# **Supporting Information**

## for

# Tipping the Balance: Theoretical Interrogation of Extended Divergent Heterolytic Fragmentations

Croix J. Laconsay, Ka Yi Tsui, and Dean J. Tantillo\*

Department of Chemistry, University of California–Davis, CA 95616

**Corresponding Author** Dean J. Tantillo: djtantillo@ucdavis.edu

# Contents

| <b>S1</b>  | <b>Benchmark Studies and References</b>                | <b>S3-S7</b> |
|------------|--------------------------------------------------------|--------------|
| <b>S2</b>  | Details for Structure 1                                | <b>S8-S9</b> |
| <b>S</b> 3 | Natural Bond Orbital Calculations                      | S10-S14      |
| <b>S4</b>  | External Electric Field Calculations                   | S15-S19      |
| <b>S</b> 5 | Molecular Dynamics Simulations                         | S20          |
| <b>S6</b>  | Details for Figure 7                                   | S21          |
| <b>S7</b>  | <b>Energies and Frequencies of Computed Structures</b> | S22-S34      |
| <b>S8</b>  | Intrinsic Reaction Coordinate (IRC) Plots              | S35-S54      |

#### S1. Benchmark Studies and References

Full gas-phase optimizations were carried out using Becke's hybrid, three-parameter functional<sup>1</sup> and Lee, Yang, and Parr's non-local correlation functional<sup>2</sup> (B3LYP) with Grimme's D3 correction and Becke and Johnson damping (BJ-damping or just "BJ").<sup>3</sup> See **Table S1** for a comparison of different DFT functionals. Adding D3 dispersion corrections (entry's **1** vs. **2**) provides a negligible change in the free energy barrier. Additionally, changing the basis set from 6-31G(d) to 6-31+G(d,p) does not alter the reaction barrier. An increase of ~2 kcal mol<sup>-1</sup> (**2** vs. **4**) is observed with the inclusion of Becke and Johnson damping. Therefore, B3LYP-D3(BJ) and M06-2X are both justified at the 6-31G(d) basis set level; the two functionals together cover the range of different free energy barriers, which is reasonable since this study is concerned with qualitative (not quantitative) trends.

A wavefunction stability test on system 1 suggests that both the starting substrate and transition state structure towards fragmentation is stable and thus no optimizations need the "guess=(mix, always)" keyword.

#### **DFT Functional Test.**

**Table S1.** DFT functional test for entry 1 in Table 1 in the main manuscript (i.e. electrofuge substituent =  $N(CH_3)_2$  and nucleofuge = O(CO)Cl. Fragmentation activation free energy barriers are reported in kcal mol<sup>-1</sup>. The basis set is 6-31G(d) unless specified otherwise.

| Entry | <b>Density Functional</b> | ΔG <sup>‡</sup> |
|-------|---------------------------|-----------------|
| 1     | B3LYP                     | 33.7            |
| 2     | B3LYP-D3                  | 33.5            |
| 3     | B3LYP-D3/6-31+G(d,p)      | 34.8            |
| 4     | B3LYP-D3(BJ)              | 35.4            |
| 5     | M06-2X                    | 46.9            |
| 6     | ωB97X-D                   | 45.3            |
| 7     | B2PLYP-D3(BJ)             | 35.7            |
| 8     | BB1K                      | 48.1            |

<sup>&</sup>lt;sup>1</sup> A. D. Becke, J. Chem. Phys. **1993**, 98, 5648.

<sup>&</sup>lt;sup>2</sup> Lee, Y.; Yang, W.; Parr, R, G. Phys. Rev. B, 1988, 37, 785.

<sup>&</sup>lt;sup>3</sup> S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.

