 754 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 15.17 min, t<sub>r</sub> (minor) = 14.34 min) gave the isomeric composition of the product: 90% ee.  $[\alpha]_D^{25} = -3.50$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.16 (s, 1H),

7.98 (dd, J = 16.5, 7.3 Hz, 1H), 7.84-7.82 (m, 2H), 7.74-7.71 (m, 2H), 7.46 (t, J = 7.5 Hz, 1H), 7.34-7.29 (m, 1H), 7.27-7.24 (m, 1H), 4.50 (t, J = 7.3 Hz, 2H), 3.74 (t, J = 6.8 Hz, 2H), 3.37 (d, J = 10.2 Hz, 1H), 2.58 (s, 3H), 2.02-1.94 (m, 2H), 1.78-1.71 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.36, 142.13 (d, J = 11.0 Hz), 141.61 (d, J = 159.0 Hz), 134.11, 133.07 (d, J = 3.0 Hz), 132.57 (d, J = 13.0 Hz), 131.96, 131.77 (d, J = 13.0 Hz), 130.32 (d, J = 29.0 Hz), 128.52 (d, J = 128.0 Hz), 125.85 (d, J = 15.0 Hz), 123.37, 94.07 (d, J = 31.0 Hz), 78.65 (d, J = 171.0 Hz), 49.83, 36.69, 27.41, 25.52, 21.16 (d, J = 6.0 Hz); <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  -3.28; HRMS (EI): Exact mass calcd for C<sub>23</sub>H<sub>21</sub>N<sub>4</sub>O<sub>3</sub>P: 432.1351, Found: 432.1354.

## 6. Kinetic resolution of racemic monoethynylphosphine oxides 4 and their catalytic enantioselective CuAAC reaction.

6.1 Kinetic resolution of racemic monoethynylphosphine oxides 4



To a 25 mL Schlenk tube was added  $L_7$  (27.6 mg, 0.054 mmol) and CuBr (6.4 mg, 0.045 mmol), followed by the addition of 4.0 mL of anhydrous MeCN. The mixture was stirred at 25 °C for 2 h, and racemic monoethynylphosphine oxides **4** (0.30 mmol) was added. After the reaction was cooled down to -20 °C for 0.5 h, azide **2a** (0.156 mmol, 0.52 equiv) was added. The resulting mixture was stirred at -20 °C for 96 h till full conversion of **2a** by TLC analysis. After the solvent was removed under reduced pressure, the residue was subjected to column chromatography for purification using PE/EtOAc/CH<sub>2</sub>Cl<sub>2</sub> (4:2:1, v/v/v) as the eluent, to afford the desired chiral monoethynylphosphine oxides **4**.

The reaction afforded **4a** in 42% recovery as white solid, Mp: 120-122 °C. IR (neat): 3142, 2048, 1595, 1438, 1289, 1187, 1078, 1031, 805, 790, 722 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 15% 'PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 10.80 min, t<sub>r</sub> (minor) = 11.78 min) gave the isomeric composition of the product: 96% ee.  $[\alpha]_D^{25} = + 3.4$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.95 (dd, J = 15.9, 7.6 Hz, 1H), 7.82-7.76 (m, 2H), 7.56 (td, J = 7.2, 1.4 Hz, 1H), 7.51-7.45(m, 3H), 7.32 (t, J = 6.5 Hz, 1H), 7.26-7.22 (m, 1H), 3.34 (d, J = 9.6 Hz, 1H), 2.42 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  141.97 (d, J = 10.0 Hz), 132.85 (d, J = 7.0 Hz), 132.77 (d, J = 2.0 Hz), 132.39 (d, J = 3.0 Hz), 132.37 (d, J = 119.0 Hz), 131.75 (d, J = 12.0 Hz), 130.95 (d, J = 12.0 Hz), 129.40 (d, J = 120.0 Hz), 128.74 (d, J = 13.0 Hz), 125.70 (d, J = 14.0 Hz), 94.18 (d, J = 27.0 Hz), 79.01 (d, J = 158.0 Hz), 21.16 (d, J = 6.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$ 9.40; HRMS (EI): Exact mass calcd for C<sub>15</sub>H<sub>13</sub>OP: 240.0704, Found: 240.0706.

The reaction afforded **4b** in 47% recovery as white solid, Mp: 150-152 °C. IR (neat): **3421**, 3102, 2047, 1556, 1453, 1394, 1280, 1194, 1171, 1143, 1124, 1064, 993, 785 **ab** cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 15% 'PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 10.25 min, tr (minor) = 12.66 min) gave the isomeric composition of the product: 91% ee.  $[\alpha]_D^{25} = -2.2$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.97-7.89 (m, 2H), 7.71-7.66 (m, 2H), 7.48 (t, J = 7.5 Hz, 1H), 7.37-7.33 (m, 2H), 7.26-7.23 (m, 1H), 3.41 (d, J = 9.8 Hz, 1H), 2.42 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.01 (d, J = 11.0 Hz), 135.46 (d, J = 3.0 Hz),135.18 (d, J = 117.0Hz), 133.62 (d, J = 13.0 Hz), 133.12 (d, J = 3.0 Hz), 132.82 (d, J = 12.0 Hz), 131.91 (d, J = 12.0 Hz), 130.41 (d, J = 14.0 Hz), 129.44 (d, J = 11.0 Hz), 128.67 (d, J = 121.0 Hz), 125.86 (d, J = 14.0 Hz), 123.22 (d, J = 17.0 Hz), 94.85 (d, J = 28.0 Hz), 78.50 (d, J = 161.0 Hz), 21.19 (d, J = 4.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  7.82; HRMS (EI): Exact mass calcd for C<sub>15</sub>H<sub>12</sub><sup>79</sup>BrOP: 317.9809, Found: 317.9813.



The reaction afforded **4c** in 43% recovery as white solid, Mp: 122-124 °C. IR (neat): 3118, 2045, 1576, 1482, 1286, 1181, 1040, 859, 779, 695 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 15% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 12.41 min, t<sub>r</sub> (minor) = 14.01 min) gave the isomeric composition of the product: 85% ee.  $\lceil \alpha \rceil_D^{25} =$ 

- 3.5 (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.93 (dd, *J* = 16.1, 7.6 Hz, 1H), 7.50-7.29 (m, 5H), 7.26-7.22 (m, 1H), 7.10-7.07 (m, 1H), 3.83 (s, 3H), 3.34 (d, *J* = 9.6 Hz, 1H), 2.45 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  159.66 (d, *J* = 16.0 Hz), 142.05 (d, *J* = 10.0 Hz), 133.66 (d, *J* = 119.0 Hz), 132.84 (d, *J* = 4.0 Hz), 132.76 (d, *J* = 6.0 Hz), 131.74 (d, *J* = 12.0 Hz), 130.02 (d, *J* = 16.0 Hz), 129.36 (d, *J* = 120.0 Hz), 125.68 (d, *J* = 14.0 Hz), 123.14 (d, *J* = 12.0 Hz), 118.57 (d, *J* = 3.0 Hz), 115.72 (d, *J* = 13.0 Hz), 94.15 (d, *J* = 27.0 Hz), 78.99 (d, *J* = 159.0 Hz), 55.50, 21.18 (d, *J* = 4.0 Hz); <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  9.57; HRMS (EI): Exact mass calcd for C<sub>16</sub>H<sub>15</sub>O<sub>2</sub>P: 270.0810, Found: 270.0811.

The reaction afforded **4d** in 42% recovery as white solid, Mp: 138-140 °C. IR (neat): 3166, 2047, 1574, 1474, 1386, 1191, 1107, 1011, 828, 1278, 756 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 15% 'PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 12.04 min, t<sub>r</sub> (minor) = 15.37 min) gave the isomeric composition of the product: 94% ee.  $[\alpha]_D^{25} = -27.4$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.95 (dd, J = 16.1, 7.6 Hz, 1H), 7.68-7.63 (m, 4H), 7.49 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 6.5 Hz, 1H), 7.28-7.24 (m, 1H), 3.41 (d, J = 9.8 Hz, 1H), 2.42 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  141.97 (d, J = 10.0 Hz), 133.04 (d, J = 2.0 Hz), 132.77 (d, J = 13.0 Hz), 132.48 (d, J = 12.0 Hz), 132.07 (d, J = 14.0 Hz), 131.87 (d, J = 12.0 Hz), 131.57 (d, J = 120.0 Hz), 128.90 (d, J = 121.0 Hz), 127.63 (d, J = 4.0 Hz), 125.81 (d, J = 14.0 Hz), 94.63 (d, J = 27.0 Hz), 78.65 (d, J = 161.0 Hz), 21.15 (d, J = 4.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  8.61; HRMS (EI): Exact mass calcd for C1<sub>5</sub>H12<sup>79</sup>BrOP: 317.9809, Found: 317.9811. The reaction afforded **4e** in 48% recovery as white solid, Mp: 110-112 °C. IR (neat): 3099, 2047, 1592, 1451, 1334, 1274, 1180, 1092, 1016, 854, 756 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 15% 'PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 12.35 min, tr (minor) = 11.74 min) gave the isomeric composition of the product: 99% ee.  $[\alpha]_D^{25} = -3.6$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.96 (dd, J = 16.9, 7.1 Hz, 1H), 7.77-7.74 (m, 1H), 7.60 (dd, J = 8.5, 3.6 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.36-7.33 (m, 1H), 7.29-7.25 (m, 1H), 7.21-7.17 (m, 1H), 3.38 (d, J = 10.0 Hz, 1H), 2.53 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.11 (d, J = 10.0 Hz), 136.31 (d, J = 12.0 Hz), 134.27 (d, J = 6.0 Hz), 133.74 (d, J = 133.0 Hz), 133.04 (d, J = 30.0 Hz), 132.51 (d, J = 13.0 Hz), 131.82 (d, J = 12.0 Hz), 129.68 (d, J = 126.0 Hz), 128.42 (d, J = 16.0 Hz), 125.79 (d, J = 14.0 Hz), 94.04 (d, J = 30.0 Hz), 79.14 (d, J = 169.0 Hz), 21.16 (d, J = 5.0Hz); <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  -0.49; HRMS (EI): Exact mass calcd for C<sub>13</sub>H<sub>11</sub>OPS: 246.0268, Found: 246.0266.

The reaction afforded **4f** in 44% recovery as white solid, Mp: 100-102 °C. IR (neat): 3119, 2849, 2042, 1593, 1448, 1347, 1208, 1115, 1001, 888, 804, 755 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 15% 'PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 7.80 min, t<sub>r</sub> (minor) = 6.35 min) gave the isomeric composition of the product: 94% ee.  $[\alpha]p^{25}$ 

= + 28.0 (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.89 (dd, J = 14.7, 7.6 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.30-7.23 (m, 2H), 3.20 (d, J = 9.0 Hz, 1H), 2.66 (s, 3H), 2.04-1.82 (m, 5H), 1.70 (s, 1H), 1.46-1.41 (m, 2H), 1.31-1.18 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 141.69 (d, J = 10.0 Hz), 132.87 (d, J = 11.0 Hz), 132.16 (d, J = 3.0 Hz), 131.81 (d, J = 11.0 Hz), 127.65 (d, J = 109.0 Hz), 125.57 (d, J = 12.0 Hz), 92.95 (d, J = 23.0 Hz), 78.23 (d, J = 141.0 Hz), 40.53 (d, J = 83.0 Hz), 26.26 (d, J = 4.0 Hz), 26.11 (d, J = 4.0 Hz), 25.70 (d, J = 2.0 Hz), 25.47 (d, J = 2.0 Hz), 24.60 (d, J = 2.0 Hz), 21.44 (d, J = 3.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 25.91; HRMS (EI): Exact mass calcd for C<sub>15</sub>H<sub>19</sub>OP: 246.1174, Found: 246.1170.

The reaction afforded **4g** in 43% recovery as white solid, Mp: 98-100 °C. IR (neat): 3099, 2969, 2044, 1721, 1679, 1536, 1451, 1384, 1262, 1178, 879, 802, 767 cm<sup>-1</sup>; HPLC **4g** analysis (Chiralcel AD-H, 15% 'PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 7.68 min, tr (minor) = 6.60 min) gave the isomeric composition of the product: 90% ee.  $[\alpha]_D^{25} = + 26.2$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.95-7.88 (m, 1H), 7.46-7.40 (m, 1H), 7.32-7.24 (m, 2H), 3.21 (d, J = 9.0 Hz, 1H), 2.67 (s, 3H), 2.33-2.25 (m, 1H), 1.27-1.13 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  141.62 (d, J = 10.0 Hz), 132.84 (d, J = 10.0 Hz), 132.25 (d, J = 3.0 Hz), 131.85 (d, J = 12.0 Hz), 127.75 (d, J = 110.0 Hz), 125.59 (d, J = 13.0 Hz), 93.10 (d, J = 22.0 Hz), 77.92 (d, J = 108.0 Hz), 30.48 (d, J = 82.0 Hz), 21.37 (d, J = 4.0 Hz), 15.87 (d, J = 2.0 Hz), 14.83 (d, J = 3.0 Hz); <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  29.33; HRMS (EI): Exact mass calcd for C<sub>12</sub>H<sub>15</sub>OP: 206.0861, Found: 206.0865.



The reaction afforded **4h** in 44% recovery as white solid, Mp: 134-136 °C. IR (neat): 3328, 3173, 2049, 1573, 1437, 1254, 1159, 1109, 1024, 802, 762, 718, 674 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 15% 'PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 15.41

min, t<sub>r</sub> (minor) = 13.45 min) gave the isomeric composition of the product: 95% ee. [α]<sub>D</sub><sup>25</sup> = + 24.7 (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.21 (ddd, J = 14.3, 7.6, 1.8 Hz, 1H), 7.83-7.78 (m, 2H), 7.61-7.43 (m, 6H), 3.38 (d, J = 10.1 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 135.57 (d, J = 9.0 Hz), 134.56 (d, J = 8.0 Hz), 134.11 (d, J = 2.0 Hz), 132.54 (d, J = 3.0 Hz),131.62 (d, J = 126.0 Hz), 131.19 (d, J = 124.0 Hz), 131.15 (d, J = 12.0 Hz), 128.64 (d, J = 14.0 Hz), 127.31 (d, J= 12.0 Hz), 125.47 (d, J = 7.0 Hz), 94.64 (d, J = 29.0 Hz), 77.77 (d, J = 168.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 7.56; HRMS (EI): Exact mass calcd for C<sub>14</sub>H<sub>10</sub><sup>79</sup>BrOP: 303.9653, Found: 303.9651.



The reaction afforded **4i** in 45% recovery as white solid, Mp: 152-154 °C. IR (neat): 3187, 2049, 1589, 1507, 1437, 1206, 1151, 1026, 982, 830, 780, 722, 688 cm<sup>-1</sup>; HPLC analysis (Chiralcel OD-H, 15% 'PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 15.57 min,  $t_r$  (minor) = 14.38 min) gave the isomeric composition of the product: 97% ee.

[α]<sub>D</sub><sup>25</sup> = + 17.1 (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 8.44 (d, J = 7.5 Hz, 1H), 8.20 (dd, J = 17.6, 6.9 Hz, 1H), 8.07 (d, J = 8.1 Hz, 1H), 7.89-7.82 (m, 3H), 7.55-7.48 (m, 6H), 3.40 (d, J = 9.7 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 134.00 (d, J = 3.0 Hz), 133.74 (d, J = 10.0 Hz), 133.30 (d, J = 11.0 Hz), 132.58, 132.52 (d, J = 121.0 Hz), 132.51 (d, J = 3.0 Hz), 131.02 (d, J = 11.0 Hz), 129.02 (d, J = 1.0 Hz), 128.79 (d, J = 14.0 Hz), 127.50, 127.28 (d, J = 119.0 Hz), 126.61, 126.34 (d, J = 6.0 Hz), 124.55 (d, J = 15.0 Hz), 94.66 (d, J = 28.0 Hz), 79.22 (d, J = 160.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 9.34; HRMS (EI): Exact mass calcd for C<sub>18</sub>H<sub>13</sub>OP: 276.0704, Found: 276.0707.



To a 25 mL Schlenk tube was added  $L_7$  (27.6 mg, 0.054 mmol) and CuBr (6.4 mg, 0.045 mmol), followed by the addition of 7.5 mL of anhydrous MeCN. The mixture was stirred at 25 °C for 2 h, and the racemic **3a** (0.30 mmol) was added. After the reaction was cooled down to -10 °C for 0.5 h, azide **2a** 

(0.165 mmol, 0.55 equiv) was added. The resulting mixture was stirred at -10 °C for 96 h till full conversion of **2a** by TLC analysis. After the solvent was removed under reduced pressure, the residue was directly subjected to column chromatography for purification using PE/EtOAc/CH<sub>2</sub>Cl<sub>2</sub> (4:2:1, v/v/v) as the eluent, to afford the desired chiral **3a** in 42% recovery yield, 93% ee.



To a 25 mL Schlenk tube was added  $L_7$  (27.6 mg, 0.054 mmol) and CuBr (6.4 mg, 0.045 mmol), followed by the addition of 7.5 mL of anhydrous MeCN. The mixture was stirred at 25 °C for 2 h, and the racemic **3b** (0.30 mmol) was added. After the reaction was cooled down to -10 °C for 0.5 h, azide **2a** (0.165 mmol,

0.55 equiv) was added. The resulting mixture was stirred at -10 °C for 96 h till full conversion of **2a** by TLC analysis. After the solvent was removed under reduced pressure, the residue was directly subjected to column chromatography for purification using PE/EtOAc/CH<sub>2</sub>Cl<sub>2</sub> (4:2:1, v/v/v) as the eluent, to afford the desired chiral **3b** in 44% recovery yield, 92% ee.

#### 6.2 Enantioselective CuAAC reaction of racemic monoethynylphosphine oxides 4

| R−N₂                | +   |                             | <b>L<sub>8</sub> (18 mol%)</b><br>CuBr (15 mol%) |                                   |
|---------------------|-----|-----------------------------|--------------------------------------------------|-----------------------------------|
|                     |     | $R^2$                       | MeCN, -20 °C,                                    | $\mathbf{R}^2 \subset \mathbf{N}$ |
| <b>2</b> (0.1 mmol) | (±) | - <b>4</b> (0.21-0.25 mmol) | 96 h                                             | 5 R                               |

To a 25 mL Schlenk tube was added  $L_8$  (10.2 mg, 0.018 mmol) and CuBr (2.2 mg, 0.015 mmol), followed by the addition of 4.0 mL of anhydrous CH<sub>3</sub>CN. The solution was stirred at 25 °C for 2 h, and then monoethynylphosphine oxides 4 (0.21-0.25 mmol, as indicated below) was added. After the reaction mixture was cooled down to -20 °C for 0.5 h, azide 2 (0.1 mmol) was added. The resulting mixture was stirred at -20 °C for 96 h till full conversion of 2 by TLC analysis. After the solvent was removed under reduced pressure, the residue was directly subjected to column chromatography for purification using CH<sub>2</sub>Cl<sub>2</sub>/EtOAc (2:1, v/v) as the eluent, to afford the desired products 5.



The reaction used 0.21 mmol of racemic **4a**, affording **5a** in 94% yield as sticky oil, IR (neat): 3406, 1592, 2349, 1492, 1437, 1181, 1136, 1046, 998, 804, 747 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 15% <sup>i</sup>PrOH/hexane, 1.0

mL/min, 230 nm; t<sub>r</sub> (major) = 25.63 min, t<sub>r</sub> (minor) = 34.87 min) gave the isomeric composition of the product: 90% ee.  $[\alpha]_D^{25} = +53.7$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.09 (s, 1H), 7.84 (dd, J = 12.8, 6.9 Hz, 2H), 7.53-7.38 (m, 5H), 7.23-7.16 (m, 6H), 5.53 (s, 2H), 2.39 (s, 3H), 2.34 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.57 (d, J = 9.0 Hz), 142.28 (d, J = 135.0 Hz), 139.00, 132.97 (d, J = 12.0 Hz), 132.48 (d, J = 109.0 Hz) 132.39 (d, J = 3.0 Hz), 131.99 (d, J = 3.0 Hz), 131.77 (d, J = 11.0 Hz), 131.47 (d, J = 10.0 Hz), 130.94, 130.92 (d, J = 52.0 Hz), 130.40 (d, J = 109.0 Hz), 129.90, 128.55, 128.52 (d, J = 13.0 Hz), 125.42 (d, J = 13.0 Hz), 54.11, 21.36 (d, J = 4.0 Hz), 21.18; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  19.90; HRMS (EI): Exact mass calcd for C<sub>23</sub>H<sub>22</sub>N<sub>3</sub>OP: 287.1501, Found: 387.1503.



The reaction used 0.25 mmol of racemic **4b**, affording **5b** in 82% yield as sticky oil, IR (neat): 3424, 3053, 2049, 1593, 1557, 1492, 1395, 1285, 1184, 1046, 995, 804, 788 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 30%)

<sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 13.32 min, t<sub>r</sub> (minor) = 17.06 min) gave the isomeric composition of the product: 90% ee.  $[\alpha]_D^{25} = +17.6$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.08 (s, 1H), 8.03-7.97 (m, 1H), 7.74 (dd, J = 12.4, 7.6 Hz, 1H), 7.65-7.61 (m, 1H), 7.52-7.40 (m,

2H), 7.31 (td, J = 7.8, 3.5 Hz, 1H), 7.25-7.16 (m, 6H), 5.54 (s, 2H), 2.40 (s, 3H), 2.34 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.62 (d, J = 9.0 Hz), 141.58 (d, J = 137.0 Hz), 139.17, 135.20 (d, J = 106.0 Hz), 135.05 (d, J = 2.0 Hz), 134.06 (d, J = 11.0 Hz), 132.95 (d, J = 13.0 Hz), 132.68 (d, J = 3.0 Hz), 131.88 (d, J = 12.0 Hz), 131.41 (d, J = 24.0 Hz), 130.35 (d, J = 26.0 Hz), 130.09, 129.98, 129.62 (d, J = 110.0 Hz), 128.64, 125.55 (d, J = 13.0 Hz), 123.03 (d, J = 15.0 Hz), 54.26, 21.39 (d, J = 5.0 Hz), 21.20; <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  18.76; HRMS (EI): Exact mass calcd for C<sub>23</sub>H<sub>21</sub>N<sub>3</sub><sup>79</sup>BrOP: 465.0606, Found: 465.0608.



The reaction used 0.25 mmol of racemic **4c**, affording **5c** in 68% yield as sticky oil, IR (neat): 3423, 3055, 2838, 2315, 1702, 1649, 1543, 1358, 1287, 1135, 1035, 857, 757 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 30%)

<sup>4</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 13.31 min, t<sub>r</sub> (minor) = 17.56 min) gave the isomeric composition of the product: 80% ee.  $[\alpha]_{D}^{25} = +19.6$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.05 (s, 1H), 7.47 (dd, J = 14.9, 7.7 Hz, 1H), 7.42-7.30 (m, 4H), 7.21-7.13 (m, 6H), 7.02 (dd, J = 6.2, 2.5 Hz, 1H), 5.50 (s, 2H), 3.76 (s, 3H), 2.40 (s, 3H), 2.32 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  159.51 (d, J = 15.0 Hz), 142.66 (d, J = 9.0 Hz), 142.34 (d, J = 135.0 Hz), 139.11, 133.78 (d, J = 107.0 Hz), 132.99 (d, J = 12.0 Hz), 132.40 (d, J = 3.0 Hz), 131.75 (d, J = 12.0 Hz), 130.96 (d, J = 23.0 Hz), 130.57, 130.30 (d, J = 109.0 Hz), 129.95, 129.78 (d, J = 15.0 Hz), 128.57, 125.42 (d, J = 13.0 Hz), 123.81 (d, J = 11.0 Hz), 118.40 (d, J = 2.0 Hz), 115.94 (d, J = 11.0 Hz), 55.41, 54.17, 21.37 (d, J = 5.0 Hz), 21.19; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  20.04; HRMS (EI): Exact mass calcd for C<sub>24</sub>H<sub>24</sub>N<sub>3</sub>O<sub>2</sub>P: 417.1606, Found: 417.1609.



The reaction used 0.23 mmol of racemic **4d**, affording **5d** in 90% yield as sticky oil, IR (neat): 3065, 1702, 1650, 1574, 1474, 1383, 1183, 1103, 1067, 1009, 804, 734 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 30% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 13.92 min,  $t_r$  (minor) = 12.65 min) gave

the isomeric composition of the product: 90% ee.  $[\alpha]_D^{25} = +52.2$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.09 (s, 1H), 7.70 (dd, *J* = 12.2, 8.4 Hz, 2H), 7.60-7.55 (m, 2H), 7.46 (dd, *J* = 15.0, 7.7 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.22-7.14 (m, 6H), 5.51 (s, 2H), 2.38 (s, 3H), 2.32 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.56 (d, *J* = 10.0 Hz), 141.86 (d, *J* = 137.0 Hz), 139.18, 133.06 (d, *J* = 11.0 Hz), 132.89 (d, *J* = 13.0 Hz), 132.62 (d, *J* = 3.0 Hz), 131.88 (d, *J* = 12.0 Hz), 131.82 (d, *J* = 13.0 Hz), 131.06 (d, *J* = 23.0 Hz), 130.47, 129.98, 129.94 (d, *J* = 109.0 Hz),
128.60, 127.23 (d, J = 3.0 Hz), 125.53 (d, J = 13.0 Hz), 54.24, 21.34 (d, J = 4.0 Hz), 21.21; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 19.36; HRMS (EI): Exact mass calcd for C<sub>23</sub>H<sub>21</sub>N<sub>3</sub><sup>79</sup>BrOP: 465.0606, Found: 465.0609.



The reaction used 0.21 mmol of racemic 4e, affording 5e in 92% yield as sticky oil, IR (neat): 3459, 2924, 2049, 1593, 1493, 1334, 1261, 1184, 1094, 1014, 804, 757, 714 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 30% <sup>i</sup>PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 11.05 min,  $t_r$  (minor) = 16.79 min) gave the isomeric composition of the product: 92% ee.  $[\alpha]_D^{25} = -26.3$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ 8.05 (s, 1H), 7.75-7.71 (m, 1H), 7.62-7.55 (m, 2H), 7.43 (t, J = 7.5 Hz, 1H), 7.26-7.16 (m, 7H), 5.54 (s, 2H), 2.48 (s, 3H), 2.35 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.69 (d, J = 9.0 Hz), 142.58 (d, J = 143.0 Hz), 139.19, 136.52 (d, J = 11.0 Hz), 134.03 (d, J = 5.0 Hz), 133.68 (d, J = 119.0 Hz), 132.82  $(d, J = 13.0 \text{ Hz}), 132.61 (d, J = 3.0 \text{ Hz}), 131.80 (d, J = 11.0 \text{ Hz}), 130.72 (d, J = 25.0 \text{ Hz}), 130.50 (d, J = 25.0 \text{$ = 114.0 Hz), 130.49, 129.99, 128.58, 128.30 (d, J = 15.0 Hz), 125.54 (d, J = 14.0 Hz), 54.24, 21.41 (d, J = 4.0 Hz), 21.20; <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  13.47; HRMS (EI): Exact mass calcd for C<sub>21</sub>H<sub>20</sub>N<sub>3</sub>OPS: 393.1065, Found: 393.1070.

The reaction used 0.21 mmol of racemic 4f, affording 5f in 90% yield as sticky oil, IR (neat): 2930, 2855, 1516, 1492, 1448, 1285, 1176, 1102, 1047, 5f 887, 820 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 30% PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 5.89 min,  $t_r$  (minor) = 10.38 min) gave the isomeric composition of the product: 93% ee.  $[\alpha]_D^{25} = -29.6$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.92 (s, 1H), 7.91-7.84 (m, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.24-7.13 (m, 6H), 5.53-5.44 (m, 2H), 2.65 (s, 3H), 2.52-2.41 (m, 1H), 2.33 (s, 3H), 1.85-1.57 (m, 6H), 1.44-1.17 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 142.30 (d, J = 121.0 Hz), 142.18 (d, J = 9.0 Hz), 139.06, 132.63 (d, J = 10.0 Hz), 131.64 (d, J = 15.0 Hz), 131.59, 130.97 (d, J = 21.0 Hz), 130.50, 129.92, 129.04 (d, J = 98.0 Hz), 128.62, 125.56 (d, J = 12.0 Hz), 54.13, 38.84 (d, J = 75.0 Hz), 26.26 (d, J = 30.0 Hz), 26.25 (d, J = 2.0 Hz), 25.77 (d, J = 1.0 Hz), 24.91 (d, J = 4.0 Hz), 24.14 (d, J = 2.0 Hz), 21.52 (d, J = 1.0 Hz), 21.17; <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>): δ 31.79; HRMS (EI): Exact mass calcd for C<sub>23</sub>H<sub>28</sub>N<sub>3</sub>OP: 393.1970, Found: 393.1971.



The reaction used 0.21 mmol of racemic **4g**, affording **5g** in 84% yield as sticky oil, IR (neat): 3086, 2960, 2361, 1593, 1496, 1383, 1290, 1182, 1050, 1022, 924, 894 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 30% <sup>*i*</sup>PrOH/hexane,

1.0 mL/min, 230 nm; tr (major) = 5.27 min, tr (minor) = 7.81 min) gave the isomeric composition of the product: 90% ee.  $[\alpha]_D^{25} = -18.1$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.94 (s, 1H), 7.86 (dd, J = 13.1, 7.6 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.20-7.10 (m, 6H), 5.50-5.42 (m, 2H), 2.73-2.66 (m, 1H), 2.60 (s, 3H), 2.28 (s, 3H), 1.19 (dd, J = 17.2, 7.1 Hz, 3H), 1.08 (dd, J = 17.6, 7.3 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.32 (d, J = 121.0 Hz), 142.07 (d, J = 9.0 Hz), 139.07, 132.60 (d, J = 11.0 Hz), 131.78, 131.66, 130.92 (d, J = 21.0 Hz), 130.52, 129.93, 129.22 (d, J = 97.0 Hz), 128.57, 125.57 (d, J = 12.0 Hz), 54.13, 28.94 (d, J = 75.0 Hz), 21.46 (d, J = 2.0 Hz), 21.18, 15.44 (d, J = 3.0 Hz), 14.58 (d, J = 2.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  34.22; HRMS (EI): Exact mass calcd for C<sub>20</sub>H<sub>24</sub>N<sub>3</sub>OP: 353.1657, Found: 353.1656.

The reaction used 0.21 mmol of racemic **4h**, affording **5h** in 84% yield as sticky oil, IR (neat): 3218, 2935, 2350, 2054, 1707, 1505, 1456, 1399, 1300, 1278, 1125, 1001, 887, 747 cm<sup>-1</sup>; HPLC analysis (Chiralcel OD-H, 15% <sup>1</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 25.80 min, t<sub>r</sub> (minor) = 22.90 min) gave the isomeric composition of the product: 90% ee.  $[\alpha]_D^{25} = + 28.4$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.11 (s, 1H), 7.94-7.89 (m, 2H), 7.58-7.41 (m, 5H), 7.32-7.30 (m, 2H), 7.17-7.12 (m, 4H), 5.55-5.47 (m, 2H), 2.31 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  141.44 (d, *J* = 141.0 Hz), 139.05, 135.42 (d, *J* = 11.0 Hz), 134.75 (d, *J* = 8.0 Hz), 133.71 (d, *J* = 2.0 Hz), 132.69 (d, *J* = 112.0 Hz), 132.22 (d, *J* = 3.0 Hz), 131.85 (d, *J* = 10.0 Hz), 131.51 (d, *J* = 24.0 Hz), 131.13 (d, *J* = 114.0 Hz), 130.65, 129.92, 128.50 (d, *J* = 13.0 Hz), 128.47, 126.99 (d, *J* = 11.0 Hz), 126.44 (d, *J* = 5.0 Hz), 54.15, 21.20; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  19.87; HRMS (EI): Exact mass calcd for C<sub>22</sub>H<sub>19</sub>N<sub>3</sub><sup>79</sup>BrOP: 451.0449, Found: 451.0444.



The reaction used 0.23 mmol of racemic **4i**, affording **5i** in 86% yield as sticky oil, IR (neat): 3416, 2925, 3054, 1619, 1590, 1492, 1335, 1215, 1109, 1025, 983, 801, 774, 693 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 30%)

<sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 34.77 min, t<sub>r</sub> (minor) = 18.17 min) gave the isomeric composition of the product: 90% ee.  $[\alpha]_D^{25} = +10.0$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.58 (d, *J* = 8.2 Hz, 1H), 8.14 (s, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.91-7.83 (m, 4H), 7.48-7.39 (m,

6H), 7.18-7.13 (m, 4H), 5.53-5.46 (m, 2H), 2.33 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 142.42 (d, J = 136.0 Hz), 139.10, 133.78 (d, J = 10.0 Hz), 133.56, 133.52 (d, J = 15.0 Hz), 133.14 (d, J = 4.0 Hz), 132.64 (d, J = 115.0 Hz), 132.14 (d, J = 3.0 Hz), 131.60 (d, J = 11.0 Hz), 131.15 (d, J = 23.0 Hz), 130.57, 129.95, 128.90 (d, J = 1.0 Hz), 128.58 (d, J = 13.0 Hz), 128.57, 128.18 (d, J = 108.0 Hz), 127.31, 126.82 (d, J = 6.0 Hz), 126.43, 124.46 (d, J = 14.0 Hz), 54.18, 21.20; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 20.04; HRMS (EI): Exact mass calcd for C<sub>26</sub>H<sub>22</sub>N<sub>3</sub>OP: 423.1501, Found: 423.1505.



The reaction used 0.21 mmol of racemic **4a**, affording **5j** in 90% yield as sticky oil, IR (neat): 3220, 2935, 2350, 2055, 1630, 1593, 1466, 1382, 1344, 1278, 1125, 1001, 960, 887 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 15% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 34.31 min, t<sub>r</sub> (minor)

= 47.03 min) gave the isomeric composition of the product: 90% ee. [α]<sub>D</sub><sup>25</sup> = + 65.9 (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.27 (s, 1H), 7.85-7.80 (m, 2H), 7.59 (d, J = 8.1 Hz, 2H), 7.52-7.38 (m, 7H), 7.22-7.17 (m, 2H), 5.64 (s, 2H), 2.38 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 141.87 (d, J = 134.0 Hz), 141.55 (d, J = 10.0 Hz), 136.74 (d, J = 1.0 Hz), 131.83, 131.47 (d, J = 3.0 Hz), 131.41 (d, J= 110.0 Hz), 131.06 (d, J = 3.0 Hz), 130.75, 130.42 (d, J = 24.0 Hz), 130.41 (d, J = 10.0 Hz), 130.19 (q, J = 34.0 Hz), 129.18 (d, J = 109.0 Hz), 127.62, 127.48, 125.17 (q, J = 4.0 Hz), 124.44 (d, J = 13.0 Hz), 122.68 (q, J = 271.0 Hz), 52.53, 20.30 (d, J = 5.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 19.87; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>): δ -62.76; HRMS (EI): Exact mass calcd for C<sub>23</sub>H<sub>19</sub>F<sub>3</sub>N<sub>3</sub>OP: 441.1218, Found: 441.1212.



The reaction used 0.21 mmol of racemic **4a**, affording **5k** in 82% yield as sticky oil, IR (neat): 3450, 3056, 2953, 1768, 1704, 1593, 1494, 1362, 1285, 1109, 997, 862, 751 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 30% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 32.21 min,  $t_r$  (minor) =

44.91 min) gave the isomeric composition of the product: 90% ee.  $[\alpha]_D^{25} = +10.9$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.17 (s, 1H), 7.85-7.79 (m, 4H), 7.70-7.69 (m, 2H), 7.50-7.39 (m, 5H), 7.22-7.16 (m, 2H), 4.48 (t, *J* = 7.2 Hz, 2H), 3.72 (t, *J* = 6.8 Hz, 2H), 2.39 (s, 3H), 2.01-1.92 (m, 2H), 1.75-1.68 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.34, 142.60 (d, *J* = 10.0 Hz), 142.22 (d, *J* = 135.0 Hz), 134.10, 133.0 (d, *J* = 12.0 Hz), 132.45 (d, *J* = 110.0 Hz), 132.39 (d, *J* = 3.0 Hz), 131.98 (d, *J* = 3.0 Hz), 131.90, 131.77 (d, *J* = 11.0 Hz), 131.49 (d, *J* = 10.0 Hz), 131.10 (d, *J* = 23.0 Hz), 130.35 (d, *J* = 109.0 Hz), 128.53 (d, *J* = 13.0 Hz), 125.43 (d, *J* = 13.0 Hz), 123.33, 49.76, 36.71, 27.40, 25.54, 21.36 (d, J = 5.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  20.00; HRMS (EI): Exact mass calcd for C<sub>27</sub>H<sub>25</sub>N<sub>4</sub>O<sub>3</sub>P: 484.1664, Found: 484.1660.

The reaction used 0.21 mmol of racemic **4a**, affording **5l** in 92% yield as sticky oil, IR (neat): 3322, 3056, 2951, 2353, 1769, 1683, 1559, 1520, 1456, 1203, 1117, 1054, 980, 735 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 15% /PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 46.27 min, tr (minor) = 58.91 min) gave the isomeric composition of the product: 90% ee.  $[\alpha]_D^{25} = + 32.8$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.35 (s, 1H), 7.87-7.80 (m, 2H), 7.56-7.39 (m, 5H), 7.36-7.28 (m, 5H), 7.25-7.16 (m, 2H), 5.34-5.20 (m, 2H), 5.20 (s, 2H), 2.40 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  165.73, 142.68 (d, *J* = 9.0 Hz), 142.65 (d, *J* = 134.0 Hz), 134.38, 133.04 (d, *J* = 13.0 Hz), 132.90 (d, *J* = 24.0 Hz), 132.49 (d, *J* = 3.0 Hz), 132.09 (d, *J* = 2.0 Hz), 131.82 (d, *J* = 11.0 Hz), 131.54 (d, *J* = 10.0 Hz), 131.22 (d, *J* = 91.0 Hz), 129.10 (d, *J* = 113.0 Hz), 128.86, 128.77, 128.65, 128.54, 125.50 (d, *J* = 14.0 Hz), 68.15, 50.83, 21.34 (d, *J* = 3.0 Hz); <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  20.08; HRMS (EI): Exact mass calcd for C<sub>24</sub>H<sub>22</sub>N<sub>3</sub>O<sub>3</sub>P: 431.1399, Found: 431.1392.

# 7. Remote desymmetric CuAAC reaction of phosphole oxide-diynes 6



Under an atmosphere of N<sub>2</sub>, to a 25 mL oven-dried Schlenk tube were added  $L_5$  (16.6 mg, 0.027mmol) and CuBr (3.2 mg, 0.0225 mmol), followed by the addition of 4.0 mL anhydrous CH<sub>2</sub>Cl<sub>2</sub>. After the solution was stirred at 25 °C for 1 h, phosphole oxide-diynes **6** (0.18 mmol) and azide **2** (0.15 mmol) was added. The mixture was stirred at 25 °C for 48 h till full conversion of **2** by TLC analysis. The mixture was directly subjected to column chromatography using CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate (from 4:1 to 2:1) as the eluent, giving the monotrizable product **7**. The following use of EtOAc as the eluent allowed the isolation of ditriazole **7**'. The ratio of **7**/**7**' was determined by the isolated yield of **7**/**7**'.



