Super-capacity Information-Carrying Systems Encoded by Spontaneous Raman Scattering

Yuchen Tang, ${ }^{*}$ Caili He, Xingxing Zheng, Xuqi Chen and Tingjuan Gao*College of Chemistry, Central China Normal University, Key Laboratory of Pesticide andChemical Biology of Ministry of Education, Wuhan 430079, China

TABLE OF CONTENTS
Experimental Section
Materials and Spectral Analysis 2
Decoding Analysis of Measured Spectra. 3
Fabrication of Data Storage Chips 3
Preparation of Raman Encoded Beads 6
Signal Stability of Encoded Beads 9
Synthesis and Screening of Encoded Peptide Library 11
Synthesis of Raman Coding Compounds
Synthesis of Band I Compounds 11
Synthesis of Band IV and R Compounds 13
Synthesis of Band III Compounds 16
Synthesis of Band II Compounds. 20
References 23

Experimental Section

Materials. Aminomethyl Polystyrene Resin, 1% DVB (loading $0.5-0.7 \mathrm{mmol} / \mathrm{g}$), Rink Amide MBHA resin 100-200 mesh, 9-fluorenylmethyloxycarbonyl-N-hydroxysuccinimide (Fmoc-OSu), 6-chloro-1-hydroxybenzotriazole (Cl-HOBt), N, N'-diisopropylcarbodiimide (DIC), o-benzotriazole-N, N, N', N'-tetramethyl-uronium-hexafluorophosphate (HBTU) and Fmoc-protected amino acids were purchased from GL Biochem (Shanghai, China). N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), dichloromethane (DCM), N, N-diisopropylethylamine (DIEA), methanol (MeOH), N-methylpyrrolidone (NMP), diethyl ether, trifluoroacetic acid (TFA) and polymethyl methacrylate (PMMA) were purchased from Sinopharm Chemical Reagent. All other chemical reagents including triisopropylsilane (TIS), 2-ethynylaniline (I -2097), 4-ethynylaniline (I -2101), methyl 4-ethynylbenzoate (I -2109), 4-ethynylbenzoic acid (I -2110-acid), 4-((trimethylsilyl)ethynyl)benzoic acid (III-2162-acid), 4-aminobenzonitrile (IV-2215), 3-phenylpropiolic acid (IV-2225-acid), and methyl 3-phenylpropiolate (IV-2228) were purchased from Aladdin Bio-Chem Technology (Shanghai, China). The peptide bead library was synthesized using TentaGel S-NH2 resin as the solid support. TentaGel $\mathrm{S}-\mathrm{NH}_{2}$ resin was purchased from Rapp Polymere Gmbh (Tubingen, Germany). Unless noted otherwise, all materials were used without further purification after the purchase from the commercial providers. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker 400 MHz spectrophotometer. The high resolution mass spectra (HRMS) were obtained on a Shimadzu LCMS-IT-TOF mass spectrometer by ESI. U-87MG cells were purchased from Procee Life Science \& Technology (Wuhan, China). U-87MG cells were maintained in MEM supplemented with $10 \% \mathrm{FBS}$ and 1% penicillin-streptomycin. All cells were maintained in a humidified $5 \% \mathrm{CO}_{2}$ incubator at $37^{\circ} \mathrm{C}$.

Confocal Raman Spectroscopy and Spectral Analysis. Regular Raman spectra for the encoded beads were obtained using a Renishaw inVia reflex spectrometer (Wotton-under-Edge, UK), operating with a near-infrared diode laser emitting at 785 nm and a thermoelectrically cooled CCD, coupled to a Leica DMLM microscope ($50 \times$ air objective, NA 0.75). The spectral resolution is $2 \mathrm{~cm}^{-1}$. The calibration of the wavenumber axis was done by recording the Raman spectrum of a silicon wafer (1 accumulation, 10 s) in the static mode. The laser power was 15 mW . When each bead was measured, 5 or 10 frames were collected to average the signals and background noise, where each spectra frame was measured for 2 s exposure. In the library screening experiment, DXR Raman microscope (Thermo Fisher) was used to image cell binding with a $10 \times$ air objective (long distance) and measure the spectra of the encoded beads with a $50 \times$ air objective (long distance). The power of a 785 nm laser was 24 mW . The spectra of 10 frames were collected and each spectra frame was measured for 5 s exposure. For decoding the 2-D surfaces containing spots of mixed solutions, the same
procedures were taken using the DXR Raman microscope. All the raw spectra were processed using the Thermo Scientific OMNIC ${ }^{\text {TM }}$ software by automatic smoothing and baseline correction when needed. The peak of the Raman reporter molecule ${ }^{R}$ or R was used to normalize each spectrum as an internal standard. The results were presented using the softwares of Origin 8 and Igor Pro 6.37.

Figure S1. The spectral properties of selected alkyne candidates for super-capacity coding systems. Experimentally, the compounds labeled with A, A', B, B', C, C', D, D' and R, were selected for solution mixing and spotting onto a surface. The compounds labeled with ${ }^{(A)},(B),(C)$, (D) and \circledR, were selected to covalently attach to aminolated resin beads. (a) Relative Raman intensities of the selected compounds. The peak positions of the selected compounds are plotted as spectra of normalized Raman intensities in (b) and (c).

Figure S2. (a) Raw spectra of the coding compounds in NMP. The measured concentrations were 2.6 M for $\mathrm{A}, 3.3 \mathrm{M}$ for $\mathrm{A}^{\prime}, ~ 0.026 \mathrm{M}$ for $\mathrm{B}, 0.033 \mathrm{M}$ for $\mathrm{B}^{\prime}, ~ 0.057 \mathrm{M}$ for $\mathrm{C}, 0.075 \mathrm{M}$ for $\mathrm{C}^{\prime}, ~ 0.10 \mathrm{M}$ for D , 0.27 M for D^{\prime}, and 0.25 M for R. (b)-(e) Examples of raw and processed spectra, representing codes of
 Spectra have been offset vertically for clarity.

Decoding Analysis of Measured Spectra. As shown in Table S2, logically the decoding analysis would be done by comparing the experimental results of RRI (the coding peak: the reference peak) in the obtained spectra with the designed/expected RRI, and then determining which exact codes the obtained spectra correspond to. However, with some possibility when the
encoding reactions such as mixing or solid－phase synthesis may affect the eventual measured intensities，the more precise and straightforward option than this strategy，is to fabricate all the standard codes and save their spectra for the practical readout／decoding process．We decoded the spectra using this method．

The encoding synthesis was independently done by one researcher，and the decoding measurements／analysis was blindly done by another researcher who didn＇t communicate with the previous person．Basically the standard codes were first made and measured by Researcher 1. These standards were used for further comparison with the measured spectra of unknown codes by Researcher 2，and then the codes were determined．In the experiment of bead－based screening of cell－binding peptides，Researcher 1 obtained spectra of all the 8 standard codes．After identifying positive and negative beads，by comparing with the standards，Researcher 2 determined the codes of all the positive and negative beads．In the experiment for the Raman－ASCII system to write English words，Researcher 1 fabricated all the 128 ASCII codes and measured them．Then the decoding of the spectra for words＂Central China Normal University＂was done by Researcher 2 who compared these spectra with the standards．In the experiment for the Raman－Unicode system to write Chinese words，since it was not realistic to make all the 65,536 codes manually in the lab， the experimental spectra for＂华中师范大学＂were decoded by comparing with the coding unit graph in Figure 2a．

Fabrication of Data Storage Chip

Preparation of the Code Unit Solutions．Blank NMP was used as the coding units A_{0} and D_{0} ． 2．6 M compound A and 0.10 M compound D in NMP were diluted to seven concentrations by a factor of $1 \times, 1.5 \times, 2.25 \times, 3.38 \times, 5.06 \times, 10.13 \times$ ，and $20.25 \times$ ，to obtain the code units $\mathrm{A}_{1}-\mathrm{A}_{7}$ and $\mathrm{D}_{1} \sim \mathrm{D}_{7}$ ，respectively． 0.27 M compound D^{\prime} in NMP was diluted to 8 concentrations by a factor of $1 \times, 1.5 \times, 2.25 \times, 3.38 \times, 5.06 \times, 6.75 \times, 10.13 \times$ ，and $20.25 \times$ ，respectively to obtain the code units $\mathrm{D}^{\prime}{ }_{0} \sim \mathrm{D}^{\prime}{ }_{7}$ ．

Then equal volumes of 0.25 M compound $\mathrm{R}, \mathrm{A}_{(0 \sim 7)}$ and $\mathrm{D}_{(0 \sim 7)}$ were mixed combinatorically to produce the coding solutions for the first 64 codes in the ASCII system．The same procedure was take for $\mathrm{R}, \mathrm{A}_{(0 \sim 7)}$ and $\mathrm{D}^{\prime}{ }_{(0 \sim 7)}$ to produce the coding solutions for the second 64 codes in the ASCII system．Table S1 lists the relationships among the ASCII characters，the octal codes and the corresponding Raman codes．The 128 coding solutions were mixed with same volume of 10% PMMA solution in acetone and used in the next writing step．

Writing Text Using the ASCII－Raman Coding System．The coding solutions for each character in the authors＇affiliation＂Central China Normal University＂were selected for use （see Table S1 and Figure $\mathbf{S 3}$ or Figure $\mathbf{4}$ in the main text）．A quartz slide（ $2.5 \mathrm{~cm} \times 7.5 \mathrm{~cm}$ ） hydrophobic surface was pretreated by 1% OTS in n－hexane． $0.2 \mu \mathrm{~L}$ of the coding solutions
with 10% PMMA solution in acetone (volume ratio $=1: 1$) were spotted onto the surface. After drying in $37^{\circ} \mathrm{C}$ oven for 2 h , the coded PMMA films were formed on the surface as a data storage chip.