## **Basis Set Test.**

| Entries    | x                                  | Y <sub>1</sub> | Y <sub>2</sub> | Electronic<br>Energy<br>(Hartree) | Sum of<br>Electronic<br>and Free<br>Energy<br>(Hartree) | Relative<br>Free Energy<br>(kcal/mol) |
|------------|------------------------------------|----------------|----------------|-----------------------------------|---------------------------------------------------------|---------------------------------------|
| Reactant 1 | N(CH <sub>3</sub> ) <sub>2</sub>   | O(CO)CI        | Η              | -1373.534                         | -1373.323                                               | [0]                                   |
| TSS 1      | N(CH <sub>3</sub> ) <sub>2</sub>   | O(CO)CI        | н              | -1373.472                         | -1373.266                                               | 35.760                                |
| Product 1  | N(CH <sub>3</sub> ) <sub>2</sub>   | O(CO)CI        | Н              | -1373.641                         | -1373.445                                               | -76.461                               |
| Reactant 2 | N(CH <sub>3</sub> ) <sub>2</sub>   | CI             | CI             | -1644.555                         | -1644.364                                               | [0]                                   |
| TSS 2      | N(CH <sub>3</sub> ) <sub>2</sub>   | CI             | CI             | -1644.491                         | -1644.308                                               | 35.082                                |
| Product 2  | N(CH <sub>3</sub> ) <sub>2</sub>   | CI             | CI             | -1644.605                         | -1644.427                                               | -39.562                               |
| Reactant 3 | $NH_2$                             | O(CO)CI        | Н              | -1294.912                         | -1294.754                                               | [0]                                   |
| TSSA 3     | $NH_2$                             | O(CO)CI        | Н              | -1294.859                         | -1294.706                                               | 30.152                                |
| Enamine 3  | $NH_2$                             | O(CO)CI        | Н              | -1295.026                         | -1294.887                                               | -83.528                               |
| Reactant 4 | NH <sub>2</sub>                    | CI             | CI             | -1565.933                         | -1565.795                                               | [0]                                   |
| TSS 4      | $NH_2$                             | CI             | CI             | -1565.876                         | -1565.746                                               | 30.418                                |
| Product 4  | $NH_2$                             | CI             | CI             | -1566.008                         | -1565.882                                               | -54.861                               |
| Reactant 5 | $OCH_3$                            | O(CO)CI        | Н              | -1354.096                         | -1353.925                                               | [0]                                   |
| TSS 5      | OCH₃                               | O(CO)CI        | Н              | -1354.034                         | -1353.868                                               | 35.583                                |
| Product 5  | OCH <sub>3</sub>                   | O(CO)CI        | Н              | -1354.194                         | -1354.038                                               | -71.390                               |
| Reactant 6 | $OCH_3$                            | CI             | CI             | -1625.116                         | -1624.965                                               | [0]                                   |
| TSS-B 6    | $OCH_3$                            | CI             | CI             | -1625.052                         | -1624.908                                               | 35.987                                |
| Product 6  | $OCH_3$                            | CI             | CI             | -1625.152                         | -1625.010                                               | -28.242                               |
| Reactant 7 | OCH(CH <sub>3</sub> ) <sub>2</sub> | O(CO)CI        | Н              | -1432.742                         | -1432.517                                               | [0]                                   |
| TSS 7      | OCH(CH <sub>3</sub> ) <sub>2</sub> | O(CO)CI        | Н              | -1432.678                         | -1432.458                                               | 36.944                                |
| Product 7  | OCH(CH <sub>3</sub> ) <sub>2</sub> | O(CO)CI        | н              | -1432.847                         | -1432.640                                               | -77.045                               |
| Reactant 8 | OCH(CH <sub>3</sub> ) <sub>2</sub> | CI             | CI             | -1703.766                         | -1703.562                                               | [0]                                   |
| TSS-B 8    | OCH(CH <sub>3</sub> ) <sub>2</sub> | CI             | CI             | -1703.699                         | -1703.504                                               | 36.477                                |