Compound **7a** was obtained in 81% yield as brown solid, Mp: 238-240 °C. IR (KBr): 3290, 2926, 1705, 1544, 1244, 1044, 719 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% 'PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 12.44 min, t<sub>r</sub> (minor) = 26.39 min) gave the isomeric composition of the product: 96% ee.  $[\alpha]p^{20} = -$ 

16.3 (c = 0.53, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.58 (d, J = 10.0 Hz, 1H), 7.94 (s, 1H), 7.83-7.81 (m, 2H), 7.71-7.69 (m, 3H), 7.54-7.48 (m, 2H), 7.21-7.13 (m, 4H), 4.48-4.30 (m, 3H), 4.18-4.07 (m, 3H), 3.73 (t, J = 6.8 Hz, 2H), 3.31 (s, 1H), 2.33 (s, 3H), 2.04-1.89 (m, 6H), 1.79-1.70 (m, 2H), 1.14-1.10 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.15 (d, J = 2.0 Hz), 164.12, 158.56 (d, J = 2.0 Hz), 143.62 (d, J = 21.0 Hz), 142.35 (d, J = 3.0 Hz), 141.94, 141.68 (d, J = 22.0 Hz), 134.59 (d, J = 11.0 Hz), 133.89, 131.81, 130.95 (d, J = 12.0 Hz), 129.27 (d, J = 13.0 Hz), 128.29, 127.61 (d, J = 108.0 Hz), 125.56 (dd, J = 53.0 Hz, 8.0 Hz), 124.45 (dd, J = 52.0 Hz, 8.0 Hz), 123.69, 123.15 (d, J = 9.0 Hz), 120.86 (d, J = 12.0 Hz), 112.54 (d, J = 13.0 Hz), 104.50 (d, J = 11.0 Hz), 104.02 (d, J = 11.0 Hz), 82.63, 79.24, 70.40, 70.34, 49.22, 36.76, 27.43, 25.44, 22.46, 22.32, 21.40, 10.77, 10.45; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.16; HRMS (ESI): Exact mass calcd for C<sub>41</sub>H<sub>39</sub>N<sub>4</sub>O<sub>5</sub>NaP [M+Na]<sup>+</sup>: 721.2556, Found: 721.2530.



Compound **7a'** was obtained in 7% yield as brown solid, Mp: 242-244 °C. IR (KBr): 2938, 2877, 1710, 1602, 1487, 1287, 1039, 720 cm<sup>-1</sup>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.47 (d, J = 10.0 Hz, 2H), 7.80-7.76 (m, 6H), 7.70-7.66 (m, 4H), 7.50-7.45 (m, 2H), 7.14-7.08 (m, 4H), 4.46-4.33 (m, 4H),

4.28-4.21 (m, 2H), 4.06-4.00 (m, 2H), 3.74-3.67 (m, 4H), 2.28 (s, 3H), 1.93-1.86 (m, 8H), 1.73-1.68 (m, 4H), 1.07 (t, J = 7.6 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.25, 158.84 (d, J = 2.0 Hz), 142.41, 142.40 (d, J = 22.0 Hz), 142.05 (d, J = 2.0 Hz), 133.96, 131.91, 131.08 (d, J = 12.0 Hz), 129.23 (d, J = 13.0 Hz), 128.16 (d, J = 107.0 Hz), 128.10 (d, J = 12.0 Hz), 125.20 (d, J = 112.0 Hz), 123.20, 122.98, 120.20 (d, J = 12.0 Hz), 104.42 (d, J = 13.0 Hz), 70.36, 49.21, 36.80, 27.55, 25.51, 22.51, 21.45, 10.90; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.70; HRMS (ESI): Exact mass calcd for C<sub>53H51N8O7NaP</sub> [M+Na]<sup>+</sup>: 965.3516, Found: 965.3563.



Compound **7b** was obtained in 77% yield as brown solid, Mp: 238-240 °C. IR (KBr): 3287, 2960, 1710, 1465, 1242, 1049, 719, 521 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 11.45 min, t<sub>r</sub> (minor) = 25.51 min) gave ee value of the product: 97% ee.  $[\alpha]_D^{20} = -18.3$  (c = 0.62, CHCl<sub>3</sub>). <sup>1</sup>H

NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.57$  (d, J = 10.0 Hz, 1H), 7.92 (s, 1H), 7.82-7.79 (m, 2H), 7.71-7.68 (m, 3H), 7.54-7.49 (m, 2H), 7.19-7.11 (m, 4H), 4.47-4.31 (m, 3H), 4.17-4.05 (m, 3H), 3.73 (t, J = 6.8 Hz, 2H), 3.31 (s, 1H), 2.58 (t, J = 7.6 Hz, 2H), 2.03-1.88 (m, 6H), 1.76-1.69 (m, 2H), 1.58-1.50 (m, 2H), 1.33-1.28 (m, 2H), 1.14-1.10 (m, 6H), 0.88 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.19, 164.14, 158.88, 147.29 (d, J = 2.0 Hz), 143.63 (d, J = 22.0 Hz), 142.02, 141.73 (d, J = 22.0 Hz), 134.70 (d, J = 11.0 Hz), 133.91, 131.85, 130.98 (d, J = 11.0 Hz), 128.70 (d, J = 13.0 Hz), 128.34 (d, J = 11.0 Hz), 127.23, 125.69 (d, J = 50.0 Hz), 124.58 (d, J = 49.0 Hz), 123.19, 123.13, 120.86 (d, J = 12.0 Hz), 112.58 (d, J = 13.0 Hz), 104.48 (d, J = 11.0 Hz), 104.05 (d, J = 11.0 Hz), 82.65, 79.26, 70.42, 70.37, 49.24, 36.78, 35.53, 33.11, 27.46, 25.46, 22.49, 22.37, 22.12, 13.74, 10.81, 10.50; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.19; HRMS (ESI): Exact mass calcd for C44H45N4O5NaP [M+Na]<sup>+</sup>: 763.3025, Found: 763.3047.



Compound 7c was obtained in 75% yield as brown solid, Mp: 198-200 °C. IR (KBr): 3293, 2963, 1710, 1466, 1295, 1044, 720, 590 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 13.65 min, t<sub>r</sub> (minor) = 32.61 min) gave ee value of the product: 98% ee.  $[\alpha]_D^{20} = -12.4$  (c = 1.10, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400

MHz, CDCl<sub>3</sub>):  $\delta$  8.46 (d, J = 10.0 Hz, 1H), 7.83 (s, 1H), 7.77-7.75 (m, 2H), 7.66-7.61 (m, 3H), 7.52-7.47 (m, 2H), 7.11 (d, J = 1.6 Hz, 1H), 7.03 (d, J = 1.6 Hz, 1H), 6.83-6.80 (m, 2H), 4.42-4.24 (m, 3H), 4.10-3.96 (m, 3H), 3.74 (s, 3H), 3.68 (t, J = 6.8 Hz, 2H), 3.29 (s, 1H), 1.96-1.84 (m, 6H), 1.69-1.66 (m, 2H), 1.09-1.05 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.15, 164.11 (d, J = 2.0 Hz), 162.54 (d, J = 3.0 Hz), 158.84 (d, J = 1.0 Hz), 143.52 (d, J = 21.0 Hz), 141.96, 141.61 (d, J = 22.0 Hz), 134.55 (d, J = 11.0 Hz), 133.89, 132.76 (d, J = 12.0 Hz), 131.79, 128.17 (d, J = 12.0 Hz), 125.69 (d, J = 50.0 Hz), 124.58 (d, J = 49.0 Hz), 123.16, 123.09, 121.76 (d, J = 11.0 Hz), 120.84 (d, J = 13.0 Hz), 114.19 (d, J = 14.0 Hz), 112.56 (d, J = 14.0 Hz), 104.46 (d, J = 11.0 Hz), 104.05 (d, J = 11.0 Hz), 82.66, 79.22, 70.40, 70.34, 55.18, 49.21, 36.75, 27.43, 25.43, 22.45, 22.33, 10.76, 10.46; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.04; HRMS (ESI): Exact mass calcd for C<sub>41</sub>H<sub>39</sub>N<sub>4</sub>O<sub>6</sub>NaP [M+Na]<sup>+</sup>: 737.2505, Found: 737.2511.



Compound **7d** was obtained in 68% yield as yellow solid, Mp: 236-238 °C. IR (KBr): 3295, 2964, 1703, 1589, 1395, 1243, 1186, 1044, 840, 717 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>i</sup>PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 10.94 min,  $t_r$  (minor) = 13.09 min) gave the isomeric composition of the product: 99% ee.

 $[\alpha]_{D}^{26} = -19.6$  (c = 1.0, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.59 (d, J = 10.0 Hz, 1H), 7.95 (s, 1H), 7.83-7.80 (m, 2H), 7.73-7.69 (m, 3H), 7.66-7.59 (m, 2H), 7.22 (d, J = 2.4 Hz, 1H), 7.15 (d, J = 2.0 Hz, 1H), 7.04 (s, 1H), 7.05 (td, J = 8.0 Hz, 2.4 Hz, 2H), 4.49-4.31 (m, 3H), 4.20-4.09 (m, 3H), 3.73 (t, J = 6.8 Hz, 2H), 3.32 (s, 1H), 2.05-1.89 (m, 6H), 1.77-1.71 (m, 2H), 1.13 (td, J = 8.0 Hz, 1.6 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.32, 166.52, 164.46, 159.17, 143.69 (d, J = 22.0 Hz), 142.05, 141.84 (d, J = 22.0 Hz), 134.95 (d, J = 11.0 Hz), 134.04, 133.64, 133.62 (d, J = 22.0 Hz), 131.98, 128.72 (d, J = 11.0 Hz), 127.00 (d, J = 112.0 Hz), 126.83, 125.48 (d, J = 59.0 Hz), 124.36 (d, J = 58.0 Hz), 123.27, 116.14 (d, J = 13.0 Hz), 115.93 (d, J = 14.0 Hz), 113.04 (d, J = 13.0 Hz), 104.54 (d, J = 11.0 Hz), 104.16 (d, J = 11.0 Hz), 83.02, 79.11, 70.59, 49.43, 36.90, 27.59, 25.59, 22.62, 22.49,

10.88, 10.58; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 29.98; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>): δ -106.77; HRMS (ESI): Exact mass calcd for C<sub>40</sub>H<sub>36</sub>FN<sub>4</sub>O<sub>5</sub>P [M+Na]<sup>+</sup>: 725.2300, Found: 725.2324.



Compound 7e was obtained in 81% yield as brown solid, Mp: 226-228 °C. IR (KBr): 3290, 2963, 1710, 1592, 1437, 1243, 1045, 719 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 12.77 min, t<sub>r</sub> (minor) = 30.28 min) gave the isomeric composition of the product: 93% ee.  $[\alpha]_D^{20} = -22.4$ 

(c = 0.55, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.45 (d, J = 10.0 Hz, 1H), 7.83 (s, 1H), 7.78-7.76 (m, 2H), 7.67-7.60 (m, 3H), 7.52-7.47 (m, 2H), 7.30-7.27 (m, 2H), 7.13 (s, 1H), 7.04 (s, 1H), 4.43-4.35 (m, 2H), 4.31-4.24 (m, 1H), 4.12-3.89 (m, 3H), 3.69 (t, J = 6.8 Hz, 2H), 3.31 (s, 1H), 1.98-1.85 (m, 6H), 1.70-1.66 (m, 2H), 1.09 (t, J = 7.6 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.19, 164.37 (d, J = 2.0 Hz), 159.07 (d, J = 2.0 Hz), 143.58 (d, J = 23.0 Hz), 141.83, 141.68 (d, J = 23.0 Hz), 138.37 (d, J = 3.0 Hz), 134.60 (d, J = 11.0 Hz), 133.92, 132.39 (d, J = 12.0 Hz), 131.83, 129.78 (d, J = 106.0 Hz), 128.87 (d, J = 14.0 Hz), 128.20 (d, J =12.0 Hz), 124.80 (d, J = 55.0 Hz), 123.66 (d, J = 53.0 Hz), 123.21, 123.13, 121.10 (d, J = 13.0 Hz), 112.84 (d, J = 13.0 Hz), 104.64 (d, J = 11.0 Hz), 104.16 (d, J = 11.0 Hz), 82.94, 79.01, 70.50, 70.42, 49.26, 36.77, 27.46, 25.46, 22.47, 22.35, 10.80, 10.50; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  29.94; HRMS (ESI): Exact mass calcd for C<sub>40</sub>H<sub>37</sub><sup>35</sup>CIN<sub>4</sub>O<sub>5</sub>P [M+H]<sup>+</sup>: 719.2185, Found: 719.2183.



Compound **7f** was obtained in 68% yield as brown solid, Mp: 206-208 °C. IR (KBr): 3290, 2964, 1702, 1416, 1050, 710, 524 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% *'*PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 15.75 min, t<sub>r</sub> (minor) = 20.25 min) gave the isomeric composition of the product: 92% ee.  $[\alpha]_D^{20} = -1.2$  (c =

0.53, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.60 (d, J = 10.8 Hz, 1H), 7.82-7.76 (m, 4H), 7.70-7.69 (m, 2H), 7.31-7.26 (m, 3H), 7.14 (d, J = 2.0 Hz, 1H), 7.02 (d, J = 1.6 Hz, 1H), 4.55-4.42 (m, 2H), 4.30-4.23 (m, 1H), 4.18-4.13 (m, 1H), 4.07-3.98 (m, 2H), 3.78-3.69 (m, 2H), 3.34 (s, 1H), 2.01-1.87 (m, 6H), 1.74-1.67 (m, 2H), 1.16-1.10 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.16, 164.32 (d, J = 2.0 Hz), 159.02 (d, J = 2.0 Hz), 143.79 (d, J = 24.0 Hz), 142.11 (d, J = 24.0 Hz), 142.07, 139.59 (d, J = 3.0 Hz), 134.08 (d, J = 11.0 Hz), 133.89, 132.32, 131.80, 130.52 (d, J = 7.0 Hz), 127.72 (d, J = 12.0 Hz), 127.44 (d, J = 99.0 Hz), 126.94, 124.86 (d, J = 35.0 Hz), 123.68 (d, J = 35.0 Hz), 123.11, 120.32

(d, J = 13.0 Hz), 112.28 (d, J = 14.0 Hz), 105.10 (d, J = 13.0 Hz), 104.43 (d, J = 12.0 Hz), 82.59, 79.33, 70.41, 70.25, 49.14, 36.71, 27.46, 25.42, 22.45, 22.38, 10.88, 10.61; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  29.25; HRMS (ESI): Exact mass calcd for C<sub>40</sub>H<sub>36</sub><sup>35</sup>Cl<sub>2</sub>N<sub>4</sub>O<sub>5</sub>P [M+H]<sup>+</sup>: 753.1795, Found: 753.1792



Compound **7g** was obtained in 68% yield as brown solid, Mp: 176-178 °C. IR (KBr): 3297, 2964, 1710, 1487, 1243, 1045, 720 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 8.66 min, t<sub>r</sub> (minor) = 16.96 min) gave the isomeric composition of the product: 95% ee.  $[\alpha]_{D}^{20} = -10.9$  (c = 0.68,

CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.47 (d, J = 10.4 Hz, 1H), 7.85 (s, 1H), 7.78-7.76 (m, 2H), 7.69-7.63 (m, 3H), 7.46-7.43 (m, 1H), 7.31-7.27 (m, 1H), 7.21-7.18 (m, 2H), 7.14 (s, 1H), 7.06 (s, 1H), 4.43-4.25 (m, 3H), 4.12-3.98 (m, 3H), 3.69 (t, J = 6.8Hz, 2H), 3.30 (s, 1H), 2.27 (s, 3H), 2.00-1.82 (m, 6H), 1.72-1.65 (m, 2H), 1.11-1.07 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.18, 164.19 (d, J = 2.0 Hz), 158.91 (d, J = 2.0 Hz), 143.70 (d, J = 24.0 Hz), 141.99, 141.77 (d, J = 22.0 Hz), 138.38 (d, J = 12.0 Hz), 134.66 (d, J = 11.0 Hz), 133.91, 132.72, 131.83, 131.40 (d, J = 11.0 Hz), 130.76 (d, J = 105.0 Hz), 128.42 (d, J = 13.0 Hz), 128.26, 127.94 (d, J = 11.0 Hz), 125.50 (d, J = 52.0 Hz), 124.38 (d, J = 51.0 Hz), 123.19, 123.12, 120.86 (d, J = 13.0 Hz), 112.60 (d, J = 13.0 Hz), 104.52 (d, J = 11.0 Hz), 104.06 (d, J = 10.0 Hz), 82.70, 79.22, 70.43, 70.37, 49.24, 36.77, 27.45, 25.45, 22.48, 22.36, 21.21, 10.80, 10.49; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.17; HRMS (ESI): Exact mass calcd for C41H40N4O5P [M+H]<sup>+</sup>: 699.2731, Found: 699.2729.



Compound **7h** was obtained in 77% yield as brown solid, Mp: 168-170 °C. IR (KBr): 3274, 2964, 2872, 1706, 1487, 1245, 1048, 765 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>'</sup>PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 8.77 min,  $t_r$  (minor) = 20.38 min) gave the isomeric

composition of the product: 94% ee.  $[\alpha]_D^{20} = -4.5$  (c = 1.00, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 8.62 (d, J = 10.0 Hz, 1H), 7.87 (s, 1H), 7.79-7.77 (m, 3H), 7.68-7.66 (m, 2H), 7.01 (d, J = 2.0 Hz, 1H), 6.94 (d, J = 1.6 Hz, 1H), 4.44-4.38 (m, 1H), 4.36-4.25 (m, 2H), 4.04-3.93 (m, 3H), 3.70 (t, J = 6.8 Hz, 2H), 3.35 (s, 1H), 1.96-1.82 (m, 6H), 1.76 (d, J = 13.6 Hz, 3H), 1.73-1.69 (m, 2H), 1.07 (t, J = 7.6 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.20, 164.02 (d, J = 2.0 Hz), 158.73 (d, J = 3.0 Hz), 142.56 (d, J = 22.0 Hz), 141.96, 140.68 (d, J = 22.0 Hz), 133.94, 133.83, 131.79, 127.49 (d, J = 12.0 Hz), 125.24 (d, J = 50.0 Hz), 124.16 (d, J = 49.0 Hz), 123.21, 123.13, 120.68 (d, J = 12.0 Hz), 112.36 (d, J = 13.0 Hz), 104.36 (d, J = 11.0 Hz), 103.98 (d, J = 11.0 Hz), 82.80, 79.17, 70.36, 70.34, 49.30, 36.77, 27.45, 25.48, 22.38 (d, J = 13.0 Hz), 16.78, 16.05, 10.74, 10.44; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  36.38; HRMS (ESI): Exact mass calcd for C<sub>35</sub>H<sub>36</sub>N<sub>4</sub>O<sub>5</sub>P [M+H]<sup>+</sup>: 623.2418, Found: 623.2418.



Compound 7i was obtained in 81% yield as brown solid, Mp: 113-115 °C. IR (neat): 2964, 2876, 1769, 1394, 1241, 1040, 719 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% 'PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 8.07 min, t<sub>r</sub> (minor) = 18.36 min) gave the isomeric composition of the product: 94% ee.  $[\alpha]_D^{28} = -38.6$  (c = 1.00, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.67 (d, J = 13.2 Hz, 1H), 7.94 (s, 1H), 7.84-7.79 (m, 3H), 7.72-7.69 (m, 2H), 7.09 (d, J = 2.0 Hz, 1H), 7.03 (d, J = 2.0 Hz, 1H), 4.49-4.34 (m, 2H), 4.32-4.27 (m, 1H), 4.12-4.01 (m, 3H), 3.74 (t, J = 8.0 Hz, 2H), 3.37 (s, 1H), 2.11-2.02 (m, 2H), 2.00-1.86 (m, 6H), 1.78-1.71 (m, 2H), 1.39-1.26 (m, 4H), 1.11 (t, J = 8.0 Hz, 6H), 0.79 (t, J = 8.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.31, 164.09, 158.79 (d, J = 2.0 Hz), 143.21 (d, J = 20.0 Hz), 142.14, 141.38 (d, J = 21.0 Hz), 134.45 (d, J = 10.0 Hz), 131.90, 128.14 (d, J = 11.0 Hz), 124.64 (d, J = 56.0 Hz), 123.59 (d, J = 54.0 Hz), 123.24, 112.82 (d, J = 12.0 Hz), 112.42 (d, J = 13.0 Hz), 104.31 (d, J = 10.0 Hz), 104.00 (d, J = 10.0 Hz), 82.84, 79.28, 70.43, 49.40, 36.86, 29.96 (d, J = 71.0 Hz), 27.56, 25.57, 24.18, 24.15, 23.90 (d, J = 16.0 Hz), 22.49 (d, J = 14.0 Hz), 13.42, 10.84, 10.53; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  41.41; HRMS (ESI): Exact mass calcd for C<sub>38</sub>H<sub>41</sub>N<sub>4</sub>NaO<sub>5</sub>P [M+Na]<sup>+</sup>: 687.2707, Found: 687.2703.



Compound **7j** was obtained in 80% yield as brown solid, Mp: 234-236 °C. IR (KBr): 3292, 2926, 1705, 1500, 1390, 1244, 1090, 719 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 12.44 min, t<sub>r</sub> (minor) = 26.40 min) gave the isomeric composition of the product: 96% ee.  $[\alpha]_D^{20} = -16.7$  (c = 0.71, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.55 (d, J = 10.0 Hz, 1H), 7.90 (s, 1H), 7.81-7.79 (m, 2H), 7.70-7.67 (m, 3H), 7.63-7.58 (m, 2H), 7.44-7.43 (m, 1H), 7.36-7.33 (m, 2H), 7.18 (d, J = 2.4 Hz, 1H), 7.11 (d, J = 2.0 Hz, 1H), 4.46-4.30 (m, 3H), 4.16-4.04 (m, 3H), 3.72 (t, J = 6.8 Hz, 2H), 3.31 (s, 1H), 2.00-1.88 (m, 6H), 1.73-1.69 (m, 2H), 1.13-1.09 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.23, 164.25,

158.78, 143.69 (d, J = 22.0 Hz), 141.98, 141.81 (d, J = 22.0 Hz), 134.76 (d, J = 11.0 Hz), 133.95, 131.84, 131.04 (d, J = 105.0 Hz), 130.98 (d, J = 11.0 Hz), 128.61, 128.48, 128.35, 125.40 (d, J = 51.0 Hz), 124.28 (d, J = 50.0 Hz), 123.21, 123.17, 120.94 (d, J = 13.0 Hz), 112.66 (d, J = 13.0 Hz), 104.50 (d, J = 11.0 Hz), 104.04 (d, J = 11.0 Hz), 82.79, 79.17, 70.46, 70.40, 49.28, 36.78, 27.48, 25.47, 22.51, 22.38, 10.83, 10.53; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 30.93; HRMS (ESI): Exact mass calcd for C<sub>40</sub>H<sub>38</sub>N<sub>4</sub>O<sub>5</sub>P [M+H]<sup>+</sup>: 685.2574, Found: 685.2574.



Compound 7k was obtained in 79% yield as brown solid, Mp: 176-178 °C. IR (KBr): 3284, 2926, 1703, 1487, 1244, 1050, 719 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% 'PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 13.75 min, t<sub>r</sub> (minor) = 32.22 min) gave the isomeric composition of the product: 93% ee.  $[\alpha]_D^{20} = -21.2$  (c = 0.55,

CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.45 (d, J = 10.0 Hz, 1H), 7.79-7.75 (m, 3H), 7.65-7.53 (m, 5H), 7.40-7.38 (m, 1H), 7.32-7.29 (m, 2H), 7.09 (s, 1H), 7.01 (s, 1H), 4.48-4.34 (m, 2H), 4.27-4.06 (m, 4H), 3.72-3.65 (m, 2H), 3.32 (s, 1H), 1.89-1.86 (m, 2H), 1.69-1.66 (m, 2H), 1.54 (t, J = 6.8 Hz, 3H), 1.46 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.18, 164.00, 158.78, 143.62 (d, J = 22.0 Hz), 141.86, 141.67 (d, J = 22.0 Hz), 134.56 (d, J = 11.0 Hz), 133.89, 131.83, 131.78, 131.02 (d, J = 105.0 Hz), 130.90 (d, J = 11.0 Hz), 128.50 (d, J = 22.0 Hz), 127.99 (d, J = 12.0 Hz), 125.10 (d, J = 40.0 Hz), 123.99 (d, J = 38.0 Hz), 123.25, 123.11, 120.70 (d, J = 12.0 Hz), 112.42 (d, J = 13.0 Hz), 104.56 (d, J = 10.0 Hz), 104.00 (d, J = 11.0 Hz), 82.77, 79.28, 64.61, 64.53, 49.17, 36.73, 27.44, 25.41, 14.66, 14.46; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  30.99; HRMS (ESI): Exact mass calcd for C<sub>38</sub>H<sub>34</sub>N<sub>4</sub>O<sub>5</sub>P [M+H]<sup>+</sup>: 657.2261, Found: 657.2260.



Compound **71** was obtained in 71% yield as brown solid, Mp: 184-186 °C. IR (KBr): 3290, 2966, 2119, 1709, 1591, 1415, 1187, 721 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 10.16 min, t<sub>r</sub> (minor) = 16.12 min) gave the isomeric composition of the product: 96% ee.  $[\alpha]_D^{20} = -14.0$  (c = 0.58,

CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.56 (d, J = 10.0 Hz, 1H), 7.92 (s, 1H), 7.82-7.80 (m, 2H), 7.70-7.68 (m, 3H), 7.64-7.59 (m, 2H), 7.46-7.43 (m, 1H), 7.36-7.33 (m, 2H), 7.21 (d, J = 2.0 Hz, 1H), 7.13 (s, 1H), 4.47-4.32 (m, 3H), 4.22-4.10 (m, 3H), 3.72 (t, J = 6.8 Hz, 2H), 3.31 (s, 1H), 1.97-1.85

(m, 6H), 1.75-1.67 (m, 2H), 1.62-1.53 (m, 4H), 1.05-0.99 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.24, 164.29, 159.01, 143.72 (d, J = 22.0 Hz), 142.01, 141.76, 134.84 (d, J = 11.0 Hz), 133.96, 131.86, 131.02 (d, J = 105.0 Hz), 131.01 (d, J = 11.0 Hz), 128.56, 125.48 (d, J = 56.0 Hz), 124.36 (d, J = 55.0 Hz), 123.24, 123.18, 121.02 (d, J = 13.0 Hz), 112.72 (d, J = 13.0 Hz), 104.52 (d, J = 11.0 Hz), 104.06 (d, J = 11.0 Hz), 82.80, 79.21, 68.74, 68.58, 49.32, 36.82, 31.13, 31.02, 27.49, 25.48, 19.36, 19.15, 13.86, 13.85; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  30.89; HRMS (ESI): Exact mass calcd for C<sub>42</sub>H<sub>42</sub>N<sub>4</sub>O<sub>5</sub>P [M+H]<sup>+</sup>: 713.2887, Found: 713.2887.



Compound **7m** was obtained in 75% yield as brown solid, Mp: 270-272 °C. IR (KBr): 3293, 2964, 1592, 1462, 1242, 1046, 663 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 6.85 min, t<sub>r</sub> (minor) = 13.35 min) gave the isomeric composition of the product: 93% ee.  $[\alpha]_D^{20} = +5.50$  (c = 0.7, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.50 (d, J = 10.6 Hz, 1H), 7.76 (s, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.51-7.46 (m, 2H), 7.18-7.14 (m, 6H), 7.11 (s, 1H), 7.03 (s, 1H), 5.46 (AB, J = 14.4 Hz, 1H), 5.30 (AB, J = 10.4 Hz, 1H), 4.36-4.31 (m, 1H), 4.12-4.06 (m, 1H), 4.03-3.97 (m, 2H), 3.29 (s, 1H), 2.32 (s, 6H), 1.91-1.80 (m, 4H), 1.10 (t, J = 7.6 Hz, 3H), 0.96 (t, J = 7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.15 (d, J = 1.0 Hz), 158.90 (d, J = 2.0 Hz), 143.59 (d, J = 22.0 Hz), 142.36 (d, J = 3.0 Hz), 142.18, 141.73 (d, J = 22.0 Hz), 138.43, 134.62 (d, J = 10.0 Hz), 131.56, 130.98 (d, J = 11.0 Hz), 129.60, 129.30 (d, J = 12.0 Hz), 112.62 (d, J = 13.0 Hz), 104.48 (d, J = 11.0 Hz), 104.04 (d, J = 11.0 Hz), 82.65, 79.25, 70.37, 53.62, 22.41, 22.38, 21.44, 21.01, 10.77, 10.50; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.07; HRMS (ESI): Exact mass calcd for C<sub>37</sub>H<sub>37</sub>N<sub>3</sub>O<sub>3</sub>P [M+H]<sup>+</sup>: 602.2567, Found: 602.2567.



Compound **7n** was obtained in 70% yield as brown solid, Mp: 264-266 °C. IR (KBr): 3800, 2964, 1592, 1461, 1242, 1047, 693, 523 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% 'PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 6.88 min, t<sub>r</sub> (minor) = 14.41 min) gave the isomeric composition of the product: 93% ee.  $[\alpha]_D^{20} = + 0.8$  (c = 0.94, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.49 (d, J = 10.0 Hz, 1H), 7.79 (s, 1H), 7.64 (d, J = 9.2 Hz, 1H), 7.50-7.44 (m, 2H), 7.36-7.30 (m, 3H), 7.29-7.24 (m, 2H), 7.14-7.11 (m, 3H), 7.03 (s, 1H), 5.50 (AB, J

= 14.4 Hz, 1H), 5.35 (AB, J = 14.4 Hz, 1H), 4.34-4.29 (m, 1H), 4.08-4.05 (m, 1H), 4.02-3.97 (m, 2H), 3.28 (s, 1H), 2.30 (s, 3H), 1.89-1.78 (m, 4H), 1.08 (t, J = 7.6 Hz, 3H), 0.95 (t, J = 7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.17, 158.93, 143.58 (d, J = 22.0 Hz), 142.39, 142.27, 141.78 (d, J = 12.0 Hz), 134.66, 134.59, 130.98 (d, J = 11.0 Hz), 129.30 (d, J = 13.0 Hz), 128.95, 128.54, 128.20 (d, J = 11.0 Hz), 128.05, 127.13, 125.60 (d, J = 50.0 Hz), 124.49 (d, J = 48.0 Hz), 123.38, 120.82 (d, J = 12.0 Hz), 112.64 (d, J = 13.0 Hz), 104.52 (d, J = 10.0 Hz), 104.07 (d, J = 10.0 Hz), 82.67, 79.25, 70.40, 70.38, 53.83, 22.40, 22.36, 21.43, 10.76, 10.47; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.14; HRMS (ESI): Exact mass calcd for C<sub>36</sub>H<sub>35</sub>N<sub>3</sub>O<sub>3</sub>P [M+H]<sup>+</sup>: 588.2411, Found: 588.2414.



Compound **70** was obtained in 77% yield as brown solid, Mp: 258-260 °C. IR (KBr): 3287, 2966, 1592, 1463, 1241, 1047, 660, 528 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 7.49 min, t<sub>r</sub> (minor) = 14.39 min) gave the isomeric composition of the product: 96% ee.  $[\alpha]_D^{20} = -2.30$  (c = 0.60, CHCl<sub>3</sub>).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.48 (d, J = 10.0 Hz, 1H), 7.80 (s, 1H), 7.66 (d, J = 10.6 Hz, 1H), 7.50-7.44 (m, 2H), 7.32-7.30 (m, 2H), 7.20-7.18 (m, 2H), 7.15-7.11 (m, 3H), 7.03 (d, J = 2.0 Hz, 1H), 5.47 (AB, J = 14.8 Hz, 1H), 5.36 (AB, J = 14.8 Hz, 1H), 4.36-4.31 (m, 1H), 4.09-3.97 (m, 3H), 3.29 (s, 1H), 2.32 (s, 3H), 1.91-1.82 (m, 4H), 1.09 (t, J = 7.6 Hz, 3H), 0.98 (t, J = 7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.23 (d, J = 2.0 Hz), 158.97 (d, J = 2.0 Hz), 143.60 (d, J = 22.0 Hz), 142.48 (d, J = 3.0 Hz), 141.89 (d, J = 22.0 Hz), 134.78 (d, J = 11.0 Hz), 134.65, 133.22, 131.04 (d, J = 11.0 Hz), 129.42, 129.30, 129.19, 128.36 (d, J = 12.0 Hz), 127.61 (d, J = 108.0 Hz), 125.82 (d, J = 51.0 Hz), 124.70 (d, J = 50.0 Hz), 123.34, 120.76 (d, J = 12.0 Hz), 112.76 (d, J = 13.0 Hz), 104.50 (d, J = 11.0 Hz), 104.08 (d, J = 11.0 Hz), 82.75, 79.23, 70.46, 53.12, 22.50, 22.41, 21.49, 10.77, 10.50; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.15; HRMS (ESI): Exact mass calcd for C<sub>36</sub>H<sub>34</sub><sup>35</sup>ClN<sub>3</sub>O<sub>3</sub>P [M+H]<sup>+</sup>: 622.2021, Found: 622.2021.



Compound **7p** was obtained in 70% yield as brown solid, Mp: 258-260 °C. IR (KBr): 3300, 2966, 2932, 1602, 1463, 1242, 1067, 661 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 6.18 min, t<sub>r</sub> (minor) = 10.01 min) gave the isomeric composition of the product: 95% ee.  $[\alpha]_D^{20} = -4.10$  (c =

0.58, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.49-8.47 (m, 1H), 7.85 (s, 1H), 7.67 (d, J = 9.6 Hz, 1H), 7.61-7.59 (m, 2H), 7.50-7.45 (m, 2H), 7.37-7.35 (m, 2H), 7.15-7.12 (m, 3H), 7.04 (s, 1H), 5.58 (AB, J = 15.2 Hz, 1H), 5.48 (AB, J = 15.2 Hz, 1H), 4.36-4.30 (m, 1H), 4.06-4.00 (m, 3H), 3.30 (s, 1H), 2.32 (s, 3H), 1.91-1.79 (m, 4H), 1.08 (t, J = 7.6 Hz, 3H), 0.95 (t, J = 7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.23 (d, J = 1.0 Hz), 158.98 (d, J = 2.0 Hz), 143.58 (d, J = 22.0 Hz), 142.54, 141.95 (d, J = 22.0 Hz), 138.68, 134.78 (d, J = 11.0 Hz), 131.02 (d, J = 12.0 Hz), 129.52 (q, J = 227.0 Hz), 129.38 (d, J = 12.0 Hz), 128.25, 128.01, 126.93, 125.96 (q, J = 3.0 Hz), 125.27 (d, J = 38.0 Hz), 124.61 (d, J = 50.0 Hz), 123.52, 120.60 (d, J = 12.0 Hz), 112.74 (d, J = 13.0 Hz), 104.50 (d, J = 11.0 Hz), 104.06 (d, J = 11.0 Hz), 82.82, 79.18, 70.46, 53.20, 22.44, 22.38, 21.50, 10.70, 10.50; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.16; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -62.79; HRMS (ESI): Exact mass calcd for C<sub>37</sub>H<sub>34</sub>F<sub>3</sub>N<sub>3</sub>O<sub>3</sub>P [M+H]<sup>+</sup>: 656.2284, Found: 656.2284.



Compound **7q** was obtained in 71% yield, Mp: 224-226 °C. IR (KBr): 3290, 2963, 1593, 1460, 1241, 1046 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 5.46 min, t<sub>r</sub> (minor) = 8.02 min) gave the isomeric composition of the product: 97% ee.  $[\alpha]_D^{20} = +$  10.60 (c = 0.50, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>+DMSO-d<sub>6</sub>):  $\delta$  9.48 (s, 1H), 8.34-8.31 (m, 1H), 8.17 (s, 1H), 7.86-7.82 (m, 2H), 7.62-7.59 (m, 1H), 7.46-7.41 (m, 2H), 7.25-7.19 (m, 4H), 6.77-6.75 (m, 2H), 5.52 (s, 2H), 4.29-4.21 (m, 5H), 2.30 (s, 3H), 1.90-1.81 (m, 4H), 1.06 (t, J = 7.2 Hz, 3H), 0.99 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>+DMSO-d<sub>6</sub>):  $\delta$  163.93, 158.80, 157.43, 142.48 (d, J = 21.0 Hz), 142.16, 141.68 (d, J = 22.0 Hz), 141.01, 133.75 (d, J = 12.0 Hz), 130.44 (d, J = 11.0 Hz), 129.58, 129.36 (d, J = 13.0 Hz), 128.08 (d, J = 106.0 Hz), 126.84 (d, J = 11.0 Hz), 125.58, 125.52 (d, J = 63.0 Hz), 124.40 (d, J = 59.0 Hz), 123.47, 120.64 (d, J = 12.0 Hz), 115.83, 112.20 (d, J = 13.0 Hz), 106.44, 105.92 (d, J = 11.0 Hz), 85.63, 79.11, 70.55, 70.23, 52.65, 21.94, 21.90, 21.00, 10.64, 10.36; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>+DMSO-d<sub>6</sub>):  $\delta$  29.43; HRMS (ESI): Exact mass calcd for C<sub>36</sub>H<sub>35</sub>N<sub>3</sub>O<sub>4</sub>P [M+H]<sup>+</sup>: 604.2360, Found: 604.2360.



Compound **7r** was obtained in 76% yield as brown solid, Mp: 236-238 °C. IR (KBr): 3290, 2964, 2935, 1593, 1430, 1298, 1064, 809, 661, 522 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 9.44 min, t<sub>r</sub> (minor) = 15.47 min) gave the isomeric composition of the product:

94% ee.  $[\alpha]p^{20} = +8.40$  (c = 0.53, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.56 (s, br, 1H), 7.85 (s, 1H), 7.69 (s, 1H), 7.52 (s, br, 2H), 7.17-7.15 (m, 3H), 7.09 (s, 1H), 6.40 (s, 3H), 5.45 (AB, *J* = 14.8 Hz, 1H), 5.32 (AB, *J* = 14.8 Hz, 1H), 4.33-4.28 (m, 1H), 4.15-4.03 (m, 3H), 3.74 (s, 6H), 3.29 (s, 1H), 2.33 (s, 3H), 1.92-1.83 (m, 4H), 1.10 (t, *J* = 7.6 Hz, 3H), 0.99 (t, *J* = 7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  164.22, 161.26, 158.98, 143.63 (d, *J* = 22.0 Hz), 142.40 (d, *J* = 12.0 Hz), 141.88 (d, *J* = 22.0 Hz), 136.73, 134.79 (d, *J* = 10.0 Hz), 131.07 (d, *J* = 10.0 Hz), 129.36 (d, *J* = 13.0 Hz), 128.42 (d, *J* = 11.0 Hz), 127.69 (d, *J* = 109.0 Hz), 125.76 (d, *J* = 54.0 Hz), 124.64 (d, *J* = 53.0 Hz), 123.36, 120.94 (d, *J* = 12.0 Hz), 112.76 (d, *J* = 13.0 Hz), 106.07, 104.49 (d, *J* = 10.0 Hz), 104.09 (d, *J* = 10.0 Hz), 100.47, 82.74, 79.24, 70.45, 55.34, 53.98, 22.49, 22.42, 21.48, 10.73, 10.52; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.20; HRMS (ESI): Exact mass calcd for C<sub>38</sub>H<sub>39</sub>N<sub>3</sub>O<sub>5</sub>P [M+H]<sup>+</sup>: 648.2622, Found: 648.2621.



