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1 Theory of transient absorption spectroscopy for po-

laritonic chemistry

The theory for nonlinear molecular spectroscopy in optical cavities is conceptually similar to

the ones for bare molecules but with the composite quantum light-molecule system playing

the roles of bare molecules. The total Hamiltonian consists of the molecular Hamiltonian

HM, the cavity photon Hamiltonian HC, and the cavity-matter interaction HCM, and the

external laser field-matter interaction HLM(t),

H = HM +HC +HCM +HLM(t) (1)

The laser field-matter interaction under the rotating-wave approximation (RWA) is given by

HLM(t) = X · E(−)(t) + X† · E(+)(t) (2)

where E(+)(t) is the positive frequency component of the electric field operator, X (X†) is

the deexcitation (excitation) component in the dipole operator, i.e., −µ = X + X†.

The optical signal can be defined as the time-averaged photon flux in the signal mode

S = −
∫ +∞

−∞

d

dt
〈Ns(t)〉 dt (3)

where the expectation value is taken in the joint polariton-external photon space, and Ns =

a†sas is the photon number operator with as (a†s) the annihilation (creation) operator associ-

ated with the signal mode. Using the Heisenberg equation of motion i d
dt
〈Ns(t)〉 = [Ns(t), H]

and the commutation relations for the photon operators [ak, a
†
k′ ] = δkk′ in Eq. (3) yields
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S = −2 Im

∫ +∞

−∞

〈
X(t) · Ê(−)

s (t)
〉
dt

= −2 Im

∫ +∞

−∞

〈
X(ω) · Ê(−)

s (ω)
〉 dω

2π

(4)

where the Fourier transform is defined as f(ω) =
∫ +∞
−∞ dtf(t)eiωt. The frequency-resolved

signal can be identified as

S(ω) = −2 Im
〈
X(ω) · Ê(−)

s (ω)
〉

(5)

In the semi-classical limit, the electric field operator can be taken as a complex number

S(ω) = −2 Im
〈
X(ω)

〉
E(−)

s (ω) (6)

1.1 Transient absorption spectroscopy

In transient absorption spectroscopy, the laser pulses consist of the pump pulse E1(t) and

the probe pulse E2(t) such that the total electric field is given by

E(t) = E1(t+ T )ei(k1·r−ω1t) + E2(t)e
i(k2·r−ω2t) + c.c. (7)

where En(t) = ênEn(t) denotes the positive frequency component of n-th laser pulse in the

total electric field corresponding to the photon annihilation operator, and ên is the associated

polarization vector. The signal mode in this case is the probe mode and using Eq. (6) yields

STAS(ω) = −2 Im
〈
X(ω)

〉
· E(−)

s (ω) (8)

The polarization can be obtained by directly propagating the composite polaritonic wave-

function according to the time-dependent Schrödinger equation.
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Additional physical insights can be gained for the TAS by using the time-dependent

perturbation theory for the polarization. For a molecule under an impulsive excitation, this

treatment leads toS1

|g〉 〈g| |g〉 〈g|

Figure S1: Time-loop diagrams for transient absorption signals: excited state absorption
(left) and stimulated emission (right). The red arrow represents the light-matter interaction
at time t that gives rise to the optical signal. The rules to translate the time-loop diagrams
into analytical expressions can be found in.S1

S(t) = −2 Im

∫ +∞

−∞
dt

∫ t

−∞
dτE∗2(t− T )E2(τ − T )

(
χSE(t, τ) + χESA(t, τ)

)
χESA(t, τ) = −

〈
Ψ0

∣∣∣XI(t)X
†
I (τ)

∣∣∣Ψ0

〉
χSE(t, τ) =

〈
Ψ0

∣∣∣X†I (τ)XI(t)
∣∣∣Ψ0

〉 , (9)

where X = X · ê2, AI(t) = U †0(t)AU0(t) with U0(t) = e−iH0t the propagator for polaritonic

dynamics in the absence of external laser pulses. Here |Ψ0〉 is the state immediately after

the actinic pulse, which is the Frank-Condon state for impulsive excitation. Note that the

excitation process is considered as a separate step here, hence Eq. (10) does not contain

explicitly the pump pulse. The two contributions, excited state absorption χESA and stimu-

lated emission χES, correspond to two different Liouville space pathways in the perturbation

theory, and can be conveniently represented by the loop diagrams shown in Fig. S1. Us-

ing the Fourier transform of the field E2(t − T ) in Eq. (9) leads to the frequency-resolved
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transient absorption signal

STAS(ω;T ) = −2 ImE∗2(ω)

∫ +∞

−∞
dt eiω(t−T )

∫ t

−∞
dτE2(τ − T )(χESA(t, τ) + χSE(t, τ)) (10)

1.2 Real-time laser-driven dynamics for optical signals

There are two main approaches to simulate the TAS as well as other optical signals. One is

to represent the molecule operators in the perturbative expression for the signal Eq. (9) in

terms of the system eigenstates such that X(t) =
∑

αβXαβe
iωαβt with ωαβ = ωα − ωβ. This

will lead to a sum-over-states formula. An alternative approach, that is employed here, is to

explicitly solve the quantum dynamics with the presence of laser pulses.