Table S1. The ASCII characters and octal codes, and their corresponding Raman codes.

OCT	CHAR	RAM	OCT	HA	RAM	OC	HA	RAM	OCT	HA	RAM												
000	NUL	$A_{0} D_{0}$	010	BS	$\mathrm{A}_{0} \mathrm{D}_{1}$	20	DLE	$\mathrm{A}_{0} \mathrm{D}_{2}$	30	CAN	$\mathrm{A}_{0} \mathrm{D}_{3}$	40	Space	$\mathrm{A}_{0} \mathrm{D}_{4}$	50	$($	$\mathrm{A}_{0} \mathrm{D}_{5}$	60	0	$\mathrm{A}_{0} \mathrm{D}_{6}$	70	8	$\mathrm{A}_{0} \mathrm{D}_{7}$
001	SOH	$A_{1} D_{0}$	011	TAB	$A_{1} D_{1}$	21	DC1	$\mathrm{A}_{1} \mathrm{D}_{2}$	31	EM	$\mathrm{A}_{1} \mathrm{D}_{3}$	41	!	$\mathrm{A}_{1} \mathrm{D}_{4}$	51)	$\mathrm{A}_{1} \mathrm{D}_{5}$	61	1	$\mathrm{A}_{1} \mathrm{D}_{6}$	71	9	$\mathrm{A}_{1} \mathrm{D}_{7}$
002	STX	$\mathrm{A}_{2} \mathrm{D}_{0}$	012	LF	$\mathrm{A}_{2} \mathrm{D}_{1}$	22	DC2	$\mathrm{A}_{2} \mathrm{D}_{2}$	32	SUB	$\mathrm{A}_{2} \mathrm{D}_{3}$	42	"	$\mathrm{A}_{2} \mathrm{D}_{4}$	52	*	$\mathrm{A}_{2} \mathrm{D}_{5}$	62	2	$\mathrm{A}_{2} \mathrm{D}_{6}$	72	:	$\mathrm{A}_{2} \mathrm{D}_{7}$
003	ETX	$A_{3} D_{0}$	013	VT	$\mathrm{A}_{3} \mathrm{D}_{1}$	23	DC3	$\mathrm{A}_{3} \mathrm{D}_{2}$	33	ESC	$\mathrm{A}_{3} \mathrm{D}_{3}$	43	\#	$\mathrm{A}_{3} \mathrm{D}_{4}$	53	+	$\mathrm{A}_{3} \mathrm{D}_{5}$	63	3	$\mathrm{A}_{3} \mathrm{D}_{6}$	73	;	$A_{3} D_{7}$
004	EOT	$\mathrm{A}_{4} \mathrm{D}_{0}$	014	FF	$\mathrm{A}_{4} \mathrm{D}_{1}$	24	DC4	$\mathrm{A}_{4} \mathrm{D}_{2}$	34	FS	$\mathrm{A}_{4} \mathrm{D}_{3}$	44	\$	$\mathrm{A}_{4} \mathrm{D}_{4}$	54	,	$\mathrm{A}_{4} \mathrm{D}_{5}$	64	4	$\mathrm{A}_{4} \mathrm{D}_{6}$	74	$<$	$\mathrm{A}_{4} \mathrm{D}_{7}$
005	ENQ	$\mathrm{A}_{5} \mathrm{D}_{0}$	015	CR	$\mathrm{A}_{5} \mathrm{D}_{1}$	25	NAK	$\mathrm{A}_{5} \mathrm{D}_{2}$	35	GS	$\mathrm{A}_{5} \mathrm{D}_{3}$	45	\%	$\mathrm{A}_{5} \mathrm{D}_{4}$	55	-	$\mathrm{A}_{5} \mathrm{D}_{5}$	65	5	$\mathrm{A}_{5} \mathrm{D}_{6}$	75	$=$	$\mathrm{A}_{5} \mathrm{D}_{7}$
006	ACK	$\mathrm{A}_{6} \mathrm{D}_{0}$	016	so	$\mathrm{A}_{6} \mathrm{D}_{1}$	26	SYN	$\mathrm{A}_{6} \mathrm{D}_{2}$	36	RS	$\mathrm{A}_{6} \mathrm{D}_{3}$	46	\&	$\mathrm{A}_{6} \mathrm{D}_{4}$	56	.	$\mathrm{A}_{6} \mathrm{D}_{5}$	66	6	$\mathrm{A}_{6} \mathrm{D}_{6}$	76	>	$\mathrm{A}_{6} \mathrm{D}_{7}$
007	BEL	$A_{7} \mathrm{D}_{0}$	017	SI	$\mathrm{A}_{7} \mathrm{D}_{1}$	27	ETB	$\mathrm{A}_{7} \mathrm{D}_{2}$	37	US	$\mathrm{A}_{7} \mathrm{D}_{3}$	47		$\mathrm{A}_{7} \mathrm{D}_{4}$	57	1	$\mathrm{A}_{7} \mathrm{D}_{5}$	67	7	$\mathrm{A}_{7} \mathrm{D}_{6}$	77	?	$\mathrm{A}_{7} \mathrm{D}_{7}$

OCT CHAR RAM OCT CHAR RAM

100	@	A0D'0	110	H	AoD' ${ }_{1}$	120	P	$\mathrm{A}_{0} \mathrm{D}^{\prime}{ }_{2}$	130	X	$\mathrm{A}_{0} \mathrm{D}^{\prime}{ }_{3}$	140	'	$\mathrm{A}_{0} \mathrm{D}^{4}$	150	h	$\mathrm{A}_{0} \mathrm{D}^{5}$	160	p	$\mathrm{A}_{0} \mathrm{D}^{6}$	170	x	$\mathrm{A}_{0} \mathrm{D}^{7}$
101	A	$\mathrm{A}_{1} \mathrm{D}^{\prime}{ }_{0}$	111	1	$\mathrm{A}_{1} \mathrm{D}^{\prime}{ }_{1}$	121	Q	$\mathrm{A}_{1} \mathrm{D}^{\prime}{ }_{2}$	131	Y	$\mathrm{A}_{1} \mathrm{D}^{\prime}{ }_{3}$	141	a	$\mathrm{A}_{1} \mathrm{D}^{\prime} 4$	151	i	$\mathrm{A}_{1} \mathrm{D}^{\prime} 5$	161	q	$A_{1} D^{\prime}{ }_{6}$	171	y	$A_{1} \mathrm{D}^{\prime} 7$
102	B	$\mathrm{A}_{2} \mathrm{D}^{\prime} 0$	112	J	$\mathrm{A}_{2} \mathrm{D}^{\prime}{ }_{1}$	122	R	$\mathrm{A}_{2} \mathrm{D}^{\prime}{ }_{2}$	132	Z	$\mathrm{A}_{2} \mathrm{D}^{\prime}$	142	b	$\mathrm{A}_{2} \mathrm{D}^{\prime} 4$	152	j	$\mathrm{A}_{2} \mathrm{D}^{\prime}$	162	r	$\mathrm{A}_{2} \mathrm{D}^{\prime} 6$	172	z	$\mathrm{A}_{2} \mathrm{D}^{\prime} 7$
103	C	$A_{3} \mathrm{D}^{\prime} 0$	113	K	$\mathrm{A}_{3} \mathrm{D}_{1}{ }_{1}$	123	S	$\mathrm{A}_{3} \mathrm{D}^{\prime}{ }_{2}$	133	[$\mathrm{A}_{3} \mathrm{D}^{\prime}{ }_{3}$	143	c	$\mathrm{A}_{3} \mathrm{D}^{\prime} 4$	153	k	$\mathrm{A}_{3} \mathrm{D}_{5}$	163	s	$\mathrm{A}_{3} \mathrm{D}^{6} 6$	173	\{	$\mathrm{A}_{3} \mathrm{D}^{7}$
104	D	$\mathrm{A}_{4} \mathrm{D}^{\prime} 0$	114	L	$\mathrm{A}_{4} \mathrm{D}{ }_{1}$	124	T	$\mathrm{A}_{4} \mathrm{D}^{\prime}{ }_{2}$	134	1	$\mathrm{A}_{4} \mathrm{D}^{\prime} 3$	144	d	$\mathrm{A}_{4} \mathrm{D}^{4}$	154	1	$\mathrm{A}_{4} \mathrm{D}^{\prime}$	164	t	$\mathrm{A}_{4} \mathrm{D}^{6} 6$	174	I	$\mathrm{A}_{4} \mathrm{D}^{7}$
105	E	$\mathrm{A}_{5} \mathrm{D}^{\prime} 0$	115	M	$\mathrm{A}_{5} \mathrm{D}^{1} 1$	125	U	$\mathrm{A}_{5} \mathrm{D}^{\prime}{ }_{2}$	135]	$\mathrm{A}_{5} \mathrm{D}{ }_{3}$	145	e	$\mathrm{A}_{5} \mathrm{D}{ }_{4}$	155	m	$\mathrm{A}_{5} \mathrm{D}^{5}$	165	u	$\mathrm{A}_{5} \mathrm{D}^{6} 6$	175	\}	$\mathrm{A}_{5} \mathrm{D}^{\prime}{ }_{7}$
106	F	$\mathrm{A}_{6} \mathrm{D}^{\prime} 0$	116	N	$\mathrm{A}_{6} \mathrm{D}_{1}$	126	V	$\mathrm{A}_{6} \mathrm{D}^{\prime}{ }_{2}$	136	\wedge	$\mathrm{A}_{6} \mathrm{D}^{\prime}{ }^{3}$	146	f	$\mathrm{A}_{6} \mathrm{D}^{4} 4$	156	n	$\mathrm{A}_{6} \mathrm{D}^{5}$	166	v	$\mathrm{A}_{6} \mathrm{D}^{6}$	176	\sim	$\mathrm{A}_{6} \mathrm{D}^{\prime} 7$
107	G	$A_{7} \mathrm{D}^{\prime} 0$	117	0	$\mathrm{A}_{7} \mathrm{D}{ }_{1}$	127	W	$\mathrm{A}_{7} \mathrm{D}^{\prime}{ }_{2}$	137	-	$\mathrm{A}_{7} \mathrm{D}^{\prime}{ }_{3}$	147	g	$\mathrm{A}_{7} \mathrm{D}_{4}{ }_{4}$	157	0	$\mathrm{A}_{7} \mathrm{D}{ }_{5}$	167	w	A7 $\mathrm{D}^{6} 6$	177	del	$\mathrm{A}_{7} \mathrm{D}_{7}$