**Table S1-A.** Basis set test at the B3LYP-D3(BJ) DFT level with 6-31+G(d).

| Product 8   | OCH(CH <sub>3</sub> ) <sub>2</sub> | CI      | CI | -1703.801 | -1703.609 | -29.398 |
|-------------|------------------------------------|---------|----|-----------|-----------|---------|
| Reactant 9  | н                                  | O(CO)CI | н  | -1239.541 | -1239.398 | [0]     |
| TSS 9       | н                                  | O(CO)CI | Н  | -1239.476 | -1239.340 | 36.319  |
| Product 9   | Н                                  | O(CO)CI | Н  | -1239.633 | -1239.510 | -70.471 |
| Reactant 10 | Н                                  | CI      | CI | -1510.565 | -1510.443 | [0]     |
| TSS-A 10    | Н                                  | CI      | CI | -1510.497 | -1510.382 | 38.155  |
| Product 10  | Н                                  | CI      | CI | -1510.627 | -1510.519 | -47.729 |
| Reactant 11 | F                                  | O(CO)CI | н  | -1338.819 | -1338.685 | [0]     |
| TSS 11      | F                                  | O(CO)CI | н  | -1338.748 | -1338.620 | 40.991  |
| Product 11  | F                                  | O(CO)CI | н  | -1338.899 | -1338.784 | -62.058 |
| Reactant 12 | F                                  | CI      | CI | -1609.843 | -1609.729 | [0]     |
| TSS-A 12    | F                                  | CI      | CI | -1609.768 | -1609.662 | 42.430  |
| Product 12  | F                                  | CI      | CI | -1609.890 | -1609.791 | -38.435 |
|             |                                    |         |    |           |           |         |

**Table S1-B.** Basis set test at the M06-2X DFT level with 6-31+G(d).

| Entries    | x                                | Y <sub>1</sub> | Y <sub>2</sub> | Electronic<br>Energy<br>(Hartree) | Sum of<br>Electronic<br>and Free<br>Energy<br>(Hartree) | Relative<br>Free<br>Energy<br>(kcal/mol) |
|------------|----------------------------------|----------------|----------------|-----------------------------------|---------------------------------------------------------|------------------------------------------|
| Reactant 1 | N(CH <sub>3</sub> ) <sub>2</sub> | O(CO)CI        | Н              | -1373.076                         | -1372.861                                               | [0]                                      |
| TSS 1      | N(CH <sub>3</sub> ) <sub>2</sub> | O(CO)CI        | Н              | -1372.994                         | -1372.784                                               | 48.673                                   |
| Product 1  | N(CH <sub>3</sub> ) <sub>2</sub> | O(CO)CI        | Н              | -1373.166                         | -1372.964                                               | -64.773                                  |
| Reactant 2 | N(CH <sub>3</sub> ) <sub>2</sub> | CI             | CI             | -1644.139                         | -1643.945                                               | [0]                                      |
| TSS 2      | N(CH <sub>3</sub> ) <sub>2</sub> | CI             | CI             | -1644.058                         | -1643.871                                               | 46.779                                   |
| Product 2  | N(CH <sub>3</sub> ) <sub>2</sub> | CI             | CI             | -1644.187                         | -1644.004                                               | -36.991                                  |