As the TAS is determined by the polarization induced by the probe pulse, the real-time

approach amounts to computing the differential polarization with the presence of both pump

and probe pulses P (ω;T ) and with only the pump pulse P0(ω), i.e.,

STAS(ω;T ) = 2 Im
{

(P (ω;T )− P0(ω))E2(ω)
}
. (11)

In general, the signal simulated from laser-driven dynamics consists of contributions associ-

ated with multiple Liouville-space pathways. To isolate the contribution from a particular

pathway, one can use the phase-cycling technique.S2

1.3 Computational details

The time-dependent Schrödinger equation for the joint light-molecule system is integrated

by the Runge-Kutta fourth-order method with time step δt = 0.2 fs. The size of basis set

in all the simulations is set as ncav = 2, nt = nc = 20 such that the full polaritonic space

consists of 3× 2× 20× 20 = 2400 basis functions.

The transition dipole moments are obtained by quantum chemistry calculations with

Pyscf program.S3 In particular, the transition dipoles are computed using CASSCF(10,6)/6-
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311G** (complete active space self-consistent field method with 10 orbitals and 6 electrons

with basis set 6-311G**) at the ground-state equilibrium geometry optimized using density-

functional theory with B3LYP functionalS4 and basis set 6-31G**.

For the TAS computations, we use a probe pulse with a Gaussian envelop,

E2(t) = A0 sin(ω2t+ φ2) exp

(
− t2

2σ2

)
(12)

where A0 = 0.001 a.u. is the electric field amplitude, ω2 = 3 eV the central frequency, φ2 = 0

the carrier envelop phase and σ = 1 fs the duration of the pulse.

2 Hierarchical equation of motion for dissipative po-

laritonic dynamics

Consider a polaritonic system interacting with a harmonic environment consisting of a set

of harmonic oscillators. For the simplicity of presentation, we assume that the interaction

Hamiltonian can be written as

HSB = S ⊗B, (13)

where S (B) represents an system (bath) operator. It is straightforward to generalize the

derivation below to more general interactions HSB =
∑

α Sα ⊗ Bα. If the system operator

S is purely electronic, it can be straightforwardly extended to the full polaritonic space by

S ⊗ Iv ⊗ Icav, where Iv/cav is the identity operator in the vibrational/cavity space.

The dynamical map for the vibronic density matrix in the interaction picture ofH0 = HS+HB

is given byS5

ρSI (t) =M(t)ρS(0) (14)
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where

M(t) = T exp

(
−
∫ t

0

dt1

∫ t1

0

dt2S−
(
ReD(t1 − t2)S− + i ImD(t1 − t2)S+

))
, (15)

where D(τ) =
〈
BI(τ)B

〉
is the environment correlation function with BI(t) = U †B(t)BUB(t),

and S±ρ = [S, ρ]±. To solve Eq. (14), we introduce the so-called auxiliary density matrices

(n = 0, 1, · · · )

ρn(t) = US(t)T


(
−i
∫ t

0

dt1
(
ReD(t− t1)S− + i ImD(t− t1)S+

))n

M(t)

 ρS(0), (16)

where ρ0(t) ≡ ρS(t).

If the environment correlation function is a decayed exponential D(t) = D(0)e−γt as for

the Drude spectral density at the high-temperature limit, the hierarchical equations of mo-

tion (HEOM) can be obtained by differentiating Eq. (16) w.r.t. time which leads to

∂

∂t
ρ0(t) = −iLSρ0(t)− iS−ρ1(t) (17)

and for n ≥ 1

∂

∂t
ρn(t) = (−iLS − nγ)ρn(t)− iS−ρn+1(t)− in

(
ReD(0)S− + i ImD(0)S+

)
ρn−1(t). (18)

The infinity hierarchy of equations can be closed by e.g. setting a cutoff N where ρn>N = 0.
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2.1 Relation between the environment correlation function and

spectral density

From the Heisenberg equations of motion for the annihilation and creation operators, one

can obtain ak,I(t) = e−iωktak and a†k,I(t) = eiωkta†k, respectively. Thus, the time-correlation

function D(t) can be calculated as

D(t) =
∑
k

|gk|2
(〈

ak,I(t)a
†
k

〉
+
〈
a†k,I(t)ak

〉)
=
∑
k

|gk|2
(

(1− n̄k)e−iωkt + n̄ke
iωkt
) (19)

where n̄k = 〈a†kak〉 is the distribution function. At thermal equilibrium, n̄k = 1/(eβωk − 1)

corresponding to the Bose-Einstein distribution and Eq. (19) yields

D(t) =

∫ ∞
0

dω

π
J(ω)[coth(βω/2) cos(ωt)− i sin(ωt)] (20)
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