Note: The first 64 codes list 32 non-printing characters of actions and 32 printing characters, including 10 numbers (0~9). The second 64 codes list the remaining 64 printing characters, including the

(b) $\begin{array}{lllllllllllllllll}\mathrm{D}_{0} & \mathrm{D}_{1} & \mathrm{D}_{2} & \mathrm{D}_{3} & \mathrm{D}_{4} & \mathrm{D}_{5} & \mathrm{D}_{6} & \mathrm{D}_{7} & \mathrm{D}_{0}^{\prime} & \mathrm{D}_{1}^{\prime} & \mathrm{D}_{2}^{\prime} & \mathrm{D}_{3}^{\prime} & \mathrm{D}_{4}^{\prime} & \mathrm{D}_{5}^{\prime} & \mathrm{D}_{6}^{\prime} & \mathrm{D}_{7}^{\prime}\end{array}$

upper-case and
lower-case of letters. OCT stands for octal codes, CHAR stands for characters, RAM stands for Raman codes.

Figure S3. The 128 Raman barcodes expressing the ASCII system. (a) Picture of the 128 encoded solutions spotted on a quartz slide.
(b) Individual spectra of the 128 encoded
solutions．The left square represents the 64 codes of $\mathrm{A}_{\mathrm{m}} \mathrm{D}_{\mathrm{j}}(\mathrm{m}=0 \sim 7, \mathrm{j}=0 \sim 7$ ，spectra in red $)$ ．The right square represents the 64 codes of $\mathrm{A}_{\mathrm{m}} \mathrm{D}^{\prime}{ }_{\mathrm{j}}(\mathrm{m}=0 \sim 7, \mathrm{j}=0 \sim 7$ ，spectra in deep red）．

Writing with the Hexadecimal Unicode－Raman Coding System． 0.25 M compound R， 2.6 M compound A，3．3 M compound A＇， 0.026 M compound $\mathrm{B}, 0.033 \mathrm{M}$ compound $\mathrm{B}^{\prime}, 0.057 \mathrm{M}$ compound $\mathrm{C}, 0.075 \mathrm{M}$ compound $\mathrm{C}^{\prime}, 0.10 \mathrm{M}$ compound D and 0.27 M compound D^{\prime} were prepared as the stock solutions．Blank NMP was used as the coding units $\mathrm{A}_{0}, \mathrm{~B}_{0}, \mathrm{C}_{0}$ and D_{0} ． The stock solutions of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D were diluted to seven concentrations by a factor of $1 \times$ ， $1.5 \times, 2.25 \times, 3.38 \times, 5.06 \times, 10.13 \times, 20.25 \times$ ，respectively to obtain the code units $\mathrm{A}_{1} \sim \mathrm{~A}_{7}, \mathrm{~B}_{1} \sim \mathrm{~B}_{7}$ ， $C_{1} \sim C_{7}$ and $D_{1} \sim D_{7}$ ．The stock solutions of $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime} were diluted to 8 concentrations by a factor of $1 \times, 1.5 \times, 2.25 \times, 3.38 \times, 5.06 \times, 6.75 \times, 10.13 \times, 20.25 \times$ to obtain the code units $\mathrm{A}_{8} \sim \mathrm{~A}_{\mathrm{f}}, \mathrm{B}_{8} \sim \mathrm{~B}_{\mathrm{f}}, \mathrm{C}_{8} \sim \mathrm{C}_{\mathrm{f}}$ and $\mathrm{D}_{8} \sim \mathrm{D}_{\mathrm{f}}$.

The coding solutions for each Chinese character in the authors’ affiliation＂华（534e）中（4e2d）师（5e08）范（8303）大（5927）学（5b66）＂were selected and spotted onto the surface（see Figure 5 in the main text）．For example，the code for 华 was made by mixing $5 \mu \mathrm{~L}$ of the stock of R， 5 $\mu \mathrm{L}$ of $\mathrm{A}_{5}, 5 \mu \mathrm{~L}$ of $\mathrm{B}_{3}, 5 \mu \mathrm{~L}$ of C_{4} and $5 \mu \mathrm{~L}$ of D_{e} ．The codes were decoded under a $50 \times$ objective using a confocal Raman microscope．

Preparation of Raman Encoded Beads

Preparation of $\mathbb{X}_{\mathbf{n}}$ Raman Encoded Beads．As shown in Scheme S1，the encoded beads were prepared using the solid－phase peptide synthesis method based on polystyrene resins containing free amino groups．This code－writing method is applicable to the most aminolated polystyrene beads using DVB crosslinking．Applicable bead sizes can vary from $10 \mu \mathrm{~m}$ to $200 \mu \mathrm{~m}$ ．Fmoc protected commercial resins such as Rink Amid resin beads were first deprotected by 20% 4－methylpiperidine in DMF．Unprotected commercial resin beads such as TentaGel $\mathrm{S}-\mathrm{NH}_{2}$ or aminomethyl polystyrene resin were used directly．In the experiments below，we used Rink Amide resin beads as an example．

Scheme S1．Preparation of Encoded Beads．

The codes were designed as a geometric series of intensities increasing with a fixed ratio of $\sim 1.5 \times$ （Table S2）．For example，the intensity of code 1 was about $1 / 3$ of the reference peak，the intensity of code 4 was about the same as the reference peak，and the intensity of code 7 was about 3 times of the reference peak．In this design，there was about 50% intensity increase with increasing codes， which helped to avoid signal cross talking．Experimentally Compound \mathbb{R}（ $6.1 \mathrm{mg}, 0.0285 \mathrm{mmol}$ ）
was dissolved in a mixture including $28.6 \mu \mathrm{~L}$ of $1.0 \mathrm{M} \mathrm{Cl}-\mathrm{HOBt}(0.0286 \mathrm{mmol}), 9.3 \mu \mathrm{~L}$ of DIC (0.0602 mmol) and $506 \mu \mathrm{~L}$ of DMF to obtain a solution of 0.052 M activated R^{R}. Compound (A) ($9.6 \mathrm{mg}, 0.0658 \mathrm{mmol}$) was dissolved in a mixture including $66 \mu \mathrm{~L}$ of 1.0 M Cl-HOBt (0.066 mmol), $21.4 \mu \mathrm{~L}$ of DIC $(0.138 \mathrm{mmol})$ and $403 \mu \mathrm{~L}$ of DMF to obtain a solution of 0.132 M activated (A). The pre-made $(\mathbb{R}$) solution was mixed with the pre-made (A) solution by a predetermined volume ratios of $0,0.30,0.45,0.68,1.01,1.52,2.28$ and 3.42 , respectively. For example, eight different volumes $(0 \mu \mathrm{~L}, 30 \mu \mathrm{~L}, 45 \mu \mathrm{~L}, 68 \mu \mathrm{~L}, 101 \mu \mathrm{~L}, 152$ $\mu \mathrm{L}, 228 \mu \mathrm{~L}, 342 \mu \mathrm{~L}$) of (A) were added to $100 \mu \mathrm{~L}$ of the pre-made $(\mathbb{R}$ solution to obtain eight activated coding solutions $(\mathbb{A})+\mathbb{R})$. As long as the pre-determined ratios were maintained, the absolute volumes may vary corresponding to the reaction scales in need.