| Reactant 3      | $NH_2$                             | O(CO)CI | Н  | -1294.504 | -1294.341 | [0]     |
|-----------------|------------------------------------|---------|----|-----------|-----------|---------|
| TSS-to-int 3    | $\rm NH_2$                         | O(CO)CI | Н  | -1294.435 | -1294.278 | 39.577  |
| Carbanion-int 3 | $\rm NH_2$                         | O(CO)CI | н  | -1294.442 | -1294.285 | 35.246  |
| TSSA 3          | $NH_2$                             | O(CO)CI | н  | -1294.432 | -1294.276 | 40.977  |
| TSS-to-A 3      | $\rm NH_2$                         | O(CO)CI | н  | -1294.441 | -1294.286 | 34.665  |
| TSS-to-B 3      | $\rm NH_2$                         | O(CO)CI | Н  | -1294.434 | -1294.281 | 37.510  |
| Enamine 3       | $NH_2$                             | O(CO)CI | Н  | -1294.594 | -1294.446 | -65.910 |
| Imine 3         | $NH_2$                             | O(CO)CI | н  | -1294.541 | -1294.395 | -34.100 |
| Reactant 4      | $NH_2$                             | CI      | CI | -1565.566 | -1565.425 | [0]     |
| TSS 4           | $NH_2$                             | CI      | CI | -1565.496 | -1565.361 | 40.299  |
| Product 4       | $NH_2$                             | CI      | CI | -1565.606 | -1565.478 | -33.394 |
| Reactant 5      | OCH <sub>3</sub>                   | O(CO)CI | н  | -1353.662 | -1353.486 | [0]     |
| TSS 5           | OCH <sub>3</sub>                   | O(CO)CI | н  | -1353.580 | -1353.409 | 48.325  |
| Product 5       | OCH <sub>3</sub>                   | O(CO)CI | н  | -1353.742 | -1353.582 | -60.270 |
| Reactant 6      | OCH <sub>3</sub>                   | CI      | CI | -1624.723 | -1624.569 | [0]     |
| TSS-B 6         | OCH <sub>3</sub>                   | CI      | CI | -1624.644 | -1624.496 | 46.094  |
| Product 6       | OCH <sub>3</sub>                   | CI      | CI | -1624.750 | -1624.606 | -23.211 |
| Reactant 7      | OCH(CH <sub>3</sub> ) <sub>2</sub> | O(CO)CI | н  | -1432.254 | -1432.024 | [0]     |
| TSS 7           | OCH(CH <sub>3</sub> ) <sub>2</sub> | O(CO)CI | н  | -1432.171 | -1431.947 | 48.682  |
| Product 7       | OCH(CH <sub>3</sub> ) <sub>2</sub> | O(CO)CI | Н  | -1432.340 | -1432.128 | -64.681 |
| Reactant 8      | OCH(CH <sub>3</sub> ) <sub>2</sub> | CI      | CI | -1703.322 | -1703.114 | [0]     |
| TSS-B 8         | OCH(CH <sub>3</sub> ) <sub>2</sub> | CI      | CI | -1703.239 | -1703.038 | 48.035  |
| Product 8       | OCH(CH <sub>3</sub> ) <sub>2</sub> | CI      | CI | -1703.348 | -1703.151 | -23.319 |
| Reactant 9      | Н                                  | O(CO)CI | н  | -1239.155 | -1239.008 | [0]     |
| TSS 9           | Н                                  | O(CO)CI | н  | -1239.070 | -1238.931 | 48.793  |
| Product 9       | Н                                  | O(CO)CI | Н  | -1239.230 | -1239.101 | -58.213 |
| Reactant 10     | Н                                  | CI      | CI | -1510.222 | -1510.097 | [0]     |
| TSS-A 10        | Н                                  | CI      | CI | -1510.133 | -1510.016 | 51.103  |
| Product 10      | Н                                  | CI      | CI | -1510.265 | -1510.154 | -35.979 |
| Reactant 11     | F                                  | O(CO)CI | н  | -1338.405 | -1338.267 | [0]     |
| TSS 11          | F                                  | O(CO)CI | н  | -1338.313 | -1338.182 | 53.299  |
|                 |                                    |         |    |           |           |         |

| Product 11  | F | O(CO)CI | Н  | -1338.467 | -1338.346 | -49.599 |
|-------------|---|---------|----|-----------|-----------|---------|
| Reactant 12 | F | CI      | CI | -1609.471 | -1609.355 | [0]     |
| TSS-A 12    | F | CI      | CI | -1609.376 | -1609.266 | 55.691  |
| Product 12  | F | CI      | CI | -1609.504 | -1609.401 | -28.882 |

#### **Other references**

Full Gaussian 09 Reference:

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.
G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G.
Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F.
Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo,
R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc.,
Wallingford CT, 2016.

#### Natural Bond Orbital program:

NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold.

## S2. Further Details for Structure 1

**Energetic Profile for [3,3]-sigmatropic shift.** This example of the [3,3]-sigmatropic shift that interconverts products **A** and **B** corresponds to entry 3 in **Table 1** of the main manuscript.