Compound **7s** was obtained in 74% yield as brown solid, Mp: 248-250 °C. IR (KBr): 3290, 2962, 2926, 1592, 1460, 1285, 1045, 1209, 665, 522 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 9.26 min,  $t_r$  (minor) = 13.77 min) gave the isomeric composition of the product: 92% ee.

[α] $_{D}^{20}$  = - 8.0 (c = 0.53, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.53 (d, *J* = 10.0 Hz, 1H), 7.97-7.94 (m, 1H), 7.89-7.85 (m, 2H), 7.70 (s, 1H), 7.66 (d, *J* = 9.6 Hz, 1H), 7.50-7.44 (m, 6H), 7.15-7.12 (m, 2H), 7.05-7.02 (m, 2H), 6.04 (AB, *J* = 14.8 Hz, 1H), 5.81 (AB, *J* = 14.8 Hz, 1H), 4.19-4.14 (m, 1H), 4.10-3.98 (m, 2H), 3.90-3.85 (m, 1H), 3.27 (s, 1H), 2.32 (s, 3H), 1.92-1.83 (m, 2H), 1.57-1.50 (m, 2H), 1.08 (t, *J* = 7.6 Hz, 3H), 0.72 (t, *J* = 7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 164.19, 158.92 (d, *J* = 2.0 Hz), 143.61 (d, *J* = 22.0 Hz), 142.44 (d, *J* = 3.0 Hz), 142.19, 141.79 (d, *J* = 22.0 Hz), 134.86 (d, *J* = 11.0 Hz), 133.90, 131.15, 131.04 (d, *J* = 11.0 Hz), 129.90 (d, *J* = 7.0 Hz), 129.36 (d, *J* = 13.0 Hz), 128.80, 128.40 (d, *J* = 11.0 Hz), 128.16, 127.93, 127.09, 126.27, 125.89 (d, *J* = 54.0 Hz), 125.31, 124.78 (d, *J* = 52.0 Hz), 123.38, 122.85, 120.98 (d, *J* = 13.0 Hz), 112.76 (d, *J* = 13.0 Hz), 104.30 (d, *J* 

= 11.0 Hz), 104.00 (d, J = 11.0 Hz), 82.72, 79.21, 70.45, 70.31, 51.96, 22.42, 22.27, 21.49, 10.59, 10.50; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.13; HRMS (ESI): Exact mass calcd for C<sub>40</sub>H<sub>37</sub>N<sub>3</sub>O<sub>3</sub>P [M+H]<sup>+</sup>: 638.2567, Found: 638.2566.



Compound 7t was obtained in 65% yield as brown solid, Mp: 196-198 °C. IR (KBr): 3287, 2963, 2932, 1781, 1592, 1461, 1244, 1046 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% 'PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 8.66 min,  $t_r$  (minor) = 19.69 min) gave the isomeric

composition of the product: 93% ee.  $[\alpha]_D^{20} = -4.20$  (c = 1.00, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 8.59 (d, J = 10.0 Hz, 1H), 8.08 (s, 1H), 7.66 (d, J = 9.2 Hz, 1H), 7.52-7.47 (m, 2H), 7.36-7.31 (m, 5H), 7.17-7.12 (m, 4H), 5.26-5.20 (m, 2H), 5.17 (s, 2H), 4.29-4.20 (m, 2H), 4.10-4.07 (m, 2H), 3.30 (s, 1H), 2.33 (s, 3H), 1.94-1.83 (m, 4H), 1.13 (t, J = 7.6 Hz, 3H), 1.08 (t, J = 7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  166.41, 164.15, 158.99, 143.54 (d, J = 12.0 Hz), 142.47, 142.03 (d, J = 22.0 Hz), 134.58 (d, J = 11.0 Hz), 134.42, 131.02 (d, J = 11.0 Hz), 129.34 (d, J = 13.0 Hz), 128.75, 128.66, 128.50, 128.24 (d, J = 10.0 Hz), 126.48 (d, J = 113.0 Hz), 124.77, 124.63 (d, J = 11.0 Hz), 120.52 (d, J = 12.0 Hz), 112.64 (d, J = 13.0 Hz), 104.44 (d, J = 11.0 Hz), 104.23 (d, J = 11.0 Hz), 82.74, 79.28, 70.46, 70.34, 67.87, 50.63, 22.43, 22.34, 21.50, 10.81, 10.61; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.12; HRMS (ESI): Exact mass calcd for C<sub>38</sub>H<sub>37</sub>N<sub>3</sub>O<sub>5</sub>P [M+H]<sup>+</sup>: 646.2465, Found: 646.2465.



Compound **26** was obtained in 55% yield, Mp: 238-240 °C. IR (KBr): 3286, 2974, 1506, 1433, 1265, 1188, 1095, 987cm<sup>-1</sup>. HPLC analysis (Chiralcel OD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 16.17 min, t<sub>r</sub> (minor) = 19.24 min) gave the isomeric composition of the product: 10% ee.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.53 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.90-7.87 (m, 3H), 7.72 (s, 1H), 7.69-7.62 (m, 4H), 7.57-7.55 (m, 2H), 7.50 (t, J = 7.2 Hz, 1H), 7.45-7.36 (m, 2H), 7.33-7.26 (m, 1H), 7.21-7.17 (m, 4H), 5.53 (s, 2H), 3.20 (s, 1H), 2.35 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  146.91, 138.85, 134.33 (d, J =3.0 Hz), 133.93 (d, J = 9.0 Hz), 133.83, 133.64 (d, J = 25.0 Hz), 133.57 (d, J = 2.0 Hz), 133.22 (d, J = 84.0 Hz), 132.58 (d, J = 10.0 Hz), 132.20 (d, J = 12.0 Hz), 131.95 (d, J = 10.0 Hz), 131.74 (d, J =104.0 Hz), 131.43, 129.86, 128.90, 128.38 (d, J = 103.0 Hz), 128.15, 127.50, 127.40 (d, J = 6.0 Hz), 126.65, 125.93 (d, J = 3.0 Hz), 125.79 (d, J = 12.0 Hz), 124.22 (d, J = 14.0 Hz), 120.46, 82.66, 79.97, 54.13, 21.17; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  31.51; HRMS (EI): Exact mass calcd for C<sub>34</sub>H<sub>26</sub>N<sub>3</sub>OP: 523.1814, Found: 523.1823.

## 8. Diversifying reactions of optically active P-chiral ethynylphosphine oxides.

# 8.1 The synthesis of compounds 8-9, and 11-14



**Gram-scale synthesis of 3a**: To a 100 mL Schlenk bottle was added  $L_6$  (221 mg, 0.42 mmol) and CuBr (50 mg, 0.35 mmol), followed by the addition of 50 mL anhydrous CH<sub>3</sub>CN. The solution was stirred at 25 °C for 2 h, and then diethynylphosphine oxides **1a** (784 mg, 3.5 mmol) was added. After the mixture was cooled to -20 °C for 0.5 h, azide **2a** (515 mg, 3.5 mmol) was diluted in 10 mL anhydrous MeCN and added dropwise by syringe pump for 8 h. The resulting mixture was stirred at -20 °C for 96 h till full conversion of **2a** by TLC analysis. A portion of the combined homogenous solution was used to determine the **3a/3a'** ratio by <sup>1</sup>H NMR analysis. After removing the solvent under reduced pressure, the sample for NMR analysis and the rest mixture was used for column chromatography purification using CH<sub>2</sub>Cl<sub>2</sub>/EtOAc (2:1, v/v) as the eluent, giving 1.03 g of monotriazole **3a** in 79% yield and 95% ee.



To an oven-dried Schlenk tube was successively added **3a** (371 mg, 1.0 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (115.6 mg, 0.1 mmol), CuI (19.0 mg, 0.1 mmol), Et<sub>3</sub>N (1.01 g, 10.0 mmol) and anhydrous DMF (6.0 mL), followed by the addition of iodobenzene (306 mg, 1.5 mmol). The resulting mixture was stirred at 50 °C for 4 h. After full consumption of **3a** by TLC analysis, EtOAc (40 mL) was added and the organic layer was washed with H<sub>2</sub>O and brine (3 × 30 mL) and then dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After concentration, the residue was purified by column chromatography on silica gel using CH<sub>2</sub>Cl<sub>2</sub>/EtOAc (2:1, v/v) as the eluent, affording product **8** as white solid in 80% yield, Mp: 185-187 °C. IR (neat): 2987, 2171, 1589, 1488, 1335, 1147, 1024, 984, 801, 756 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 20% <sup>4</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 44.20 min, t<sub>r</sub> (minor) = 26.10 min) gave the isomeric composition of the product: 95% ee.  $[\alpha]_D^{25} = + 3.5$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.77 (d, *J* = 7.6 Hz, 1H), 8.42-8.36 (m, 1H), 8.07-8.05 (m, 2H), 7.96-7.89 (m, 1H), 7.60-7.51 (m, 5H),

7.46-7.40 (m, 1H), 7.35-7.31 (m, 2H), 7.20-7.13 (m, 4H), 5.50 (q, J = 14.6 Hz, 2H), 2.34 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.59 (d, J = 161.0 Hz), 139.13, 134.03 (d, J = 3.0 Hz), 133.75 (d, J = 11.0 Hz), 133.10 (d, J = 11.0 Hz), 132.67 (d, J = 2.0 Hz), 132.53 (d, J = 11.0 Hz), 132.10 (d, J = 10.0 Hz), 130.75, 130.55, 130.04 (d, J = 29.0 Hz), 129.94, 129.02 (d, J = 2.0 Hz), 128.47 (d, J = 3.0 Hz), 127.46 (d, J = 127.0 Hz), 127.40, 126.53, 126.28 (d, J = 7.0 Hz), 124.73 (d, J = 16.0 Hz), 119.87 (d, J = 5.0 Hz), 106.03 (d, J = 34.0 Hz), 82.93 (d, J = 184.0 Hz), 54.20, 21.16; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  -4.08; HRMS (EI): Exact mass calcd for C<sub>28</sub>H<sub>22</sub>N<sub>3</sub>OP: 447.1501, Found: 447.1507.



To an oven-dried 25 mL Schlenk tube was added 8 (134.1 mg, 0.3 mmol), Ph<sub>3</sub>P (157.2 mg, 0.6 mmol), toluene/THF 6.0 mL (1/1, v/v). After the solution was stirred for 5 min, HSiCl<sub>3</sub> (1.2 mL, 40 equivs) was added, and the resulting mixture was stirred at 25 °C for 24 h. After full consumption of 8 by TLC analysis, the mixture was diluted with 20 mL cold Et<sub>2</sub>O and transferred to a 250 mL flask. After the mixture was stirred at 0 °C for 10 min, ice (10 g) was added in one-portion, followed by the dropwise addition of 10 mL NaOH solution (20%, aq). The mixture was transferred to a separating funnel. The organic layer was separated, and the aqueous phase was extracted with cold Et<sub>2</sub>O ( $3 \times 20$ mL). The combined organic phase was washed successively with cold saturated brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by a short pad of silica gel which was cooled at 0 °C using cold PE/EtOAc (10:1, v/v, cooled at -20 °C for 30 min) as the eluent to afford the P-chiral phosphine 9 in 81% yield (104.7 mg) as white solid. Mp: 50-53 °C; IR (neat): 3107, 2948, 2162, 1591, 1503, 1486, 1357, 1205, 1046, 969, 841,755 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 20% 'PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 10.29 min,  $t_r$  (minor) = 11.84 min) gave the isomeric composition of the product: 95% ee.  $[\alpha]_D^{25} = +18.88$  (c = 0.8, CHCl<sub>3</sub>); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.56-8.52 (m, 1H), 8.14 (td, J = 7.2, 1.1 Hz, 1H), 7.89-7.84 (m, 2H), 7.55-7.48 (m, 6H), 7.34-7.32 (m, 3H), 7.15-7.07 (m, 4H), 5.48-5.37 (m, 2H), 2.33 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  143.29 (d, J = 4.0 Hz), 138.64, 134.27 (d, J = 23.0 Hz), 133.65 (d, J = 5.0 Hz), 131.88 (d, J = 2.0 Hz), 131.74, 131.54 (d, J = 30.0 Hz), 130.88 (d, J = 6.0 Hz), 129.73, 129.72 (d, J = 10.0 Hz) 135.0 Hz), 128.76 (d, J = 1.0 Hz), 128.33, 128.19, 128.04, 127.77 (d, J = 163.0 Hz), 126.48 (d, J = 2.0

Hz), 126.10 (d, J = 1.0 Hz), 125.81 (d, J = 22.0 Hz), 125.66, 122.61 (d, J = 1.0 Hz), 108.22 (d, J = 7.0 Hz), 83.93, 53.84, 21.14; <sup>31</sup>P NMR (122 MHz, CDCl<sub>3</sub>):  $\delta$  -65.59; HRMS (EI): Exact mass calcd for C<sub>28</sub>H<sub>22</sub>N<sub>3</sub>P: 431.1551, Found: 431.1545.



To an oven-dried 25 mL Schlenk tube was added 9 (64.7 mg, 0.15 mmol), 10 (84.0 mg, 0.75 mmol), H<sub>2</sub>O (8.1 mg, 0.45 mmol), toluene (1.5 mL). The solution was stirred for 36 h at room temperature. After full consumption of 9 by TLC analysis, EtOAc (10 mL) was added and the organic layer was washed with 10 mL brine and then dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After concentration, the residue was purified by silica gel column chromatography using PE/EtOAc/CH<sub>2</sub>Cl<sub>2</sub> (2:1:1, v/v/v) as the eluent, affording product 11 as sticky oil in 85% yield; IR (neat): 3457, 2979, 2173, 1731, 1506, 1488, 1443, 1367, 1329, 1187, 1027, 985, 846, 802, 774, 758 cm<sup>-1</sup>; HPLC analysis (Chiralcel OD-H, 20% 'PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 9.12 min,  $t_r$  (minor) = 10.19 min) gave the isomeric composition of the product: 95% ee.  $[\alpha]_D^{25} = -21.8$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.66 (d, J = 8.3 Hz, 1H), 8.38 (dd, J = 17.8, 7.0 Hz, 1H), 8.07 (d, J = 8.1 Hz, 1H), 7.92 (d, J= 7.8 Hz, 1H), 7.61-7.54 (m, 5H), 7.47-7.44 (m, 1H), 7.40-7.36 (m, 2H), 6.49 (d, J = 21.8 Hz, 1H), 6.24 (d, J = 42.7 Hz, 1H), 3.87-3.73 (m, 2H), 3.29 (d, J = 13.3 Hz, 2H), 1.01 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  169.56 (d, J = 7.0 Hz), 136.73 (d, J = 110.0 Hz), 133.95 (d, J = 3.0 Hz), 133.69 (d, J = 11.0 Hz), 133.61 (d, J = 10.0 Hz), 132.84 (d, J = 11.0 Hz), 132.74 (d, J = 8.0 Hz), 132.55 (d, J = 2.0 Hz), 130.81, 128.98 (d, J = 1.0 Hz), 128.61, 127.48, 126.65, 126.32 (d, J = 6.0 Hz), 125.94 (d, J = 119.0 Hz), 124.66 (d, J = 15.0 Hz), 119.86 (d, J = 4.0 Hz), 105.95 (d, J = 29.0 Hz), 81.84 (d, J = 170.0 Hz), 60.94, 36.63 (d, J = 15.0 Hz), 13.85; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  10.0; HRMS (EI): Exact mass calcd for C<sub>24</sub>H<sub>21</sub>O<sub>3</sub>P: 388.1228, Found: 388.1232.



To an oven-dried 25 mL of Schlenk tube was added **5a** (116.1 mg, 0.3 mmol), Ph<sub>3</sub>P (157.2 mg, 0.6 mmol), toluene/THF 6.0 mL (1/1, v/v). After the solution was stirred for 5 min, HSiCl<sub>3</sub> (1.2 mL,

40 equivs) was added, and the resulting mixture was stirred at 25 °C for 24 h. After full consumption of 5a by TLC analysis, the mixture was diluted with 20 mL of cold Et<sub>2</sub>O and transferred to a 250 mL flask. After the mixture was stirred at 0 °C for 10 min, ice (10 g) was added in one-portion, followed by the dropwise addition of 10 mL NaOH solution (20%, aq). The mixture was transferred to a separating funnel. The organic layer was separated, and the aqueous phase was extracted with cold Et<sub>2</sub>O ( $3 \times 20$  mL). The combined organic phase was washed successively with cold saturated brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by a short pad of silica gel which was cooled at 0 °C using cold PE/EtOAc (10:1, v/v, , cooled at -20 °C for 30 mins) as the eluent, to afford the P-stereogenic phosphine 12 in 84% yield (93.5 mg) as white solid. Mp: 62-63 °C; IR (neat): 2925, 2853, 2362, 1687, 1453, 1312, 1206, 1093, 1044, 909, 805, 742 cm<sup>-1</sup>; we failed to resolute the racemic compound of 12 by HPLC.  $[\alpha]_D^{25} = +23.0$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.39-7.35 (m, 2H), 7.33-7.27 (m, 3H), 7.24-7.20 (m, 2H), 7.17-7.14 (m, 3H), 7.11-7.07 (m, 3H), 7.04-7.01 (m, 1H), 5.46 (s, 2H), 2.36 (s, 3H), 2.33 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  144.32 (d, J = 4.0 Hz), 141.97 (d, J = 26.0 Hz), 138.61, 135.50 (d, J = 7.0 Hz), 134.83 (d, J = 8.0 Hz), 133.62 (d, J = 20.0 Hz), 132.78, 131.66, 130.17 (d, J = 5.0 Hz), 129.76, 129.44 (d, J = 2.0 Hz), 129.22 (d, J = 2.0 Hz), 128.95 (d, J = 7.0 Hz), 128.57 (d, J = 8.0 Hz), 127.89, 126.09,53.77, 21.30 (d, J = 3.0 Hz), 21.13; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ -39.75; HRMS (EI): Exact mass calcd for C<sub>23</sub>H<sub>22</sub>N<sub>3</sub>P: 371.1551, Found: 371.1549.

To an oven-dried 25 mL Schlenk tube was added **12** (55.7 mg, 0.15 mmol), **10** (84.0 mg, 0.75 mmol), H<sub>2</sub>O (8.1 mg, 0.45 mmol), toluene (1.5 mL). The solution was stirred for 36 h at room temperature. After full consumption of **12** by TLC analysis, EtOAc (10 mL) was added. The organic layer was washed with brine (10 mL) and then dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After concentration, the residue was purified by column chromatography on silica gel using PE/EtOAc/CH<sub>2</sub>Cl<sub>2</sub> (2:1:1, v/v) as the eluent, affording the desired product **13** as sticky oil in 88% yield; E/Z > 20:1; IR (neat): 3098, 2922, 2043, 1731, 1560, 1452, 1402, 1193, 1125, 803, 764 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 20% /PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 9.12 min, t<sub>r</sub> (minor) = 10.18 min) gave the isomeric composition of the product: 89% ee. [ $\alpha$ ] $n^{25}$  = -17.9 (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.70-7.65 (m, 2H), 7.59-7.56 (m, 1H), 7.53-7.43 (m, 3H), 7.32-7.29 (m, 1H), 7.23-7.17 (m, 2H), 6.38 (dd, *J* = 20.7, 1.5 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.52 (s, 3H), 2.33 (dd, *J* = 13.4, 1.4 Hz, 3H), 1.29 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  165.07 (d, *J* = 25.0 Hz), 149.37 (d, *J* = 87.0 Hz), 143.49 (d, *J* = 8.0 Hz), 132.92 (d, *J* = 13.0 Hz), 132.41 (d, *J* = 3.0 Hz), 132.22 (d, *J* = 3.0

Hz), 132.18 (d, J = 9.0 Hz), 131.88 (d, J = 10.0 Hz), 130.48 (d, J = 11.0 Hz), 130.38 (d, J = 102.0 Hz), 128.76 (d, J = 12.0 Hz), 128.35 (d, J = 102.0), 125.47 (d, J = 13.0 Hz), 60.67, 21.59 (d, J = 4.0 Hz), 15.72 (d, J = 8.0 Hz), 14.15; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  34.52; HRMS (EI): Exact mass calcd for C<sub>19</sub>H<sub>21</sub>O<sub>3</sub>P: 328.1228, Found: 328.1233.



To an oven-dried hydrogen autoclave, 13 (200 mg, 0.6 mmol), Pd/C (30 mg, 15.0 wt%), MeOH (6.0 mL) were successively added. Under 3.0 MPa pressure of hydrogen gas, the solution was stirred for 12 h at room temperature. After full consumption of 13 by TLC analysis, the residue was purified by column chromatography on silica gel using PE/EtOAc (1:2, v/v) as the eluent, affording the desired product 14 in 91% yield as white solid. <sup>1</sup>H NMR analysis revealed the dr value was 1.6:1. HPLC analysis (Chiralcel AS-H, 5% 'PrOH/hexane, 1.0 mL/min, 230 nm; major diastereomer: tr (major) = 16.55 min,  $t_r$  (minor) = 24.91 min; minor diasteroer:  $t_r$  (major) = 18.44 min,  $t_r$  (minor) = 30.15 min) gave the isomeric composition of major diasteromer: 89% ee, gave the isomeric composition of minor diasteromer: 89% ee. Recrystallization from PE/CH<sub>2</sub>Cl<sub>2</sub> by two times afforded the single crystal of the major diastereomer 14 to >20:1 dr and above 99% ee. HPLC analysis (Chiralcel AS-H, 5% <sup>i</sup>PrOH/hexane, 1.0 mL/min, 230 nm;  $t_r$  (major) = 14.94 min,  $t_r$  (minor) = 23.89 min) gave the isomeric composition of the major diastereomer 14: >99% ee.  $[\alpha]_D^{20} = -11.9$  (c = 0.36, CHCl<sub>3</sub>); IR (neat): 3691, 2976, 1724, 1591, 1436, 1371, 1284, 1170, 1051, 997, 721 cm<sup>-1</sup>; <sup>1</sup>H NMR for mixture diastereomer (500 MHz, CDCl<sub>3</sub>): δ 7.74-7.70 (m, 1.2H), 7.68-7.63 (m, 1.9H), 7.50-7.39 (m, 4.0H), 7.30 (t, *J* = 7.3 Hz, 1H), 7.22-7.15 (m, 1.1H), 4.16-4.01 (m, 2.1H), 3.13-3.05 (m, 1H), 2.91-2.86 (m, 0.23H), 2.56-2.48 (m, 1H), 2.44 (s, 2.6H), 2.43-2.34 (m, 1.2H), 1.34 (dd, J = 15.7, 7.0 Hz, 2.49H), 1.27 (t, J = 7.1 Hz, 0.8H), 1.21 (t, J = 7.1 Hz, 2.2H), 1.14 (dd, J = 15.7, 7.0 Hz, 0.54H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  171.63 (d, J = 17.5 Hz), 142.88 (d, J = 6.25 Hz), 131.95 (d, J = 11.25 Hz), 131.90 (d, {J = 1 93.75 Hz), 131.45, 131.14 (d, J = 2.5 Hz), 130.89 (d, J = 10.0 Hz), 130.76 (d, J = 8.75 Hz), 128.95 (d, J = 10.0 Hz), 130.76 (d, J = 10.0 Hz), 128.95 (d, J = 10.0 Hz), 130.76 (d, J = 10.0 Hz), 128.95 (d, J = 10.0 Hz), 130.76 (d, J = 10.0 Hz), 128.95 (d, J = 10.0 Hz), 130.76 (d, J = 10.0 Hz), 128.95 (d, J = 10.0 Hz), 130.76 (d, J = 10.0 Hz), 128.95 (d, J = 10.0 Hz), 130.76 (d, J = 10.0 Hz), 128.95 (d, J = 10.0 Hz), 130.76 (d, J = 10.0 Hz), 128.95 (d, J = 10.0 Hz), 130.76 (d, J = 10.0 Hz), 128.95 (d, J = 10.0 Hz), 130.76 (d, J = 10.0 Hz), 128.95 (d, J = 10.0 Hz), 130.76 (d, J = 10.0 Hz), 128.95 (d, J = 10.0 Hz), 130.76 (d, J = 10.0 Hz), 128.95 (d, J = 10.0 Hz), 130.76 (d, J = 10.0 Hz), 128.95 (d, J = 10.0 Hz), 128 *J* = 95.0 Hz), 128.16 (d, *J* = 11.25 Hz), 125.03 (d, *J* = 11.25 Hz), 60.42, 34.47, 28.14 (d, *J* = 73.75 Hz), 21.04 (d, J = 3.75 Hz), 13.72, 12.94 (d, J = 3.75 Hz); <sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>):  $\delta$  38.24; HRMS (ESI): Exact mass calcd for C<sub>19</sub>H<sub>23</sub>NaO<sub>3</sub>P[M+Na]<sup>+</sup>: 353.1277, Found: 353.1283.

# 8.2 The synthesis of P-chiral tertiary phosphines 16 and their application



General procedure for the synthesis of 15: To an oven-dried 25 mL Schlenk tube was successively added 4 (0.3 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (34.68 mg, 0.03 mmol), CuI (5.7 mg, 0.03 mmol), Et<sub>3</sub>N (303 mg, 3.0 mmol) and anhydrous DMF (3.0 mL), followed by the addition of Ar'I (0.45 mmol). The resulting mixture was stirred at 50 °C for 4 h. After the full consumption of 4 by TLC analysis, EtOAc (20 mL) was added and the organic layer was washed with H<sub>2</sub>O and brine ( $3 \times 20$  mL) and then dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After concentration, the residue was purified by column chromatography on silica gel using PE/EtOAc (2:1, v/v) as the eluent, affording the desired products 15 as white solid.

General procedure for the synthesis of 16: To an oven-dried 10 mL of sealing tube was added 15 (0.2 mmol), Ph<sub>3</sub>P (104.8 mg, 0.4 mmol), Toluene/THF 6.0 mL (1/1, v/v). After the solution was stirred for 5 min, HSiCl<sub>3</sub> (0.8 mL, 40 equivs) was added, and the resulting mixture was stirred at 70 °C for 1.0-2.5 h. After full consumption of 15 by TLC analysis, the mixture was diluted with 20 mL of cold Et<sub>2</sub>O and transferred to a 250 mL flask. After the mixture was stirred at 0 °C for 10 min, ice (10 g) was added in one-portion, followed by the dropwise addition of 10 mL NaOH solution (20%, aq). The mixture was transferred to a separating funnel. The organic layer was separated, and the aqueous phase was extracted with cold Et<sub>2</sub>O (3 × 20 mL). The combined organic phase was washed successively with cold saturated brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by a short pad of silica gel which was cooled at 0 °C using cold PE/EtOAc (10:1, v/v, cooled at -20 °C for 30 min) as the eluent, to afford the desired P-stereogenic phosphines 16.



The reaction afforded **15a** in 86% yield as white solid, Mp: 180-182 °C. IR (neat): 3057, 2976, 2166, 1587, 1436, 1336, 1274, 1192, 1051, 883, 771 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 5% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 75.29 min, t<sub>r</sub> (minor) = 78.57 min) gave the isomeric composition of the product:

95% ee.  $[\alpha]D^{20} = -9.3$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.23 (d, J = 7.9 Hz, 1H), 8.10 (dd, J = 15.8, 7.6 Hz, 1H), 7.95-7.85 (m, 4H), 7.60-7.43 (m, 7H), 7.36 (t, J = 6.7 Hz, 1H), 7.29-7.26 (m, 2H), 2.53 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  141.91 (d, J = 10.0 Hz), 133.33, 133.20 (d, J = 10.0 Hz), 133.34, 134.20 (d, J = 10.0 Hz), 133.34, 134.20 (d, J = 10.0 Hz), 1

117.5 Hz), 132.97 (d, J = 3.75 Hz), 132.89, 132.74 (d, J = 2.5 Hz), 132.54 (d, J = 1.25 Hz), 132.34 (d, J = 2.5 Hz), 131.85 (d, J = 12.5 Hz), 131.38, 131.06 (d, J = 11.25 Hz), 130.23 (d, J = 120.0 Hz), 128.84 (d, J = 13.75 Hz), 128.63, 127.77, 126.99, 125.81 (d, J = 13.75 Hz), 125.63, 125.11, 117.51 (d, J = 3.75 Hz), 104.14 (d, J = 30.0 Hz), 87.72 (d, J = 168.75 Hz), 21.40 (d, J = 5.0 Hz); <sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>):  $\delta$  9.43; HRMS (ESI): Exact mass calcd for C<sub>25</sub>H<sub>19</sub>NaOP[M+Na]<sup>+</sup>: 389.1066, Found: 389.1052.



The reaction afforded **16a** in 56% yield as sticky oil, IR (neat): 2976, 1629, 1587, 1433, 1340, 1269, 1095, 1051, 979, 893, 779 cm<sup>-1</sup>; HPLC analysis (Chiralcel OD-H, 1% 'PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 8.12 min, t<sub>r</sub> (minor) = 7.52 min) gave the isomeric composition of the product: 94% ee.  $[\alpha]_D^{20} = + 8.4$  (c

= 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.82 (d, J = 7.5 Hz, 1H), 7.72-7.68 (m, 2H), 7.45-7.31 (m, 10H), 7.28-7.18 (m, 3H), 3.26-3.08 (m, 2H), 2.49-2.35 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 142.71 (d, J = 24.0 Hz), 138.97 (d, J = 14.0 Hz), 138.48 (d, J = 13.0 Hz), 136.38 (d, J = 13.0 Hz), 133.95, 133.00 (d, J = 19.0 Hz), 131.53, 130.75, 130.33 (d, J = 5.0 Hz), 128.82, 128.72, 128.66, 128.55, 128.48, 126.86, 126.03, 125.90, 125.65 (d, J = 7.0 Hz), 125.52, 123.59, 29.37 (d, J = 20.0 Hz), 29.17 (d, J = 13.0 Hz), 21.43 (d, J = 19.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ -25.88; HRMS (ESI): Exact mass calcd for C<sub>25</sub>H<sub>24</sub>P[M+H]<sup>+</sup>: 355.1610, Found: 355.1608.

The reaction afforded **15b** in 86% yield as white solid, Mp: 188-190 °C. IR (neat): 2976, 1436, 1336, 1274, 1111, 1051, 902, 827, 805, 804, 744 cm<sup>-1</sup>; HPLC analysis (Chiralcel OD-H, 20% 'PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 10.50 min, tr (minor) = 11.57 min) gave the isomeric composition of the product: 95% ee.  $[\alpha]_D^{20} = + 8.8$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.15 (s, 1H), 8.07 (dd, J = 15.6, 7.5Hz, 1H), 7.89 (dd, J = 14.0, 7.1 Hz, 2H), 7.83 (d, J = 8.5 Hz, 3H), 7.59-7.47 (m, 7H), 7.36 (t, J = 6.7Hz, 1H), 7.28-7.27 (m, 1H), 2.50 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  141.92 (d, J = 10.0 Hz), 133.79, 133.57 (d, J = 2.0 Hz), 133.31(d, J = 120.0 Hz), 132.93 (d, J = 12.0 Hz), 132.61, 132.57 (d, J = 3.0 Hz), 132.19 (d, J = 2.0 Hz), 131.76 (d, J = 12.0 Hz), 131.06 (d, J = 11.0 Hz), 130.37 (d, J = 120.0 Hz), 128.74 (d, J = 14.0 Hz), 128.44, 128.14, 127.97, 127.93, 127.85 (d, J = 2.0 Hz), 127.10, 125.73 (d, J = 14.0 Hz), 117.28 (d, J = 4.0 Hz), 105.82 (d, J = 30.0 Hz), 83.33 (d, J = 168.0 Hz), 21.32 (dd, J = 5.1, 3.3 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  9.04; HRMS (ESI): Exact mass calcd for C<sub>25</sub>H<sub>19</sub>NaOP[M+Na]<sup>+</sup>: 389.1066, Found: 389.1055. The reaction gave **16b** in 62% yield as an oil, IR (neat): 2976, 1506, 1433, 1269, 1186, 1114, 1095, 1051, 960, 854, 779 cm<sup>-1</sup>; HPLC analysis (Chiralcel OD-H, 1%<sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 205 nm; t<sub>r</sub> (major) = 8.05 min, t<sub>r</sub> (minor) = 7.35

min) gave the isomeric composition of the product: 94% ee.  $[\alpha]_D^{20} = +13.4$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.77-7.72 (m, 3H), 7.58 (s, 1H), 7.43-7.37 (m, 5H), 7.30-7.28 (m, 4H), 7.25-7.21 (m, 2H), 7.19-7.16 (m, 1H), 2.98-2.81 (m, 2H), 2.47-2.33 (m, 5H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  142.79 (d, J = 23.75 Hz), 140.27 (d, J = 13.75 Hz), 138.52 (d, J = 13.75 Hz), 136.38 (d, J = 13.75 Hz), 133.73, 132.96 (d, J = 18.75 Hz), 132.17, 130.73, 130.41 (d, J = 5.0 Hz), 128.77, 128.63 (d, J = 5.0 Hz), 128.56, 128.12, 127.73, 127.55, 127.12, 126.17, 126.15, 126.07, 125.33, 32.50 (d, J = 18.75 Hz), 29.61 (d, J = 13.75 Hz), 21.49 (d, J = 21.25 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  -26.11; HRMS (ESI): Exact mass calcd for C<sub>25</sub>H<sub>24</sub>P[M+H]<sup>+</sup>: 355.1610, Found: 355.1611.

16b

The reaction afforded **15c** in 85% yield as white solid, Mp: 199-200 °C. IR (neat): 2976, 1433, 1338, 1274, 1134, 1051, 856, 815, 732, 692, 628 cm<sup>-1</sup>; HPLC analysis (Chiralcel OD-H, 15% <sup>1</sup>PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 18.55 min, tr (minor) = 15.23 min) gave the isomeric composition of the product: 95% ee. [ $\alpha$ ]p<sup>20</sup> = + 79.3 (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.32 (ddd, *J* = 14.0, 7.7, 1.7 Hz, 1H), 8.18 (s, 1H), 7.95-7.89 (m, 2H), 7.83 (d, *J* = 8.6 Hz, 3H), 7.67-7.43 (m, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  135.57 (d, *J* = 9.0 Hz), 134.58 (d, *J* = 9.0 Hz), 133.93 (d, *J* = 2.0 Hz), 133.85, 133.74 (d, *J* = 2.0 Hz), 132.53, 132.39 (d, *J* = 127.0 Hz), 132.38 (d, *J* = 3.0 Hz), 132.08 (d, *J* = 124.0 Hz), 131.27 (d, *J* = 12.0 Hz), 128.65 (d, *J* = 14.0 Hz), 128.47, 128.17, 128.04, 127.94, 127.83 (d, *J* = 2.0 Hz), 127.36 (d, *J* = 12.0 Hz), 127.12, 125.58 (d, *J* = 7.0 Hz), 117.15 (d, *J* = 4.0 Hz), 106.16 (d, *J* = 31.0 Hz), 82.01 (d, *J* = 178.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  7.27; HRMS (ESI): Exact mass calcd for C<sub>24</sub>H<sub>16</sub>BrNaOP[M+Na]<sup>+</sup>: 453.0014, Found: 453.0021.

Br Here action afforded 16c in 55% yield as sticky oil, IR (neat): 2976, 1734, 1446, 1433, 1342, 1274, 1176, 1095, 1051, 979, 854 cm<sup>-1</sup>; HPLC analysis (Chiralcel OD-H, 1% 'PrOH/hexane, 1.0 mL/min, 205 nm; t<sub>r</sub> (major) = 13.05 min, t<sub>r</sub> (minor) = 10.74 min) gave the isomeric composition of the product: 95% ee.  $[\alpha]_D^{25} = +9.6$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.81-7.76 (m, 3H), 7.62 (s, 1H), 7.60-7.57 (m, 1H), 7.54-7.50 (m, 2H), 7.47-7.42 (m, 2H), 7.39-7.38 (m, 3H), 7.34-7.26 (m, 3H), 7.21-7.17 (m, 1H), 3.05-2.84 (m, 2H), 2.56-2.37 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 139.97 (d, *J* = 13.75 Hz), 139.55 (d, J = 13.75 Hz), 136.86 (d, J = 13.75 Hz), 133.66, 133.39, 133.24, 133.21 (d, J = 2.5 Hz), 132.59, 132.13, 130.36 (d, J = 30.0 Hz), 130.10, 129.12, 128.74, 128.69, 128.11, 127.67, 127.50, 127.01, 126.08 (d, J = 11.25 Hz), 125.32, 32.38 (d, J = 20.0 Hz), 29.38 (d, J = 13.75 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ -15.65; HRMS (ESI): Exact mass calcd for C<sub>24</sub>H<sub>21</sub>BrP[M+H]<sup>+</sup>: 419.0559, Found: 419.0556.



The reaction afforded 15d in 85% yield as white solid, Mp: 175-177 °C. IR (neat): 3056, 2172, 1732, 1590, 1488, 1437, 1334, 1192, 985, 801, 755 cm<sup>-1</sup>; HPLC analysis (Chiralcel OD-H, 10% 'PrOH/hexane, 1.0 mL/min, 230 nm; tr  $(major) = 26.37 \text{ min}, t_r (minor) = 21.98 \text{ min})$  gave the isomeric composition of the product: 96% ee.  $[\alpha]_D^{25} = +13.5$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.57-8.55 (m, 1H), 8.28 (dd, J = 17.5, 7.1 Hz, 1H), 8.04 (d, J = 8.2 Hz, 1H), 7.94-7.86 (m, 3H), 7.58-7.37 (m, 9H), 7.32 (t, J = 7.5 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  133.80 (d, J = 10.0 Hz), 133.77 (d, J = 3.0 Hz), 133.46 (d, J = 10.0 Hz) 121.0 Hz), 133.26 (d, J = 11.0 Hz), 132.65 (d, J = 10.0 Hz), 132.51 (d, J = 2.0 Hz), 132.26 (d, J = 3.0Hz), 131.05 (d, J = 11.0 Hz), 130.67, 129.01 (d, J = 2.0 Hz), 128.76 (d, J = 14.0 Hz), 128.57, 128.17 (d, J = 120.0 Hz), 127.36, 126.52, 126.49 (d, J = 6.0 Hz), 124.62 (d, J = 15.0 Hz), 120.08 (d, J = 4.0 Hz)Hz), 105.91 (d, J = 30.0 Hz), 83.45 (d, J = 170.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  8.98; HRMS (EI): Exact mass calcd for C<sub>24</sub>H<sub>17</sub>OP: 352.1017, Found: 352.1015.