Table S2. Design of standard codes.

Designed Codes	0	1	2	3	4	5	6	7
Volume ratio of Compound X: R	0	0.3	0.45	0.68	1.01	1.52	2.28	3.42
Expected Relative Raman Intensity	0	0.3	0.45	0.68	1.01	1.52	2.28	3.42

Rink Amide MBHA resin beads (24 mg , loading $0.657 \mathrm{mmol} / \mathrm{g}, 100-200$ mech) were swollen in DMF for 2 h before Fmoc-deprotection with 20% 4-methylpiperidine in DMF twice for 5 min and 15 min each. The beads were washed with 1 mL of DMF for three times, 1 mL of MeOH for three times, and 1 mL of DMF for three times, respectively, and then divided into 8 equal portions (3 mg each). The beads were added to the pre-mixed $(\mathrm{A})+\mathbb{R}$ coding solutions to start the code-writing process. The coupling reactions were carried out at room temperature for 2 h and monitored by Kaiser Test. After filtration, the beads were washed with 1 mL of DMF for three times, 1 mL of MeOH for three times, and 1 mL of DMF for three times, respectively. A series of 8 codes of $\left(A_{n}(n=0 \sim 7)\right.$ were obtained as shown in Figure 3d.

Following the same steps described above, 0.052 M activated $(R$ and 0.0033 M activated (B) were prepared to obtain the second series of coding solutions. 0.13 M activated \mathbb{R} and 0.010 M activated (C) were prepared to obtain the third series of coding solutions. 0.26 M activated (R) and 0.04 M activated (D) were prepared to obtain the fourth series of activated coding solutions. Then the same procedures were taken for the rest of experiments to obtain B_{n}, C_{n} and $\left(D_{n}\right.$ as previously to obtain ${ }^{(A)}{ }_{n}(\mathrm{n}=0 \sim 7)$.

Preparation of $(A)_{m}\left(D_{n}\right.$ Raman Encoded Beads. 0.052 M activated ${ }^{(R)}, \quad 0.132 \mathrm{M}$ activated (A) and 0.010 M activated (D) were prepared to obtain the stock solutions. In order to make 64 coding solutions to produce $(A){ }_{m}(D){ }_{n}(m=0 \sim 7, n=0 \sim 7)$, different volume combinations of the stock (A) and (D) were added per $100 \mu \mathrm{~L}$ of the stock ${ }^{(R)}$ (see Table S3).
3.0 mg of deprotected Rink Amide resin beads were added to each of the 64 coding solutions.

The coupling reactions were carried out at room temperature for 2 h and the monitored by Kaiser test. After filtration, the beads were washed with 1 mL DMF for three times, 1 mL MeOH for three times, and 1 mL DMF for three times, respectively. A series of 64 codes of (A) ${ }_{m}\left(D_{n}(m=0 \sim 7, n=0 \sim 7)\right.$ were obtained.

Table S3. Example of volume combinations to make coding solutions for $\AA_{m}\left(D_{n}\right.$.

$\text { Code } \mathrm{V}$	0	30	45	67.5	101.3	151.9	227.8	341.7
0	$\left.{ }^{(A)}\right)_{0}\left(D_{0}\right.$	(A) ${ }_{0}\left(\mathrm{D}_{1}\right.$	(A) ${ }_{0}\left(\mathrm{D}_{2}\right.$	(A) ${ }_{0}\left(\mathrm{D}_{3}\right.$	(A) ${ }_{0}\left(\mathrm{D}_{4}\right.$	(A) ${ }_{0}\left(\mathrm{D}_{5}\right.$	(A) ${ }_{0}\left(D_{6}\right.$	(A) ${ }_{0}\left(\mathrm{D}_{7}\right.$
30	(A) ${ }_{1}\left(\mathrm{D}_{0}\right.$	(A) ${ }_{1}\left(D_{1}\right.$	(A) ${ }_{1}\left(\mathrm{D}_{2}\right.$	$\left.{ }^{(A)}\right)_{1}\left(D_{3}\right.$	(A) ${ }_{1}\left(\mathrm{D}_{4}\right.$	(A) ${ }_{1}\left(D_{5}\right.$	(A) ${ }_{1}\left(D_{6}\right.$	${ }^{(A)}{ }_{1}\left(\mathrm{D}_{7}\right.$
45	${ }^{(A)}{ }_{2}\left(\mathrm{D}_{0}\right.$	${ }^{(A)}{ }_{2}\left(\mathrm{D}_{1}\right.$	$\mathrm{A}_{4} \mathrm{D}_{2}{ }_{2}$	${\left(A_{2}\right.}^{(D)_{3}}$	$\mathrm{AA}_{2}\left(\mathrm{D}_{4}\right.$	$(A)_{2}\left(\mathrm{D}_{5}\right.$	(A) $^{\left(D_{2}\right.}{ }_{6}$	$\left(^{(A)}{ }_{2}()_{7}\right.$
67.5	(A) $_{3}\left(\mathrm{D}_{0}\right.$	$\mathrm{A}^{(4)} \mathrm{D}_{1}$	$(A)_{3}\left(\mathrm{D}_{2}\right.$	$(A)_{3}\left(\mathrm{D}_{3}\right.$	$\mathrm{AA}_{3}\left(\mathrm{D}_{4}\right.$	$(4)_{3}\left(\mathrm{D}_{5}\right.$	(A) $_{3}\left(\mathrm{D}_{6}\right.$	$(A)_{3}\left(\mathrm{D}_{7}\right.$
101.3		${ }^{(A)}{ }_{4}\left(\mathrm{D}_{1}\right.$	${ }^{(A)}{ }_{4}\left(\mathrm{D}_{2}\right.$	$\left(^{(A)}{ }_{4}()_{3}\right.$	(A) ${ }_{4}\left(\mathrm{D}_{4}\right.$	$\left(^{(4)}{ }_{4} \mathrm{D}_{5}\right.$	$\left(^{(A)}{ }_{4} \mathrm{D}_{6}\right.$	${ }^{(A)}{ }_{4}\left(\mathrm{D}_{7}\right.$
151.9	(A) ${ }_{5}\left(\mathrm{D}_{0}\right.$	(A) ${ }_{5}\left(\mathrm{D}_{1}\right.$	(A) ${ }_{5}\left(\mathrm{D}_{2}\right.$	(A) ${ }_{5}\left(\mathrm{D}_{3}\right.$	(A) ${ }_{5}\left(\mathrm{D}_{4}\right.$	(A) 5 (D) 5	(A) ${ }_{5}\left(\mathrm{D}_{6}\right.$	(A) ${ }_{5}\left(\mathrm{D}_{7}\right.$
227.8	${ }^{(A)}{ }_{6}\left(\mathrm{D}_{0}\right.$	(A) ${ }_{6}\left(\mathrm{D}_{1}\right.$	${ }^{(A)}{ }_{6}\left(\mathrm{D}_{2}\right.$	${ }^{(A)}{ }_{6}\left(D_{3}\right.$	(A) ${ }_{6}$ (D) 4	(A) ${ }_{6}\left(\mathrm{D}_{5}\right.$	(A) ${ }_{6}\left(\mathrm{D}_{6}\right.$	${ }^{(A)}{ }_{6}\left(\mathrm{D}_{7}\right.$
341.7	(A) ${ }_{7}\left(\mathrm{D}_{0}\right.$	(A) ${ }_{7}\left(\mathrm{D}_{1}\right.$	(A) ${ }_{7}\left(\mathrm{D}_{2}\right.$	$\left.{ }^{(A)}\right)_{7}\left(D_{3}\right.$	(A) ${ }_{7}\left(\mathrm{D}_{4}\right.$	(A) ${ }_{7}\left(\mathrm{D}_{5}\right.$	(A)7 ${ }^{(D)} 6$	$\mathrm{A}_{4}\left(\mathrm{D}_{7}\right.$

Note: the absolute volumes can be adjusted according to the reaction scales in need.
Preparation of $(\mathrm{A})_{3}(\mathrm{C}) \mathbf{n}_{\mathbf{n}}(\mathrm{D}) 4$ Raman Encoded Beads. 0.052 M activated ${ }^{(R)}, 0.132 \mathrm{M}$ activated (A), 0.0060 M activated (C) and 0.010 M activated (D) were prepared as the stock solutions. To $100 \mu \mathrm{~L}$ of the stock $®^{R}$, a mixture was added, including $68 \mu \mathrm{~L}$ of the stock (A), $101 \mu \mathrm{~L}$ of the stock (D), and 8 different volumes of the stock © $(0 \mu \mathrm{~L}, 30 \mu \mathrm{~L}, 45 \mu \mathrm{~L}, 68 \mu \mathrm{~L}$, $101 \mu \mathrm{~L}, 152 \mu \mathrm{~L}, 228 \mu \mathrm{~L}, 342 \mu \mathrm{~L}$). This produced 8 coding solutions. Then the same procedures were taken as described previously to obtain 8 codes of $\left.{ }^{(A)}\right)_{3} C_{n}\left(D_{4}(n=0 \sim 7)\right.$.