**Figure S1**. Representative example of [3,3]-sigmatropic shift barrier at the M06-2X/6-31G(d) level of theory for entry 3, Table 1 of main manuscript.

Entry 3. Other pathways identified for Entry 3.



**Figure S2**. Another pathway (Path C, in pink) leading to ring closure of the carbanion intermediate. All numbers are free energies in kcal  $mol^{-1}$  the M06-2X/6-31G(d) level of theory for entry 3. Despite being kinetically favored, the first step towards Path C is not thermodynamically favored. We did not pursue this pathway further.



**Figure S3**. Under the influence of an EEF of  $F_y = +0.005$  au, the reactant structure optimized to a conformer in which the C-O-C-Cl of the chloroformate moiety is ~178°.

#### **S3.** Natural Bond Orbital Calculations

**Natural Bond Orbital (NBO) Calculations.** Second-order perturbation energies were obtained using the "pop=nbo" keyword in Gaussian09. Wiberg Bond Orders were obtained using the "pop=nboread" keyword in Gaussian09. Natural Bond Orbital (NBO) analysis "transforms the canonical delocalized molecular orbitals from DFT calculations into localized orbitals that are closely tied to the chemical bonding concepts [and the Lewis structure depiction of molecules]." (Alabugin and coworkers, *Chem. Sci.*, **2015**, *6*, 6783). The extent of deviation from the Lewis structure, i.e. the amount of delocalization or interaction between filled orbitals and unfilled orbitals, is approximated via a second-order perturbative energy approach as  $E(2) = n_i^2 |F_{ij}| / \Delta E$ . In this analysis,  $n_i$  represents the population of the donor orbitals,  $F_{ij}$  is the Fock matrix element for the interaction orbitals i and j, and  $\Delta E$  is the energy difference between the orbitals. For literature examples of NBO analyses see: Alabugin *et al.*, *WIREs Comput. Mol. Sci.*, **2018**, e1389; Alabugin and coworkers, *Chem. Sci.*, **2015**, *6*, 6783.



Figure S4. Natural Bond Orbital (NBO) second-order perturbative analysis of the four rotamers.

Second-order perturbation energies



Table S2-A. Entry 1 NBO E2 values at M06-2X level of theory.

| Donor     | C7 - O18 σ* (E2, kcal/mol) | Donor    | C1-N17 $\sigma^*$ (E2, kcal/mol) |
|-----------|----------------------------|----------|----------------------------------|
| C4-H5     | 3.14                       | C4-H5    | 1.64                             |
| C6-H20    | 1.11                       | C6-N17   | 0.62                             |
| C6-O21    | 1.51                       | C6-O21   | 1.66                             |
| C7-O18    | 1.11                       | C11-H13  | 4.09                             |
| C9-O19    | 5.66                       | C11-N17  | 0.51                             |
| C4 (CR)   | 0.52                       | C6 (CR)  | 0.52                             |
| C7 (CR)   | 1.68                       | C11 (CR) | 0.52                             |
| C4 (LP)   | 60.89                      | C4 (LP)  | 6.39                             |
| O18 (LP)  | 1.66                       | O21 (LP) | 0.51                             |
| O18 (LP2) | 3.58                       |          |                                  |

**Table S2-B.** Entry 2 NBO E2 values at M06-2X level of theory.

| Donor           | C7 - O18 σ* (E2, kcal/mol) | Donor               | C1-N17 σ* (E2, kcal/mol) |
|-----------------|----------------------------|---------------------|--------------------------|
| C1-C4           | 0.89                       | C1-H2               | 181.23                   |
| C1-C4           | 2.34                       | C1-C4 (SB)          | 3.03                     |
| C4-C5           | 2.55                       | C1-C4 (DB)          | 175.08                   |
| C6-Cl21         | 4.64                       | C1-N17              | 64.76                    |
| C9-O19          | 3.31                       | C4-H5               | 1.13                     |
| C4 (CR)         | 0.99                       | C6-Cl21             | 0.99                     |
| C7 (CR)         | 1.07                       | C1 (CR)             | 3.34                     |
| Cl21            | 0.98                       | N17 (LP)            | 0.75                     |
| C7 (CR)<br>Cl21 | 1.07<br>0.98               | C1 (CR)<br>N17 (LP) | 3.34<br>0.75             |