The reaction afforded 16d in 68% yield as sticky oil, IR (neat): 3052, 2917, 1948, 1810, 1699, 1312, 1206, 1093, 1044, 909, 805, 742 cm<sup>-1</sup>; HPLC analysis (Chiralcel OD-H, 1% <sup>i</sup>PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 8.91 min, 16d t<sub>r</sub> (minor) = 8.04 min) gave the isomeric composition of the product: 94% ee.  $[\alpha]_D^{25} = +36.7$  (c = 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.53 (dd, J = 9.2, 4.6 Hz, 1H), 7.84 (d, J = 8.4 Hz, 2H), 7.58-7.55 (m, 1H), 7.49-7.41 (m, 5H), 7.32 -7.23 (m, 5H), 7.18 - 7.16 (m, 3H), 2.86-2.68 (m, 2H), 2.55-2.39 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.66 (d, J = 14.0 Hz), 138.29 (d, J = 13.0 Hz), 135.74 (d, J = 21.0 Hz), 135.25 (d, J = 16.0 Hz), 133.63 (d, J = 4.0 Hz), 132.79 (d, J = 19.0 Hz), 129.86 (d, *J* = 1.0 Hz), 129.46, 128.72 (d, *J* = 2.0 Hz), 128.62, 128.55 (d, *J* = 7.0 Hz), 128.47, 128.18, 126.16 (d, J = 2.0 Hz), 126.06, 126.04 (d, J = 27.0 Hz), 125.96 (d, J = 1.0 Hz), 125.51 (d, J = 2.0 Hz), 32.39 (d, J = 19.0 Hz), 29.81 (d, J = 13.0 Hz); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  -27.59; HRMS (EI): Exact mass calcd for C<sub>24</sub>H<sub>21</sub>P: 340.1381, Found: 340.1376.



To an oven-dried 25 mL of Schlenk tube was added **16d** (5.1 mg, 0.015 mmol), chalcone (20.8 mg, 0.10 mmol), 5Å MS (100 mg), toluene 1.0 mL. After the solution was stirred for 5 min under -20 °C, **10** (13.5 mg, 0.12 mmol) was added, and the resulting mixture was stirred at -20 °C for 48 h. Then the product was directly purified by flash chromatography using PE/EtOAc (3:1, v/v) as the eluent to afford the mixture of **17a** and **17b** as white solid in 63% yield. HPLC analysis (Chiralcel OD-H, 10% <sup>4</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 16.48 min, t<sub>r</sub> (minor) = 10.65 min) gave the ee value of product **17a**: 68% ee (84:16 er). The NMR data was in accord with literature.<sup>8</sup> <sup>1</sup>H NMR analysis revealed that the ratio of **17a** and **17b** was 11:1. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) for **17a**:  $\delta$  7.78-7.76 (m, 2H), 7.52-7.48 (m, 1H), 7.37-7.19 (m, 7H), 7.11-7.10 (m, 1H), 4.88-4.86 (m, 1H), 4.16-4.08 (m, 2H), 3.57 (dt, *J* = 9.9, 5.1 Hz, 1H), 3.19 (ddt, *J* = 18.9, 9.0, 2.5 Hz, 1H), 2.75-2.68 (m, 1H), 1.15 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) for **17a**:  $\delta$  200.79, 164.03, 145.09, 144.97, 136.55, 135.70, 133.07, 128.93, 128.79, 128.45, 127.02, 126.84, 60.54, 60.29, 48.94, 42.15, 14.04; HRMS (EI): Exact mass calcd for C<sub>21</sub>H<sub>20</sub>O<sub>3</sub>: 320.1412, Found: 320.1413.

<sup>&</sup>lt;sup>8</sup> J. E. Wilson and G. C. Fu, Angew. Chem.; Int. Ed., 2006, 45, 1426.

#### (R)-18 (S<sub>P</sub>, S, R<sub>S</sub>)-19 (R<sub>P</sub>, S, R<sub>S</sub>)-19 (R)- or (S)-4a 72%, >20:1 dr 66%, >20:1 dr ₋S₋<sub>t</sub>Bu (R)-4a (S)-4a (R)- or (S)-18 (S)-**18** (S)-18 <sup>t</sup>Bu <sup>t</sup>Bu Condition: LDA. THF. -78 °C. 2-3 h. (S<sub>R</sub>, R, S<sub>P</sub>)-19 (R<sub>P</sub>, R, S<sub>S</sub>)-19 71%. >20:1 dr 59%, >20:1 dr X-ray analysis of (R<sub>P</sub>, S, R<sub>S</sub>)-19

### 8.3 Diastereodivergent synthesis of P-chiral tertiary phosphine oxides sulfinamide 19

In an oven-dried 25 mL Schlenk tube, to a solution (S)-4a (72 mg, 0.30 mmol) in anhydrous THF (5 mL) was slowly added LDA (0.30 mmol, 1.5 M in THF/heptane/ethylbenzene) at -78 °C. The resulting mixture was stirred at -78 °C for 15 minutes, then (R)-18 (62.4 mg, 0.33 mmol) diluted with 3 mL THF was slowly added and the resulting mixture was stirred at -78 °C for another 2-3 h. After full consumption of (S)-4a by TLC analysis, saturated NH<sub>4</sub>Cl (aq. 10 mL) and EtOAc (10 mL) were added. The organic layer was washed with H<sub>2</sub>O and brine (3×15 mL) and then dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After concentration, the residue was purified by column chromatography on silica gel using PE/EtOAc/CH<sub>2</sub>Cl<sub>2</sub> (4:2:1, v/v/v) as the eluent to afford the desired product ( $R_P$ , S,  $R_S$ )-19 as white solid in 66% yield, Mp: 132-134 °C. IR (neat): 3574, 2976, 2191, 1591, 1440, 1361, 1340, 1276, 1176, 1112, 1095, 1049, 937, 881, 723, 696 cm<sup>-1</sup>; >20:1 dr;  $[\alpha]_D^{20} = -34.3$  (c = 1.07, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.91 (dd, J = 15.9, 7.5 Hz, 1H), 7.79-7.75 (m, 2H), 7.56-7.53 (m, 1H), 7.49-7.43 (m, 3H), 7.29 (t, J = 7.4 Hz, 1H), 7.24-7.21 (m, 1H), 4.03 (dd, J = 5.5, 2.9 Hz, 1H), 3.35 (d, J = 5.4 Hz, 1H), 2.43 (s, 3H), 1.16 (s, 9H), 1.06 (s, 9H);  $^{13}$ C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  141.89 (d, J = 11.25 Hz), 133.01 (d, J = 120.0 Hz), 132.71 (d, J = 12.5 Hz), 132.57 (d, J = 2.5 Hz), 132.19 (d, J = 3.75 Hz), 131.68 (d, J = 11.25 Hz), 130.91 (d, J = 11.25 Hz), 130.09 (d, J = 118.75 Hz), 128.65 (d, J = 13.75 Hz), 125.57 (d, J = 13.75 Hz), 104.96 (d, J = 27.25 Hz), 80.99 (d, J = 162.5 Hz), 58.62 (d, J = 2.5 Hz), 56.45, 36.15, 26.19, 22.36, 21.18 (d, J = 5.0 Hz); <sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>):  $\delta$  8.89; HRMS (ESI): Exact mass calcd for C<sub>24</sub>H<sub>32</sub>NNaO<sub>2</sub>PS [M+Na]<sup>+</sup>: 452.1784, Found: 452.1803.

In an oven-dried 25 mL Schlenk tube, to a solution (S)-4a (72 mg, 0.30 mmol) in anhydrous THF (5 mL) was slowly added LDA (0.30 mmol, 1.5 M in THF/heptane/ethylbenzene) at -78 °C. The resulting mixture was stirred at -78 °C for 15 minutes, then (S)-18 (62.4 mg, 0.33 mmol) diluted with 3 mL THF was slowly added and the resulting mixture was stirred at -78 °C for another 2-3 h. After full consumption of (S)-4a by TLC analysis, saturated NH<sub>4</sub>Cl (aq. 10 mL) and EtOAc (10 mL) were added. The organic layer was washed with H<sub>2</sub>O and brine (3×15 mL) and then dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After concentration, the residue was purified by column chromatography on silica gel using PE/EtOAc/CH<sub>2</sub>Cl<sub>2</sub> (4:2:1, v/v/v) as the eluent to afford the desired product ( $R_P$ , R,  $S_S$ )-19 as white solid in 59% yield, Mp: 125-127 °C. IR (neat): 3433, 2976, 2189, 1506, 1433, 1338, 1274, 1178, 1136, 1095, 979, 881, 723 cm<sup>-1</sup>; >20:1 dr;  $[\alpha]_D^{20} = +21.9$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 7.87 (dd, J = 15.8, 7.6 Hz, 1H), 7.77 (dd, J = 13.9, 7.1 Hz, 2H), 7.55-7.52 (m, 1H), 7.48-7.42 (m, 3H), 7.30-7.26 (m, 1H), 7.23-7.20 (m, 1H), 4.03 (dd, J = 5.5, 2.9 Hz, 1H), 3.36 (d, J = 5.3 Hz, 1H), 2.43 (s, 3H), 1.15 (s, 9H), 1.05 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  141.91 (d, J = 10.0 Hz), 133.06 (d, J =120.0 Hz), 132.63 (d, J = 16.0 Hz), 132.58 (d, J = 1.0 Hz), 132.14 (d, J = 3.0 Hz), 131.69 (d, J = 12.0Hz), 130.95 (d, J = 11.0 Hz), 130.13 (d, J = 120.0 Hz), 128.59 (d, J = 14.0 Hz), 125.58 (d, J = 13.0Hz), 104.99 (d, J = 27.0 Hz), 81.05 (d, J = 163.0 Hz), 58.62, 56.43, 36.14, 26.18, 22.34, 21.16; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 8.84; HRMS (ESI): Exact mass calcd for C<sub>24</sub>H<sub>32</sub>NNaO<sub>2</sub>PS [M+Na]<sup>+</sup>: 452.1784, Found: 452.1803.

In an oven-dried 25 mL of Schlenk tube, to a solution (*R*)-**4a** (72 mg, 0.30 mmol) in anhydrous THF (5 mL) was slowly added LDA (0.30 mmol, 1.5 M in THF/heptane/ethylbenzene) at -78 °C. The resulting mixture was stirred at -78 °C for 15 minutes, then (*R*)-**18** (62.4 mg, 0.33 mmol) diluted with 3 mL THF was slowly added and the resulting mixture was stirred at -78 °C for another 2-3 h. After full consumption of (*R*)-**4a** by TLC analysis, saturated NH<sub>4</sub>Cl (aq. 10 mL) and EtOAc (10 mL) were added, and the organic layer was washed with H<sub>2</sub>O and brine (3×15 mL) and then dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After concentration, the residue was purified by column chromatography on silica gel using PE/EtOAc/CH<sub>2</sub>Cl<sub>2</sub> (4:2:1, v/v/v) as the eluent to afford the desired product (*S<sub>P</sub>*, *S*, *R<sub>S</sub>*)-**19** as white solid in 72% yield, Mp: 125-127 °C. IR (neat): 3445, 2976, 2175, 1587, 1502, 1456, 1330, 1274, 1138, 1095, 933, 881, 792 cm<sup>-1</sup>; >20:1 dr;  $[\alpha]p^{20} = -21.9$  (c = 0.94, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.94 (dd, *J* = 15.9, 7.6 Hz, 1H), 7.81-7.77 (m, 2H), 7.52-7.49 (m, 1H), 7.46-7.39 (m, 3H), 7.29 (t, *J* = 6.6 Hz, 1H), 7.20-7.17 (m, 1H), 3.84 (dd, *J* = 9.2, 3.0 Hz, 1H), 3.47 (d, *J* = 9.2 Hz, 1H), 2.43 (s, 3H), 1.21 (s, 9H), 0.99 (s, 9H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  141.89 (d, *J* = 10.0 Hz),

133.03 (d, J = 12.5 Hz), 132.98 (d, J = 120.0 Hz), 132.47 (d, J = 2.5 Hz), 132.08 (d, J = 2.5 Hz), 131.56 (d, J = 11.25 Hz), 131.02 (d, J = 11.25 Hz), 130.06 (d, J = 120.0 Hz), 128.61 (d, J = 13.75 Hz), 125.71 (d, J = 13.75 Hz), 105.64 (d, J = 27.5 Hz), 80.57 (d, J = 163.75 Hz), 58.56 (d, J = 2.5 Hz), 57.00, 36.70, 26.12, 22.75, 21.17 (d, J = 5.0 Hz); <sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>):  $\delta$  8.84; HRMS (ESI): Exact mass calcd for C<sub>24</sub>H<sub>32</sub>NNaO<sub>2</sub>PS [M+Na]<sup>+</sup>: 452.1784, Found: 452.1782.

In an oven-dried 25 mL of Schlenk tube, to a solution (R)-4a (72 mg, 0.30 mmol) in anhydrous THF (5 mL) was slowly added LDA (0.30 mmol, 1.5 M in THF/heptane/ethylbenzene) at -78 °C. The resulting mixture was stirred at -78 °C for 15 minutes, then (S)-18 (62.4 mg, 0.33 mmol) diluted with 3 mL THF was slowly added and the resulting mixture was stirred at -78 °C for another 2-3 h. After full consumption of (R)-4a by TLC analysis, saturated NH<sub>4</sub>Cl (aq. 10 mL) and EtOAc (10 mL) were added, and the organic layer was washed with  $H_2O$  and brine (3×15 mL) and then dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After concentration, the residue was purified by column chromatography on silica gel using PE/EtOAc/CH<sub>2</sub>Cl<sub>2</sub> (4:2:1, v/v/v) as the eluent to afford the desired product ( $S_P$ , R,  $S_S$ )-19 as white solid in 71% yield, Mp: 130-132 °C. IR (neat): 3402, 2976, 2189, 1732, 1438, 1340, 1278, 1180, 1083, 1053, 937, 883, 723 cm<sup>-1</sup>; >20:1 dr;  $[\alpha]_D^{20} = +34.3$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.91 (dd, J = 15.9, 7.5 Hz, 1H), 7.87-7.81 (m, 2H), 7.52-7.40 (m, 4H), 7.30-7.26 (m, 1H), 7.22-7.19 (m, 1H), 3.84 (dd, J = 9.2, 3.0 Hz, 1H), 3.44 (d, J = 9.2 Hz, 1H), 2.44 (s, 3H), 1.22 (s, 9H), 1.00 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  141.83 (d, J = 11.0 Hz), 133.00 (d, J = 119.0 Hz), 132.85 (d, J = 13.0 Hz), 132.43 (d, J = 3.0 Hz), 132.08 (d, J = 2.0 Hz), 131.56 (d, J = 12.0 Hz), 131.17 (d, J = 11.0 Hz), 130.21 (d, J = 120.0 Hz), 128.62 (d, J = 14.0 Hz), 125.68 (d, J = 13.0 Hz), 105.56 (d, J = 12.0 Hz), 105.56 (d, J = 12.0J = 27.0 Hz), 80.64 (d, J = 163.0 Hz), 58.57, 57.01, 36.68, 26.12, 22.73, 21.14; <sup>31</sup>P NMR (162 MHz), CDCl<sub>3</sub>): δ 8.89; HRMS (ESI): Exact mass calcd for C<sub>24</sub>H<sub>32</sub>NNaO<sub>2</sub>PS [M+Na]<sup>+</sup>: 452.1784, Found: 452.1769.

### 8.4 The synthesis of digold Au(I) complex 21



Under an atmosphere of O<sub>2</sub> balloon, to an oven-dried 25 mL Schlenk tube was successively added 4a (72 mg, 0.3 mmol), CuCl<sub>2</sub> (4.0 mg, 0.03 mmol), TMEDA (10.4 mg, 0.09 mmol), followed by the addition of CH<sub>2</sub>Cl<sub>2</sub> (2 mL). The resulting mixture was stirred at room temperature for 2 h. After full consumption of 4a by TLC analysis, the crude product was passed through a short column chromatography on silica gel using EtOAc/CH<sub>2</sub>Cl<sub>2</sub> (1:1, v/v) as the eluent affording the desired product 27 as white solid in 99% yield. The product 27 was directly used for the next step. To a high pressure hydrogen reactor was successively added 27 (72 mg, 0.3 mmol), Pd/C (11.0 mg, 15 wt%), followed by the addition of MeOH (4 mL). Under the hydrogen pressure of 3 MPa, the resulting mixture was stirred at room temperature for 10 h. After full consumption of 27 by TLC analysis, the crude product was passed through a column chromatography on silica gel using EtOAc/CH<sub>2</sub>Cl<sub>2</sub> (1:1, v/v) as the eluent affording the desired product 28 as white solid in 84% yield, Mp: 180-182 °C. IR (neat): 3504, 2976, 1435, 1340, 1276, 1176, 1134, 1111, 1051, 858, 844, 744, 725 cm<sup>-1</sup>; HPLC analysis (Chiralcel AD-H, 30% PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 9.85 min, tr (minor) = 22.59 min) gave the isomeric composition of the product: 99% ee.  $[\alpha]_D^{20} = -16.3$  (c = 1.00, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.65-7.53 (m, 6H), 7.52-7.47 (m, 2H), 7.44-7.39 (m, 6H), 7.29-7.26 (m, 2H), 7.21-7.19 (m, 2H), 2.39-2.29 (m, 8H), 2.28-2.18 (m, 2H), 1.80-1.78 (m, 2H), 1.67-1.65 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.38 (d, J = 8.0 Hz, 2C), 133.50 (dd, J = 96.0, 3.0 Hz, 2C), 132.08 (2C), 131.98 (2C), 131.52 (2C), 131.40 (d, J = 1.0 Hz, 2C), 130.68 (d, J = 9.0 Hz, 2C), 131.58 (dd, J = 97.0 Hz, 3.0 Hz, 2C), 128.61 (d, J = 12.0 Hz, 2C), 125.54 (d, J = 11.0 Hz, 2C), 29.34 (d, J = 71.0 Hz), 23.06 (dd, J = 15.0 Hz, 3.0 Hz, 2C), 21.36 (2C); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  33.69; HRMS (ESI): Exact mass calcd for C<sub>30</sub>H<sub>32</sub>NaO<sub>2</sub>P<sub>2</sub> [M+Na]<sup>+</sup>: 509.1770, Found: 509.1772.



To an oven-dried 25 mL of Schlenk tube was added 28 (90.0 mg, 0.185 mmol), Et<sub>3</sub>N (448 mg, 4.4 mmol), MeCN (4.0 mL). After the solution was stirred for 5 min, HSiCl<sub>3</sub> (0.74 mL, 40 equivs) was added, and the resulting mixture was stirred at 70 °C for 2 h. After full consumption of 28 by TLC analysis, the mixture was diluted with 20 mL of cold Et<sub>2</sub>O and transferred to a 250 mL flask. After the mixture was stirred at 0 °C for 10 min, ice (10 g) was added in one-portion, followed by the dropwise addition of 10 mL NaOH solution (20%, aq). The mixture was transferred to a separating funnel. The organic layer was separated, and the aqueous phase was extracted with cold Et<sub>2</sub>O ( $3 \times 20$ mL). The combined organic phase was washed successively with cold saturated brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The residue was purified by a short pad of silica gel which was cooled at 0 °C using PE/EtOAc (10:1, v/v) as the eluent (the eluent was cooled at -20 °C for 30 min) to afford the P, P-stereogenic phosphine 20 in 80% yield (67 mg) as white solid. Mp: 53-55 °C. IR (neat): 3442, 2976, 2920, 1587, 1431, 1413, 1340, 1273, 1095, 937, 893, 815, 729 cm<sup>-1</sup>; HPLC analysis (Chiralcel OD-H, 1% PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 7.16 min, t<sub>r</sub> (minor) = 9.93 min) gave the isomeric composition of the product: >99% ee.  $[\alpha]_D^{20} = +14.8$  (c = 0.34, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.31-7.16 (m, 18H), 2.35 (s, 6H), 2.02-1.91 (m, 4H), 1.64-1.57 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  142.63 (d, J = 24.0 Hz, 2C), 138.74 (d, J = 13.0Hz, 2C), 136.61 (d, J = 14.0 Hz, 2C), 132.81 (d, J = 18.0 Hz, 2C), 130.64 (2C), 130.23 (d, J = 4.0 Hz, 2C), 128.55 (2C), 128.42 (2C), 128.37 (2C), 125.97 (2C), 27.71 (dd, J = 21.25, 3.0 Hz, 2C), 27.26 (d, J = 11.0 Hz, 2C), 21.37 (d, J = 21.0 Hz, 2C); <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  -26.82; HRMS (ESI): Exact mass calcd for C<sub>30</sub>H<sub>33</sub>P<sub>2</sub> [M+H]<sup>+</sup>: 455.2052, Found: 455.2064.



To an oven-dried 25 mL of Schlenk tube was added **20** (45.4 mg, 0.10 mmol), AuCl(SMe<sub>2</sub>) (58.8 mg, 0.2 mmol), CH<sub>2</sub>Cl<sub>2</sub> (2.0 mL), and the resulting mixture was stirred at room temperature for 3 h. After full consumption of **20** by TLC analysis, The residue was purified through a short pad of silica gel by using PE/CH<sub>2</sub>Cl<sub>2</sub> (1:2, v/v) as the eluent to afford the P, P-bimetallic Au(I) complex **21** in 95% yield (99 mg) as white solid. Mp: 112-114 °C. IR (neat): 2974, 2923, 1734, 1436, 1340, 1278, 1178, 1147, 1095, 1051, 979, 883, 804 cm<sup>-1</sup>;  $[\alpha]_D^{20} = + 61.7$  (c = 0.68, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.57-7.36 (m, 16H), 7.23-7.22 (m, 2H), 2.59-2.47 (m, 2H), 2.37-2.20 (m, 8H), 2.02-1.94 (m, 2H), 1.68-1.59 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  141.93 (d, *J* = 11.25 Hz, 2C), 133.41 (d, *J* = 13.75 Hz, 2C), 132.36 (d, *J* = 8.75 Hz, 2C), 132.19 (2C), 132.06 (2C), 130.84 (d, *J* = 8.75 Hz, 2C), 129.43 (d, *J* = 12.5 Hz, 2C), 129.03 (d, *J* = 61.25 Hz, 2C), 126.62 (d, *J* = 58.75 Hz, 2C), 126.55 (d, *J* = 10.0 Hz, 2C), 27.69 (d, *J* = 38.75 Hz, 2C), 27.17 (dd, *J* = 18.75, 3.75 Hz, 2C), 22.38 (d, *J* = 11.25 Hz, 2C); <sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>):  $\delta$  21.09; MALDI: Exact mass calcd for C<sub>30</sub>H<sub>32</sub>NaAu<sub>2</sub>Cl<sub>2</sub>P<sub>2</sub> [M+Na]<sup>+</sup>: 941.06, Found: 941.39.

# 8.5 The synthesis of compounds 22-24 and their photophysical properties



8.5.1 The synthesis of compounds 22-24

Under an atmosphere of N<sub>2</sub>, to the Schlenk tube was added 7a (139.6 mg, 0.2 mmol, >99% ee), Pt(PEt<sub>3</sub>)<sub>2</sub>I<sub>2</sub> (226.0 mg, 0.4 mmol), CuI (7.6 mg, 0.04 mmol), Et<sub>3</sub>N (40.4 mg, 0.4 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (5.0 mL). The resulting solution was stirred at 25 °C for 0.5 hour. After concentration, the residue was purified by silica gel column chromatography using CH<sub>2</sub>Cl<sub>2</sub>/acetone (from 4:1 to 2:1) as the eluent, affording the desired product 22 in 70% yield as yellow solid. Mp: 135-137 °C. IR (KBr): 3552, 3476, 3414, 2963, 2108, 1712, 1396, 1238, 1035, 808, 721, 523 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>i</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 7.25 min) gave the isomeric composition of the product: >99% ee.  $[\alpha]_D^{20} = +72.6$  (c = 1.37, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.60 (d, J = 10.4 Hz, 1H), 7.98 (s, 1H), 7.82-7.80 (m, 2H), 7.70-7.68 (m, 2H), 7.57-7.52 (m, 3H), 7.21 (s, 1H), 7.16-7.12 (m, 3H), 4.45-4.40 (m, 2H), 4.27-4.16 (m, 2H), 4.11 (t, J = 6.4 Hz, 2H), 3.72 (t, J = 6.8 Hz, 2H), 2.32 (s, 3H), 2.21-2.17 (m, 12H), 2.03-1.84 (m, 6H), 1.76-1.68 (m, 2H); 1.14-1.06 (m, 24H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.15, 163.05, 158.94, 142.70 (d, J = 23.0 Hz), 142.20, 142.13, 139.97 (d, J = 22.0 Hz), 133.92, 133.47, 131.72, 130.99 (d, J = 12.0 Hz), 129.16 (d, J = 13.0 Hz), 128.78 (d, J = 11.0 Hz), 128.44, 127.37, 125.69 (d, J = 84.0 Hz), 124.59 (d, J = 84.0 Hz), 123.08, 122.85, 120.14 (d, J = 12.0 Hz), 119.23 (d, J = 14.0 Hz), 103.58 (d, J = 12.0 Hz), 97.38, 95.31, 70.34, 70.17, 49.29,36.73, 29.51, 27.43, 25.41, 22.48, 22.47, 21.43, 16.37 (t, J = 17.0 Hz), 10.75, 10.56, 8.13; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  32.03 (s, 1P), 8.76 (t, J = 1542.2 Hz, 2P); HRMS (ESI): Exact mass calcd for C<sub>53</sub>H<sub>68</sub>N<sub>4</sub>O<sub>5</sub>NaIP<sub>3</sub>Pt [M+Na]<sup>+</sup>: 1278.2993, Found: 1278.2970.

Under an atmosphere of N<sub>2</sub>, to the Schlenk tube was added 7a (279.2 mg, 0.4 mmol, 96% ee), Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (28.0 mg, 0.04 mmol), CuI (7.6 mg, 0.04 mmol), Pr<sub>2</sub>NH (258 mg, 2.0 mmol) and DMF (8.0 mL). After the addition of iodobenzene (408 mg, 2.0 mmol), the solution was stirred at 70 °C for 5 h. After the completion of the reaction, EtOAc (20 mL) was added. The resulting mixture was washed with brine (5×10 mL), and the combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under vacuo to give the residue, which was purified by column chromatography using CH<sub>2</sub>Cl<sub>2</sub>/acetone (from 4:1 to 2:1) as the eluent, affording the product 23 in 57% yield as yellow solid. Mp: 244-246 °C. IR (KBr): 2925, 2872, 1711, 1590, 1397, 1239, 1046, 719, 526 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% 'PrOH/hexane, 1.0 mL/min, 230 nm; tr (major) = 9.42 min, tr (minor) = 15.57 min) gave the isomeric composition of the product: 95% ee.  $[\alpha]_D^{20} = +64.0$  (c = 0.5, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.51 (d, J = 10.0 Hz, 1H), 7.86 (s, 1H), 7.82-7.80 (m, 2H), 7.71-7.68 (m, 3H), 7.54-7.49 (m, 2H), 7.46-7.44 (m, 2H), 7.28-7.26 (m, 3H), 7.19-7.14 (m, 3H), 7.10 (d, J = 2.0 Hz, 1H), 4.42-4.37 (m, 2H), 4.32-4.27 (m, 1H), 4.18-4.03 (m, 3H), 3.72 (t, *J* = 7.2 Hz, 2H), 2.32 (s, 3H), 2.03-1.97 (m, 2H), 1.95-1.86 (m, 4H), 1.74-1.67 (m, 2H); 1.15-1.11 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.27, 163.64 (d, J = 2.0 Hz), 158.96 (d, J = 3.0 Hz), 143.18 (d, J = 22.0 Hz), 142.40 (d, J= 3.0 Hz, 142.18, 141.96, 133.97, 133.78 (d, J = 11.0 Hz), 131.94, 131.48, 131.12 (d, J = 11.0 Hz), 129.36 (d, J = 13.0 Hz), 128.51, 128.38 (d, J = 14.0 Hz), 128.16 (d, J = 13.0 Hz), 127.28, 125.84 (d, J = 45.0 Hz), 124.72 (d, J = 44.0 Hz), 123.48, 123.22, 123.15, 120.80 (d, J = 12.0 Hz), 114.06 (d, J = 14.0 Hz), 104.48 (d, J = 11.0 Hz), 104.08 (d, J = 11.0 Hz), 95.28, 85.41, 70.47, 70.35, 49.30, 36.86, 27.54, 25.53, 22.60, 22.55, 21.51, 10.90, 10.62; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>): δ 31.39; HRMS (ESI): Exact mass calcd for C<sub>47</sub>H<sub>43</sub>N<sub>4</sub>O<sub>4</sub>NaP [M+Na]<sup>+</sup>: 797.2659, Found: 797.2696.

A suspension of the above coupling product **23** (38.7 mg, 0.05 mmol) and Lawesson's reagent (100 mg, 0.25 mmol) in dry 1,2- dichloroethane (1 mL) was heated at 70 °C for 5 h. After the solvent being evaporated, the residue was purified by column chromatography on silica gel using CH<sub>2</sub>Cl<sub>2</sub>/acetone = 4:1 to 2:1) to give **24** (35.8 mg, 91% yield) as yellow solid. Mp: 258-260 °C. IR (KBr): 2962, 2934, 2872, 1713, 1437, 1238, 1048, 719, 678 cm<sup>-1</sup>. HPLC analysis (Chiralcel AD-H, 40% <sup>*i*</sup>PrOH/hexane, 1.0 mL/min, 230 nm; t<sub>r</sub> (major) = 6.48 min, t<sub>r</sub> (minor) = 9.47 min) gave the isomeric composition of the product: 94% ee.  $[\alpha]_D^{20} = + 30.7$  (c = 0.5, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.43 (d, *J* = 10.8 Hz, 1H), 7.81-7.79 (m, 2H), 7.70-7.68 (m, 2H), 7.62-7.54 (m, 4H), 7.36-7.34 (m, 2H), 7.23-7.19 (m, 4H), 7.18-7.09 (m, 3H), 4.56-4.52 (m, 1H), 4.50-4.41 (m, 1H), 4.34-4.29 (m, 1H), 4.22-4.15 (m, 1H), 4.07-3.98 (m, 2H), 3.74-3.66 (m, 2H), 2.29 (s, 3H), 1.98-1.94

(m, 4H), 1.86-1.83 (m, 2H), 1.68-1.66 (m, 2H); 1.19 (t, J = 7.6 Hz, 3H), 1.11 (t, J = 7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  168.26, 163.08 (d, J = 3.0 Hz), 158.45 (d, J = 2.0 Hz), 142.72 (d, J = 19.0 Hz), 142.39, 142.12, (d, J = 13.0 Hz), 141.82 (d, J = 19.0 Hz), 133.97, 132.89 (d, J = 12.0 Hz), 131.89, 131.41, 131.00 (d, J = 12.0 Hz), 129.18 (d, J = 13.0 Hz), 128.54, 128.08, 127.82, 127.40 (d, J = 57.0 Hz), 127.38 (d, J = 13.0 Hz), 126.45 (d, J = 58.0 Hz), 123.59, 123.22, 123.00, 120.70 (d, J = 13.0 Hz), 141.28 (d, J = 14.0 Hz), 104.81 (d, J = 10.0 Hz), 104.15 (d, J = 10.0 Hz), 95.16, 85.66, 70.74, 70.31, 49.18, 36.76, 27.65, 25.44, 22.58, 22.45, 21.37, 10.82, 10.74; <sup>31</sup>P NMR (162 MHz, CDCl<sub>3</sub>):  $\delta$  38.57; HRMS (ESI): Exact mass calcd for C<sub>47</sub>H<sub>43</sub>N<sub>4</sub>O<sub>4</sub>NaSP [M+Na]<sup>+</sup>: 813.2640, Found: 813.2671.

### 8.5.2 Photophysical properties

UV-vis spectra was recorded in a quartz cell (light path 10 mm) on a Cary 50Bio UV-visible spectrophotometer (Figure S3). Steady-state fluorescence spectra was recorded in a conventional quartz cell (light path 10 mm) on a Cary Eclipse fluorescence spectrophotometer (Figure S4). Fluorescence quantum yield were obtained relative to quinine sulfate on a Cary Eclipse fluorescence spectrophotometer. All the samples were diluted with CH<sub>2</sub>Cl<sub>2</sub> to obtain an absorbance below 0.05 at the excitation wavelength. Five different concentration for each sample and quinine sulfate were measured to get the relationship between integrated fluorescence intensity and absorbance. The gradients were used to calculate the relative quantum yield of the measured sample relative to quinine sulfate according to the following equation:

$$\phi_{\mathsf{X}} = \phi_{\mathsf{ST}} \left( \frac{\mathsf{Grad}_{\mathsf{X}}}{\mathsf{Grad}_{\mathsf{ST}}} \right) \left( \frac{\eta^2_{\mathsf{X}}}{\eta^2_{\mathsf{ST}}} \right)$$

Where the subscripts ST and X denote the standard (here is quinine sulfate) and test sample, respectively,  $\Phi$ , *Grad* and  $\eta$  represent fluorescence quantum yield, gradient from the plot of integrated fluorescence intensity *vs* absorbance and refractive index of the solvent, respectively. Due to the solvent for the standard (quinine sulfate) and test samples are H<sub>2</sub>O and CH<sub>2</sub>Cl<sub>2</sub>,  $\eta$ <sub>ST</sub> and  $\eta$ <sub>X</sub> should be 1.34 and 1.42, respectively.

Considering the lack of literature report for the study of the optical properties of chiral phosphole oxides, we initially checked the optical properties of compounds **6a**, **7a**, **23** and **24**, with absorption and emission data shown in Table S6. As compared with **6a**, the UV/Vis absorption and emission band maxima of compound **7a** is slightly red-shifted, but that of product **23** with extended  $\pi$ -system is obviously red-shift. Additionally, the quantum yield (QY) of **7a** was significantly higher than that of

**6a** (0.40 vs 0.14) and the chiral *P*-sulfide **24** showed a relatively lower QY than that of **23**. These results showed that the properties of chiral phosphole 7 could be readily tuned for optoelectronic application.

| Compounds | UV/Vis absorption<br>λ <sub>abs</sub> [nm] <sup>a</sup> | Fluorescence<br>λ <sub>max</sub> (nm) | $\Phi_{\text{F}}{}^{\text{b}}$ |
|-----------|---------------------------------------------------------|---------------------------------------|--------------------------------|
| 6a        | 267, 276, 350, 365                                      | 400                                   | 0.14                           |
| 7a        | 270, 280, 352, 367                                      | 405                                   | 0.40                           |
| 23        | 280, 290, 365, 382                                      | 421                                   | 0.33                           |
| 24        | 282, 298, 367, 385                                      | 420                                   | 0.09                           |

Table S6. Optical properties of compound 6a, 7a, 23 and 24 in CH<sub>2</sub>Cl<sub>2</sub> at 25 °C

<sup>*a*</sup>At 2.0×10<sup>-5</sup> M. <sup>*b*</sup> Excited at  $\lambda$  =350 nm, measured relative to quinine sulfate



Figure S1. UV-vis spectra of 6a, 7a, 23 and 24 at 2.0×10<sup>-5</sup> M in CH<sub>2</sub>Cl<sub>2</sub> at 25 °C.



Figure S2. Fluorescence spectra of 6a, 7a, 23 and 24 at 1.0×10<sup>-6</sup> M in CH<sub>2</sub>Cl<sub>2</sub> at 25 °C, excited at 350 nm.
We also examined the CD spectra of 7a, and found (*R*)-7a showed an obvious positive first ( $\lambda$ =270 nm) and negative second ( $\lambda$ =235 nm) Cotton effect peak. (*S*)-7a showed mirror image with (*R*)-7a in the 230-300 nm region. In the region of 300-400 nm, (*R*)/(*S*)-7a also showed symmetry CD spectrum, however, no Cotton effect peak were observed. The highest optical anisotropy factor was observed at 235 nm ( $g_{abs}$ =3×10<sup>-4</sup>) for both (*R*)-7a and (*S*)-7a, this value was in the region of most chiral organic molecule (from 10<sup>-5</sup> to 10<sup>-2</sup>). Based on these data, we tried to measure the circularly polarized luminescence (CPL) of (*R*)/(*S*)-7a with CPL-200. Unfortunately, due to the low chiral optical activity of these compound and measurement limit ( $g_{lum}$ ~10<sup>-4</sup>), we failed to collect high quality CPL spectrum.



**Figure S3.** (a) CD spectra of (*R*)-7a (black line) and (*S*)-7a (red line) at  $2 \times 10^{-5}$  M (10 mm path length) in CH<sub>2</sub>Cl<sub>2</sub> at 25 °C. (b) UV-vis spectra of (*R*)-7a in CH<sub>2</sub>Cl<sub>2</sub> at 25 °C.



**Figure S4**. Baseline corrected CPL spectra of (*R*)-7a (black line; at  $5 \times 10^{-4}$  M; 96% ee) and (*S*)-7a (red line; at  $5 \times 10^{-4}$  M; 96% ee) excited at 320 nm in CH<sub>2</sub>Cl<sub>2</sub> at 25 °C

## 9. Experimental evidence for synergic desymmetrization and kinetic resolution, and a possible model to explain the stereoselectivity of the progress

The procedure for the determination of the time-dependence enantioselectivity of the CuAAC reaction of **1a** and **2a** is as follows. Under an atmosphere of N<sub>2</sub>, to a 25 mL Schlenk tube was added L<sub>1</sub> or L<sub>6</sub> (0.012 mmol) and CuBr (1.43 mg, 0.01 mmol), followed by the addition of 2.0 mL anhydrous CH<sub>3</sub>CN. After stirring at 25 °C for 2 h, diethynylphosphine oxides **1a** (22.4 mg, 0.10 mmol) was added and the reaction mixture was then cooled to -20 °C and stirred for 0.5 h. Then azide **2a** (14.7 mg, 0.10 mmol) was added in one portion. The resulting homogenous solution was kept stirring at -20 °C. Aliquots (0.2 mL of the reaction mixture) were taken at the indicated reaction time and quickly passed through a 5 cm of silica gel using eluent CH<sub>2</sub>Cl<sub>2</sub>/EtOAc (2:1, v/v) that was pre-stored at -20 °C before use. Then the residue was used for <sup>1</sup>H NMR analysis to determine the conversion and the ratio of **3a/3a'**, and for the HPLC analysis of the ee value of **3a**. The results were shown in Table S7.

|       | (0.1        | 0<br>+<br>1a<br>mmol) (0 | L <sub>1</sub> or L <sub>6</sub> (1<br>CuBr (10<br>R-N <sub>3</sub><br>MeCN,<br>2a R = 4-Mer<br>.1 mmol) | $ \begin{array}{c}  2 \mod \%) \\ 0 \mod \%) \\ \hline -20 \ ^{\circ}C \\ C_6H_4CH_2 \end{array} $ | O N=N<br>P N R<br>3a | +                          | `N <sup>-R</sup><br>_/<br>N-R       |  |
|-------|-------------|--------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------|----------------------------|-------------------------------------|--|
| entry | time<br>(h) | by L <sub>1</sub>        |                                                                                                          |                                                                                                    | by L <sub>6</sub>    |                            |                                     |  |
|       |             | conv. (%)                | <b>3a/3a'</b> a                                                                                          | ee of<br><b>3a</b> (%) <sup>b</sup>                                                                | conv. (%)            | <b>3a/3a'</b> <sup>a</sup> | ee of<br><b>3a</b> (%) <sup>b</sup> |  |
| 1     | 4           | 54                       | >20:1                                                                                                    | 82                                                                                                 | 50                   | >20:1                      | 90                                  |  |
| 2     | 8           | 60                       | >20:1                                                                                                    | 84                                                                                                 | 58                   | >20:1                      | 91                                  |  |
| 3     | 12          | 66                       | >20:1                                                                                                    | 86                                                                                                 | 65                   | >20:1                      | 92                                  |  |
| 4     | 16          | 76                       | 19:1                                                                                                     | 88                                                                                                 | 79                   | >20:1                      | 93                                  |  |
| 5     | 24          | 84                       | 17:1                                                                                                     | 89                                                                                                 | 87                   | 19:1                       | 94                                  |  |
| 6     | 48          | 90                       | 11:1                                                                                                     | 91                                                                                                 | 95                   | 14.8:1                     | 95                                  |  |
| 7     | 96          | >99                      | 6.0:1                                                                                                    | 93                                                                                                 | >99                  | 14:1                       | 95                                  |  |

<sup>*a*</sup> Determined by <sup>1</sup>H NMR (400 MHz) analysis using 1,3,5-trimethoxybenzene as the internal standard. <sup>*b*</sup> Determined by chiral HPLC analysis.