Preparation of $(A)_{3}\left(B_{n}\left(C_{5}\left(D_{4}\right.\right.\right.$ Raman Encoded Beads. 0.052 M activated ${ }^{(R), ~} 0.132 \mathrm{M}$ activated (A), 0.0033 M activated (B), 0.0060 M activated (C) and 0.010 M activated (D) were prepared as the stock solutions. To $100 \mu \mathrm{~L}$ of the stock \mathbb{R}, a mixture was added including $68 \mu \mathrm{~L}$ of the stock (A), $152 \mu \mathrm{~L}$ of the stock (C), $101 \mu \mathrm{~L}$ of the stock (D), and 8 different volumes of the stock (B) $(0 \mu \mathrm{~L}, 30 \mu \mathrm{~L}, 45 \mu \mathrm{~L}, 68 \mu \mathrm{~L}, 101 \mu \mathrm{~L}, 152 \mu \mathrm{~L}, 228 \mu \mathrm{~L}, 342$ $\mu \mathrm{L})$. This produced 8 coding solutions. The same procedures were then taken as described previously to obtain 8 codes of $\left.\mathbb{A}_{3}\right]_{\mathrm{B}} \mathrm{B}_{\mathrm{n}} \mathrm{C}_{5}\left(\mathrm{D}_{4}(\mathrm{n}=0 \sim 7)\right.$.

Kaiser Test. A few beads were taken from the reaction container and washed 3 times with DMF, 3 times with absolute ethanol, and then transferred to a small tube. 2 drops of 0.001 M potassium cyanide in pyridine, 80% phenol in n-butanol solution, and 5% ninhydrin in n-butanol solution were added, respectively, and heated in a metal bath at $110^{\circ} \mathrm{C}$ for 5 min .

Decoding of Raman Beads. Before measurement, Raman-coded beads were fixed to the
glass slide by vacuum grease. Then the glass slide was placed under a $50 \times$ objective. The light beam was focused at the center of the beads with light intensity of $15 \mathrm{~mW} / \mu \mathrm{m}^{2}$. For each bead, 10 spectral frames were collected for 2 s exposure time each. Five beads were measured for each batch of $\mathrm{X}_{\mathrm{n}}(\mathrm{X}=\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{n}=0 \sim 7)$. One bead was measured for each batch of $(\mathrm{A})_{\mathrm{m}}$ $\left(D_{n}, A_{3}\left(C_{n}\left(D_{4}\right.\right.\right.$, and $\circledR_{3}\left(B_{n}\left(C_{5}\left(D_{4}(m, n=0 \sim 7)\right.\right.\right.$.

Signal Stability of Encoded Beads. After the eight Raman codes of $\mathbb{A}_{3}{ }_{3} \mathbb{B}_{\mathrm{n}} \mathrm{C}_{5}{ }_{5}\left(\mathrm{D}_{4}(\mathrm{n}=0 \sim 7)\right.$ were prepared, the same batches were measured within one day and after 150 days. The consistency between these two types of spectra verified that, the encoded beads can be stably stored in the ambient environment (room light and temperature) without degradation of signals.

Figure S4. Raman Spectra of $\left(A_{3} B_{n}(C) D_{4}(n=0 \sim 7)\right.$ measured within one day and 150 days after fresh preparation.

Synthesis and Screening of the Encoded Peptide Library

Solid-Phase Synthesis of the Encoded Peptide Library. The synthetic approach of the OBOC peptide library coding is shown in Scheme $\mathbf{S} 2$.

TentaGel S-NH2 beads (300 mg , loading $0.26 \mathrm{mmol} / \mathrm{g}$) were swollen in DMF (2 mL) for 4 h . Fmoc-D-cys(Trt)-OH ($0.137 \mathrm{~g}, 0.234 \mathrm{mmol})$ was dissolved in a solution of Cl-HOBt $(0.040 \mathrm{~g}$, $0.234 \mathrm{mmol})$ and DIC ($145 \mu \mathrm{~L}, 0.468 \mathrm{mmol}$) in DMF, and was then added into the beads. The coupling was carried out at room temperature for 2 h . After filtration, the beads were washed with 2 mL DMF for three times, 2 mL MeOH for three times, and 2 mL DMF for 3 times, respectively. The Fmoc group was removed with 20% 4-methylpiperidine twice (5 min and 15 min each) at room temperature. The beads were then subjected to additional coupling and deprotection cycles with Fmoc-D-Val-OH, Fmoc-D-Asp($\mathrm{O} t \mathrm{Bu})-\mathrm{OH}$, Fmoc-L-Asp($\mathrm{O} t \mathrm{Bu}$)-OH and Fmoc-L-Gly-OH in the same way as described above. After the removal of Fmoc, the
beads were washed with DMF 2 mL DMF for three times, 2 mL MeOH for three times, and 2 mL DMF for 3 times, and 2 mL DCM for 6 times, respectively. ${ }^{1}$

TentaGel S-NH2 Resin

Scheme S2. Raman Encoding of the Focused OBOC Cyclic Peptide Library.
Two-layer beads were then prepared using a bi-phasic solvent approach. ${ }^{2}$ The beads with a free amino group at the N-terminus were dried in vacuum completely and then swollen in water for 24 h . Water was removed by filtration, and a mixture including 0.013 g 9-fluorenylmethyloxycarbonyl-N-hydroxysuccinimide (Fmoc-OSu) (0.039 mmol), $32 \mu \mathrm{~L}$ of DIEA (0.189 mmol) and 8 mL of DCM/diethyl ether (volume ratio $=55 \%: 45 \%$) was added to the beads and the mixture was rigorously shaken for 30 min . The beads were then filtered and washed three times with DCM/diethyl ether and six times with DMF to remove water from the beads. Then the inner layer of the beads was used to write the Raman codes.

The beads were divided into 8 equal portions. Then 8 Raman codes were coupled to the interior of the beads using the compounds (D) and \mathbb{R} as described previously. After Fmoc removal with 20% 4-methylpiperidine at rt, $\operatorname{Fmoc}-\operatorname{Ser}(t-\mathrm{Bu})-\mathrm{OH}$, Fmoc-Met-OH, Fmoc-Gln(Trt)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Arg(Bpf)-OH, Fmoc-Phe-OH, Fmoc-D-Phe-OH and Fmoc-D-Val-OH was coupled to the beads in DMF with DIC/Cl-HOBt activation. After this diversity-generating step, 8 aliquots were pooled together for the next synthetic steps.

Fmoc-Gly-OH and Fmoc-D-Cys(Trt)-OH was then coupled to the beads sequentially. After removal of Fmoc , the beads were washed with 2 mL DMF for three times, 2 mL of MeOH for three times, 2 mL of DCM for three times, and then dried in vacuum for 1 h . Side-chain deprotection was achieved using a mixture of $82.5 \% \mathrm{TFA} / 5 \%$ phenol $/ 5 \%$ thioanisole $/ 5 \%$ water $/ 2.5 \%$ TIS (v / v). The cleavage reaction was conducted at room temperature for 2 h . After neutralization with 10% DIEA/DMF (twice), the beads were washed sequentially with 2 mL of DMF for three times, 2 mL of MeOH for three times, 2 mL of DCM for three times, 2 mL of DMF for three times, 2 mL of DMF/water ($60 \% / 30 \%$) for 3 times, 2 mL of water for three times, and 2 mL of PBS for ten times, respectively. Then the beads were transferred to a 10 mL bottle, into which 10 mL mixture of water, acetic acid and DMSO (volume ratio $=75: 5$: $20, \mathrm{pH}=6$) was added. The beads were shaken for two days until the Ellman test was negative. After filtration, the beads were washed with $\mathrm{H}_{2} \mathrm{O}$ and PBS. Finally, the bead library was stored in PBS at the concentration of $20 \mathrm{mg} / \mathrm{mL}$ for the subsequent screening process.

Cell Binding Assay. U-87MG cells were trypsinized with 0.05% trypsin-EDTA from the bottom of a T75 flask and neutralized with culture medium. Overgrown floating cells were collected, spun down, and resuspended in 4 mL of culture medium. 2 mL of suspension cells in culture medium was placed into a 35 mm Petri dish. The pre-stored beads were added and incubated with U-87MG cells at $37^{\circ} \mathrm{C}$ with gentle shaking (40 rpm) in a humidified incubator for 2 h . After incubation, the sample was placed on a clean quartz container (10 mm diameter, 1 mm deep). The cell binding was observed under a $10 \times$ objective. The Raman spectra of beads were collected under a $50 \times$ long distance objective.