| Donor     | C7 - O18 σ* (E2, kcal/mol) | Donor   | C1-N17 $\sigma^*$ (E2, kcal/mol) |
|-----------|----------------------------|---------|----------------------------------|
| C1-C4     | 0.53                       | C4-H5   | 1.65                             |
| C4-H5     | 2.57                       | C6-CI24 | 2.86                             |
| C6-Cl24   | 3.33                       | C1 (CR) | 0.73                             |
| C9-O19    | 3.53                       | C4 (LP) | 24.51                            |
| C4 (CR)   | 0.95                       |         |                                  |
| C7 (CR)   | 1.13                       |         |                                  |
| C4 (LP)   | 7.56                       |         |                                  |
| O18 (LP)  | 0.77                       |         |                                  |
| CI24 (LP) | 1.21                       |         |                                  |
|           |                            |         |                                  |

**Table S2-C.** Entry 4 NBO E2 values at M06-2X level of theory.

**Table S2-D.** Entry 1 NBO E2 values at B3LYP-D3(BJ) level of theory.

| Donor    | C7 - O18 σ* (E2, kcal/mol) | Donor   | C1-N17 $\sigma^*$ (E2, kcal/mol) |
|----------|----------------------------|---------|----------------------------------|
| C4-H5    | 4.23                       | C4-H5   | 2.22                             |
| C4-C10   | 8.3                        | C4-C10  | 2.01                             |
| C6-H20   | 1.03                       | C6-O21  | 1.58                             |
| C6-O21   | 1.68                       | C11-H13 | 3.56                             |
| C7-O18   | 0.71                       | C6 (CR) | 0.51                             |
| C9-O19   | 5.82                       |         |                                  |
| C7-O18   | 1.69                       |         |                                  |
| O18 (LP) | 1.46                       |         |                                  |
| C7-O18   | 3.49                       |         |                                  |
|          |                            |         |                                  |

 Table S2-E. Entry 2 NBO E2 values at B3LYP-D3(BJ) level of theory.

| Donor     | C7 - O18 σ* (E2, kcal/mol) | Donor    | C1-N17 σ* (E2, kcal/mol) |
|-----------|----------------------------|----------|--------------------------|
| C1-C4     | 0.54                       | C4-H5    | 1.64                     |
| C4-H5     | 2.67                       | C6-CI21  | 3.42                     |
| C6-Cl21   | 5.02                       | C11-H13  | 3.83                     |
| C9-O19    | 3.23                       | C1 (CR)  | 0.89                     |
| C4 (CR)   | 0.87                       | C4 (LP)  | 14.78                    |
| C7 (CR)   | 1.52                       | N17 (LP) | 1.29                     |
| C4 (LP)   | 5.12                       |          |                          |
| O18 (LP)  | 0.62                       |          |                          |
| O18 (LP2) | 1.86                       |          |                          |
| Cl21 (LP) | 0.56                       |          |                          |

| Donor     | C7 - O18 σ* (E2, kcal/mol) | Donor    | C1-N17 σ* (E2, kcal/mol) |
|-----------|----------------------------|----------|--------------------------|
| C4-H5     | 2.64                       | C4-H5    | 1.52                     |
| C6-Cl24   | 5.11                       | C6-CI24  | 3.36                     |
| C9-O19    | 3.40                       | C11-H13  | 3.68                     |
| C4 (CR)   | 0.82                       | C1 (CR)  | 0.73                     |
| C7 (CR)   | 1.60                       | C4 (LP)  | 13.46                    |
| C4 (LP)   | 5.52                       | N17 (LP) | 1.25                     |
| O18 (LP)  | 0.65                       |          |                          |
| O18 (LP2) | 2.09                       |          |                          |

 Table S2-F. Entry 4 NBO E2 values at B3LYP-D3(BJ) level of theory.