The time-dependence enantioselectivity of the reaction of **1a** and **2a** by using ligand  $L_1$  or  $L_6$  is shown above. Whereas similar conversion was found with a time of 4 h, with only trace amount of **3a**' formed in both cases, the reaction using  $L_6$  afforded **3a** with a clearly higher ee than by using  $L_1$  (90 vs. 82%). This clearly showed that with a bulk shielding group,  $L_6$  could achieve higher enantioselectivity in the desymmetrization. In addition,  $L_6$  was also more enantioselective than  $L_1$  in the kinetic resolution of racemic monotriazole **3a** using 0.5 equiv of **2a** (70% vs 48% ee for recovered (*R*)-**3a**, respectively).

Strong negative NLE was observed in the reaction of 1a and 2a mediated by  $L_6$ /CuBr. This is also a proof to support the possible involvement of dinuclear copper intermediates as the catalytically active species in CuAAC. Such asymmetric depletion might be rationalized by the hypothesis that the homochiral dimeric species is less reactive than the corresponding heterodimer. Studies of the exact nature of the catalytic species are currently underway.



A possible model to explain the stereoselectivity of the progress

The observed strong negative NLE effect was in accordance to the generally believed mechanism of CuAAC that involves an active dinuclear copper intermediate.<sup>8</sup> In light of this, together with the X-ray structure of PyBOX/Cu(I) complex reported by Gamasa and coworkers,<sup>9</sup> we proposed two possible homochiral dinuclear Cu(I) activation model **A** and **B** to account for the observed stereochemistry, and to rationalize the role of the C4 shielding group. As shown below, the C4 shielding group of newly developed PYBOX-type ligand might be of benefit to form a deeper pocket

<sup>&</sup>lt;sup>8</sup> (*a*) B. T. Worrell, J. A. Malik, V. V. Fokin, *Science* 2013, **340**, 457; (*b*) M. S. Ziegler, K. V. Lakshmi, T. D. Tilley, *J. Am. Chem. Soc.* 2017, **139**, 5378.

<sup>&</sup>lt;sup>9</sup> (a) J. Díez, M. P. Gamasa, M. Panera, *Inorg. Chem.*, 2006, **45**, 10043; (b) M. Panera, J. Díez, I. Merino, E. Rubio, M. P. Gamasa, *Inorg. Chem.*, 2009, **48**, 11147.

with a narrower entrance, thus prevent monotriazoles from entering the pocket, leading to a better recognition of diynes over monotriazoles and affording better M/D ratio. In addition, the enhanced chiral pocket is also helpful to improve the enantioselection. Due to the steric hindrance of R group over ethynyl group, model **A** is favored, leading to chiral product with *R*-configuration.



Figure S5. A possible model to explain the stereoselectivity of the catalytic progress

## 10. X-ray crystallographic data of 3b, 4a, 7o, 9, 14, 19 and 21

Data intensity of **3b**<sup>9</sup> was collected using a 'Bruker APEX-II CCD' diffractometer at 296(2) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on  $F^2$  with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **3b**: C<sub>19</sub>H<sub>17</sub>N<sub>3</sub>OP, T = 296(2) K, Orthorhombic, P2(1)2(1)2(1), a = 9.0625(7) Å, b = 10.9721(8) Å, c =18.2236(13) Å, a = 90 deg,  $\beta = 90$  deg,  $\gamma = 90$  deg, V = 1812.1(2) Å<sup>3</sup>. Z = 4,  $d_{calc} = 1.225$  Mg/m<sup>3</sup>. 21121 reflections measured, 3182 unique [Rint = 0.0392], R1 = 0.0485, wR2 = 0.1274 ( $I > 2\sigma(I)$ , final), R1 = 0.0596, wR2 = 0.1359 (all data), GOF = 1.045, and 217 parameters.



Table S8. Crystal data and structure refinement for 3b.

| Identification code             | 3b                                                    |
|---------------------------------|-------------------------------------------------------|
| Empirical formula               | C19H17N3OP                                            |
| Formula weight                  | 334.33                                                |
| Temperature                     | 296(2) K                                              |
| Wavelength                      | 0.71073 Å                                             |
| Crystal system, space group     | Orthorhombic, P2(1)2(1)2(1)                           |
| Unit cell dimensions            | $a = 9.0625(7) \text{ Å}$ $\alpha = 90 \text{ deg.}$  |
|                                 | $b = 10.9721(8)$ Å $\beta = 90$ deg.                  |
|                                 | $c = 18.2236(13) \text{ Å}  \gamma = 90 \text{ deg.}$ |
| Volume                          | $1812.1(2) \text{ Å}^3$                               |
| Z, Calculated density           | 4, 1.225 Mg/m <sup>3</sup>                            |
| Absorption coefficient          | 0.161 mm <sup>-1</sup>                                |
| F(000)                          | 700                                                   |
| Crystal size                    | 0.44 x 0.41 x 0.31 mm                                 |
| Theta range for data collection | 2.17 to 25.01 deg.                                    |

<sup>&</sup>lt;sup>9</sup> Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1508003).

| Limiting indices                  | -10<=h<=10, -13<=k<=12, -21<=l<=21                      |
|-----------------------------------|---------------------------------------------------------|
| Reflections collected / unique    | 21121 / 3182 [R(int) = 0.0392]                          |
| Completeness to theta $= 25.01$   | 99.8 %                                                  |
| Absorption correction             | Semi-empirical from equivalents                         |
| Max. and min. transmission        | 0.9517 and 0.9324                                       |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup>             |
| Data / restraints / parameters    | 3182 / 1 / 217                                          |
| Goodness-of-fit on F <sup>2</sup> | 1.045                                                   |
| Final R indices [I>2sigma(I)]     | R1 = 0.0485, wR2 = 0.1274                               |
| R indices (all data)              | R1 = 0.0596, wR2 = 0.1359                               |
| Absolute structure parameter      | 0.02(14)                                                |
| Largest diff. peak and hole       | $0.559 \text{ and } -0.148 \text{ e. } \text{\AA}^{-3}$ |

**Table S9.** Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>  $x \ 10^3$ ) for 3b. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

|      | х        | У       | Z        | U(eq)  |
|------|----------|---------|----------|--------|
| P(1) | 7217(1)  | 1640(1) | 8211(1)  | 55(1)  |
| O(1) | 6395(3)  | 2752(2) | 8019(1)  | 82(1)  |
| N(1) | 11082(3) | 1197(2) | 7299(1)  | 62(1)  |
| N(2) | 11188(4) | 2335(3) | 7557(2)  | 76(1)  |
| N(3) | 9928(3)  | 2580(2) | 7880(2)  | 66(1)  |
| C(1) | 8178(3)  | 554(3)  | 9539(2)  | 65(1)  |
| C(2) | 8197(5)  | 564(4)  | 10305(2) | 92(1)  |
| C(3) | 7421(5)  | 1398(4) | 10696(2) | 100(1) |
| C(4) | 6618(6)  | 2276(4) | 10354(2) | 102(1) |
| C(5) | 6588(4)  | 2305(3) | 9601(2)  | 81(1)  |
| C(6) | 7378(3)  | 1452(3) | 9185(2)  | 57(1)  |
| C(7) | 9043(5)  | -402(4) | 9132(2)  | 86(1)  |
| C(8) | 6438(4)  | 309(3)  | 7866(2)  | 67(1)  |
|      |          |         |          |        |

| C(9)  | 5842(4)  | -546(4) | 7610(2) | 82(1)  |  |
|-------|----------|---------|---------|--------|--|
| C(10) | 9029(3)  | 1609(3) | 7816(1) | 52(1)  |  |
| C(11) | 9756(4)  | 732(3)  | 7438(2) | 60(1)  |  |
| C(12) | 12339(4) | 651(4)  | 6906(2) | 81(1)  |  |
| C(13) | 12341(4) | 958(3)  | 6101(2) | 65(1)  |  |
| C(14) | 11522(5) | 298(4)  | 5613(2) | 92(1)  |  |
| C(15) | 11529(6) | 608(5)  | 4876(3) | 110(1) |  |
| C(16) | 12321(5) | 1561(5) | 4608(2) | 94(1)  |  |
| C(17) | 13142(5) | 2191(4) | 5098(3) | 94(1)  |  |
| C(18) | 13158(4) | 1898(4) | 5837(2) | 78(1)  |  |
| C(19) | 12323(7) | 1889(8) | 3804(3) | 164(3) |  |
|       |          |         |         |        |  |

Table S10. Bond lengths [Å] and angles [deg] for 3b.

| P(1)-O(1)  | 1.472(2) |
|------------|----------|
| P(1)-C(8)  | 1.739(4) |
| P(1)-C(10) | 1.793(3) |
| P(1)-C(6)  | 1.793(3) |
| N(1)-C(11) | 1.330(4) |
| N(1)-N(2)  | 1.336(4) |
| N(1)-C(12) | 1.473(4) |
| N(2)-N(3)  | 1.313(4) |
| N(3)-C(10) | 1.347(4) |
| C(1)-C(6)  | 1.383(4) |
| C(1)-C(2)  | 1.396(5) |
| C(1)-C(7)  | 1.505(5) |
| C(2)-C(3)  | 1.356(6) |
| C(2)-H(2A) | 0.9300   |
| C(3)-C(4)  | 1.358(6) |
| C(3)-H(3A) | 0.9300   |
| C(4)-C(5)  | 1.374(6) |
|            |          |

| C(4)-H(4A)      | 0.9300     |
|-----------------|------------|
| C(5)-C(6)       | 1.401(4)   |
| C(5)-H(5A)      | 0.9300     |
| C(7)-H(7A)      | 0.9600     |
| C(7)-H(7B)      | 0.9600     |
| C(7)-H(7C)      | 0.9600     |
| C(8)-C(9)       | 1.179(5)   |
| C(9)-H(9A)      | 1.1258     |
| C(10)-C(11)     | 1.355(4)   |
| C(11)-H(11A)    | 0.9300     |
| C(12)-C(13)     | 1.504(4)   |
| C(12)-H(12A)    | 0.9700     |
| C(12)-H(12B)    | 0.9700     |
| C(13)-C(18)     | 1.358(5)   |
| C(13)-C(14)     | 1.366(5)   |
| C(14)-C(15)     | 1.385(6)   |
| C(14)-H(14A)    | 0.9300     |
| C(15)-C(16)     | 1.359(7)   |
| C(15)-H(15A)    | 0.9300     |
| C(16)-C(17)     | 1.353(7)   |
| C(16)-C(19)     | 1.507(6)   |
| C(17)-C(18)     | 1.384(6)   |
| C(17)-H(17A)    | 0.9300     |
| C(18)-H(18A)    | 0.9300     |
| C(19)-H(19A)    | 0.9600     |
| C(19)-H(19B)    | 0.9600     |
| С(19)-Н(19С)    | 0.9600     |
| O(1)-P(1)-C(8)  | 113.90(15) |
| O(1)-P(1)-C(10) | 112.56(15) |
| C(8)-P(1)-C(10) | 102.20(15) |
| O(1)-P(1)-C(6)  | 111.79(14) |

| C(8)-P(1)-C(6)   | 107.12(15) |
|------------------|------------|
| C(10)-P(1)-C(6)  | 108.68(13) |
| C(11)-N(1)-N(2)  | 110.9(3)   |
| C(11)-N(1)-C(12) | 129.4(3)   |
| N(2)-N(1)-C(12)  | 119.7(3)   |
| N(3)-N(2)-N(1)   | 106.7(3)   |
| N(2)-N(3)-C(10)  | 109.0(2)   |
| C(6)-C(1)-C(2)   | 117.8(3)   |
| C(6)-C(1)-C(7)   | 122.7(3)   |
| C(2)-C(1)-C(7)   | 119.5(3)   |
| C(3)-C(2)-C(1)   | 121.6(4)   |
| C(3)-C(2)-H(2A)  | 119.2      |
| C(1)-C(2)-H(2A)  | 119.2      |
| C(2)-C(3)-C(4)   | 121.1(4)   |
| C(2)-C(3)-H(3A)  | 119.5      |
| C(4)-C(3)-H(3A)  | 119.5      |
| C(3)-C(4)-C(5)   | 119.0(4)   |
| C(3)-C(4)-H(4A)  | 120.5      |
| C(5)-C(4)-H(4A)  | 120.5      |
| C(4)-C(5)-C(6)   | 121.0(4)   |
| C(4)-C(5)-H(5A)  | 119.5      |
| C(6)-C(5)-H(5A)  | 119.5      |
| C(1)-C(6)-C(5)   | 119.4(3)   |
| C(1)-C(6)-P(1)   | 125.9(2)   |
| C(5)-C(6)-P(1)   | 114.7(2)   |
| C(1)-C(7)-H(7A)  | 109.5      |
| C(1)-C(7)-H(7B)  | 109.5      |
| H(7A)-C(7)-H(7B) | 109.5      |
| C(1)-C(7)-H(7C)  | 109.5      |
| H(7A)-C(7)-H(7C) | 109.5      |
| H(7B)-C(7)-H(7C) | 109.5      |

| C(9)-C(8)-P(1)      | 175.7(3) |
|---------------------|----------|
| C(8)-C(9)-H(9A)     | 174.5    |
| N(3)-C(10)-C(11)    | 108.1(3) |
| N(3)-C(10)-P(1)     | 120.3(2) |
| C(11)-C(10)-P(1)    | 131.5(2) |
| N(1)-C(11)-C(10)    | 105.3(3) |
| N(1)-C(11)-H(11A)   | 127.3    |
| C(10)-C(11)-H(11A)  | 127.3    |
| N(1)-C(12)-C(13)    | 112.6(3) |
| N(1)-C(12)-H(12A)   | 109.1    |
| C(13)-C(12)-H(12A)  | 109.1    |
| N(1)-C(12)-H(12B)   | 109.1    |
| C(13)-C(12)-H(12B)  | 109.1    |
| H(12A)-C(12)-H(12B) | 107.8    |
| C(18)-C(13)-C(14)   | 117.9(3) |
| C(18)-C(13)-C(12)   | 121.1(3) |
| C(14)-C(13)-C(12)   | 121.1(3) |
| C(13)-C(14)-C(15)   | 119.9(4) |
| C(13)-C(14)-H(14A)  | 120.0    |
| C(15)-C(14)-H(14A)  | 120.0    |
| C(16)-C(15)-C(14)   | 122.7(4) |
| C(16)-C(15)-H(15A)  | 118.6    |
| C(14)-C(15)-H(15A)  | 118.6    |
| C(17)-C(16)-C(15)   | 116.4(4) |
| C(17)-C(16)-C(19)   | 121.3(5) |
| C(15)-C(16)-C(19)   | 122.3(5) |
| C(16)-C(17)-C(18)   | 122.0(4) |
| С(16)-С(17)-Н(17А)  | 119.0    |
| C(18)-C(17)-H(17A)  | 119.0    |
| C(13)-C(18)-C(17)   | 121.1(4) |
| C(13)-C(18)-H(18A)  | 119.5    |

| C(17)-C(18)-H(18A)  | 119.5 |
|---------------------|-------|
| C(16)-C(19)-H(19A)  | 109.5 |
| C(16)-C(19)-H(19B)  | 109.5 |
| H(19A)-C(19)-H(19B) | 109.5 |
| C(16)-C(19)-H(19C)  | 109.5 |
| H(19A)-C(19)-H(19C) | 109.5 |
| H(19B)-C(19)-H(19C) | 109.5 |
|                     |       |

Symmetry transformations used to generate equivalent atoms:

**Table S11.** Anisotropic displacement parameters (Å <sup>2</sup> x 10<sup>3</sup>) for **3b.** The anisotropic displacement factor exponent takes the form:  $-2 \pi^2 [h^2 a^{*2} U11 + ... + 2h k a^* b^* U12]$ 

|       | U11    | U22    | U33   | U2     | 23     | U13    | U12 |
|-------|--------|--------|-------|--------|--------|--------|-----|
| P(1)  | 60(1)  | 49(1)  | 57(1) | 1(1)   | -5(1)  | 9(1)   |     |
| O(1)  | 90(2)  | 70(2)  | 84(2) | 16(1)  | -3(1)  | 27(1)  |     |
| N(1)  | 73(2)  | 58(2)  | 54(1) | 6(1)   | 6(1)   | 12(1)  |     |
| N(2)  | 84(2)  | 67(2)  | 79(2) | -5(2)  | 8(2)   | -12(2) |     |
| N(3)  | 77(2)  | 56(2)  | 64(1) | -8(1)  | 4(1)   | -7(1)  |     |
| C(1)  | 64(2)  | 69(2)  | 61(2) | 10(2)  | -1(2)  | -3(2)  |     |
| C(2)  | 93(3)  | 107(3) | 77(2) | 27(2)  | -4(2)  | -2(2)  |     |
| C(3)  | 116(3) | 123(4) | 61(2) | 5(2)   | 13(2)  | 1(3)   |     |
| C(4)  | 122(4) | 113(3) | 70(2) | -10(2) | 29(2)  | 11(3)  |     |
| C(5)  | 90(2)  | 77(2)  | 77(2) | -3(2)  | 14(2)  | 12(2)  |     |
| C(6)  | 56(2)  | 56(2)  | 58(2) | 0(1)   | 4(1)   | -5(1)  |     |
| C(7)  | 92(3)  | 73(2)  | 93(3) | 24(2)  | 0(2)   | 21(2)  |     |
| C(8)  | 59(2)  | 71(2)  | 72(2) | -2(2)  | -17(2) | -3(2)  |     |
| C(9)  | 77(2)  | 83(2)  | 86(2) | -11(2) | -6(2)  | -3(2)  |     |
| C(10) | 69(2)  | 45(1)  | 44(1) | 3(1)   | -3(1)  | 1(2)   |     |
| C(11) | 73(2)  | 44(2)  | 64(2) | 0(1)   | 6(2)   | 0(2)   |     |
| C(12) | 82(2)  | 87(2)  | 74(2) | 15(2)  | 13(2)  | 24(2)  |     |

| C(13) | 64(2)  | 61(2)  | 69(2) | -2(2)  | 13(2)  | 12(2)  |
|-------|--------|--------|-------|--------|--------|--------|
| C(14) | 85(2)  | 94(3)  | 96(3) | -7(2)  | 7(2)   | -11(2) |
| C(15) | 88(3)  | 149(4) | 92(3) | -35(3) | -13(2) | -6(3)  |
| C(16) | 77(2)  | 144(3) | 62(2) | -2(2)  | 13(2)  | 40(2)  |
| C(17) | 94(3)  | 101(3) | 87(3) | 11(2)  | 35(2)  | 2(2)   |
| C(18) | 77(2)  | 81(2)  | 77(2) | -11(2) | 10(2)  | -6(2)  |
| C(19) | 132(4) | 286(8) | 73(3) | 29(4)  | 19(3)  | 78(5)  |
|       |        |        |       |        |        |        |

**Table S12.** Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup> x 10<sup>3</sup>) for **3b**.

|        | Х     | у     | Z     | U(eq) |
|--------|-------|-------|-------|-------|
| H(2A)  | 8755  | -15   | 10553 | 111   |
| H(3A)  | 7439  | 1368  | 11205 | 120   |
| H(4A)  | 6096  | 2848  | 10627 | 122   |
| H(5A)  | 6035  | 2901  | 9364  | 98    |
| H(7A)  | 8923  | -284  | 8613  | 129   |
| H(7B)  | 8688  | -1196 | 9265  | 129   |
| H(7C)  | 10068 | -334  | 9257  | 129   |
| H(9A)  | 5234  | -1304 | 7324  | 99    |
| H(11A) | 9404  | -32   | 7304  | 72    |
| H(12A) | 12304 | -227  | 6963  | 97    |
| H(12B) | 13251 | 938   | 7124  | 97    |
| H(14A) | 10961 | -359  | 5775  | 110   |
| H(15A) | 10969 | 146   | 4552  | 132   |
| H(17A) | 13713 | 2841  | 4935  | 113   |
| H(18A) | 13737 | 2352  | 6158  | 94    |
| H(19A) | 12942 | 2587  | 3727  | 246   |
| H(19B) | 11335 | 2075  | 3651  | 246   |

| H(19C)  | 12692 | 1214 | 3524 | 246 |  |
|---------|-------|------|------|-----|--|
| 11(1)() | 12072 | 1217 | 5524 | 240 |  |

Table S13. Torsion angles [deg] for 3b.

| C(11)-N(1)-N(2)-N(3)  | 1.7(3)    |
|-----------------------|-----------|
| C(12)-N(1)-N(2)-N(3)  | -179.8(3) |
| N(1)-N(2)-N(3)-C(10)  | -0.9(3)   |
| C(6)-C(1)-C(2)-C(3)   | 2.1(6)    |
| C(7)-C(1)-C(2)-C(3)   | -179.2(4) |
| C(1)-C(2)-C(3)-C(4)   | -1.5(7)   |
| C(2)-C(3)-C(4)-C(5)   | 0.6(7)    |
| C(3)-C(4)-C(5)-C(6)   | -0.4(7)   |
| C(2)-C(1)-C(6)-C(5)   | -1.9(5)   |
| C(7)-C(1)-C(6)-C(5)   | 179.4(3)  |
| C(2)-C(1)-C(6)-P(1)   | 178.9(3)  |
| C(7)-C(1)-C(6)-P(1)   | 0.2(5)    |
| C(4)-C(5)-C(6)-C(1)   | 1.1(5)    |
| C(4)-C(5)-C(6)-P(1)   | -179.6(3) |
| O(1)-P(1)-C(6)-C(1)   | -174.7(3) |
| C(8)-P(1)-C(6)-C(1)   | 59.8(3)   |
| C(10)-P(1)-C(6)-C(1)  | -49.9(3)  |
| O(1)-P(1)-C(6)-C(5)   | 6.0(3)    |
| C(8)-P(1)-C(6)-C(5)   | -119.4(3) |
| C(10)-P(1)-C(6)-C(5)  | 130.9(3)  |
| O(1)-P(1)-C(8)-C(9)   | 3(5)      |
| C(10)-P(1)-C(8)-C(9)  | -119(5)   |
| C(6)-P(1)-C(8)-C(9)   | 127(5)    |
| N(2)-N(3)-C(10)-C(11) | -0.2(3)   |
| N(2)-N(3)-C(10)-P(1)  | 179.3(2)  |
| O(1)-P(1)-C(10)-N(3)  | 49.0(3)   |

| C(8)-P(1)-C(10)-N(3)    | 171.6(2)  |
|-------------------------|-----------|
| C(6)-P(1)-C(10)-N(3)    | -75.4(2)  |
| O(1)-P(1)-C(10)-C(11)   | -131.7(3) |
| C(8)-P(1)-C(10)-C(11)   | -9.1(3)   |
| C(6)-P(1)-C(10)-C(11)   | 103.9(3)  |
| N(2)-N(1)-C(11)-C(10)   | -1.8(3)   |
| C(12)-N(1)-C(11)-C(10)  | 179.9(3)  |
| N(3)-C(10)-C(11)-N(1)   | 1.2(3)    |
| P(1)-C(10)-C(11)-N(1)   | -178.2(2) |
| C(11)-N(1)-C(12)-C(13)  | 92.3(4)   |
| N(2)-N(1)-C(12)-C(13)   | -85.9(4)  |
| N(1)-C(12)-C(13)-C(18)  | 96.3(4)   |
| N(1)-C(12)-C(13)-C(14)  | -83.8(4)  |
| C(18)-C(13)-C(14)-C(15) | -0.9(6)   |
| C(12)-C(13)-C(14)-C(15) | 179.2(4)  |
| C(13)-C(14)-C(15)-C(16) | -0.3(7)   |
| C(14)-C(15)-C(16)-C(17) | 1.3(7)    |
| C(14)-C(15)-C(16)-C(19) | 179.9(5)  |
| C(15)-C(16)-C(17)-C(18) | -1.1(6)   |
| C(19)-C(16)-C(17)-C(18) | -179.7(4) |
| C(14)-C(13)-C(18)-C(17) | 1.1(5)    |
| C(12)-C(13)-C(18)-C(17) | -179.0(4) |
| C(16)-C(17)-C(18)-C(13) | -0.1(6)   |
|                         |           |

Symmetry transformations used to generate equivalent atoms:

Table S14. Hydrogen bonds for 3b [Å and deg.].

D-H...A

d(D-H) d(H...A)

d(D...A) <(DHA)

Data intensity of  $4a^{10}$  was collected using a 'Bruker APEX-II CCD' diffractometer at 296(2) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on  $F^2$  with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **4a**: C<sub>15</sub>H<sub>13</sub>OP, T = 296(2) K, Orthorhombic, P2(1)2(1)2(1), a = 7.6851(3) Å, b = 12.5057(5) Å, c =13.9472(5) Å, a = 90 deg,  $\beta = 90$  deg,  $\gamma = 90$  deg, V = 1340.43(9) Å<sup>3</sup>. Z = 4,  $d_{calc} = 1.190$  Mg/m<sup>3</sup>. 15650 reflections measured, 2362 unique [Rint = 0.0259], R1 = 0.0317, wR2 = 0.0897 ( $I > 2\sigma(I)$ , final), R1 = 0.0338, wR2 = 0.0925 (all data), GOF = 1.003, and 154 parameters.



Table S15. Crystal data and structure refinement for 4a.

| Identification code             | <b>4</b> a                         |                            |
|---------------------------------|------------------------------------|----------------------------|
| Empirical formula               | C <sub>15</sub> H <sub>13</sub> OP |                            |
| Formula weight                  | 240.22                             |                            |
| Temperature                     | 296(2) K                           |                            |
| Wavelength                      | 0.71073 A                          |                            |
| Crystal system, space group     | Orthorhombic, P2(1)2               | 2(1)2(1)                   |
| Unit cell dimensions            | a = 7.6851(3) Å                    | $\alpha = 90 \text{ deg.}$ |
|                                 | b = 12.5057(5) Å                   | $\beta = 90 \text{ deg.}$  |
|                                 | c = 13.9472(5) Å                   | $\gamma = 90$ deg.         |
| Volume                          | 1340.43(9) Å <sup>3</sup>          |                            |
| Z, Calculated density           | 4, 1.190 Mg/m <sup>3</sup>         |                            |
| Absorption coefficient          | 0.186 mm <sup>-1</sup>             |                            |
| F(000)                          | 504                                |                            |
| Crystal size                    | 0.50 x 0.47 x 0.26 m               | m                          |
| Theta range for data collection | 2.92 to 25.00 deg.                 |                            |
| Limiting indices                | -9<=h<=9, -14<=k<=                 | =14, <b>-</b> 16<=l<=1     |

<sup>&</sup>lt;sup>10</sup> Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1548228).

5

| Reflections collected / unique       | 15650 / 2362 [R(int) = 0.0259]       |
|--------------------------------------|--------------------------------------|
| Completeness to theta $= 25.00$      | 99.9 %                               |
| Absorption correction                | Semi-empirical from equivalents      |
| Max. and min. transmission           | 0.9532 and 0.9128                    |
| Refinement method                    | Full-matrix least-squares on F^2     |
| Data / restraints / parameters       | 2362 / 0 / 154                       |
| Goodness-of-fit on F <sup>2</sup>    | 1.003                                |
| Final R indices $[I \ge 2\sigma(I)]$ | R1 = 0.0317, wR2 = 0.0897            |
| R indices (all data)                 | R1 = 0.0338, wR2 = 0.0925            |
| Absolute structure parameter         | -0.08(10)                            |
| Largest diff. peak and hole          | 0.223 and -0.114 e. Å $^{\text{-3}}$ |

| Table S16. Atomic coordinates ( $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å $^2$ x |
|---------------------------------------------------------------------------------------------------------|
| $10^3$ ) for <b>4a</b> . U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.   |

|       | Х        | У        | Z       | U(eq)  |
|-------|----------|----------|---------|--------|
| P(1)  | 1652(1)  | 9403(1)  | 4064(1) | 45(1)  |
| O(1)  | 3235(2)  | 8976(1)  | 3601(1) | 66(1)  |
| C(1)  | -13(2)   | 9846(1)  | 3254(1) | 46(1)  |
| C(2)  | 365(3)   | 10621(2) | 2559(1) | 54(1)  |
| C(3)  | -965(3)  | 10913(2) | 1944(2) | 72(1)  |
| C(4)  | -2606(3) | 10483(3) | 2011(2) | 86(1)  |
| C(5)  | -2981(3) | 9731(2)  | 2696(2) | 88(1)  |
| C(6)  | -1689(3) | 9417(2)  | 3312(2) | 65(1)  |
| C(7)  | 2086(3)  | 10475(2) | 4885(1) | 66(1)  |
| C(8)  | 771(5)   | 11033(2) | 5302(2) | 101(1) |
| C(9)  | 1154(9)  | 11815(3) | 5977(3) | 151(2) |
| C(10) | 2826(10) | 12008(3) | 6216(3) | 167(3) |
| C(11) | 4155(8)  | 11467(4) | 5795(3) | 156(2) |
| C(12) | 3815(5)  | 10678(3) | 5127(2) | 105(1) |
| C(13) | 2136(3)  | 11102(2) | 2452(2) | 79(1)  |

| C(14) | 645(3) | 8435(1) | 4795(1) | 50(1) |
|-------|--------|---------|---------|-------|
| C(15) | 92(3)  | 7769(2) | 5303(1) | 59(1) |

Table S17.Bond lengths [Å] and angles [deg] for 4a.

| P(1)-O(1)    | 1.4780(15) |  |
|--------------|------------|--|
| P(1)-C(14)   | 1.7613(18) |  |
| P(1)-C(7)    | 1.794(2)   |  |
| P(1)-C(1)    | 1.7950(18) |  |
| C(1)-C(6)    | 1.397(3)   |  |
| C(1)-C(2)    | 1.401(2)   |  |
| C(2)-C(3)    | 1.384(3)   |  |
| C(2)-C(13)   | 1.496(3)   |  |
| C(3)-C(4)    | 1.374(4)   |  |
| C(3)-H(3A)   | 0.9300     |  |
| C(4)-C(5)    | 1.372(4)   |  |
| C(4)-H(4A)   | 0.9300     |  |
| C(5)-C(6)    | 1.371(3)   |  |
| C(5)-H(5A)   | 0.9300     |  |
| C(6)-H(6A)   | 0.9300     |  |
| C(7)-C(8)    | 1.359(4)   |  |
| C(7)-C(12)   | 1.394(4)   |  |
| C(8)-C(9)    | 1.389(5)   |  |
| C(8)-H(8A)   | 0.9300     |  |
| C(9)-C(10)   | 1.350(8)   |  |
| C(9)-H(9A)   | 0.9300     |  |
| C(10)-C(11)  | 1.359(8)   |  |
| C(10)-H(10A) | 0.9300     |  |
| C(11)-C(12)  | 1.382(5)   |  |
| C(11)-H(11A) | 0.9300     |  |

| C(12)-H(12A)    | 0.9300     |
|-----------------|------------|
| C(13)-H(13A)    | 0.9600     |
| C(13)-H(13B)    | 0.9600     |
| С(13)-Н(13С)    | 0.9600     |
| C(14)-C(15)     | 1.173(3)   |
| C(15)-H(15A)    | 0.9600     |
| O(1)-P(1)-C(14) | 111.47(8)  |
| O(1)-P(1)-C(7)  | 113.35(11) |
| C(14)-P(1)-C(7) | 103.09(9)  |
| O(1)-P(1)-C(1)  | 115.03(8)  |
| C(14)-P(1)-C(1) | 105.25(9)  |
| C(7)-P(1)-C(1)  | 107.68(9)  |
| C(6)-C(1)-C(2)  | 119.79(17) |
| C(6)-C(1)-P(1)  | 120.13(14) |
| C(2)-C(1)-P(1)  | 120.08(15) |
| C(3)-C(2)-C(1)  | 117.28(19) |
| C(3)-C(2)-C(13) | 120.28(18) |
| C(1)-C(2)-C(13) | 122.42(17) |
| C(4)-C(3)-C(2)  | 122.2(2)   |
| C(4)-C(3)-H(3A) | 118.9      |
| C(2)-C(3)-H(3A) | 118.9      |
| C(5)-C(4)-C(3)  | 120.6(2)   |
| C(5)-C(4)-H(4A) | 119.7      |
| C(3)-C(4)-H(4A) | 119.7      |
| C(4)-C(5)-C(6)  | 118.7(2)   |
| C(4)-C(5)-H(5A) | 120.6      |
| C(6)-C(5)-H(5A) | 120.6      |
| C(5)-C(6)-C(1)  | 121.4(2)   |
| C(5)-C(6)-H(6A) | 119.3      |
| C(1)-C(6)-H(6A) | 119.3      |
| C(8)-C(7)-C(12) | 120.8(3)   |

| C(8)-C(7)-P(1)      | 121.2(2)   |
|---------------------|------------|
| C(12)-C(7)-P(1)     | 117.9(2)   |
| C(7)-C(8)-C(9)      | 119.6(4)   |
| C(7)-C(8)-H(8A)     | 120.2      |
| C(9)-C(8)-H(8A)     | 120.2      |
| C(10)-C(9)-C(8)     | 119.7(5)   |
| C(10)-C(9)-H(9A)    | 120.1      |
| C(8)-C(9)-H(9A)     | 120.1      |
| C(9)-C(10)-C(11)    | 121.3(4)   |
| C(9)-C(10)-H(10A)   | 119.4      |
| С(11)-С(10)-Н(10А)  | 119.4      |
| C(10)-C(11)-C(12)   | 120.4(5)   |
| C(10)-C(11)-H(11A)  | 119.8      |
| C(12)-C(11)-H(11A)  | 119.8      |
| C(7)-C(12)-C(11)    | 118.2(4)   |
| C(7)-C(12)-H(12A)   | 120.9      |
| C(11)-C(12)-H(12A)  | 120.9      |
| C(2)-C(13)-H(13A)   | 109.5      |
| C(2)-C(13)-H(13B)   | 109.5      |
| H(13A)-C(13)-H(13B) | 109.5      |
| C(2)-C(13)-H(13C)   | 109.5      |
| H(13A)-C(13)-H(13C) | 109.5      |
| H(13B)-C(13)-H(13C) | 109.5      |
| C(15)-C(14)-P(1)    | 175.16(19) |
| C(14)-C(15)-H(15A)  | 176.4      |

Symmetry transformations used to generate equivalent atoms:

|       | U11     | U22    | U33    | U23    | U13    | U12    |  |
|-------|---------|--------|--------|--------|--------|--------|--|
| P(1)  | 49(1)   | 42(1)  | 45(1)  | 10(1)  | 1(1)   | 0(1)   |  |
| O(1)  | 54(1)   | 74(1)  | 71(1)  | 27(1)  | 11(1)  | 16(1)  |  |
| C(1)  | 49(1)   | 49(1)  | 41(1)  | 3(1)   | 3(1)   | 7(1)   |  |
| C(2)  | 66(1)   | 49(1)  | 46(1)  | 7(1)   | 5(1)   | 12(1)  |  |
| C(3)  | 95(2)   | 71(1)  | 51(1)  | 14(1)  | -2(1)  | 19(1)  |  |
| C(4)  | 73(2)   | 109(2) | 76(2)  | 16(2)  | -18(1) | 22(2)  |  |
| C(5)  | 55(1)   | 121(2) | 88(2)  | 16(2)  | -9(1)  | 0(1)   |  |
| C(6)  | 54(1)   | 80(1)  | 60(1)  | 13(1)  | -1(1)  | -6(1)  |  |
| C(7)  | 100(2)  | 47(1)  | 50(1)  | 12(1)  | -14(1) | -19(1) |  |
| C(8)  | 149(3)  | 72(2)  | 81(2)  | -24(1) | 7(2)   | -8(2)  |  |
| C(9)  | 267(6)  | 89(2)  | 96(2)  | -34(2) | 9(3)   | -11(3) |  |
| C(10) | 330(10) | 88(2)  | 82(2)  | -4(2)  | -50(4) | -58(4) |  |
| C(11) | 211(6)  | 121(3) | 136(4) | 22(3)  | -95(4) | -84(3) |  |
| C(12) | 121(2)  | 91(2)  | 103(2) | 17(2)  | -51(2) | -40(2) |  |
| C(13) | 90(2)   | 74(1)  | 74(1)  | 32(1)  | 7(1)   | -10(1) |  |
| C(14) | 61(1)   | 43(1)  | 46(1)  | 2(1)   | 2(1)   | -4(1)  |  |
| C(15) | 75(1)   | 50(1)  | 52(1)  | 9(1)   | 5(1)   | -11(1) |  |
|       |         |        |        |        |        |        |  |

**Table S18.** Anisotropic displacement parameters (Å <sup>2</sup> x 10<sup>3</sup>) for **4a.** The anisotropic displacement factor exponent takes the form: -2  $\pi^2$  [  $h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$  ]

**Table S19.** Hydrogen coordinates ( $x \ 10^4$ ) and isotropic displacement parameters ( $A^2 \ x \ 10^3$ ) for**4a**.

|       | X     | У     | Z    | U(eq) |
|-------|-------|-------|------|-------|
| H(3A) | -741  | 11417 | 1469 | 87    |
| H(4A) | -3470 | 10705 | 1589 | 104   |
| H(5A) | -4091 | 9439  | 2741 | 106   |

| H(6A)  | -1932 | 8908  | 3779 | 78  |  |
|--------|-------|-------|------|-----|--|
| H(8A)  | -379  | 10892 | 5137 | 121 |  |
| H(9A)  | 262   | 12204 | 6263 | 181 |  |
| H(10A) | 3074  | 12522 | 6679 | 200 |  |
| H(11A) | 5299  | 11629 | 5956 | 187 |  |
| H(12A) | 4716  | 10292 | 4847 | 126 |  |
| H(13A) | 2126  | 11609 | 1935 | 119 |  |
| H(13B) | 2965  | 10548 | 2315 | 119 |  |
| H(13C) | 2455  | 11457 | 3036 | 119 |  |
| H(15A) | -363  | 7195  | 5685 | 89  |  |
|        |       |       |      |     |  |

Table S20.Torsion angles [deg] for 4a.

| O(1) P(1) C(1) C(6)       | 123 55(17)  |
|---------------------------|-------------|
| O(1) - I(1) - O(1) - O(0) | 125.55(17)  |
| C(14)-P(1)-C(1)-C(6)      | 0.46(18)    |
| C(7)-P(1)-C(1)-C(6)       | -109.01(17) |
| O(1)-P(1)-C(1)-C(2)       | -56.29(17)  |
| C(14)-P(1)-C(1)-C(2)      | -179.39(14) |
| C(7)-P(1)-C(1)-C(2)       | 71.15(17)   |
| C(6)-C(1)-C(2)-C(3)       | -1.1(3)     |
| P(1)-C(1)-C(2)-C(3)       | 178.78(15)  |
| C(6)-C(1)-C(2)-C(13)      | -179.3(2)   |
| P(1)-C(1)-C(2)-C(13)      | 0.6(3)      |
| C(1)-C(2)-C(3)-C(4)       | 1.1(3)      |
| C(13)-C(2)-C(3)-C(4)      | 179.4(3)    |
| C(2)-C(3)-C(4)-C(5)       | -0.6(4)     |
| C(3)-C(4)-C(5)-C(6)       | 0.1(4)      |
| C(4)-C(5)-C(6)-C(1)       | -0.1(4)     |
| C(2)-C(1)-C(6)-C(5)       | 0.6(3)      |
| P(1)-C(1)-C(6)-C(5)       | -179.25(19) |

| O(1)-P(1)-C(7)-C(8)    | 173.36(19)  |
|------------------------|-------------|
| C(14)-P(1)-C(7)-C(8)   | -66.0(2)    |
| C(1)-P(1)-C(7)-C(8)    | 45.0(2)     |
| O(1)-P(1)-C(7)-C(12)   | -10.4(2)    |
| C(14)-P(1)-C(7)-C(12)  | 110.22(19)  |
| C(1)-P(1)-C(7)-C(12)   | -138.83(19) |
| C(12)-C(7)-C(8)-C(9)   | 0.1(4)      |
| P(1)-C(7)-C(8)-C(9)    | 176.2(2)    |
| C(7)-C(8)-C(9)-C(10)   | -0.4(6)     |
| C(8)-C(9)-C(10)-C(11)  | 1.4(7)      |
| C(9)-C(10)-C(11)-C(12) | -2.0(7)     |
| C(8)-C(7)-C(12)-C(11)  | -0.7(4)     |
| P(1)-C(7)-C(12)-C(11)  | -176.9(2)   |
| C(10)-C(11)-C(12)-C(7) | 1.6(6)      |
| O(1)-P(1)-C(14)-C(15)  | 41(2)       |
| C(7)-P(1)-C(14)-C(15)  | -81(2)      |
| C(1)-P(1)-C(14)-C(15)  | 167(2)      |
|                        |             |

Symmetry transformations used to generate equivalent atoms:

Table S21.Hydrogen bonds for 4a [Å and deg.].