Synthesis of Raman Coding Compounds

Band I Compounds (Substituted Phenylacetylene).

I -2100-acid ${ }^{3}$

A solution of N -ethyl-N-hydroxyethylaniline ($330 \mathrm{mg}, 2.0 \mathrm{mmol}$) and pyridine ($325 \mu \mathrm{~L}, 4.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled in an ice bath until the internal temperature reached $5^{\circ} \mathrm{C}$, $(325$ $\mu \mathrm{L}, 4.0 \mathrm{mmol}$) of I_{2} was added portionwise over 30 min and stirred at room temperature for 1 h. The reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ three times, then concentrated at reduced pressure. The residue was subjected to chromatography to give compound $\mathbf{S 1}$ ($410 \mathrm{mg}, 70 \%$) as a pale green liquid.

To a solution of $\mathbf{S} 1(291 \mathrm{mg}, 1.0 \mathrm{mmol})$ and trimethylsilylacetylene $(170 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in THF (10 mL) was added diisopropylamine ($495 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$). The mixture was stirred while N_{2} was slowly bubbled through the mixture for 0.5 h . Triphenylphosphine ($34 \mathrm{mg}, 0.10$ mmol) and $\mathrm{CuI}(12 \mathrm{mg}, 0.063 \mathrm{mmol})$ were added to the mixture and allowed to dissolve completely for $10 \mathrm{~min} . \mathrm{Pb}(\mathrm{OAc})_{2}(1.0 \mathrm{mg}, 0.0045 \mathrm{mmol})$ was then added, and the mixture was gently refluxed for 1 h . The mixture was cooled to rt and subjected to chromatography to give $\mathbf{S 2}$ ($160 \mathrm{mg}, 61 \%$) as a light yellow solid.

To a solution of $\mathbf{S} \mathbf{2}(110 \mathrm{mg}, 0.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}(1: 1,10 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($290 \mathrm{mg}, 2.1 \mathrm{mmol}$). The reaction mixture was filtering at reduced pressure after stirring at rt for 2 h . Then $\mathrm{H}_{2} \mathrm{O}$ was added to the filtrate and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solution was used directly for next step.

To the above solution was added succinic anhydride ($50 \mathrm{mg}, 0.50 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(175 \mu \mathrm{~L}, 1.26$ mmol) and DMAP ($26 \mathrm{mg}, 0.21 \mathrm{mmol}$). After the mixture was stirred at $30{ }^{\circ} \mathrm{C}$ overnight, $\mathrm{H}_{2} \mathrm{O}$ was added to the reaction and the mixture was extracted with EtOAc. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated at reduced pressure. The residue was subjected to chromatography to give compound I -2100-acid ($80 \mathrm{mg}, 66 \%$) as a pale yellow solid. ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 11.69(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.59$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{dd}, J=13.8,6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 5 \mathrm{H}), 1.08(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 173.84$, $172.65,147.36,137.79,137.79,130.90,114.83,114.83,110.87,76.84,61.82,48.55,44.95$, 29.14, 29.03, 12.12. ESI-MS: calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$290.13868, found 290.16635.

I-2106 / I -2106-acid

To a solution of 4-ethynylaniline ($585 \mathrm{mg}, 5.0 \mathrm{mmol}$) and succinic anhydride ($600 \mathrm{mg}, 6.0$ mmol) in acetone (40 mL) was added 4-dimethylaminopyridine ($610 \mathrm{mg}, 5.0 \mathrm{mmol}$). The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 2 days. $\mathrm{H}_{2} \mathrm{O}$ was added to the mixture and the mixture was extracted with EtOAc. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound I -2160-acid ($565 \mathrm{mg}, 52 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O) ~ \delta 12.18(\mathrm{~s}, 1 \mathrm{H}), 10.18(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~d}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ $174.26,170.85,140.28,132.82,132.82,119.13,119.13,116.23,84.06,80.18,31.54,29.12$.

Band IV and Band R Compounds (Di-Alkynes)

IV-2209

To a solution of methyl 4-ethynylbenzoate ($800 \mathrm{mg}, 5.0 \mathrm{mmol}$) and 4-ethynylaniline (877 mg , 7.5 mmol) in CHCl_{3}-1,4-dioxane ($3: 1,16 \mathrm{~mL}$) were added Cu powder ($32 \mathrm{mg}, 0.50 \mathrm{mmol}$) and TMEDA ($226 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$). After the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ overnight, enough aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted three times with EtOAc. The organic phase washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound IV-2209 ($725 \mathrm{mg}, 53 \%$) as a light yellow solid. ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 3.89$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 165.97,151.43,134.54,134.54,132.80,132.80$, $130.10,129.86,129.86,126.49,114.02,114.02,105.39,86.78,80.27,78.04,71.52$, 52.85.ESI-MS: calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$276.10191, found 276.10193.

The following compounds were prepared using the same coupling procedures as IV -2209.

IV-2223

White soild. ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 7.69-7.60(\mathrm{~d}, 4 \mathrm{H}), 7.55-7.50(\mathrm{t}, 2 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}$ $=11.3,4.4 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 132.87$, 132.87, 132.87, 132.87, 130.49, $130.49,129.39,129.39,129.39,129.39,120.85,120.85,82.29,82.29,73.94,73.94 . E S I-M S:$ calcd for $\mathrm{C}_{16} \mathrm{H}_{11}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$203.08553, found 203.08832.

Light yellow soild. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.67(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 151.19,141.26,139.42,134.39$, $134.39,133.17,133.17,129.54,129.54,128.53,127.46,127.46,127.18,127.18,120.62$,
$114.05,114.05,105.87,85.38,81.12,75.89,71.80$.

White soild. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57-7.50 (m, 4 H), 7.39-7.30 (m, 3 H) $3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.2,132.5,132.3,130.2$, $129.5,129.4,128.4,126.4,121.3,82.9,80.4,76.6,73.5,52.3$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{2}$: 260.0837 , found: 260.0840 .

IV-2215-acid

To a solution of $\mathbf{S 3}(117 \mathrm{mg}, 0.40 \mathrm{mmol})$ and succinic anhydride ($48 \mathrm{mg}, 0.48 \mathrm{mmol}$) in acetone (20 mL) was added 4-dimethylaminopyridine ($49 \mathrm{mg}, 0.40 \mathrm{mmol}$). The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 3 days. $\mathrm{H}_{2} \mathrm{O}$ was added to the mixture and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound IV-2215-acid ($50 \mathrm{mg}, 32 \%$) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) δ $12.29(\mathrm{~s}, 1 \mathrm{H}), 10.30(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.66(\mathrm{~m}, 8 \mathrm{H}), 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.55(\mathrm{~d}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 174.27,171.06,141.73,141.26,139.35,133.78,133.78,133.42,133.42$, $129.55,129.55,128.63,127.53,127.53,127.23,127.23,120.01,119.24,119.24,114.62$, 83.08, 81.92, 75.00, 73.34, 31.63, 29.13. ESI-MS: calcd for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]{ }^{-}$392.12922, found 392.12866.

IV-2220-acid

To a solution of $\mathbf{S 4}(728 \mathrm{mg}, 2.8 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{THF}(1: 1,20 \mathrm{~mL})$ was added aqueous $\mathrm{NaOH}(560 \mathrm{mg}, 14 \mathrm{mmol}$), the reaction mixture was stirred 3 h at rt . Then, the mixture was concentrated at reduced pressure, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ was added, followed by addition of aqueous $\mathrm{HCl}(1 \mathrm{M})$ to adjust pH to 5 . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound IV-2220-acid as a white solid ($650 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 7.98(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73
$(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d6) $\delta 166.96,133.07$, 132.98, 132.03, 130.74, 130.04, 129.44, 125.17, 120.59, 83.56, 81.34, 76.28, 73.65. HRMS (ESI) m/z for $[\mathrm{M}-\mathrm{H}]^{-}, \mathrm{C}_{17} \mathrm{H}_{9} \mathrm{O}_{2}^{-}$: calcd, 245.0608 ; found, $245.0603 .{ }^{5}$

IV-2210-acid

A solution of $\mathbf{S 5}(43 \mathrm{mg}, 0.15 \mathrm{mmol})$ and succinic anhydride $(45 \mathrm{mg}, 0.45 \mathrm{mmol})$ was added N, N-diisopropylethylamine ($74 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$) and 4-dimethylaminopyridine $(9.2 \mathrm{mg}, 0.075$ mmol). The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ overnight. $\mathrm{H}_{2} \mathrm{O}$ was added to the mixture and the mixture was extracted with EtOAc . The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound IV-2210-acid (43 mg, 87\%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.30(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, 2 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 173.87,172.45,138.93,133.14,133.14,128.40,128.40,119.83,91.88,88.23$, $77.23,74.36,65.27,29.14,29.09,-0.16,-0.16,-0.16$. ESI-MS: calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{Si}^{-}[\mathrm{M}-\mathrm{H}]^{-}$ 327.10581, found 327.10775.

R-2250

Following the same procedure of IV-2210, R-2250 was obtained as a colorless liquid. ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, ~ D M S O) \delta 7.56(\mathrm{~d}, 2 \mathrm{H}), 7.52-7.39(\mathrm{~m}, 3 \mathrm{H}), 5.02(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.58(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) δ 132.80, 132.80, 130.03, 129.29, $129.29,121.25,84.62,75.10,74.75,65.74,59.65,23.82$.ESI-MS: calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 171.08044, found 171.09798.

R-2250-acid

Following the same procedure of compound IV-2220-Acid, this compound was obtained as a light yellow solid. ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 12.99(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 167.01,132.99,132.99,131.66,129.97,129.97,125.60,86.24$, 77.17, 74.21, 65.50, 59.55, 23.86.ESI-MS: calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}$213.05572, found 213.05529.

Band III Compounds (TMS Substituted Phenylacetylenes and Tri-Alkynes)

III-2158-acid

To a solution of 4-(2-(trimethylsilyl)ethynyl)aniline ($567 \mathrm{mg}, 3.0 \mathrm{mmol}$) and succinic anhydride ($360 \mathrm{mg}, 3.6 \mathrm{mmol}$) in acetone (20 mL) was added 4-dimethylaminopyridine (366 $\mathrm{mg}, 3.0 \mathrm{mmol})$. The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ overnight. $\mathrm{H}_{2} \mathrm{O}$ was added to the mixture and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound III-2158-acid ($580 \mathrm{mg}, 67 \%$) as a light yellow solid.

III-2160

A solution of 4-(trimethylsilyl)ethynylbenzaldehyde ($1.01 \mathrm{~g}, 5.0 \mathrm{mmol}$) in MeOH was cooled in an ice bath, then sodium borohydride ($380 \mathrm{mg}, 10 \mathrm{mmol}$) in cooled MeOH was added portion wise and stirred at room temperature for $0.5 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added to the reaction, followed by aqueous $\mathrm{HCl}(1 \mathrm{M})$ addition to make pH 5 . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was rotary evaporated, leaving a yellow oil that crystallized into a low-melting solid 4-(trimethylsilylethynyl)benzyl alcohol (III-2160) ($989 \mathrm{mg}, 97 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $2 \mathrm{H}), 1.89(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.17,132.12$, $126.61,122.28,104.87,94.19,64.87,-0.03$. ESI-MS: calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OSiNa}^{+},[\mathrm{M}+\mathrm{Na}]^{+}$ 227.0868, found 227.0885.

III-2170-acid

To a solution of 4-(trimethylsilylethynyl)benzyl (III-2160) ($408 \mathrm{mg}, 2.0 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(10$ mL) was added N -iodosuccinimide ($540 \mathrm{mg}, 2.4 \mathrm{mmol}$), AgF ($254 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}$ $(72 \mu \mathrm{~L}, 4.0 \mathrm{mmol})$. The reaction was in the dark place and stirred at rt overnight. Then, the mixture was filtered under reduced pressure, and the filtrate was poured into $\mathrm{H}_{2} \mathrm{O}$. The product mixture was extracted with ethyl acetate. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, The solvent was concentrated under reduced pressure and the residue was purified by column chromatography to afford the (4-ethynylphenyl)methanol iodide product $\mathbf{S 6}(480 \mathrm{mg}, 93 \%)$ as a white solid.

A solution of $\mathbf{S 6}(387 \mathrm{mg}, 1.5 \mathrm{mmol})$ and succinic anhydride ($450 \mathrm{mg}, 4.5 \mathrm{mmol}$) was added N, N-diisopropylethylamine ($745 \mu \mathrm{~L}, 4.5 \mathrm{mmol}$) and 4-dimethylaminopyridine ($92 \mathrm{mg}, 0.75$ mmol). The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ overnight. $\mathrm{H}_{2} \mathrm{O}$ was added to the mixture and the mixture was extracted with EtOAc. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound III-2170-acid ($340 \mathrm{mg}, 63 \%$) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 12.22(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{~d}, 2 \mathrm{H}), 2.51(\mathrm{~d}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 173.84$, 172.46, 137.44, 132.44, 132.44, 128.26, 128.26, 122.93, 92.77, 65.39, 29.15, 29.10, 18.84. ESI-MS: calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{IO}_{4}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 356.96293$, found 356.96222 .

III-2164

To a solution of 4-ethynylaniline ($702.9 \mathrm{mg}, 6.0 \mathrm{mmol}$) in THF (5 mL) was added
di-tert-butyl dicarbonate $(3.92 \mathrm{~g}, 18 \mathrm{mmol})$. After the mixture was stirred at $70^{\circ} \mathrm{C}$ overnight, $\mathrm{H}_{2} \mathrm{O}$ was added to the reaction and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated at reduced pressure. The residue was subjected to chromatography to give N -Boc-4-ethynylaniline compound $(1.24 \mathrm{~g}, 95 \%)$ as a white solid.

A solution of N-Boc-4-ethynylaniline ($1.24 \mathrm{~g}, 5.7 \mathrm{mmol}$) and trimethylsilylacetylene (1.2 mL , 8.55 mmol) in CHCl_{3}-1,4-dioxane ($3: 1,8 \mathrm{~mL}$) were added $\mathrm{Cu}(39 \mathrm{mg}, 0.60 \mathrm{mmol}$) and TMEDA ($272 \mu \mathrm{~L}, 1.8 \mathrm{mmol}$). After the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ overnight, aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound $\mathbf{S 7}(1.30 \mathrm{~g}$, 73%) as a light yellow solid.

To a solution of $\mathbf{S 7}(313 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}(1: 1,10 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(690 \mathrm{mg}, 5.0 \mathrm{mmol})$. The reaction mixture was filtering at reduced pressure after stirring at rt for 2 h . Then $\mathrm{H}_{2} \mathrm{O}$ was added to the filtrate and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was concentrated under reduced pressure. Then acetone (10 mL), NBS ($196 \mathrm{mmol}, 1.1 \mathrm{mmol}$) and AgNO_{3} were added. The reaction was stirred at dark place for 2 h . Then, the mixture was filtered under reduced pressure, and the filtrate was poured into $\mathrm{H}_{2} \mathrm{O}$. The product mixture was extracted with EtOAc. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent was concentrated under reduced pressure. Then THF (10 mL), methyl 4-Ethynylbenzoate ($117 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{CuI}(19 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(70 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(166 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ were added. After the mixture was stirred at rt for 1 h , aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted with EtOAc. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated at reduced pressure. The residue was subjected to chromatography. 20% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The mixture was stirred at rt for 1 h . Then, the mixture was concentrated at reduced pressure, EtOAc was added, followed by addition of $\mathrm{Et}_{3} \mathrm{~N}$ to adjust pH to 7. The mixture was extracted with EtOAc , the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound III-2164 (144 mg, 56\%) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.29$ (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 5.95(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 151.48$, 151.48 , 134.97, 134.97, 134.97, 134.97, 114.05, 114.05, 114.05, 114.05, 104.92, 104.92, 82.28, 82.28, 72.66, 72.66, 67.27, 67.27. ESI-MS: calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$257.10732, found 257.10774 .

III-2168

Following the same procedure of compound III-2164, compound III-2168 was obtained as a light yellow solid. ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 7.65(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.50(\mathrm{~m}$, $1 \mathrm{H}), 7.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{br}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 151.76,135.25,135.25,133.29,133.29,130.77,129.43$, $129.43,120.33,114.10,114.10,104.27,82.95,79.45,74.62,72.31,68.04,66.16 . E S I-M S:$ calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$242.09643, found 242.09714.

III-2180

S8

Following the same procedure of compound IV-2210, compound $\mathbf{S 8}$ was obtained as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.89$ (s, 3H), 0.25 (s, 9H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 165.86,133.42,133.42,130.87,129.86$, $129.86,125.18,93.50,87.77,76.67,76.24,52.90,-0.24,-0.24,-0.24$.

To a solution of $\mathbf{S 8}(896 \mathrm{mg}, 3.5 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ were added N -bromosuccinimide ($748 \mathrm{mg}, 4.2 \mathrm{mmol}$) and $\mathrm{AgF}(445 \mathrm{mg}, 3.5 \mathrm{mmol}$). The reaction was stirred at rt overnight in dark place. Then, the mixture was filtered under reduced pressure, and the filtrate was poured into $\mathrm{H}_{2} \mathrm{O}$. The product mixture was extracted with ethyl acetate. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure and the residue was purified by column chromatography to afford the product $\mathbf{S 9}$ (850 mg , 92%) as a light yellow solid.