D-H...A

d(D-H)

) d(H...A)

d(D...A) <(DHA)

Data intensity of **70**<sup>11</sup> was collected using a 'Bruker APEX-II CCD' diffractometer at 293(2) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on  $F^2$  with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **70**: C<sub>36</sub> H<sub>33</sub> Cl N<sub>3</sub> O<sub>3</sub> P, T = 293(2) K, monoclinic, space group P 21, a = 14.421(2) Å, b = 7.7894(13) Å, c =16.028(3) Å, a = 90 deg,  $\beta = 114.539(4)$  deg,  $\gamma = 90$  deg, V = 1637.8(5) Å<sup>3</sup>. Z = 2,  $d_{calc} = 1.261$ Mg/m<sup>3</sup>. 9105 reflections measured, 5518 unique [Rint = 0.0570], R1 = 0.0879, wR2 = 0.1703 (I > $2\sigma(I)$ , final), R1 = 0.1285, wR2 = 0.1920 (all data), GOF = 1.095, and 410 parameters.



Table S22. Crystal data and structure refinement for 70.

| Identification code  | 70                       |                               |
|----------------------|--------------------------|-------------------------------|
| Empirical formula    | C36H33ClN3O3P            |                               |
| Formula weight       | 622.07                   |                               |
| Temperature          | 293(2) K                 |                               |
| Wavelength           | 0.71073 Å                |                               |
| Crystal system       | Monoclinic               |                               |
| Space group          | P 21                     |                               |
| Unit cell dimensions | a = 14.421(2) Å          | $\alpha = 90^{\circ}$ .       |
|                      | b = 7.7894(13) Å         | $\beta = 114.539(4)^{\circ}.$ |
|                      | c = 16.028(3)  Å         | $\gamma = 90^{\circ}.$        |
| Volume               | 1637.8(5) Å <sup>3</sup> |                               |
| Z                    | 2                        |                               |

<sup>&</sup>lt;sup>11</sup> Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1450187).

| Density (calculated)                     | 1.261 Mg/m <sup>3</sup>                     |
|------------------------------------------|---------------------------------------------|
| Absorption coefficient                   | 0.205 mm <sup>-1</sup>                      |
| F(000)                                   | 652                                         |
| Crystal size                             | 0.19 x 0.10 x 0.04 mm <sup>3</sup>          |
| Theta range for data collection          | 1.552 to 24.998°.                           |
| Index ranges                             | -17<=h<=16, -9<=k<=9, -12<=l<=19            |
| Reflections collected                    | 9105                                        |
| Independent reflections                  | 5518 [R(int) = 0.0570]                      |
| Completeness to theta = $25.242^{\circ}$ | 97.1 %                                      |
| Absorption correction                    | Semi-empirical from equivalents             |
| Max. and min. transmission               | 0.7456 and 0.6328                           |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters           | 5518 / 9 / 410                              |
| Goodness-of-fit on F <sup>2</sup>        | 1.095                                       |
| Final R indices [I>2sigma(I)]            | R1 = 0.0879, wR2 = 0.1703                   |
| R indices (all data)                     | R1 = 0.1285, wR2 = 0.1920                   |
| Absolute structure parameter             | 0.00(11)                                    |
| Extinction coefficient                   | n/a                                         |
| Largest diff. peak and hole              | 0.278 and -0.206 e.Å <sup>-3</sup>          |

**Table S23.** Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for **70.** U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

|       | Х        | У        | Z        | U(eq)  |
|-------|----------|----------|----------|--------|
| Cl(1) | 10274(2) | 9256(11) | 11786(3) | 237(4) |
| P(1)  | 2844(1)  | 9359(3)  | 4532(1)  | 46(1)  |
| N(1)  | 5299(5)  | 8551(11) | 9600(4)  | 66(2)  |
| N(2)  | 4316(5)  | 8861(13) | 9171(5)  | 82(3)  |
| N(3)  | 4093(5)  | 8904(12) | 8298(4)  | 76(3)  |
| O(1)  | 2408(4)  | 11083(8) | 4456(4)  | 61(2)  |

| O(2)  | 6655(4)  | 8180(9)   | 7814(4)   | 66(2)  |  |
|-------|----------|-----------|-----------|--------|--|
| O(3)  | 5550(4)  | 7889(9)   | 2689(4)   | 71(2)  |  |
| C(1)  | 5700(6)  | 8357(15)  | 8976(5)   | 72(3)  |  |
| C(2)  | 4927(5)  | 8625(11)  | 8159(5)   | 46(2)  |  |
| C(3)  | 4902(5)  | 8606(12)  | 7224(5)   | 50(2)  |  |
| C(4)  | 3970(5)  | 8855(9)   | 6474(5)   | 42(2)  |  |
| C(5)  | 3923(5)  | 8851(11)  | 5590(5)   | 50(2)  |  |
| C(6)  | 4794(6)  | 8566(11)  | 5440(5)   | 48(2)  |  |
| C(7)  | 5714(6)  | 8329(11)  | 6176(5)   | 47(2)  |  |
| C(8)  | 5768(5)  | 8359(11)  | 7061(5)   | 47(2)  |  |
| C(9)  | 4583(6)  | 8571(10)  | 4448(5)   | 45(2)  |  |
| C(10) | 5275(6)  | 8243(11)  | 4076(5)   | 52(2)  |  |
| C(11) | 4962(6)  | 8254(11)  | 3135(5)   | 54(2)  |  |
| C(12) | 3925(6)  | 8607(12)  | 2552(5)   | 56(2)  |  |
| C(13) | 3247(6)  | 8881(12)  | 2925(5)   | 54(2)  |  |
| C(14) | 3570(6)  | 8900(11)  | 3872(5)   | 54(2)  |  |
| C(15) | 3595(6)  | 8610(14)  | 1565(6)   | 67(3)  |  |
| C(16) | 3344(8)  | 8682(18)  | 785(7)    | 103(4) |  |
| C(17) | 1882(6)  | 7712(11)  | 4270(5)   | 46(2)  |  |
| C(18) | 2082(7)  | 6027(13)  | 4192(6)   | 64(2)  |  |
| C(19) | 1357(9)  | 4807(13)  | 3966(7)   | 76(3)  |  |
| C(20) | 384(9)   | 5242(17)  | 3820(7)   | 81(3)  |  |
| C(21) | 161(8)   | 6901(19)  | 3924(8)   | 90(4)  |  |
| C(22) | 902(6)   | 8119(14)  | 4132(6)   | 67(3)  |  |
| C(23) | -436(9)  | 3885(18)  | 3572(9)   | 125(5) |  |
| C(24) | 5801(7)  | 8450(18)  | 10614(5)  | 87(4)  |  |
| C(25) | 6948(7)  | 8667(19)  | 10962(6)  | 72(3)  |  |
| C(26) | 7339(11) | 10250(20) | 11001(9)  | 109(4) |  |
| C(27) | 8364(14) | 10430(20) | 11275(10) | 128(5) |  |
| C(28) | 8998(10) | 9040(30)  | 11491(9)  | 126(6) |  |
| C(29) | 8581(9)  | 7490(20)  | 11449(9)  | 112(5) |  |

| C(30)  | 7561(9)  | 7332(17)  | 11188(7) | 86(3)   |
|--------|----------|-----------|----------|---------|
| C(31)  | 6639(6)  | 8046(11)  | 3163(6)  | 57(2)   |
| C(32)  | 6952(8)  | 9837(13)  | 3289(8)  | 87(3)   |
| C(33)  | 8071(8)  | 10056(19) | 3607(9)  | 121(5)  |
| C(34)  | 7598(6)  | 8498(17)  | 7754(6)  | 87(3)   |
| C(35)  | 8410(7)  | 8540(20)  | 8701(8)  | 127(5)  |
| C(36)  | 9400(12) | 9200(40)  | 8758(15) | 184(11) |
| C(36') | 8440(40) | 10270(50) | 9140(40) | 183(12) |
|        |          |           |          |         |

Table S24. Bond lengths [Å] and angles  $[\circ]$  for 70.

| Cl(1)-C(28) | 1.707(14) |
|-------------|-----------|
| P(1)-O(1)   | 1.467(6)  |
| P(1)-C(17)  | 1.806(9)  |
| P(1)-C(5)   | 1.806(8)  |
| P(1)-C(14)  | 1.806(7)  |
| N(1)-N(2)   | 1.316(9)  |
| N(1)-C(1)   | 1.355(9)  |
| N(1)-C(24)  | 1.481(10) |
| N(2)-N(3)   | 1.300(9)  |
| N(3)-C(2)   | 1.328(8)  |
| O(2)-C(8)   | 1.353(8)  |
| O(2)-C(34)  | 1.424(10) |
| O(3)-C(11)  | 1.347(8)  |
| O(3)-C(31)  | 1.438(9)  |
| C(1)-C(2)   | 1.337(10) |
| C(1)-H(1)   | 0.9300    |
| C(2)-C(3)   | 1.486(10) |
| C(3)-C(8)   | 1.390(9)  |
| C(3)-C(4)   | 1.395(10) |
| C(4)-C(5)   | 1.390(10) |
|             |           |

| C(4)-H(4)    | 0.9300    |
|--------------|-----------|
| C(5)-C(6)    | 1.392(9)  |
| C(6)-C(7)    | 1.373(10) |
| C(6)-C(9)    | 1.489(10) |
| C(7)-C(8)    | 1.389(10) |
| C(7)-H(7)    | 0.9300    |
| C(9)-C(10)   | 1.384(9)  |
| C(9)-C(14)   | 1.390(10) |
| C(10)-C(11)  | 1.383(10) |
| C(10)-H(10)  | 0.9300    |
| C(11)-C(12)  | 1.422(11) |
| C(12)-C(13)  | 1.358(10) |
| C(12)-C(15)  | 1.451(11) |
| C(13)-C(14)  | 1.391(10) |
| С(13)-Н(13)  | 0.9300    |
| C(15)-C(16)  | 1.150(12) |
| C(16)-H(16)  | 0.9300    |
| C(17)-C(18)  | 1.360(12) |
| C(17)-C(22)  | 1.374(11) |
| C(18)-C(19)  | 1.347(12) |
| C(18)-H(18)  | 0.9300    |
| C(19)-C(20)  | 1.366(13) |
| C(19)-H(19)  | 0.9300    |
| C(20)-C(21)  | 1.359(15) |
| C(20)-C(23)  | 1.511(15) |
| C(21)-C(22)  | 1.362(14) |
| C(21)-H(21)  | 0.9300    |
| C(22)-H(22)  | 0.9300    |
| C(23)-H(23A) | 0.9600    |
| C(23)-H(23B) | 0.9600    |
| C(23)-H(23C) | 0.9600    |

| C(24)-C(25)  | 1.520(12) |
|--------------|-----------|
| C(24)-H(24A) | 0.9700    |
| C(24)-H(24B) | 0.9700    |
| C(25)-C(30)  | 1.315(14) |
| C(25)-C(26)  | 1.347(16) |
| C(26)-C(27)  | 1.364(17) |
| C(26)-H(26)  | 0.9300    |
| C(27)-C(28)  | 1.36(2)   |
| C(27)-H(27)  | 0.9300    |
| C(28)-C(29)  | 1.34(2)   |
| C(29)-C(30)  | 1.358(15) |
| C(29)-H(29)  | 0.9300    |
| C(30)-H(30)  | 0.9300    |
| C(31)-C(32)  | 1.454(13) |
| C(31)-H(31A) | 0.9700    |
| C(31)-H(31B) | 0.9700    |
| C(32)-C(33)  | 1.486(13) |
| C(32)-H(32A) | 0.9700    |
| C(32)-H(32B) | 0.9700    |
| C(33)-H(33A) | 0.9600    |
| C(33)-H(33B) | 0.9600    |
| C(33)-H(33C) | 0.9600    |
| C(34)-C(35)  | 1.483(13) |
| C(34)-H(34A) | 0.9700    |
| C(34)-H(34B) | 0.9700    |
| C(35)-C(36)  | 1.485(16) |
| C(35)-C(36') | 1.51(3)   |
| C(35)-H(35A) | 0.9598    |
| C(35)-H(35B) | 0.9602    |
| C(35)-H(35C) | 0.9601    |
| C(35)-H(35D) | 0.9602    |

| C(36)-H(36A)     | 0.9600   |
|------------------|----------|
| C(36)-H(36B)     | 0.9600   |
| С(36)-Н(36С)     | 0.9600   |
| C(36')-H(36D)    | 0.9600   |
| C(36')-H(36E)    | 0.9600   |
| C(36')-H(36F)    | 0.9600   |
| O(1)-P(1)-C(17)  | 111.7(4) |
| O(1)-P(1)-C(5)   | 116.8(4) |
| C(17)-P(1)-C(5)  | 110.0(4) |
| O(1)-P(1)-C(14)  | 117.8(4) |
| C(17)-P(1)-C(14) | 107.4(4) |
| C(5)-P(1)-C(14)  | 91.4(3)  |
| N(2)-N(1)-C(1)   | 109.4(6) |
| N(2)-N(1)-C(24)  | 120.9(6) |
| C(1)-N(1)-C(24)  | 129.8(7) |
| N(3)-N(2)-N(1)   | 107.4(6) |
| N(2)-N(3)-C(2)   | 109.8(6) |
| C(8)-O(2)-C(34)  | 119.8(6) |
| C(11)-O(3)-C(31) | 119.5(6) |
| C(2)-C(1)-N(1)   | 105.5(7) |
| C(2)-C(1)-H(1)   | 127.2    |
| N(1)-C(1)-H(1)   | 127.2    |
| N(3)-C(2)-C(1)   | 107.9(6) |
| N(3)-C(2)-C(3)   | 121.8(7) |
| C(1)-C(2)-C(3)   | 130.4(7) |
| C(8)-C(3)-C(4)   | 118.5(6) |
| C(8)-C(3)-C(2)   | 122.9(7) |
| C(4)-C(3)-C(2)   | 118.6(6) |
| C(5)-C(4)-C(3)   | 120.0(6) |
| C(5)-C(4)-H(4)   | 120.0    |
| C(3)-C(4)-H(4)   | 120.0    |

| C(4)-C(5)-C(6)    | 120.7(7)  |
|-------------------|-----------|
| C(4)-C(5)-P(1)    | 128.0(5)  |
| C(6)-C(5)-P(1)    | 111.1(5)  |
| C(7)-C(6)-C(5)    | 119.5(6)  |
| C(7)-C(6)-C(9)    | 127.9(6)  |
| C(5)-C(6)-C(9)    | 112.6(7)  |
| C(6)-C(7)-C(8)    | 120.0(6)  |
| С(6)-С(7)-Н(7)    | 120.0     |
| C(8)-C(7)-H(7)    | 120.0     |
| O(2)-C(8)-C(7)    | 122.7(6)  |
| O(2)-C(8)-C(3)    | 115.9(6)  |
| C(7)-C(8)-C(3)    | 121.4(7)  |
| C(10)-C(9)-C(14)  | 119.7(7)  |
| C(10)-C(9)-C(6)   | 126.6(7)  |
| C(14)-C(9)-C(6)   | 113.7(6)  |
| C(9)-C(10)-C(11)  | 120.1(7)  |
| C(9)-C(10)-H(10)  | 119.9     |
| С(11)-С(10)-Н(10) | 119.9     |
| O(3)-C(11)-C(10)  | 125.8(7)  |
| O(3)-C(11)-C(12)  | 114.5(7)  |
| C(10)-C(11)-C(12) | 119.7(7)  |
| C(13)-C(12)-C(11) | 119.6(7)  |
| C(13)-C(12)-C(15) | 120.7(7)  |
| C(11)-C(12)-C(15) | 119.7(7)  |
| C(12)-C(13)-C(14) | 120.4(7)  |
| С(12)-С(13)-Н(13) | 119.8     |
| С(14)-С(13)-Н(13) | 119.8     |
| C(13)-C(14)-C(9)  | 120.4(6)  |
| C(13)-C(14)-P(1)  | 128.9(6)  |
| C(9)-C(14)-P(1)   | 110.6(5)  |
| C(16)-C(15)-C(12) | 177.2(13) |

| C(15)-C(16)-H(16)   | 180.0     |
|---------------------|-----------|
| C(18)-C(17)-C(22)   | 116.8(9)  |
| C(18)-C(17)-P(1)    | 122.3(7)  |
| C(22)-C(17)-P(1)    | 120.9(7)  |
| C(19)-C(18)-C(17)   | 122.3(9)  |
| C(19)-C(18)-H(18)   | 118.9     |
| C(17)-C(18)-H(18)   | 118.9     |
| C(18)-C(19)-C(20)   | 119.9(10) |
| C(18)-C(19)-H(19)   | 120.0     |
| C(20)-C(19)-H(19)   | 120.0     |
| C(21)-C(20)-C(19)   | 119.6(10) |
| C(21)-C(20)-C(23)   | 119.9(12) |
| C(19)-C(20)-C(23)   | 120.5(12) |
| C(20)-C(21)-C(22)   | 119.4(10) |
| C(20)-C(21)-H(21)   | 120.3     |
| C(22)-C(21)-H(21)   | 120.3     |
| C(21)-C(22)-C(17)   | 121.9(10) |
| C(21)-C(22)-H(22)   | 119.0     |
| C(17)-C(22)-H(22)   | 119.0     |
| C(20)-C(23)-H(23A)  | 109.5     |
| C(20)-C(23)-H(23B)  | 109.5     |
| H(23A)-C(23)-H(23B) | 109.5     |
| С(20)-С(23)-Н(23С)  | 109.5     |
| H(23A)-C(23)-H(23C) | 109.5     |
| H(23B)-C(23)-H(23C) | 109.5     |
| N(1)-C(24)-C(25)    | 111.0(7)  |
| N(1)-C(24)-H(24A)   | 109.4     |
| C(25)-C(24)-H(24A)  | 109.4     |
| N(1)-C(24)-H(24B)   | 109.4     |
| C(25)-C(24)-H(24B)  | 109.4     |
| H(24A)-C(24)-H(24B) | 108.0     |

| C(30)-C(25)-C(26)   | 119.4(11) |
|---------------------|-----------|
| C(30)-C(25)-C(24)   | 121.2(13) |
| C(26)-C(25)-C(24)   | 119.3(12) |
| C(25)-C(26)-C(27)   | 118.9(15) |
| C(25)-C(26)-H(26)   | 120.5     |
| C(27)-C(26)-H(26)   | 120.5     |
| C(28)-C(27)-C(26)   | 121.7(17) |
| С(28)-С(27)-Н(27)   | 119.1     |
| С(26)-С(27)-Н(27)   | 119.1     |
| C(29)-C(28)-C(27)   | 117.6(14) |
| C(29)-C(28)-Cl(1)   | 120.7(16) |
| C(27)-C(28)-Cl(1)   | 121.7(19) |
| C(28)-C(29)-C(30)   | 120.1(14) |
| C(28)-C(29)-H(29)   | 120.0     |
| C(30)-C(29)-H(29)   | 120.0     |
| C(25)-C(30)-C(29)   | 122.2(13) |
| C(25)-C(30)-H(30)   | 118.9     |
| C(29)-C(30)-H(30)   | 118.9     |
| O(3)-C(31)-C(32)    | 111.3(8)  |
| O(3)-C(31)-H(31A)   | 109.4     |
| C(32)-C(31)-H(31A)  | 109.4     |
| O(3)-C(31)-H(31B)   | 109.4     |
| C(32)-C(31)-H(31B)  | 109.4     |
| H(31A)-C(31)-H(31B) | 108.0     |
| C(31)-C(32)-C(33)   | 112.8(10) |
| C(31)-C(32)-H(32A)  | 109.0     |
| C(33)-C(32)-H(32A)  | 109.0     |
| C(31)-C(32)-H(32B)  | 109.0     |
| C(33)-C(32)-H(32B)  | 109.0     |
| H(32A)-C(32)-H(32B) | 107.8     |
| C(32)-C(33)-H(33A)  | 109.5     |

| C(32)-C(33)-H(33B)  | 109.5     |
|---------------------|-----------|
| H(33A)-C(33)-H(33B) | 109.5     |
| С(32)-С(33)-Н(33С)  | 109.5     |
| H(33A)-C(33)-H(33C) | 109.5     |
| H(33B)-C(33)-H(33C) | 109.5     |
| O(2)-C(34)-C(35)    | 107.8(8)  |
| O(2)-C(34)-H(34A)   | 110.2     |
| C(35)-C(34)-H(34A)  | 110.2     |
| O(2)-C(34)-H(34B)   | 110.2     |
| C(35)-C(34)-H(34B)  | 110.2     |
| H(34A)-C(34)-H(34B) | 108.5     |
| C(34)-C(35)-C(36)   | 113.7(12) |
| C(34)-C(35)-C(36')  | 111(3)    |
| C(34)-C(35)-H(35A)  | 107.9     |
| C(36)-C(35)-H(35A)  | 108.5     |
| C(34)-C(35)-H(35B)  | 108.8     |
| C(36)-C(35)-H(35B)  | 108.8     |
| H(35A)-C(35)-H(35B) | 109.0     |
| С(34)-С(35)-Н(35С)  | 110.0     |
| С(36')-С(35)-Н(35С) | 107.9     |
| C(34)-C(35)-H(35D)  | 108.4     |
| C(36')-C(35)-H(35D) | 110.2     |
| H(35C)-C(35)-H(35D) | 109.6     |
| C(35)-C(36)-H(36A)  | 109.5     |
| C(35)-C(36)-H(36B)  | 109.5     |
| H(36A)-C(36)-H(36B) | 109.5     |
| C(35)-C(36)-H(36C)  | 109.5     |
| H(36A)-C(36)-H(36C) | 109.5     |
| H(36B)-C(36)-H(36C) | 109.5     |
| C(35)-C(36')-H(36D) | 109.5     |
| C(35)-C(36')-H(36E) | 109.5     |

| H(36D)-C(36')-H(36E) | 109.5 |
|----------------------|-------|
| C(35)-C(36')-H(36F)  | 109.5 |
| H(36D)-C(36')-H(36F) | 109.5 |
| H(36E)-C(36')-H(36F) | 109.5 |

Symmetry transformations used to generate equivalent atoms:

**Table S25.** Anisotropic displacement parameters ( $Å^2x \ 10^3$ ) for **70**. The anisotropicdisplacement factor exponent takes the form:  $-2\pi^2$ [  $h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^{*} \ b^{*} \ U^{12}$ ]

|                           | U11   | U <sub>22</sub> | U33    | U <sub>23</sub> | U13   | U <sub>12</sub> |  |
|---------------------------|-------|-----------------|--------|-----------------|-------|-----------------|--|
| $\overline{\text{Cl}(1)}$ | 72(2) | 422(10)         | 184(4) | 82(6)           | 20(2) | -44(4)          |  |
| P(1)                      | 46(1) | 52(1)           | 43(1)  | 1(1)            | 21(1) | 8(1)            |  |
| N(1)                      | 70(5) | 94(6)           | 42(4)  | 7(4)            | 33(4) | 8(5)            |  |
| N(2)                      | 58(4) | 142(9)          | 50(4)  | 0(5)            | 27(4) | 7(5)            |  |
| N(3)                      | 57(4) | 134(9)          | 42(4)  | -10(5)          | 26(3) | 8(5)            |  |
| O(1)                      | 51(3) | 61(4)           | 64(4)  | 5(3)            | 17(3) | 14(3)           |  |
| O(2)                      | 47(3) | 104(5)          | 48(3)  | 12(3)           | 21(3) | 12(3)           |  |
| O(3)                      | 77(4) | 97(5)           | 52(3)  | -2(3)           | 40(3) | -1(4)           |  |
| C(1)                      | 46(4) | 123(9)          | 48(5)  | 15(6)           | 19(4) | 10(6)           |  |
| C(2)                      | 44(4) | 55(5)           | 45(4)  | -2(4)           | 23(4) | 2(4)            |  |
| C(3)                      | 43(4) | 58(6)           | 46(4)  | 4(4)            | 17(4) | 0(4)            |  |
| C(4)                      | 47(4) | 34(5)           | 53(4)  | 0(4)            | 29(4) | 4(3)            |  |
| C(5)                      | 56(4) | 52(6)           | 41(4)  | 4(4)            | 21(4) | 14(4)           |  |
| C(6)                      | 53(4) | 48(5)           | 53(5)  | -2(4)           | 31(4) | 4(4)            |  |
| C(7)                      | 49(4) | 54(5)           | 46(4)  | -3(4)           | 28(4) | -3(4)           |  |
| C(8)                      | 31(4) | 55(6)           | 52(5)  | 2(4)            | 15(4) | 2(4)            |  |
| C(9)                      | 58(5) | 39(5)           | 50(4)  | 2(4)            | 33(4) | -4(4)           |  |
| C(10)                     | 55(4) | 54(6)           | 46(5)  | 6(4)            | 21(4) | 6(4)            |  |
| C(11)                     | 69(5) | 49(6)           | 60(5)  | 1(5)            | 44(5) | -2(5)           |  |
| C(12)                     | 58(5) | 66(6)           | 52(5)  | 3(5)            | 30(4) | -2(5)           |  |
| C(13)                     | 56(4) | 68(7)           | 41(4)  | 3(4)            | 21(4) | 3(4)            |  |
| C(14)                     | 56(5) | 67(7)           | 49(5)  | -2(4)           | 33(4) | -3(4)           |  |

| C(15)  | 71(5)   | 89(8)   | 45(5)   | 8(5)    | 27(4)  | 2(5)    |
|--------|---------|---------|---------|---------|--------|---------|
| C(16)  | 109(8)  | 152(13) | 57(6)   | 13(8)   | 44(6)  | 18(9)   |
| C(17)  | 48(5)   | 57(6)   | 31(4)   | 0(4)    | 14(4)  | 7(4)    |
| C(18)  | 75(6)   | 58(7)   | 62(6)   | -1(5)   | 30(5)  | 10(6)   |
| C(19)  | 106(8)  | 51(8)   | 74(7)   | 1(5)    | 40(7)  | 0(6)    |
| C(20)  | 71(7)   | 85(9)   | 78(7)   | 3(7)    | 21(6)  | -23(7)  |
| C(21)  | 56(6)   | 119(12) | 99(9)   | 14(8)   | 37(6)  | -1(7)   |
| C(22)  | 51(5)   | 78(8)   | 71(6)   | 5(5)    | 24(5)  | 11(5)   |
| C(23)  | 119(9)  | 117(13) | 125(11) | 11(9)   | 37(9)  | -48(9)  |
| C(24)  | 80(6)   | 144(11) | 40(5)   | 6(6)    | 27(5)  | 16(7)   |
| C(25)  | 66(6)   | 114(10) | 36(5)   | 13(6)   | 22(4)  | 7(7)    |
| C(26)  | 110(11) | 98(11)  | 113(11) | 13(9)   | 41(9)  | -9(9)   |
| C(27)  | 138(14) | 138(15) | 105(11) | 6(10)   | 47(12) | -41(12) |
| C(28)  | 71(8)   | 210(20) | 92(9)   | 35(12)  | 25(7)  | -2(12)  |
| C(29)  | 60(8)   | 163(16) | 105(10) | 26(10)  | 27(7)  | 20(8)   |
| C(30)  | 75(7)   | 111(11) | 70(7)   | 7(7)    | 27(6)  | 0(7)    |
| C(31)  | 71(6)   | 51(6)   | 64(6)   | 3(5)    | 43(5)  | 4(5)    |
| C(32)  | 111(9)  | 60(9)   | 113(9)  | -13(6)  | 69(8)  | 0(6)    |
| C(33)  | 108(9)  | 145(13) | 138(11) | -55(9)  | 79(9)  | -52(9)  |
| C(34)  | 65(6)   | 120(10) | 73(6)   | 4(7)    | 25(5)  | -17(7)  |
| C(35)  | 54(6)   | 205(17) | 109(10) | -10(11) | 21(7)  | -13(9)  |
| C(36)  | 87(12)  | 290(30) | 153(18) | 10(20)  | 31(12) | -68(18) |
| C(36') | 88(15)  | 290(30) | 150(20) | 10(20)  | 31(15) | -70(20) |
|        |         |         |         |         |        |         |

**Table S26.** Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for **70**.

|      | X    | У    | Ζ    | U(eq) |  |
|------|------|------|------|-------|--|
| H(1) | 6371 | 8093 | 9092 | 87    |  |
| H(4) | 3381 | 9025 | 6566 | 50    |  |
| H(7)   | 6301  | 8148  | 6082  | 56  |  |
|--------|-------|-------|-------|-----|--|
| H(10)  | 5953  | 8014  | 4459  | 62  |  |
| H(13)  | 2562  | 9056  | 2545  | 65  |  |
| H(16)  | 3142  | 8741  | 153   | 124 |  |
| H(18)  | 2743  | 5707  | 4297  | 77  |  |
| H(19)  | 1518  | 3669  | 3910  | 91  |  |
| H(21)  | -491  | 7203  | 3855  | 108 |  |
| H(22)  | 739   | 9259  | 4181  | 81  |  |
| H(23A) | -263  | 2936  | 3281  | 187 |  |
| H(23B) | -1076 | 4363  | 3158  | 187 |  |
| H(23C) | -490  | 3493  | 4117  | 187 |  |
| H(24A) | 5653  | 7347  | 10812 | 105 |  |
| H(24B) | 5530  | 9340  | 10874 | 105 |  |
| H(26)  | 6916  | 11210 | 10843 | 130 |  |
| H(27)  | 8638  | 11521 | 11316 | 153 |  |
| H(29)  | 8992  | 6513  | 11598 | 134 |  |
| H(30)  | 7286  | 6245  | 11169 | 104 |  |
| H(31A) | 6958  | 7468  | 2814  | 69  |  |
| H(31B) | 6868  | 7491  | 3757  | 69  |  |
| H(32A) | 6742  | 10353 | 3734  | 105 |  |
| H(32B) | 6606  | 10442 | 2713  | 105 |  |
| H(33A) | 8405  | 9802  | 4250  | 181 |  |
| H(33B) | 8217  | 11218 | 3502  | 181 |  |
| H(33C) | 8314  | 9288  | 3273  | 181 |  |
| H(34A) | 7570  | 9587  | 7451  | 104 |  |
| H(34B) | 7735  | 7598  | 7402  | 104 |  |
| H(35A) | 8510  | 7388  | 8936  | 152 |  |
| H(35B) | 8188  | 9245  | 9074  | 152 |  |
| H(35C) | 9063  | 8348  | 8690  | 152 |  |
| H(35D) | 8276  | 7648  | 9050  | 152 |  |
| H(36A) | 9597  | 8575  | 8341  | 276 |  |

| H(36B) | 9911 | 9065  | 9372 | 276 |
|--------|------|-------|------|-----|
| H(36C) | 9332 | 10398 | 8597 | 276 |
| H(36D) | 8985 | 10943 | 9115 | 275 |
| H(36E) | 8556 | 10105 | 9772 | 275 |
| H(36F) | 7805 | 10850 | 8822 | 275 |
|        |      |       |      |     |

Table S27. Torsion angles [°] for 70.

| C(1)-N(1)-N(2)-N(3)  | -1.3(12)   |
|----------------------|------------|
| C(24)-N(1)-N(2)-N(3) | 179.0(9)   |
| N(1)-N(2)-N(3)-C(2)  | -0.1(12)   |
| N(2)-N(1)-C(1)-C(2)  | 2.2(12)    |
| C(24)-N(1)-C(1)-C(2) | -178.2(10) |
| N(2)-N(3)-C(2)-C(1)  | 1.5(12)    |
| N(2)-N(3)-C(2)-C(3)  | -179.8(9)  |
| N(1)-C(1)-C(2)-N(3)  | -2.2(12)   |
| N(1)-C(1)-C(2)-C(3)  | 179.3(9)   |
| N(3)-C(2)-C(3)-C(8)  | 178.4(9)   |
| C(1)-C(2)-C(3)-C(8)  | -3.2(16)   |
| N(3)-C(2)-C(3)-C(4)  | -1.2(13)   |
| C(1)-C(2)-C(3)-C(4)  | 177.1(10)  |
| C(8)-C(3)-C(4)-C(5)  | 0.1(12)    |
| C(2)-C(3)-C(4)-C(5)  | 179.7(8)   |
| C(3)-C(4)-C(5)-C(6)  | 1.2(12)    |
| C(3)-C(4)-C(5)-P(1)  | -173.1(6)  |
| O(1)-P(1)-C(5)-C(4)  | 59.4(9)    |
| C(17)-P(1)-C(5)-C(4) | -69.2(8)   |
| C(14)-P(1)-C(5)-C(4) | -178.3(8)  |
| O(1)-P(1)-C(5)-C(6)  | -115.3(6)  |
| C(17)-P(1)-C(5)-C(6) | 116.1(6)   |
| C(14)-P(1)-C(5)-C(6) | 6.9(7)     |
|                      |            |

| C(4)-C(5)-C(6)-C(7)     | -1.6(12)  |
|-------------------------|-----------|
| P(1)-C(5)-C(6)-C(7)     | 173.6(7)  |
| C(4)-C(5)-C(6)-C(9)     | 178.7(8)  |
| P(1)-C(5)-C(6)-C(9)     | -6.1(9)   |
| C(5)-C(6)-C(7)-C(8)     | 0.6(12)   |
| C(9)-C(6)-C(7)-C(8)     | -179.7(8) |
| C(34)-O(2)-C(8)-C(7)    | 20.1(13)  |
| C(34)-O(2)-C(8)-C(3)    | -158.9(9) |
| C(6)-C(7)-C(8)-O(2)     | -178.1(8) |
| C(6)-C(7)-C(8)-C(3)     | 0.8(13)   |
| C(4)-C(3)-C(8)-O(2)     | 177.9(7)  |
| C(2)-C(3)-C(8)-O(2)     | -1.8(12)  |
| C(4)-C(3)-C(8)-C(7)     | -1.1(13)  |
| C(2)-C(3)-C(8)-C(7)     | 179.3(8)  |
| C(7)-C(6)-C(9)-C(10)    | 3.7(14)   |
| C(5)-C(6)-C(9)-C(10)    | -176.6(8) |
| C(7)-C(6)-C(9)-C(14)    | -178.1(8) |
| C(5)-C(6)-C(9)-C(14)    | 1.6(10)   |
| C(14)-C(9)-C(10)-C(11)  | 0.4(12)   |
| C(6)-C(9)-C(10)-C(11)   | 178.5(8)  |
| C(31)-O(3)-C(11)-C(10)  | -22.3(13) |
| C(31)-O(3)-C(11)-C(12)  | 160.3(8)  |
| C(9)-C(10)-C(11)-O(3)   | -177.2(8) |
| C(9)-C(10)-C(11)-C(12)  | 0.1(13)   |
| O(3)-C(11)-C(12)-C(13)  | 175.7(8)  |
| C(10)-C(11)-C(12)-C(13) | -1.9(14)  |
| O(3)-C(11)-C(12)-C(15)  | -2.1(12)  |
| C(10)-C(11)-C(12)-C(15) | -179.6(8) |
| C(11)-C(12)-C(13)-C(14) | 3.1(14)   |
| C(15)-C(12)-C(13)-C(14) | -179.1(9) |
| C(12)-C(13)-C(14)-C(9)  | -2.6(13)  |

| C(12)-C(13)-C(14)-P(1)  | 175.9(7)   |
|-------------------------|------------|
| C(10)-C(9)-C(14)-C(13)  | 0.8(12)    |
| C(6)-C(9)-C(14)-C(13)   | -177.5(8)  |
| C(10)-C(9)-C(14)-P(1)   | -178.0(7)  |
| C(6)-C(9)-C(14)-P(1)    | 3.7(9)     |
| O(1)-P(1)-C(14)-C(13)   | -63.1(9)   |
| C(17)-P(1)-C(14)-C(13)  | 63.9(9)    |
| C(5)-P(1)-C(14)-C(13)   | 175.4(9)   |
| O(1)-P(1)-C(14)-C(9)    | 115.5(6)   |
| C(17)-P(1)-C(14)-C(9)   | -117.4(6)  |
| C(5)-P(1)-C(14)-C(9)    | -6.0(7)    |
| O(1)-P(1)-C(17)-C(18)   | 172.3(6)   |
| C(5)-P(1)-C(17)-C(18)   | -56.4(7)   |
| C(14)-P(1)-C(17)-C(18)  | 41.7(8)    |
| O(1)-P(1)-C(17)-C(22)   | -7.1(7)    |
| C(5)-P(1)-C(17)-C(22)   | 124.3(7)   |
| C(14)-P(1)-C(17)-C(22)  | -137.6(7)  |
| C(22)-C(17)-C(18)-C(19) | 1.7(13)    |
| P(1)-C(17)-C(18)-C(19)  | -177.7(7)  |
| C(17)-C(18)-C(19)-C(20) | -0.9(15)   |
| C(18)-C(19)-C(20)-C(21) | -1.6(16)   |
| C(18)-C(19)-C(20)-C(23) | -179.7(10) |
| C(19)-C(20)-C(21)-C(22) | 3.1(17)    |
| C(23)-C(20)-C(21)-C(22) | -178.8(10) |
| C(20)-C(21)-C(22)-C(17) | -2.3(16)   |
| C(18)-C(17)-C(22)-C(21) | -0.1(13)   |
| P(1)-C(17)-C(22)-C(21)  | 179.3(8)   |
| N(2)-N(1)-C(24)-C(25)   | -161.4(11) |
| C(1)-N(1)-C(24)-C(25)   | 19.0(17)   |
| N(1)-C(24)-C(25)-C(30)  | -99.0(12)  |
| N(1)-C(24)-C(25)-C(26)  | 78.0(13)   |

| C(30)-C(25)-C(26)-C(27) | 0.0(17)    |
|-------------------------|------------|
| C(24)-C(25)-C(26)-C(27) | -177.1(10) |
| C(25)-C(26)-C(27)-C(28) | 1(2)       |
| C(26)-C(27)-C(28)-C(29) | -2(2)      |
| C(26)-C(27)-C(28)-Cl(1) | 177.1(11)  |
| C(27)-C(28)-C(29)-C(30) | 1(2)       |
| Cl(1)-C(28)-C(29)-C(30) | -178.1(10) |
| C(26)-C(25)-C(30)-C(29) | -1.0(17)   |
| C(24)-C(25)-C(30)-C(29) | 176.0(10)  |
| C(28)-C(29)-C(30)-C(25) | 1(2)       |
| C(11)-O(3)-C(31)-C(32)  | -73.7(10)  |
| O(3)-C(31)-C(32)-C(33)  | -168.7(8)  |
| C(8)-O(2)-C(34)-C(35)   | 169.2(10)  |
| O(2)-C(34)-C(35)-C(36)  | -168.3(17) |
| O(2)-C(34)-C(35)-C(36') | -81(2)     |
|                         |            |

Symmetry transformations used to generate equivalent atoms:

| D-HA          | d(D-H) | d(HA) | d(DA)    | <(DHA) |
|---------------|--------|-------|----------|--------|
| C(1)-H(1)O(2) | 0.93   | 2.25  | 2.741(9) | 112.3  |
| C(1)-H(1)O(2) | 0.93   | 2.25  | 2.741(9) | 112.3  |
| C(1)-H(1)O(2) | 0.93   | 2.25  | 2.741(9) | 112.3  |
| C(1)-H(1)O(2) | 0.93   | 2.25  | 2.741(9) | 112.3  |
| C(1)-H(1)O(2) | 0.93   | 2.25  | 2.741(9) | 112.3  |
|               |        |       |          |        |

Table S28. Hydrogen bonds for 70 [Å and °].