To a solution of $\mathbf{S 9}(263 \mathrm{mg}, 1.0 \mathrm{mmol})$ and phenylacetylene ($165 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) in THF (10 $\mathrm{mL})$ were added $\mathrm{CuI}(9.5 \mathrm{mg}, 0.050 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(35 \mathrm{mg}, 0.050 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}$ $(277 \mu \mathrm{~L}, 2.0 \mathrm{mmol})$. After the mixture was stirred at rt for 1 h , aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted with EtOAc. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine,
dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound III-2180 (190 mg, 67\%) as a white solid. ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 8.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{DMSO}) \delta 165.83,133.86,133.86,133.59,133.59,131.34,131.26,129.93,129.93$, $129.51,129.51,124.57,119.61,80.53,78.51,76.47,73.84,67.88,66.18,52.97$. ESI-MS: calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$285.09101, found 285.08861.

III-2180-acid

III-2180
III-2180-acid

To a solution of III-2180 (142 mg, 0.50 mmol) in MeOH-THF ($1: 1,10 \mathrm{~mL}$) was added aqueous $\mathrm{NaOH}(100 \mathrm{mg}, 2.5 \mathrm{mmol})$, The reaction mixture was stirred 4 h at rt . Then, the mixture was concentrated at reduced pressure, EtOAc and $\mathrm{H}_{2} \mathrm{O}$ was added, followed by addition of aqueous $\mathrm{HCl}(1 \mathrm{M})$ to adjust pH to 5 . The mixture was extracted with EtOAc and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound III-2180-acid (125 mg, 93\%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 13.31$ (s, 1H), $8.00(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 166.90,133.70,133.70,133.57$, $133.57,132.69,131.30,130.05,130.05,129.50,129.50,124.06,119.65,80.43,78.74,76.17$, 73.87, 67.72, 66.26. ESI-MS: calcd for $\mathrm{C}_{19} \mathrm{H}_{9} \mathrm{O}_{2}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 269.06080$, found 269.05990 .

Band II Compounds (Tetra-Alkynes)

II -2135-acid

To a solution of III-2160 ($816 \mathrm{mg}, 4.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(1: 1,15 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20 \mathrm{mmol})$. The mixture was stirred at room temperature for 2 h and filtered at reduced pressure. Then $\mathrm{H}_{2} \mathrm{O}$ was added to the filtrate and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was rotary evaporated to give compound $\mathbf{S 1 0}$ ($510 \mathrm{mg}, 97 \%$) as a white solid.

To a solution of $\mathbf{S 1 0}$ ($396 \mathrm{mg}, 3.0 \mathrm{mmol}$) and trimethylsilylacetylene ($635 \mu \mathrm{~L}, 4.5 \mathrm{mmol}$) in CHCl_{3}-1,4-dioxane ($3: 1,8 \mathrm{~mL}$) were added Cu powder ($19 \mathrm{mg}, 0.30 \mathrm{mmol}$) and TMEDA
$(136 \mu \mathrm{~L}, 0.9 \mathrm{mmol})$. After the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ overnight, enough aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted three times with EtOAc. The organic phase washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound $\mathbf{S 5}(510 \mathrm{mg}, 75 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl} 3$): $\delta 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.67$ $(\mathrm{s}, 2 \mathrm{H}), 1.95(\mathrm{br}, 1 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.3,132.9,126.9,120.6$, $90.8,87.9,76.7,74.3,64.8,-0.3$; HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Si}^{+}[\mathrm{M}-\mathrm{OH}]^{+}$211.0943, found 211.1019.

To a solution of $\mathbf{S 5}(568 \mathrm{mg}, 2.5 \mathrm{mmol})$ and $\mathbf{S 8}(512 \mathrm{mg}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(1: 1$, 20 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20 \mathrm{mmol})$. The mixture was stirred at room temperature for 2 h and filtered at reduced pressure. Then $\mathrm{H}_{2} \mathrm{O}$ was added to the filtrate and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated at reduced pressure. The residue was used directly for next step.

A solution of above mixture in CHCl_{3}-1,4-dioxane ($3: 1,24 \mathrm{~mL}$) were added Cu powder (13 $\mathrm{mg}, 0.20 \mathrm{mmol})$ and TMEDA ($91 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$). After the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 2 days, concentrated at reduced pressure, and then aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted three times with EtOAc. The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the residue was subjected to chromatography to give compound $\mathbf{S 1 1}(245 \mathrm{mg}, 36 \%)$ as a light yellow solid.

To a solution of $\mathbf{S 1 1}(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ and succinic anhydride ($45 \mathrm{mg}, 0.45 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-DMF (10 : 1, total 11 mL) were added $\mathrm{Et}_{3} \mathrm{~N}(83 \mu \mathrm{~L}, 0.60 \mathrm{mmol})$ and 4-dimethylaminopyridine ($9 \mathrm{mg}, 0.074 \mathrm{mmol}$). The mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 6 h and concentrated at reduced pressure. $\mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted with EtOAc. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound II -2135-acid ($30 \mathrm{mg}, 46 \%$) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.27(\mathrm{~s}, 1 \mathrm{H})$, $8.00(\mathrm{t}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.18$
$(\mathrm{s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 173.87,172.45,165.77,140.04,134.16,134.16,133.97,133.97,131.53,129.94$, 129.94, 128.42, 128.42, 124.03, 118.51, 79.37, 77.90, 76.25, 73.98, 68.19, 66.92, 65.20, 64.78, 63.74, 52.99, 29.12, 29.10. ESI-MS: calcd for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{O}_{6}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-} 437.10306$, found 437.10037.

II -2138

Compound $\mathbf{S 1 2}$ was obtained as a white solid by following the same procedure as $\mathbf{S 5} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.8,129.4,128.5,121.6,90.8,88.0,76.9,74.3,-0.2$; HRMS: calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Si}^{+}[\mathrm{M}]^{+}$198.0865, found 198.0873.

To a solution of $\mathbf{S 1 2}$ ($693 \mathrm{mg}, 3.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(1: 1,20 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(2.415 \mathrm{~g}, 17.5 \mathrm{mmol})$. The reaction mixture was stirred at rt for 2 h and filtered at reduced pressure. Then $\mathrm{H}_{2} \mathrm{O}$ was added to the filtrate and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The obtained filtrate solution was used directly for next step.

To the above solution were added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(35 \mathrm{mg}, 0.175 \mathrm{mmol})$ and piperidine (520 $\mu \mathrm{L}, 5.25 \mathrm{mmol}$). After the mixture was stirred at rt overnight, aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound II -2138 (150 mg, 34\%) as a yellow solid. ${ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 7.71(\mathrm{~d}, 4 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 133.83,133.83,133.83,133.83,131.55,131.55$, $129.54,129.54,129.54,129.54,119.25,119.25,79.21,79.21,73.88,73.88,67.02,67.02$, 64.15, 64.15. ESI-MS: calcd for $\mathrm{C}_{20} \mathrm{H}_{10}[M]^{+}$250.0777, found 250.0784.

II -2134

To mixture of $\mathbf{S} 12(148 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathbf{S} 7(157 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(1: 1$, 10 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10 \mathrm{mmol})$. The reaction mixture was stirred at rt for 2 h
and filtered at reduced pressure. Then $\mathrm{H}_{2} \mathrm{O}$ was added to the filtrate and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solution was used directly for next step.

A solution of $\mathrm{CuCl}(49 \mathrm{mg}, 0.50 \mathrm{mmol})$ and TMEDA ($150 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) in acetone (3 mL) was bubbled with air for 10 min at rt , then the above solution was added and continued to stirred with air at rt for 4 h , aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated at reduced pressure. The residue was subjected to chromatography to give compound II -2134 (100 mg, 55\%) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, 2 \mathrm{H}), 7.65-7.53(\mathrm{~m}, 5 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.51$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 152.84,142.68,134.93,134.93,133.78,133.78$, $131.46,129.52,129.52,119.38,118.37,118.37,111.68,80.32,80.06,79.13,73.99,73.24$, $67.26,66.90,64.67,64.13,28.46,28.46,28.46$. ESI-MS: calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}]^{+}$ 365.14103 , found 365.15813 .

References

(1) Wang, Y.; Xiao, W.; Zhang, Y.; Meza, L.; Tseng, H.; Takada, Y.; Lam, K. S. Mol. Cancer Ther. 2016, 15, 232-240.
(2) Liu, R.; Marik, J.; Lam, K. S. J. Am. Chem. Soc. 2002, 124, 7678-7680.
(3) Cross, T. A.; Davis, M. C. Synth. Commun. 2008, 38, 499-516.
(4) Hu, F.; Zeng, C.; Long, R.; Miao, Y.; Wei, L.; Xu, Q.; Min, W. Nat. Methods 2018, 15, 194-200.
(5) Tang, Y.; Thillier, Y.; Liu, R.; Li, X.; Lam, K. S.; Gao, T. Anal. Chem. 2017, 89, 7000-7008.