Data intensity of  $9^{12}$  was collected using a 'Bruker APEX-II CCD' diffractometer at 296(2) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on  $F^2$  with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for 9: C<sub>28</sub>H<sub>22</sub>N<sub>3</sub>P, *T* = 296(2) K, Hexagonal, R3, *a* = 34.841(3) Å, *b* = 34.841(3) Å, *c* = 5.5660(6) Å, *a* = 90 deg,  $\beta$  = 90 deg,  $\gamma$  = 120 deg, *V* = 5851.2(9) Å<sup>3</sup>. Z = 9, *d*<sub>calc</sub> = 1.102 Mg/m<sup>3</sup>. 22882 reflections measured, 4512 unique [Rint = 0.0533], R1 = 0.0489, wR2 = 0.1154 (*I* > 2 $\sigma$ (*I*), final), R1 = 0.0668, wR2 = 0.1267 (all data), GOF = 1.054, and 289 parameters.



Table S29. Crystal data and structure refinement for 9.

| Identification code             | 9                                                         |
|---------------------------------|-----------------------------------------------------------|
| Empirical formula               | C <sub>28</sub> H <sub>22</sub> N <sub>3</sub> P          |
| Formula weight                  | 431.46                                                    |
| Temperature                     | 296(2) K                                                  |
| Wavelength                      | 0.71073 Å                                                 |
| Crystal system, space group     | Hexagonal, R3                                             |
| Unit cell dimensions            | $a = 34.841(3) \text{ Å} \qquad \alpha = 90 \text{ deg.}$ |
|                                 | $b = 34.841(3) \text{ Å}  \beta = 90 \text{ deg.}$        |
|                                 | $c = 5.5660(6) \text{ Å}$ $\gamma = 120 \text{ deg.}$     |
| Volume                          | 5851.2(9) Å <sup>3</sup>                                  |
| Z, Calculated density           | 9, 1.102 Mg/m <sup>3</sup>                                |
| Absorption coefficient          | 0.124 mm <sup>-1</sup>                                    |
| F(000)                          | 2034                                                      |
| Crystal size                    | 0.46 x 0.19 x 0.17 mm                                     |
| Theta range for data collection | 2.34 to 25.01 deg.                                        |
| Limiting indices                | -41<=h<=36, -41<=k<=41, -6<=l<=6                          |
|                                 |                                                           |

<sup>&</sup>lt;sup>12</sup> Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1552231).

| Reflections collected / unique    | 22882 / 4512 [R(int) = 0.0533]              |
|-----------------------------------|---------------------------------------------|
| Completeness to theta $= 25.01$   | 99.8 %                                      |
| Absorption correction             | Semi-empirical from equivalents             |
| Max. and min. transmission        | 0.9793 and 0.9453                           |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters    | 4512 / 13 / 289                             |
| Goodness-of-fit on F <sup>2</sup> | 1.054                                       |
| Final R indices [I>2sigma(I)]     | R1 = 0.0489, wR2 = 0.1154                   |
| R indices (all data)              | R1 = 0.0668, wR2 = 0.1267                   |
| Absolute structure parameter      | 0.00(11)                                    |
| Largest diff. peak and hole       | 0 .196 and -0.186 e. Å $^{\text{-3}}$       |

**Table S30.** Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>  $x \ 10^3$ ) for **9**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

|       | X        | у       | Z        | U(eq) |
|-------|----------|---------|----------|-------|
| P(1)  | 8611(1)  | 7156(1) | 9401(2)  | 58(1) |
| N(1)  | 8149(1)  | 5925(1) | 11637(5) | 54(1) |
| N(2)  | 8190(1)  | 5892(1) | 9262(5)  | 69(1) |
| N(3)  | 8343(1)  | 6294(1) | 8359(5)  | 66(1) |
| C(1)  | 9116(1)  | 7438(1) | 11226(6) | 50(1) |
| C(2)  | 9154(1)  | 7703(1) | 13126(6) | 61(1) |
| C(3)  | 9554(1)  | 7936(1) | 14420(7) | 70(1) |
| C(4)  | 9907(1)  | 7894(1) | 13843(7) | 62(1) |
| C(5)  | 9886(1)  | 7624(1) | 11908(6) | 49(1) |
| C(6)  | 9491(1)  | 7395(1) | 10539(5) | 48(1) |
| C(7)  | 9489(1)  | 7142(1) | 8549(6)  | 55(1) |
| C(8)  | 9854(1)  | 7112(1) | 7990(6)  | 62(1) |
| C(9)  | 10240(1) | 7329(1) | 9390(7)  | 66(1) |
| C(10) | 10255(1) | 7576(1) | 11295(6) | 57(1) |
|       |          |         |          |       |

| C(11) | 8247(1) | 7258(1) | 11119(7)  | 69(1)  |
|-------|---------|---------|-----------|--------|
| C(12) | 7976(1) | 7336(1) | 11890(7)  | 67(1)  |
| C(13) | 7672(1) | 7436(1) | 13064(6)  | 57(1)  |
| C(14) | 7261(1) | 7292(2) | 12117(9)  | 94(1)  |
| C(15) | 6975(2) | 7405(2) | 13298(10) | 111(1) |
| C(16) | 7107(2) | 7654(2) | 15299(10) | 109(1) |
| C(17) | 7500(2) | 7781(2) | 16233(10) | 111(1) |
| C(18) | 7784(1) | 7674(1) | 15158(8)  | 83(1)  |
| C(19) | 8400(1) | 6575(1) | 10129(5)  | 50(1)  |
| C(20) | 8275(1) | 6339(1) | 12251(6)  | 54(1)  |
| C(21) | 7983(1) | 5524(1) | 13124(6)  | 65(1)  |
| C(22) | 7499(1) | 5201(1) | 12734(6)  | 59(1)  |
| C(23) | 7362(1) | 4934(1) | 10741(8)  | 83(1)  |
| C(24) | 6919(2) | 4644(2) | 10362(8)  | 93(1)  |
| C(25) | 6607(1) | 4612(1) | 11921(9)  | 82(1)  |
| C(26) | 6748(2) | 4877(2) | 13887(9)  | 90(1)  |
| C(27) | 7183(1) | 5170(1) | 14270(8)  | 74(1)  |
| C(28) | 6114(2) | 4292(2) | 11413(13) | 132(2) |
|       |         |         |           |        |

 Table S31.
 Bond lengths [Å] and angles [deg] for 9.

| P(1)-C(11) | 1.761(4) |
|------------|----------|
| P(1)-C(19) | 1.820(3) |
| P(1)-C(1)  | 1.836(3) |
| N(1)-C(20) | 1.325(4) |
| N(1)-N(2)  | 1.342(4) |
| N(1)-C(21) | 1.473(4) |
| N(2)-N(3)  | 1.323(4) |
| N(3)-C(19) | 1.334(4) |
| C(1)-C(2)  | 1.367(4) |

| C(1)-C(6)    | 1.436(4) |
|--------------|----------|
| C(2)-C(3)    | 1.411(5) |
| C(2)-H(2A)   | 0.9300   |
| C(3)-C(4)    | 1.347(5) |
| C(3)-H(3A)   | 0.9300   |
| C(4)-C(5)    | 1.408(5) |
| C(4)-H(4A)   | 0.9300   |
| C(5)-C(10)   | 1.418(4) |
| C(5)-C(6)    | 1.420(4) |
| C(6)-C(7)    | 1.415(4) |
| C(7)-C(8)    | 1.361(4) |
| C(7)-H(7A)   | 0.9300   |
| C(8)-C(9)    | 1.405(5) |
| C(8)-H(8A)   | 0.9300   |
| C(9)-C(10)   | 1.351(5) |
| C(9)-H(9A)   | 0.9300   |
| C(10)-H(10A) | 0.9300   |
| C(11)-C(12)  | 1.185(4) |
| C(12)-C(13)  | 1.427(5) |
| C(13)-C(14)  | 1.365(5) |
| C(13)-C(18)  | 1.371(5) |
| C(14)-C(15)  | 1.404(6) |
| C(14)-H(14A) | 0.9300   |
| C(15)-C(16)  | 1.344(7) |
| C(15)-H(15A) | 0.9300   |
| C(16)-C(17)  | 1.319(7) |
| C(16)-H(16A) | 0.9300   |
| C(17)-C(18)  | 1.354(6) |
| C(17)-H(17A) | 0.9300   |
| C(18)-H(18A) | 0.9300   |
| C(19)-C(20)  | 1.380(4) |

| C(20)-H(20A)     | 0.9300     |
|------------------|------------|
| C(21)-C(22)      | 1.503(5)   |
| C(21)-H(21A)     | 0.9700     |
| C(21)-H(21B)     | 0.9700     |
| C(22)-C(27)      | 1.356(5)   |
| C(22)-C(23)      | 1.371(5)   |
| C(23)-C(24)      | 1.374(5)   |
| C(23)-H(23A)     | 0.9300     |
| C(24)-C(25)      | 1.351(6)   |
| C(24)-H(24A)     | 0.9300     |
| C(25)-C(26)      | 1.356(6)   |
| C(25)-C(28)      | 1.537(6)   |
| C(26)-C(27)      | 1.354(6)   |
| C(26)-H(26A)     | 0.9300     |
| C(27)-H(27A)     | 0.9300     |
| C(28)-H(28A)     | 0.9600     |
| C(28)-H(28B)     | 0.9600     |
| C(28)-H(28C)     | 0.9600     |
| C(11)-P(1)-C(19) | 99.99(15)  |
| C(11)-P(1)-C(1)  | 100.72(16) |
| C(19)-P(1)-C(1)  | 102.60(14) |
| C(20)-N(1)-N(2)  | 111.0(3)   |
| C(20)-N(1)-C(21) | 130.4(3)   |
| N(2)-N(1)-C(21)  | 118.6(3)   |
| N(3)-N(2)-N(1)   | 106.6(2)   |
| N(2)-N(3)-C(19)  | 109.3(3)   |
| C(2)-C(1)-C(6)   | 119.5(3)   |
| C(2)-C(1)-P(1)   | 122.1(2)   |
| C(6)-C(1)-P(1)   | 118.3(2)   |
| C(1)-C(2)-C(3)   | 121.1(3)   |
| C(1)-C(2)-H(2A)  | 119.5      |

| C(3)-C(2)-H(2A)   | 119.5    |
|-------------------|----------|
| C(4)-C(3)-C(2)    | 120.6(3) |
| C(4)-C(3)-H(3A)   | 119.7    |
| C(2)-C(3)-H(3A)   | 119.7    |
| C(3)-C(4)-C(5)    | 120.7(3) |
| C(3)-C(4)-H(4A)   | 119.7    |
| C(5)-C(4)-H(4A)   | 119.7    |
| C(4)-C(5)-C(10)   | 121.1(3) |
| C(4)-C(5)-C(6)    | 119.8(3) |
| C(10)-C(5)-C(6)   | 119.1(3) |
| C(7)-C(6)-C(5)    | 118.1(3) |
| C(7)-C(6)-C(1)    | 123.6(3) |
| C(5)-C(6)-C(1)    | 118.4(3) |
| C(8)-C(7)-C(6)    | 120.9(3) |
| C(8)-C(7)-H(7A)   | 119.5    |
| C(6)-C(7)-H(7A)   | 119.5    |
| C(7)-C(8)-C(9)    | 120.9(3) |
| C(7)-C(8)-H(8A)   | 119.6    |
| C(9)-C(8)-H(8A)   | 119.6    |
| C(10)-C(9)-C(8)   | 119.9(3) |
| C(10)-C(9)-H(9A)  | 120.1    |
| C(8)-C(9)-H(9A)   | 120.1    |
| C(9)-C(10)-C(5)   | 121.1(3) |
| C(9)-C(10)-H(10A) | 119.5    |
| C(5)-C(10)-H(10A) | 119.5    |
| C(12)-C(11)-P(1)  | 168.3(4) |
| C(11)-C(12)-C(13) | 173.8(4) |
| C(14)-C(13)-C(18) | 118.6(4) |
| C(14)-C(13)-C(12) | 120.3(3) |
| C(18)-C(13)-C(12) | 121.1(3) |
| C(13)-C(14)-C(15) | 118.5(4) |

| C(13)-C(14)-H(14A)  | 120.7    |
|---------------------|----------|
| C(15)-C(14)-H(14A)  | 120.7    |
| C(16)-C(15)-C(14)   | 120.5(5) |
| C(16)-C(15)-H(15A)  | 119.7    |
| C(14)-C(15)-H(15A)  | 119.7    |
| C(17)-C(16)-C(15)   | 120.3(5) |
| C(17)-C(16)-H(16A)  | 119.8    |
| C(15)-C(16)-H(16A)  | 119.8    |
| C(16)-C(17)-C(18)   | 120.8(5) |
| C(16)-C(17)-H(17A)  | 119.6    |
| C(18)-C(17)-H(17A)  | 119.6    |
| C(17)-C(18)-C(13)   | 121.1(4) |
| C(17)-C(18)-H(18A)  | 119.4    |
| C(13)-C(18)-H(18A)  | 119.4    |
| N(3)-C(19)-C(20)    | 107.9(3) |
| N(3)-C(19)-P(1)     | 118.9(2) |
| C(20)-C(19)-P(1)    | 133.2(2) |
| N(1)-C(20)-C(19)    | 105.2(3) |
| N(1)-C(20)-H(20A)   | 127.4    |
| C(19)-C(20)-H(20A)  | 127.4    |
| N(1)-C(21)-C(22)    | 112.9(3) |
| N(1)-C(21)-H(21A)   | 109.0    |
| C(22)-C(21)-H(21A)  | 109.0    |
| N(1)-C(21)-H(21B)   | 109.0    |
| C(22)-C(21)-H(21B)  | 109.0    |
| H(21A)-C(21)-H(21B) | 107.8    |
| C(27)-C(22)-C(23)   | 117.5(3) |
| C(27)-C(22)-C(21)   | 122.1(3) |
| C(23)-C(22)-C(21)   | 120.3(3) |
| C(22)-C(23)-C(24)   | 120.4(4) |
| C(22)-C(23)-H(23A)  | 119.8    |

| C(24)-C(23)-H(23A)  | 119.8    |
|---------------------|----------|
| C(25)-C(24)-C(23)   | 121.6(4) |
| C(25)-C(24)-H(24A)  | 119.2    |
| C(23)-C(24)-H(24A)  | 119.2    |
| C(24)-C(25)-C(26)   | 117.4(4) |
| C(24)-C(25)-C(28)   | 120.2(5) |
| C(26)-C(25)-C(28)   | 122.4(5) |
| C(27)-C(26)-C(25)   | 121.9(4) |
| C(27)-C(26)-H(26A)  | 119.1    |
| C(25)-C(26)-H(26A)  | 119.1    |
| C(26)-C(27)-C(22)   | 121.3(4) |
| C(26)-C(27)-H(27A)  | 119.4    |
| C(22)-C(27)-H(27A)  | 119.4    |
| C(25)-C(28)-H(28A)  | 109.5    |
| C(25)-C(28)-H(28B)  | 109.5    |
| H(28A)-C(28)-H(28B) | 109.5    |
| C(25)-C(28)-H(28C)  | 109.5    |
| H(28A)-C(28)-H(28C) | 109.5    |
| H(28B)-C(28)-H(28C) | 109.5    |
|                     |          |

Symmetry transformations used to generate equivalent atoms:

**Table S32.** Anisotropic displacement parameters (Å  $^2 \ge 10^3$ ) for **9.** The anisotropic displacement factor exponent takes the form: -2  $\pi^2$  [  $h^2 = a^{*2} = U11 + ... + 2h = h = a^*b^*U12$  ]

|      | U11   | U22   | U33   | U23    | U13   | U12   |  |
|------|-------|-------|-------|--------|-------|-------|--|
| P(1) | 52(1) | 65(1) | 62(1) | 5(1)   | 2(1)  | 33(1) |  |
| N(1) | 51(2) | 60(2) | 49(2) | -7(1)  | -4(1) | 27(1) |  |
| N(2) | 76(2) | 73(2) | 50(2) | -13(2) | 6(1)  | 31(2) |  |
| N(3) | 72(2) | 66(2) | 52(2) | -7(2)  | 9(1)  | 28(2) |  |
| C(1) | 47(2) | 50(2) | 55(2) | 7(1)   | 6(1)  | 25(2) |  |

| C(2)  | 50(2) | $(\Lambda(0))$ |        |        |        |       |
|-------|-------|----------------|--------|--------|--------|-------|
|       |       | 64(2)          | 72(2)  | 0(2)   | 9(2)   | 32(2) |
| C(3)  | 66(2) | 73(2)          | 75(2)  | -20(2) | -3(2)  | 38(2) |
| C(4)  | 59(2) | 58(2)          | 69(2)  | -10(2) | -6(2)  | 28(2) |
| C(5)  | 46(2) | 42(2)          | 57(2)  | 6(1)   | 4(1)   | 21(1) |
| C(6)  | 50(2) | 42(2)          | 49(2)  | 13(1)  | 8(1)   | 22(1) |
| C(7)  | 56(2) | 55(2)          | 56(2)  | 3(2)   | 2(2)   | 30(2) |
| C(8)  | 66(2) | 68(2)          | 62(2)  | 4(2)   | 12(2)  | 41(2) |
| C(9)  | 52(2) | 69(2)          | 84(3)  | 14(2)  | 13(2)  | 36(2) |
| C(10) | 46(2) | 54(2)          | 74(2)  | 3(2)   | 1(2)   | 27(2) |
| C(11) | 52(2) | 68(2)          | 91(3)  | -5(2)  | -4(2)  | 34(2) |
| C(12) | 49(2) | 57(2)          | 91(3)  | -6(2)  | 1(2)   | 24(2) |
| C(13) | 45(2) | 55(2)          | 74(2)  | 0(2)   | 6(2)   | 28(2) |
| C(14) | 67(3) | 130(4)         | 100(3) | -32(3) | -13(2) | 61(3) |
| C(15) | 90(2) | 126(3)         | 128(3) | -11(2) | 14(2)  | 62(2) |
| C(16) | 92(2) | 122(2)         | 127(3) | -14(2) | 19(2)  | 63(2) |
| C(17) | 94(2) | 121(2)         | 125(3) | -16(2) | 20(2)  | 60(2) |
| C(18) | 68(2) | 78(3)          | 92(3)  | -9(2)  | -6(2)  | 29(2) |
| C(19) | 47(2) | 64(2)          | 45(2)  | -7(2)  | 2(1)   | 32(2) |
| C(20) | 59(2) | 54(2)          | 48(2)  | -11(2) | -5(2)  | 27(2) |
| C(21) | 74(2) | 67(2)          | 53(2)  | 0(2)   | -11(2) | 35(2) |
| C(22) | 67(2) | 53(2)          | 56(2)  | -4(2)  | -12(2) | 30(2) |
| C(23) | 67(2) | 81(3)          | 76(3)  | -16(2) | -2(2)  | 17(2) |
| C(24) | 81(3) | 88(3)          | 83(3)  | -24(2) | -12(2) | 23(2) |
| C(25) | 65(2) | 66(2)          | 108(3) | 8(2)   | -7(2)  | 28(2) |
| C(26) | 80(3) | 85(3)          | 110(4) | -16(3) | 9(3)   | 45(2) |
| C(27) | 77(3) | 71(2)          | 77(3)  | -8(2)  | 0(2)   | 39(2) |
| C(28) | 65(3) | 107(4)         | 187(6) | 11(4)  | -19(3) | 15(3) |

**Table S33.** Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters ( $A^2 \ x \ 10^3$ ) for **9**.

|        | Х     | У    | Z     | U(eq) |
|--------|-------|------|-------|-------|
| H(2A)  | 8911  | 7731 | 13573 | 73    |
| H(3A)  | 9574  | 8120 | 15684 | 84    |
| H(4A)  | 10167 | 8045 | 14732 | 75    |
| H(7A)  | 9235  | 6994 | 7609  | 65    |
| H(8A)  | 9847  | 6947 | 6664  | 75    |
| H(9A)  | 10485 | 7302 | 9006  | 79    |
| H(10A) | 10511 | 7717 | 12220 | 69    |
| H(14A) | 7172  | 7123 | 10721 | 113   |
| H(15A) | 6692  | 7307 | 12691 | 133   |
| H(16A) | 6920  | 7738 | 16029 | 131   |
| H(17A) | 7584  | 7945 | 17646 | 133   |
| H(18A) | 8059  | 7765 | 15854 | 99    |
| H(20A) | 8278  | 6447 | 13784 | 65    |
| H(21A) | 8032  | 5609 | 14804 | 78    |
| H(21B) | 8152  | 5379 | 12756 | 78    |
| H(23A) | 7570  | 4949 | 9638  | 100   |
| H(24A) | 6832  | 4465 | 9000  | 111   |
| H(26A) | 6541  | 4857 | 15005 | 108   |
| H(27A) | 7266  | 5353 | 15613 | 89    |
| H(28A) | 6084  | 4137 | 9934  | 199   |
| H(28B) | 5961  | 4456 | 11286 | 199   |
| H(28C) | 5988  | 4081 | 12702 | 199   |

Table S34. Torsion angles [deg] for 9.

| C(20)-N(1)-N(2)-N(3) | -0.5(3)   |
|----------------------|-----------|
| C(21)-N(1)-N(2)-N(3) | -179.9(3) |
| N(1)-N(2)-N(3)-C(19) | 0.4(3)    |

| C(11)-P(1)-C(1)-C(2)    | -9.3(3)    |
|-------------------------|------------|
| C(19)-P(1)-C(1)-C(2)    | -112.2(3)  |
| C(11)-P(1)-C(1)-C(6)    | 174.0(2)   |
| C(19)-P(1)-C(1)-C(6)    | 71.1(2)    |
| C(6)-C(1)-C(2)-C(3)     | 0.2(5)     |
| P(1)-C(1)-C(2)-C(3)     | -176.5(3)  |
| C(1)-C(2)-C(3)-C(4)     | -1.5(5)    |
| C(2)-C(3)-C(4)-C(5)     | 1.2(6)     |
| C(3)-C(4)-C(5)-C(10)    | -179.6(3)  |
| C(3)-C(4)-C(5)-C(6)     | 0.4(5)     |
| C(4)-C(5)-C(6)-C(7)     | 177.4(3)   |
| C(10)-C(5)-C(6)-C(7)    | -2.6(4)    |
| C(4)-C(5)-C(6)-C(1)     | -1.7(4)    |
| C(10)-C(5)-C(6)-C(1)    | 178.3(3)   |
| C(2)-C(1)-C(6)-C(7)     | -177.7(3)  |
| P(1)-C(1)-C(6)-C(7)     | -0.9(4)    |
| C(2)-C(1)-C(6)-C(5)     | 1.4(4)     |
| P(1)-C(1)-C(6)-C(5)     | 178.2(2)   |
| C(5)-C(6)-C(7)-C(8)     | 1.2(4)     |
| C(1)-C(6)-C(7)-C(8)     | -179.8(3)  |
| C(6)-C(7)-C(8)-C(9)     | 0.7(5)     |
| C(7)-C(8)-C(9)-C(10)    | -1.1(5)    |
| C(8)-C(9)-C(10)-C(5)    | -0.3(5)    |
| C(4)-C(5)-C(10)-C(9)    | -177.8(3)  |
| C(6)-C(5)-C(10)-C(9)    | 2.2(5)     |
| C(19)-P(1)-C(11)-C(12)  | -113.1(16) |
| C(1)-P(1)-C(11)-C(12)   | 141.9(16)  |
| P(1)-C(11)-C(12)-C(13)  | -167(2)    |
| C(11)-C(12)-C(13)-C(14) | -157(3)    |
| C(11)-C(12)-C(13)-C(18) | 23(4)      |
| C(18)-C(13)-C(14)-C(15) | 1.6(7)     |

| C(12)-C(13)-C(14)-C(15) | -178.6(4) |
|-------------------------|-----------|
| C(13)-C(14)-C(15)-C(16) | 0.8(8)    |
| C(14)-C(15)-C(16)-C(17) | -2.7(9)   |
| C(15)-C(16)-C(17)-C(18) | 2.0(8)    |
| C(16)-C(17)-C(18)-C(13) | 0.5(7)    |
| C(14)-C(13)-C(18)-C(17) | -2.3(6)   |
| C(12)-C(13)-C(18)-C(17) | 177.9(4)  |
| N(2)-N(3)-C(19)-C(20)   | -0.2(4)   |
| N(2)-N(3)-C(19)-P(1)    | 179.8(2)  |
| C(11)-P(1)-C(19)-N(3)   | 135.0(3)  |
| C(1)-P(1)-C(19)-N(3)    | -121.5(3) |
| C(11)-P(1)-C(19)-C(20)  | -44.9(3)  |
| C(1)-P(1)-C(19)-C(20)   | 58.5(3)   |
| N(2)-N(1)-C(20)-C(19)   | 0.3(3)    |
| C(21)-N(1)-C(20)-C(19)  | 179.6(3)  |
| N(3)-C(19)-C(20)-N(1)   | -0.1(3)   |
| P(1)-C(19)-C(20)-N(1)   | 179.9(2)  |
| C(20)-N(1)-C(21)-C(22)  | 109.8(4)  |
| N(2)-N(1)-C(21)-C(22)   | -71.0(4)  |
| N(1)-C(21)-C(22)-C(27)  | -100.2(4) |
| N(1)-C(21)-C(22)-C(23)  | 77.7(4)   |
| C(27)-C(22)-C(23)-C(24) | -0.9(6)   |
| C(21)-C(22)-C(23)-C(24) | -178.9(4) |
| C(22)-C(23)-C(24)-C(25) | 0.0(7)    |
| C(23)-C(24)-C(25)-C(26) | -0.2(7)   |
| C(23)-C(24)-C(25)-C(28) | 178.6(4)  |
| C(24)-C(25)-C(26)-C(27) | 1.3(7)    |
| C(28)-C(25)-C(26)-C(27) | -177.5(4) |
| C(25)-C(26)-C(27)-C(22) | -2.2(6)   |
| C(23)-C(22)-C(27)-C(26) | 1.9(5)    |
| C(21)-C(22)-C(27)-C(26) | 179.9(4)  |

Symmetry transformations used to generate equivalent atoms:

 Table S35.
 Hydrogen bonds for 9 [Å and deg.].

D-H...A

d(D-H) d(H...A)

<(DHA)

d(D...A)

Data intensity of  $14^{13}$  was collected using a 'Bruker APEX-II CCD' diffractometer at 100(10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on  $F^2$  with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for 14: C<sub>19</sub>H<sub>23</sub>O<sub>3</sub>P, T = 100(10) K, monoclinic, P2<sub>1</sub>, a = 8.3114(2) Å, b = 10.1411(2) Å, c = 10.8128(2) Å, a = 90 deg,  $\beta = 107.963(2)$  deg,  $\gamma = 90$  deg, V = 866.95(3) Å<sup>3</sup>. Z = 2,  $d_{calc} = 1.265$  Mg/cm<sup>3</sup>. 21852 reflections measured, 3414 [R<sub>int</sub> = 0.0546, R<sub>sigma</sub> = 0.0263], R1 = 0.0356, wR2 = 0.0875 ( $I > 2\sigma(I)$ , final), R1 = 0.0357, wR2 = 0.0876 (all data), GOF = 1.070, and 230 parameters.



 Table S36. Crystal data and structure refinement for 14.

| Identification code   | 14         |
|-----------------------|------------|
| Empirical formula     | C19H23O3P  |
| Formula weight        | 330.34     |
| Temperature/K         | 100.00(10) |
| Crystal system        | monoclinic |
| Space group           | P21        |
| a/Å                   | 8.3114(2)  |
| b/Å                   | 10.1411(2) |
| c/Å                   | 10.8128(2) |
| α/°                   | 90         |
| β/°                   | 107.963(2) |
| $\gamma/^{\circ}$     | 90         |
| Volume/Å <sup>3</sup> | 866.95(3)  |
| Ζ                     | 2          |

<sup>&</sup>lt;sup>13</sup> Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1920853).

| $\rho_{calc}g/cm^3$                   | 1.265                                                  |
|---------------------------------------|--------------------------------------------------------|
| $\mu/mm^{-1}$                         | 1.503                                                  |
| F(000)                                | 352.0                                                  |
| Crystal size/mm <sup>3</sup>          | $0.32 \times 0.28 \times 0.22$                         |
| Radiation                             | $CuK\alpha$ ( $\lambda = 1.54184$ )                    |
| $2\Theta$ range for data collection/° | 98.596 to 149.048                                      |
| Index ranges                          | $-10 \le h \le 10, -12 \le k \le 12, -13 \le l \le 13$ |
| Reflections collected                 | 21852                                                  |
| Independent reflections               | 3414 [ $R_{int} = 0.0546, R_{sigma} = 0.0263$ ]        |
| Data/restraints/parameters            | 3414/4/230                                             |
| Goodness-of-fit on F <sup>2</sup>     | 1.070                                                  |
| Final R indexes [I>= $2\sigma$ (I)]   | $R_1 = 0.0356,  wR_2 = 0.0875$                         |
| Final R indexes [all data]            | $R_1 = 0.0357, wR_2 = 0.0876$                          |
| Largest diff. peak/hole / e Å $^{-3}$ | 0.25/-0.33                                             |
| Flack parameter                       | 0.041(11)                                              |

**Table S37.** Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **14**. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | X         | У          | Z          | U(eq)     |
|------|-----------|------------|------------|-----------|
| P1   | 2628.1(7) | 232.5(7)   | 3802.0(5)  | 16.86(15) |
| 01   | 3861(2)   | 1031.0(19) | 3380.4(18) | 23.5(4)   |
| O2   | 3633(3)   | 418(2)     | 8230.5(18) | 33.7(5)   |
| 03   | 3561(4)   | 2601(3)    | 8058(2)    | 54.8(8)   |
| C1   | 555(3)    | 993(3)     | 3351(2)    | 20.9(5)   |
| C2   | 408(4)    | 2285(3)    | 2880(3)    | 26.3(6)   |
| C3   | -1168(4)  | 2895(4)    | 2507(3)    | 35.2(7)   |
| C4   | -2572(4)  | 2228(4)    | 2594(3)    | 37.7(8)   |
| C5   | -2429(4)  | 950(4)     | 3072(4)    | 41.4(8)   |
| C6   | -856(3)   | 331(4)     | 3456(3)    | 32.0(6)   |
| C7   | 2191(3)   | -1406(3)   | 3095(2)    | 20.8(5)   |

| C8   | 1768(3)  | -2432(3) | 3793(3) | 23.5(5)  |
|------|----------|----------|---------|----------|
| C9   | 1301(4)  | -3666(3) | 3236(3) | 28.9(6)  |
| C10  | 1288(4)  | -3887(3) | 1976(3) | 36.9(7)  |
| C11  | 1723(5)  | -2878(4) | 1278(3) | 42.8(8)  |
| C12  | 2165(4)  | -1623(3) | 1800(3) | 30.8(6)  |
| C13  | 2518(7)  | -542(4)  | 966(3)  | 54.4(11) |
| C14  | 3299(3)  | 45(3)    | 5568(2) | 20.5(5)  |
| C15  | 4991(3)  | -695(3)  | 6000(3) | 25.7(6)  |
| C16  | 3445(4)  | 1431(3)  | 6167(3) | 23.9(6)  |
| C17  | 3570(4)  | 1396(3)  | 7594(3) | 25.3(6)  |
| C182 | 3361(9)  | 2555(6)  | 9398(5) | 21.1(12) |
| C192 | 2876(8)  | 3934(6)  | 9696(5) | 23.4(12) |
| C191 | 2540(11) | 3117(13) | 9718(8) | 56(2)    |
| C181 | 4188(11) | 2838(9)  | 9483(8) | 41.6(19) |
|      |          |          |         |          |

**Table S38.** Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **14**. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| P1   | 17.5(3)         | 16.1(3)         | 19.7(3)         | -0.2(3)         | 9.8(2)          | 0.1(2)          |
| 01   | 23.3(9)         | 24.5(11)        | 27.8(9)         | 0.7(8)          | 15.3(7)         | -2.1(8)         |
| O2   | 48.9(12)        | 30.0(13)        | 23.0(9)         | 1.8(9)          | 12.0(8)         | -8.6(10)        |
| O3   | 114(2)          | 32.8(14)        | 19.7(11)        | 1.6(9)          | 24.1(13)        | 27.3(15)        |
| C1   | 21.0(12)        | 22.8(15)        | 21.2(11)        | -3.3(10)        | 9.9(10)         | 1.7(10)         |
| C2   | 31.0(14)        | 27.0(16)        | 23.2(13)        | 1.2(11)         | 11.9(11)        | 7.6(12)         |
| C3   | 45.8(17)        | 37.8(19)        | 21.9(13)        | 1.1(12)         | 10.2(12)        | 18.7(14)        |
| C4   | 30.2(15)        | 49(2)           | 28.7(15)        | -13.2(14)       | 1.6(12)         | 19.1(14)        |
| C5   | 21.1(14)        | 47(2)           | 58(2)           | -23.5(17)       | 16.2(13)        | -2.5(13)        |
| C6   | 24.1(12)        | 26.9(16)        | 49.2(16)        | -5.6(15)        | 17.5(11)        | 0.8(13)         |
| C7   | 18.3(12)        | 20.8(14)        | 22.5(12)        | -2.4(10)        | 5.1(10)         | 1.4(10)         |
| C8   | 25.4(12)        | 19.0(14)        | 27.7(13)        | -1.0(10)        | 10.6(10)        | 0.4(10)         |

| C9   | 29.6(14) | 18.5(15) | 36.3(15) | 0.9(12)  | 6.8(12)  | 0.8(11)  |
|------|----------|----------|----------|----------|----------|----------|
| C10  | 49.1(18) | 21.2(16) | 32.7(15) | -6.2(12) | 1.3(13)  | 0.5(14)  |
| C11  | 72(2)    | 29.6(18) | 21.9(15) | -5.6(12) | 6.5(15)  | -2.6(17) |
| C12  | 42.9(17) | 26.2(16) | 20.1(12) | 0.2(11)  | 5.1(11)  | 1.0(13)  |
| C13  | 107(3)   | 37(2)    | 17.7(14) | -1.1(14) | 16.4(18) | -14(2)   |
| C14  | 21.6(11) | 19.7(15) | 22.2(11) | -0.3(10) | 9.7(9)   | 0.2(10)  |
| C15  | 23.8(13) | 25.9(15) | 26.6(13) | 1.8(10)  | 6.5(11)  | 2.7(11)  |
| C16  | 32.2(14) | 20.3(15) | 20.4(12) | 0.1(10)  | 10.0(10) | -0.9(11) |
| C17  | 29.8(13) | 26.7(16) | 21.1(12) | 1.1(11)  | 10.1(10) | 1.3(11)  |
| C182 | 33(3)    | 26(3)    | 7(2)     | -2(2)    | 10(2)    | 3(3)     |
| C192 | 34(3)    | 21(3)    | 19(3)    | -8(2)    | 12(2)    | -4(2)    |
| C191 | 66(6)    | 71(7)    | 32(4)    | -7(4)    | 19(4)    | 4(5)     |
| C181 | 56(5)    | 42(5)    | 32(4)    | -11(3)   | 21(4)    | -9(4)    |

## Table S39. Bond Lengths for 14.

| Atom | Atom | Length/Å   | Atom Atom | Length/Å |
|------|------|------------|-----------|----------|
| P1   | 01   | 1.4836(19) | C5 C6     | 1.393(4) |
| P1   | C1   | 1.812(3)   | C7 C8     | 1.393(4) |
| P1   | C7   | 1.818(3)   | C7 C12    | 1.410(4) |
| P1   | C14  | 1.826(2)   | C8 C9     | 1.391(4) |
| O2   | C17  | 1.199(4)   | C9 C10    | 1.377(4) |
| 03   | C17  | 1.322(4)   | C10 C11   | 1.384(5) |
| 03   | C182 | 1.509(6)   | C11 C12   | 1.395(5) |
| 03   | C181 | 1.487(8)   | C12 C13   | 1.505(5) |
| C1   | C2   | 1.397(4)   | C14 C15   | 1.534(4) |
| C1   | C6   | 1.386(4)   | C14 C16   | 1.537(4) |
| C2   | C3   | 1.391(4)   | C16 C17   | 1.515(4) |
| C3   | C4   | 1.377(5)   | C182 C192 | 1.518(8) |
| C4   | C5   | 1.387(6)   | C191 C181 | 1.495(8) |

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|------|------|------|------------|
| 01   | P1   | C1   | 111.99(12) | C12  | C7   | P1   | 120.0(2)   |
| 01   | P1   | C7   | 115.90(12) | С9   | C8   | C7   | 121.4(3)   |
| O1   | P1   | C14  | 111.16(11) | C10  | C9   | C8   | 119.4(3)   |
| C1   | P1   | C7   | 103.06(12) | С9   | C10  | C11  | 119.7(3)   |
| C1   | P1   | C14  | 106.49(11) | C10  | C11  | C12  | 122.3(3)   |
| C7   | P1   | C14  | 107.55(13) | C7   | C12  | C13  | 122.3(3)   |
| C17  | O3   | C182 | 110.5(3)   | C11  | C12  | C7   | 117.8(3)   |
| C17  | O3   | C181 | 120.1(4)   | C11  | C12  | C13  | 119.8(3)   |
| C2   | C1   | P1   | 117.8(2)   | C15  | C14  | P1   | 108.96(17) |
| C6   | C1   | P1   | 122.0(2)   | C15  | C14  | C16  | 111.9(2)   |
| C6   | C1   | C2   | 120.2(3)   | C16  | C14  | P1   | 107.71(18) |
| C3   | C2   | C1   | 119.4(3)   | C17  | C16  | C14  | 112.3(2)   |
| C4   | C3   | C2   | 120.3(3)   | O2   | C17  | O3   | 123.5(2)   |
| C3   | C4   | C5   | 120.5(3)   | O2   | C17  | C16  | 125.6(3)   |
| C4   | C5   | C6   | 119.8(3)   | 03   | C17  | C16  | 110.9(2)   |
| C1   | C6   | C5   | 119.8(3)   | O3   | C182 | C192 | 106.9(4)   |
| C8   | C7   | P1   | 120.4(2)   | O3   | C181 | C191 | 99.2(6)    |
| C8   | C7   | C12  | 119.5(3)   |      |      |      |            |

Table S40. Bond Angles for 14.

**Table S41.** Hydrogen Atom Coordinates ( $Å \times 10^4$ ) and Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **14.** 

| Atom | X        | У       | Z       | U(eq) |
|------|----------|---------|---------|-------|
| H2   | 1355.5   | 2733.39 | 2817.1  | 32    |
| Н3   | -1273.87 | 3756.06 | 2196.28 | 42    |
| H4   | -3624.14 | 2638.15 | 2330.58 | 45    |
| Н5   | -3379.89 | 507.79  | 3136.77 | 50    |
| Н6   | -753.26  | -524.77 | 3781.1  | 38    |

| 1799.09 | -2289.36                                                                                                                                                                                                                                             | 4649.97                                                                                                                                                                                                                                                                                                                         | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1000.43 | -4335.55                                                                                                                                                                                                                                             | 3710                                                                                                                                                                                                                                                                                                                            | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 988.75  | -4710.22                                                                                                                                                                                                                                             | 1596.5                                                                                                                                                                                                                                                                                                                          | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1719.96 | -3042.63                                                                                                                                                                                                                                             | 431.57                                                                                                                                                                                                                                                                                                                          | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1708.3  | 154.57                                                                                                                                                                                                                                               | 880.62                                                                                                                                                                                                                                                                                                                          | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2431.99 | -887.67                                                                                                                                                                                                                                              | 121.32                                                                                                                                                                                                                                                                                                                          | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3636.96 | -203.28                                                                                                                                                                                                                                              | 1362.86                                                                                                                                                                                                                                                                                                                         | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2446.58 | -462.01                                                                                                                                                                                                                                              | 5820.56                                                                                                                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4807.34 | -1605.56                                                                                                                                                                                                                                             | 5753.02                                                                                                                                                                                                                                                                                                                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5473.05 | -632.42                                                                                                                                                                                                                                              | 6926.74                                                                                                                                                                                                                                                                                                                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5752.18 | -310.79                                                                                                                                                                                                                                              | 5589.57                                                                                                                                                                                                                                                                                                                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4439.95 | 1864.54                                                                                                                                                                                                                                              | 6069.92                                                                                                                                                                                                                                                                                                                         | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2463.64 | 1946.68                                                                                                                                                                                                                                              | 5697.6                                                                                                                                                                                                                                                                                                                          | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4413.81 | 2287.09                                                                                                                                                                                                                                              | 10033.85                                                                                                                                                                                                                                                                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2487.2  | 1929.2                                                                                                                                                                                                                                               | 9418.45                                                                                                                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1752.06 | 4131.85                                                                                                                                                                                                                                              | 9149.3                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3655.02 | 4560.7                                                                                                                                                                                                                                               | 9536.01                                                                                                                                                                                                                                                                                                                         | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2914.13 | 3982.96                                                                                                                                                                                                                                              | 10591.2                                                                                                                                                                                                                                                                                                                         | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2048.9  | 3901.47                                                                                                                                                                                                                                              | 9257.53                                                                                                                                                                                                                                                                                                                         | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2726.96 | 3241.76                                                                                                                                                                                                                                              | 10632.1                                                                                                                                                                                                                                                                                                                         | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1784.47 | 2387.67                                                                                                                                                                                                                                              | 9415.98                                                                                                                                                                                                                                                                                                                         | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4949.31 | 3587.22                                                                                                                                                                                                                                              | 9702.36                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4741.1  | 2066.24                                                                                                                                                                                                                                              | 9956.15                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | 1799.09<br>1000.43<br>988.75<br>1719.96<br>1708.3<br>2431.99<br>3636.96<br>2446.58<br>4807.34<br>5473.05<br>5752.18<br>4439.95<br>2463.64<br>4413.81<br>2487.2<br>1752.06<br>3655.02<br>2914.13<br>2048.9<br>2726.96<br>1784.47<br>4949.31<br>4741.1 | 1799.09-2289.361000.43-4335.55988.75-4710.221719.96-3042.631708.3154.572431.99-887.673636.96-203.282446.58-462.014807.34-1605.565473.05-632.425752.18-310.794439.951864.542463.641946.684413.812287.092487.21929.21752.064131.853655.024560.72914.133982.962048.93901.472726.963241.761784.472387.674949.313587.224741.12066.24 | 1799.09-2289.364649.971000.43-4335.553710988.75-4710.221596.51719.96-3042.63431.571708.3154.57880.622431.99-887.67121.323636.96-203.281362.862446.58-462.015820.564807.34-1605.565753.025473.05-632.426926.745752.18-310.795589.574439.951864.546069.922463.641946.685697.64413.812287.0910033.852487.21929.29418.451752.064131.859149.33655.024560.79536.012914.133982.9610591.22048.93901.479257.532726.963241.7610632.11784.472387.679415.984949.313587.229702.364741.12066.249956.15 |

# Table S42. Atomic Occupancy for 14.

| Table 542. Atomic Occupancy for 14. |           |      |           |        |           |  |  |  |
|-------------------------------------|-----------|------|-----------|--------|-----------|--|--|--|
| Atom                                | Occupancy | Atom | Occupancy | Atom ( | Occupancy |  |  |  |
| C182                                | 0.5       | H18A | 0.5       | H18B   | 0.5       |  |  |  |
| C192                                | 0.5       | H19A | 0.5       | H19B   | 0.5       |  |  |  |
| H19C                                | 0.5       | C191 | 0.5       | H19D   | 0.5       |  |  |  |

| H19E | 0.5 | H19F | 0.5 | C181 | 0.5 |
|------|-----|------|-----|------|-----|
| H18C | 0.5 | H18D | 0.5 |      |     |

Data intensity of  $19^{14}$  was collected using a 'Bruker APEX-II CCD' diffractometer at 100(11) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on  $F^2$  with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for 19: C<sub>24</sub>H<sub>32</sub>NO<sub>2</sub>PS, T = 100(11) K, monoclinic, P2<sub>1</sub>, a = 6.07450(10), b = 19.8094(2) Å, c = 9.96830(10) Å,  $\alpha = 90$  deg, 98.0600(10) deg,  $\gamma = 90$  deg, 1187.66(3) Å<sup>3</sup>. Z = 2,  $d_{calc} = 1.201$  Mg/cm<sup>3</sup>. 26423 reflections measured, 4775 [R<sub>int</sub> = 0.0552, R<sub>sigma</sub> = 0.0344], R1 = 0.0311, wR2 = 0.0745 ( $I > 2\sigma(I)$ , final), R1 = 0.0328, wR2 = 0.0753 (all data), GOF = 1.044, and 272 parameters.



 Table S43. Crystal data and structure refinement for 19.

| Identification code   | 19                     |
|-----------------------|------------------------|
| Empirical formula     | C24H32NO2PS            |
| Formula weight        | 429.53                 |
| Temperature/K         | 100.00(11)             |
| Crystal system        | monoclinic             |
| Space group           | <b>P2</b> <sub>1</sub> |
| a/Å                   | 6.07450(10)            |
| b/Å                   | 19.8094(2)             |
| c/Å                   | 9.96830(10)            |
| $\alpha/^{\circ}$     | 90                     |
| β/°                   | 98.0600(10)            |
| $\gamma/^{\circ}$     | 90                     |
| Volume/Å <sup>3</sup> | 1187.66(3)             |
| Z                     | 2                      |
| $\rho_{calc}g/cm^3$   | 1.201                  |
|                       |                        |

<sup>&</sup>lt;sup>14</sup> Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1920855).

| $\mu/mm^{-1}$                                                                                                                                | 1.989                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| F(000)                                                                                                                                       | 460.0                                                                                                                         |
| Crystal size/mm <sup>3</sup>                                                                                                                 | $0.32\times0.26\times0.18$                                                                                                    |
| Radiation                                                                                                                                    | $CuK\alpha$ ( $\lambda = 1.54184$ )                                                                                           |
| $2\Theta$ range for data collection/°                                                                                                        | 8.96 to 148.808                                                                                                               |
| Index ranges                                                                                                                                 | $-7 \le h \le 7, -24 \le k \le 24, -12 \le l \le 12$                                                                          |
| Reflections collected                                                                                                                        | 26423                                                                                                                         |
| Independent reflections                                                                                                                      | 4775 [ $R_{int} = 0.0552$ , $R_{sigma} = 0.0344$ ]                                                                            |
| Data/restraints/parameters                                                                                                                   | 1775/1/272                                                                                                                    |
| 1                                                                                                                                            | 477571/272                                                                                                                    |
| Goodness-of-fit on F <sup>2</sup>                                                                                                            | 1.044                                                                                                                         |
| Goodness-of-fit on $F^2$<br>Final R indexes [I>= $2\sigma$ (I)]                                                                              | 1.044<br>R <sub>1</sub> = 0.0311, wR <sub>2</sub> = 0.0745                                                                    |
| Goodness-of-fit on $F^2$<br>Final R indexes [I>= $2\sigma$ (I)]<br>Final R indexes [all data]                                                | 1.044<br>R <sub>1</sub> = 0.0311, wR <sub>2</sub> = 0.0745<br>R <sub>1</sub> = 0.0328, wR <sub>2</sub> = 0.0753               |
| Goodness-of-fit on $F^2$<br>Final R indexes [I>= $2\sigma$ (I)]<br>Final R indexes [all data]<br>Largest diff. peak/hole / e Å <sup>-3</sup> | 1.044<br>R <sub>1</sub> = 0.0311, wR <sub>2</sub> = 0.0745<br>R <sub>1</sub> = 0.0328, wR <sub>2</sub> = 0.0753<br>0.25/-0.20 |

**Table S44.** Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **19**. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | х           | У          | Z          | U(eq)     |
|------|-------------|------------|------------|-----------|
| S1   | 10798.6(11) | 6474.6(3)  | 8754.0(6)  | 23.50(15) |
| P1   | 2851.8(11)  | 4483.5(3)  | 6259.7(6)  | 19.05(14) |
| O1   | 598(3)      | 4727.4(9)  | 6439.4(17) | 23.2(4)   |
| 02   | 13100(3)    | 6632.1(10) | 8511.9(19) | 29.8(4)   |
| N1   | 9552(4)     | 6017.0(11) | 7504(2)    | 25.4(5)   |
| C1   | 2835(4)     | 4139.3(12) | 4579(3)    | 21.8(5)   |
| C2   | 914(5)      | 4273.5(13) | 3674(3)    | 26.3(6)   |
| C3   | 667(5)      | 4028.6(16) | 2362(3)    | 34.0(7)   |
| C4   | 2352(6)     | 3657.0(16) | 1936(3)    | 38.2(7)   |
| C5   | 4275(5)     | 3521.4(15) | 2818(3)    | 34.1(7)   |
| C6   | 4574(5)     | 3755.0(13) | 4151(3)    | 25.9(6)   |
| C7   | 6650(5)     | 3583.2(15) | 5064(3)    | 31.2(6)   |

| 3825(5)  | 3851.7(13)                                                                                                                                                                     | 7497(3)                                                                                                                                                                                                                                                                                              | 25.4(6)                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2308(6)  | 3334.0(13)                                                                                                                                                                     | 7681(3)                                                                                                                                                                                                                                                                                              | 30.4(6)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2928(7)  | 2830.5(15)                                                                                                                                                                     | 8617(3)                                                                                                                                                                                                                                                                                              | 41.1(8)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5011(7)  | 2837.8(17)                                                                                                                                                                     | 9368(3)                                                                                                                                                                                                                                                                                              | 45.7(9)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6507(7)  | 3346.7(19)                                                                                                                                                                     | 9206(3)                                                                                                                                                                                                                                                                                              | 47.8(9)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5910(6)  | 3861.0(16)                                                                                                                                                                     | 8255(3)                                                                                                                                                                                                                                                                                              | 36.1(7)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4831(5)  | 5126.7(13)                                                                                                                                                                     | 6447(3)                                                                                                                                                                                                                                                                                              | 24.7(6)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5962(4)  | 5627.6(13)                                                                                                                                                                     | 6594(3)                                                                                                                                                                                                                                                                                              | 22.1(5)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7435(4)  | 6222.2(12)                                                                                                                                                                     | 6748(2)                                                                                                                                                                                                                                                                                              | 19.8(5)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7598(4)  | 6563.7(13)                                                                                                                                                                     | 5360(3)                                                                                                                                                                                                                                                                                              | 24.1(5)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8505(5)  | 6074.2(14)                                                                                                                                                                     | 4392(3)                                                                                                                                                                                                                                                                                              | 32.2(7)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5272(5)  | 6800.3(14)                                                                                                                                                                     | 4762(3)                                                                                                                                                                                                                                                                                              | 30.1(6)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9143(5)  | 7175.5(14)                                                                                                                                                                     | 5612(3)                                                                                                                                                                                                                                                                                              | 30.4(6)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11117(5) | 5849.6(14)                                                                                                                                                                     | 10150(2)                                                                                                                                                                                                                                                                                             | 24.9(6)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12439(5) | 5241.7(14)                                                                                                                                                                     | 9774(3)                                                                                                                                                                                                                                                                                              | 30.1(6)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8782(5)  | 5664.8(16)                                                                                                                                                                     | 10408(3)                                                                                                                                                                                                                                                                                             | 33.2(6)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12388(5) | 6219.6(17)                                                                                                                                                                     | 11370(3)                                                                                                                                                                                                                                                                                             | 35.7(7)                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | 3825(5)<br>2308(6)<br>2928(7)<br>5011(7)<br>6507(7)<br>5910(6)<br>4831(5)<br>5962(4)<br>7435(4)<br>7598(4)<br>8505(5)<br>5272(5)<br>9143(5)<br>11117(5)<br>12439(5)<br>8782(5) | 3825(5)3851.7(13)2308(6)3334.0(13)2928(7)2830.5(15)5011(7)2837.8(17)6507(7)3346.7(19)5910(6)3861.0(16)4831(5)5126.7(13)5962(4)5627.6(13)7435(4)6222.2(12)7598(4)6563.7(13)8505(5)6074.2(14)5272(5)6800.3(14)9143(5)7175.5(14)11117(5)5849.6(14)12439(5)5241.7(14)8782(5)5664.8(16)12388(5)6219.6(17) | 3825(5)3851.7(13)7497(3)2308(6)3334.0(13)7681(3)2928(7)2830.5(15)8617(3)5011(7)2837.8(17)9368(3)6507(7)3346.7(19)9206(3)5910(6)3861.0(16)8255(3)4831(5)5126.7(13)6447(3)5962(4)5627.6(13)6594(3)7435(4)6222.2(12)6748(2)7598(4)6563.7(13)5360(3)8505(5)6074.2(14)4392(3)5272(5)6800.3(14)4762(3)9143(5)7175.5(14)5612(3)11117(5)5849.6(14)10150(2)12439(5)5241.7(14)9774(3)8782(5)5664.8(16)10408(3)12388(5)6219.6(17)11370(3) |

**Table S45.** Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **19**. The Anisotropic displacementfactor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom       | U11      | U22      | U33      | U <sub>23</sub> | U13      | U12      |
|------------|----------|----------|----------|-----------------|----------|----------|
| <b>S</b> 1 | 25.8(3)  | 20.5(3)  | 23.4(3)  | -6.2(2)         | 0.4(2)   | -3.6(3)  |
| P1         | 20.7(3)  | 12.7(3)  | 23.3(3)  | -1.7(2)         | 1.3(2)   | -0.5(2)  |
| 01         | 22.5(10) | 19.6(8)  | 27.2(9)  | -3.9(7)         | 2.4(7)   | -0.5(7)  |
| O2         | 29.0(11) | 32.2(11) | 27.8(9)  | -5.6(8)         | 3.0(8)   | -10.1(8) |
| N1         | 28.4(13) | 17.1(10) | 28.3(11) | -7.6(9)         | -4.8(10) | 4.6(9)   |
| C1         | 26.3(14) | 13.8(11) | 25.7(12) | -0.1(9)         | 4.4(10)  | -1.8(10) |
| C2         | 31.9(15) | 21.0(12) | 25.7(13) | 0.5(9)          | 3.3(11)  | 2.1(11)  |
| C3         | 39.9(18) | 35.3(15) | 25.2(13) | 0.8(11)         | -1.4(12) | 0.9(13)  |

| C4  | 51(2)    | 38.5(16) | 25.7(14) | -7.5(12)  | 8.0(13)   | -0.7(15) |
|-----|----------|----------|----------|-----------|-----------|----------|
| C5  | 40.1(18) | 29.3(14) | 36.0(15) | -5.6(12)  | 16.0(13)  | -1.9(13) |
| C6  | 27.9(15) | 17.6(11) | 33.6(14) | -2.5(10)  | 9.5(11)   | -3.6(10) |
| C7  | 27.4(15) | 26.2(13) | 40.8(15) | -8.6(12)  | 7.7(12)   | 0.5(12)  |
| C8  | 33.2(15) | 18.4(12) | 24.2(13) | -4.5(9)   | 2.3(11)   | 5.6(11)  |
| C9  | 44.6(18) | 19.5(13) | 27.4(13) | -2.0(10)  | 6.3(13)   | 3.7(12)  |
| C10 | 70(2)    | 21.9(13) | 32.7(15) | 3.3(12)   | 12.0(15)  | 8.2(15)  |
| C11 | 80(3)    | 32.4(16) | 24.8(14) | 1.8(12)   | 8.4(16)   | 26.4(18) |
| C12 | 55(2)    | 52(2)    | 31.7(16) | -10.8(15) | -10.5(15) | 24.2(18) |
| C13 | 39.2(18) | 33.4(16) | 33.1(15) | -6.5(12)  | -4.3(13)  | 11.1(14) |
| C14 | 28.1(15) | 19.1(12) | 27.0(13) | -2.7(10)  | 4.4(11)   | 0.2(11)  |
| C15 | 23.5(14) | 19.1(12) | 23.4(12) | -2.7(9)   | 2.5(10)   | -0.2(10) |
| C16 | 21.7(13) | 13.8(10) | 23.3(12) | -4.0(9)   | 1.1(10)   | -2.2(10) |
| C17 | 27.2(14) | 18.6(12) | 26.5(12) | 0.7(10)   | 4.1(10)   | -0.4(11) |
| C18 | 42.7(18) | 28.2(14) | 27.2(13) | 0.2(11)   | 10.0(13)  | 3.4(13)  |
| C19 | 30.7(16) | 24.6(13) | 32.7(14) | 3.3(11)   | -4.1(12)  | 2.6(12)  |
| C20 | 28.9(16) | 20.9(13) | 41.5(16) | 6.0(11)   | 5.5(12)   | -3.3(11) |
| C21 | 25.0(14) | 29.2(14) | 20.7(12) | -4.4(10)  | 3.4(10)   | -0.6(11) |
| C22 | 31.7(16) | 33.4(15) | 25.1(13) | 2.3(11)   | 3.2(12)   | 3.9(12)  |
| C23 | 28.2(16) | 36.1(15) | 36.6(15) | -1.6(12)  | 9.5(12)   | -2.1(13) |
| C24 | 36.5(17) | 44.2(17) | 25.2(13) | -7.7(12)  | 0.7(12)   | -3.6(14) |
|     |          |          |          |           |           |          |

# Table S46. Bond Lengths for 19.

| I able S   | 40. Donu L | cliguis ioi 19. |           |          |
|------------|------------|-----------------|-----------|----------|
| Atom       | Atom       | Length/Å        | Atom Atom | Length/Å |
| S1         | O2         | 1.485(2)        | C8 C9     | 1.408(4) |
| <b>S</b> 1 | N1         | 1.638(2)        | C8 C13    | 1.381(4) |
| <b>S</b> 1 | C21        | 1.852(3)        | C9 C10    | 1.381(4) |
| P1         | 01         | 1.4861(19)      | C10 C11   | 1.377(6) |
| P1         | C1         | 1.808(3)        | C11 C12   | 1.382(6) |

| P1 | C8  | 1.798(3) | C12 C13 | 1.404(5) |
|----|-----|----------|---------|----------|
| P1 | C14 | 1.744(3) | C14 C15 | 1.204(4) |
| N1 | C16 | 1.454(3) | C15 C16 | 1.474(3) |
| C1 | C2  | 1.396(4) | C16 C17 | 1.556(3) |
| C1 | C6  | 1.416(4) | C17 C18 | 1.525(4) |
| C2 | C3  | 1.384(4) | C17 C19 | 1.528(4) |
| C3 | C4  | 1.375(4) | C17 C20 | 1.532(4) |
| C4 | C5  | 1.386(5) | C21 C22 | 1.523(4) |
| C5 | C6  | 1.394(4) | C21 C23 | 1.521(4) |
| C6 | C7  | 1.487(4) | C21 C24 | 1.533(4) |

# Table S47. Bond Angles for 19.

| Atom | Atom       | Atom       | Angle/°    | Atom | Atom | Atom | Angle/°  |
|------|------------|------------|------------|------|------|------|----------|
| 02   | <b>S</b> 1 | N1         | 109.76(12) | C10  | С9   | C8   | 119.5(3) |
| 02   | <b>S</b> 1 | C21        | 105.14(12) | C11  | C10  | С9   | 120.2(3) |
| N1   | <b>S</b> 1 | C21        | 100.94(12) | C10  | C11  | C12  | 120.9(3) |
| 01   | P1         | C1         | 110.40(12) | C11  | C12  | C13  | 119.8(3) |
| 01   | P1         | C8         | 111.32(12) | C8   | C13  | C12  | 119.3(3) |
| 01   | P1         | C14        | 112.50(12) | C15  | C14  | P1   | 171.2(3) |
| C8   | P1         | C1         | 109.39(11) | C14  | C15  | C16  | 177.2(3) |
| C14  | P1         | C1         | 106.79(12) | N1   | C16  | C15  | 108.1(2) |
| C14  | P1         | C8         | 106.24(13) | N1   | C16  | C17  | 114.9(2) |
| C16  | N1         | <b>S</b> 1 | 121.36(18) | C15  | C16  | C17  | 111.6(2) |
| C2   | C1         | P1         | 115.0(2)   | C18  | C17  | C16  | 111.1(2) |
| C2   | C1         | C6         | 120.0(2)   | C18  | C17  | C19  | 110.2(2) |
| C6   | C1         | P1         | 125.1(2)   | C18  | C17  | C20  | 109.8(2) |
| C3   | C2         | C1         | 120.9(3)   | C19  | C17  | C16  | 108.0(2) |
| C4   | C3         | C2         | 119.5(3)   | C19  | C17  | C20  | 109.5(2) |
| C3   | C4         | C5         | 120.4(3)   | C20  | C17  | C16  | 108.2(2) |

| <b>C</b> ( | <b></b> |    |          |                       |
|------------|---------|----|----------|-----------------------|
| C4         | C5      | C6 | 121.7(3) | C22 C21 S1 110.28(18) |
| C1         | C6      | C7 | 122.9(2) | C22 C21 C24 110.4(2)  |
| C5         | C6      | C1 | 117.5(3) | C23 C21 S1 106.65(19) |
| C5         | C6      | C7 | 119.5(3) | C23 C21 C22 112.8(2)  |
| С9         | C8      | P1 | 116.0(2) | C23 C21 C24 111.0(2)  |
| C13        | C8      | P1 | 123.6(2) | C24 C21 S1 105.3(2)   |
| C13        | C8      | C9 | 120.4(3) |                       |

**Table S48.** Hydrogen Atom Coordinates ( $Å \times 10^4$ ) and Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **19.** 

| Atom | X         | у        | Z        | U(eq) |
|------|-----------|----------|----------|-------|
| H1   | 10090(50) | 5700(18) | 7260(30) | 31    |
| H2   | -215.38   | 4530.98  | 3957.86  | 32    |
| Н3   | -628.61   | 4114.63  | 1771.58  | 41    |
| H4   | 2200.35   | 3495.77  | 1051.92  | 46    |
| Н5   | 5394.82   | 3268.05  | 2513.39  | 41    |
| H7A  | 7256.37   | 3984.2   | 5513.33  | 47    |
| H7B  | 7710.61   | 3394.05  | 4540.83  | 47    |
| H7C  | 6321.49   | 3260.3   | 5726.03  | 47    |
| Н9   | 898.51    | 3331.03  | 7177.1   | 36    |
| H10  | 1937.01   | 2485.76  | 8739.91  | 49    |
| H11  | 5416.34   | 2495.64  | 9992.55  | 55    |
| H12  | 7903.72   | 3348.57  | 9725.01  | 57    |
| H13  | 6909.45   | 4204.43  | 8136.65  | 43    |
| H16  | 6768.64   | 6551.24  | 7305.73  | 24    |
| H18A | 9955.95   | 5923.45  | 4783.1   | 48    |
| H18B | 8603.95   | 6298.06  | 3547.93  | 48    |
| H18C | 7527.42   | 5693.03  | 4234.23  | 48    |
| H19A | 4303.85   | 6416.93  | 4602.24  | 45    |

| H19B | 5343.23  | 7031.13 | 3922.79  | 45 |
|------|----------|---------|----------|----|
| H19C | 4706.16  | 7101.64 | 5386.87  | 45 |
| H20A | 8565.24  | 7481.47 | 6223.5   | 46 |
| H20B | 9235.39  | 7400.81 | 4769.44  | 46 |
| H20C | 10598.11 | 7027.68 | 6002.75  | 46 |
| H22A | 11544.07 | 4981.67 | 9089.86  | 45 |
| H22B | 12851.35 | 4966.69 | 10561.79 | 45 |
| H22C | 13754.81 | 5393.7  | 9432.32  | 45 |
| H23A | 7957.39  | 6069.29 | 10521.33 | 50 |
| H23B | 8867.36  | 5395.4  | 11214.21 | 50 |
| H23C | 8048.24  | 5413.12 | 9651.66  | 50 |
| H24A | 13846.93 | 6335.71 | 11178.35 | 54 |
| H24B | 12513.69 | 5931.59 | 12151.27 | 54 |
| H24C | 11601.27 | 6623.36 | 11543.82 | 54 |

Data intensity of **21**<sup>15</sup>was collected using a 'Bruker APEX-II CCD' diffractometer at 293(2) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on  $F^2$  with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically idea positions and refined isotropically. Crystal data for **21**: C<sub>24</sub>H<sub>32</sub>NO<sub>2</sub>PS, T = 293(2) K, triclinic, P-1, a = 8.6866(3) Å, b = 10.7017(4) Å, c = 11.1556(3) Å,  $\alpha = 72.428(3)$  deg,  $\beta = 86.595(3)$  deg,  $\gamma = 70.591(3)$  deg, V = 931.50(6) Å<sup>3</sup>. Z = 2,  $d_{calc} = 1.942$  Mg/cm<sup>3</sup>. 17430 reflections measured, 3313 [R<sub>int</sub> = 0.1194, R<sub>sigma</sub> = 0.0633], R1 = 0.0570, wR2 = 0.1508 ( $I > 2\sigma(I)$ , final), R1 = 0.0604, wR2 = 0.1531 (all data), GOF = 1.081, and 191 parameters.



 Table S49. Crystal data and structure refinement for 21.

| Identification code   | 21                                                                             |
|-----------------------|--------------------------------------------------------------------------------|
| Empirical formula     | C <sub>30</sub> H <sub>32</sub> Au <sub>2</sub> Cl <sub>2</sub> P <sub>2</sub> |
| Formula weight        | 918.59                                                                         |
| Temperature/K         | 293(2)                                                                         |
| Crystal system        | triclinic                                                                      |
| Space group           | P-1                                                                            |
| a/Å                   | 8.6866(3)                                                                      |
| b/Å                   | 10.7017(4)                                                                     |
| c/Å                   | 11.1556(3)                                                                     |
| α/°                   | 72.428(3)                                                                      |
| β/°                   | 86.595(3)                                                                      |
| $\gamma/^{\circ}$     | 70.591(3)                                                                      |
| Volume/Å <sup>3</sup> | 931.50(6)                                                                      |
| Z                     | 2                                                                              |
| $\rho_{calc}g/cm^3$   | 1.942                                                                          |

<sup>&</sup>lt;sup>15</sup> Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 1826888).

| µ/mm <sup>-1</sup>                          | 19.528                                                                                 |
|---------------------------------------------|----------------------------------------------------------------------------------------|
| F(000)                                      | 518.0                                                                                  |
| Crystal size/mm <sup>3</sup>                | $0.31 \times 0.17 \times 0.07$                                                         |
| Radiation                                   | $CuK\alpha$ ( $\lambda = 1.54184$ )                                                    |
| $2\Theta$ range for data collection/°       | 8.322 to 134.096                                                                       |
| Index ranges                                | $\textbf{-10} \leq h \leq 9, \textbf{-12} \leq k \leq 12, \textbf{-13} \leq l \leq 13$ |
| Reflections collected                       | 17430                                                                                  |
| Independent reflections                     | 3313 [ $R_{int} = 0.1194$ , $R_{sigma} = 0.0633$ ]                                     |
| Data/restraints/parameters                  | 3313/0/191                                                                             |
| Goodness-of-fit on F <sup>2</sup>           | 1.081                                                                                  |
| Final R indexes $[I \ge 2\sigma(I)]$        | $R_1 = 0.0570,  wR_2 = 0.1508$                                                         |
| Final R indexes [all data]                  | $R_1 = 0.0604, wR_2 = 0.1531$                                                          |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 2.27/-2.08                                                                             |

**Table S50.** Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **21**. U<sub>eq</sub> is defined as 1/3 of of the trace of the orthogonalised U<sub>IJ</sub> tensor.

| Atom | Х         | у         | Z          | U(eq)     |
|------|-----------|-----------|------------|-----------|
| Au1  | 7402.2(4) | 3666.6(3) | 7697.4(2)  | 50.9(2)   |
| P1   | 6801(3)   | 5789(2)   | 7897.4(18) | 43.9(5)   |
| Cl1  | 8014(4)   | 1480(3)   | 7542(3)    | 80.4(7)   |
| Cl2  | 3076(7)   | 3435(5)   | 7605(4)    | 129.2(13) |
| C13  | 2709(9)   | 1026(5)   | 9548(6)    | 169(2)    |
| C1   | 7491(10)  | 6982(8)   | 6616(6)    | 47.1(17)  |
| C7   | 4630(10)  | 6675(7)   | 7952(7)    | 48.2(16)  |
| C8   | 3548(11)  | 6857(8)   | 6983(8)    | 57(2)     |
| C6   | 8510(13)  | 6483(10)  | 5734(8)    | 68(2)     |
| C13  | 7761(10)  | 5736(8)   | 9314(7)    | 49.4(17)  |
| C14  | 9590(9)   | 5006(8)   | 9402(6)    | 49.6(17)  |
| C12  | 3996(11)  | 7184(9)   | 8959(8)    | 58(2)     |
| C11  | 2358(13)  | 7871(9)   | 9002(9)    | 68(2)     |
| C2   | 6999(15)  | 8373(9)   | 6513(10)   | 79(3)     |
| C10  | 1309(12)  | 8020(9)   | 8072(10)   | 71(3)     |

| С9  | 1906(13) | 7529(10) | 7086(10) | 73(3)  |
|-----|----------|----------|----------|--------|
| C15 | 4144(15) | 6401(13) | 5854(10) | 87(3)  |
| C5  | 9009(16) | 7379(12) | 4739(9)  | 81(3)  |
| C4  | 8502(15) | 8765(12) | 4640(9)  | 78(3)  |
| C3  | 7502(15) | 9284(10) | 5521(11) | 83(3)  |
| C16 | 3670(30) | 1580(20) | 8105(19) | 160(9) |

**Table S51.** Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **21**. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| Atom | U11      | U <sub>22</sub> | U33      | U <sub>23</sub> | U13      | U12        |
|------|----------|-----------------|----------|-----------------|----------|------------|
| Au1  | 60.6(3)  | 42.3(2)         | 44.1(2)  | -8.70(15)       | 2.26(17) | -13.49(17) |
| P1   | 49.3(12) | 42.1(9)         | 36.5(9)  | -8.2(7)         | -2.9(8)  | -12.4(8)   |
| Cl1  | 108(2)   | 48.8(12)        | 81.9(15) | -24.3(11)       | 15.4(14) | -20.4(12)  |
| Cl2  | 146(3)   | 119(3)          | 114(3)   | -39(2)          | 20(2)    | -30(2)     |
| C13  | 211(6)   | 109(3)          | 203(6)   | -50(3)          | 27(5)    | -75(4)     |
| C1   | 49(5)    | 47(4)           | 39(3)    | -7(3)           | 2(3)     | -13(3)     |
| C7   | 53(5)    | 45(4)           | 43(4)    | -7(3)           | -7(3)    | -16(3)     |
| C8   | 62(5)    | 48(4)           | 55(4)    | -8(3)           | -19(4)   | -15(3)     |
| C6   | 84(7)    | 55(5)           | 59(5)    | -13(4)          | 10(4)    | -22(4)     |
| C13  | 52(5)    | 51(4)           | 40(3)    | -11(3)          | -7(3)    | -11(3)     |
| C14  | 49(5)    | 53(4)           | 42(4)    | -5(3)           | -7(3)    | -17(3)     |
| C12  | 60(5)    | 60(5)           | 49(4)    | -15(3)          | 7(4)     | -14(4)     |
| C11  | 71(6)    | 50(4)           | 64(5)    | -5(4)           | 11(5)    | -9(4)      |
| C2   | 102(8)   | 39(4)           | 79(6)    | 0(4)            | 7(5)     | -17(4)     |
| C10  | 49(5)    | 50(4)           | 92(7)    | -1(4)           | 10(5)    | -10(4)     |
| C9   | 63(6)    | 62(5)           | 83(6)    | -3(5)           | -24(5)   | -17(4)     |
| C15  | 86(8)    | 99(8)           | 68(6)    | -29(5)          | -25(5)   | -11(6)     |
| C5   | 103(9)   | 90(7)           | 55(5)    | -14(5)          | 19(5)    | -49(6)     |
| C4   | 89(8)    | 77(6)           | 57(5)    | 11(4)           | -1(5)    | -42(6)     |
| C3   | 87(8)    | 47(5)           | 101(8)   | 7(5)            | -1(6)    | -30(5)     |
| C16  | 200(20)  | 119(13)         | 124(13)  | -58(11)         | -17(13)  | 20(13)     |

| Aton | n Atom | Length/Å  | Atom | Atom             | Length/Å  |
|------|--------|-----------|------|------------------|-----------|
| Au1  | P1     | 2.233(2)  | C8   | С9               | 1.383(14) |
| Au1  | Cl1    | 2.279(3)  | C8   | C15              | 1.489(14) |
| P1   | C1     | 1.827(8)  | C6   | C5               | 1.384(13) |
| P1   | C7     | 1.814(8)  | C13  | C14              | 1.514(11) |
| P1   | C13    | 1.808(7)  | C14  | C14 <sup>1</sup> | 1.544(14) |
| Cl2  | C16    | 1.79(2)   | C12  | C11              | 1.373(13) |
| Cl3  | C16    | 1.80(2)   | C11  | C10              | 1.360(15) |
| C1   | C6     | 1.393(12) | C2   | C3               | 1.393(14) |
| C1   | C2     | 1.375(12) | C10  | С9               | 1.362(15) |
| C7   | C8     | 1.402(10) | C5   | C4               | 1.370(17) |
| C7   | C12    | 1.399(11) | C4   | C3               | 1.392(17) |

 Table S52. Bond Lengths for 21.

# Table S53. Bond Angles for 21.

| Atom | Atom | Atom | Angle/°   | Atom Atom Atom           | Angle/°   |
|------|------|------|-----------|--------------------------|-----------|
| P1   | Au1  | Cl1  | 178.69(7) | C9 C8 C7                 | 117.5(8)  |
| C1   | P1   | Au1  | 114.0(3)  | C9 C8 C15                | 121.0(8)  |
| C7   | P1   | Au1  | 113.9(3)  | C5 C6 C1                 | 120.5(9)  |
| C7   | P1   | C1   | 104.7(3)  | C14 C13 P1               | 112.7(5)  |
| C13  | P1   | Au1  | 111.4(3)  | C13 C14 C14 <sup>1</sup> | 112.5(8)  |
| C13  | P1   | C1   | 105.2(4)  | C11 C12 C7               | 121.6(9)  |
| C13  | P1   | C7   | 106.9(4)  | C10 C11 C12              | 119.6(9)  |
| C6   | C1   | P1   | 119.8(6)  | C1 C2 C3                 | 120.2(10) |
| C2   | C1   | P1   | 120.4(7)  | C11 C10 C9               | 119.5(9)  |
| C2   | C1   | C6   | 119.8(8)  | C10 C9 C8                | 123.2(9)  |
| C8   | C7   | P1   | 120.4(6)  | C4 C5 C6                 | 119.2(10) |
| C12  | C7   | P1   | 121.2(6)  | C5 C4 C3                 | 121.3(8)  |
| C12  | C7   | C8   | 118.5(8)  | C4 C3 C2                 | 119.0(9)  |
| C7   | C8   | C15  | 121.4(8)  | Cl2 C16 Cl3              | 109.3(9)  |
|      |      |      |           |                          |           |
| Atom | X        | у        | Z        | U(eq) |
|------|----------|----------|----------|-------|
| H6   | 8858.54  | 5539.43  | 5812.78  | 81    |
| H13A | 7543.51  | 6678.61  | 9336.29  | 59    |
| H13B | 7279.97  | 5262.12  | 10040.14 | 59    |
| H14A | 10069.24 | 5466.67  | 8666.66  | 60    |
| H14B | 9808.29  | 4056.62  | 9400.81  | 60    |
| H12  | 4700.62  | 7053.48  | 9615.25  | 70    |
| H11  | 1968.8   | 8233.73  | 9663.29  | 82    |
| H2   | 6328.1   | 8705.95  | 7107.31  | 95    |
| H10  | 192.54   | 8452.2   | 8108.91  | 85    |
| Н9   | 1174.37  | 7652.06  | 6450.85  | 88    |
| H15A | 4318.37  | 7158.87  | 5202.94  | 130   |
| H15B | 3344.55  | 6109.13  | 5558.1   | 130   |
| H15C | 5152.46  | 5639.99  | 6073.22  | 130   |
| Н5   | 9680.56  | 7045.21  | 4145.55  | 97    |
| H4   | 8832.74  | 9369.78  | 3971.15  | 94    |
| Н3   | 7173.8   | 10225.15 | 5448.29  | 100   |
| H16A | 4843.58  | 1182.71  | 8233.99  | 192   |
| H16B | 3333.37  | 1272.07  | 7462.72  | 192   |

**Table S54.** Hydrogen Atom Coordinates ( $Å \times 10^4$ ) and Isotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for **21.**