## Wiberg Bond Orders

| Entry | X                                   | Y <sup>1</sup> | Y <sup>2</sup> | C-O bond<br>(Reactant) | C-O<br>bond<br>(TSS) | C-N bond<br>(Reactant) | C-N<br>bond<br>(TSS) | Р   |
|-------|-------------------------------------|----------------|----------------|------------------------|----------------------|------------------------|----------------------|-----|
| 1     | -N(CH <sub>3</sub> ) <sub>2</sub>   | -O(CO)Cl       | Н              | 0.909                  | 0.521                | 0.944                  | 0.921                | А   |
| 2     | -N(CH <sub>3</sub> ) <sub>2</sub>   | -CI            | -Cl            | 0.918                  | 0.809                | 0.923                  | 0.703                | В   |
| 3     | -NH <sub>2</sub>                    | -O(CO)Cl       | Н              | 0.901                  | 0.539                | 0.944                  | 0.922                | А   |
| 4     | -NH <sub>2</sub>                    | -CI            | -Cl            | 0.909                  | 0.797                | 0.924                  | 0.737                | A/B |
| 5     | -OCH₃                               | -O(CO)Cl       | Н              | 0.909                  | 0.483                | 0.944                  | 0.925                | А   |
| 6     | -OCH₃                               | -CI            | -Cl            | 0.918                  | 0.866                | 0.923                  | 0.484                | В   |
| 7     | -OCH(CH <sub>3</sub> ) <sub>2</sub> | -O(CO)Cl       | Н              | 0.908                  | 0.474                | 0.945                  | 0.928                | А   |
| 8     | -OCH(CH <sub>3</sub> ) <sub>2</sub> | -CI            | -Cl            | 0.915                  | 0.863                | 0.925                  | 0.493                | В   |
| 9     | -H                                  | -O(CO)Cl       | Н              | 0.903                  | 0.453                | 0.943                  | 0.930                | А   |
| 10    | -H                                  | -CI            | -Cl            | 0.911                  | 0.471                | 0.922                  | 0.888                | А   |
| 11    | -F                                  | -O(CO)Cl       | Н              | 0.910                  | 0.426                | 0.944                  | 0.931                | А   |
| 12    | -F                                  | -Cl            | -Cl            | 0.917                  | 0.443                | 0.924                  | 0.893                | А   |
| 13    | -CH3                                | -O(CO)Cl       | -Cl            | 0.921                  | 0.506                | 0.929                  | 0.910                | А   |
| 14    | -CH3                                | -Cl            | -Cl            | 0.912                  | 0.864                | 0.922                  | 0.458                | В   |

**Table S3.** B3LYP-D3(BJ)/6-31G(d) computed Wiberg Bond Orders for each entry in **Table 1** of main text.

**Table S4.** M06-2X/6-31G(d) computed Wiberg Bond Orders for each entry in **Table 1** of main text.

| Entry | X                                   | Y <sup>1</sup> | Y²  | C-O bond<br>(Reactant) | C-O<br>bond<br>(TSS) | C-N bond<br>(Reactant) | C-N<br>bond<br>(TSS) | Р   |
|-------|-------------------------------------|----------------|-----|------------------------|----------------------|------------------------|----------------------|-----|
| 1     | -N(CH <sub>3</sub> ) <sub>2</sub>   | -O(CO)Cl       | Н   | 0.916                  | 0.525                | 0.917                  | 0.943                | А   |
| 2     | -N(CH <sub>3</sub> ) <sub>2</sub>   | -Cl            | -Cl | 0.921                  | 0.893                | 0.922                  | 0.482                | В   |
| 3     | -NH <sub>2</sub>                    | -O(CO)Cl       | Н   | 0.908                  | 0.554                | 0.944                  | 0.917                | А   |
| 4     | -NH <sub>2</sub>                    | -Cl            | -Cl | 0.915                  | 0.872                | 0.925                  | 0.768                | A/B |
| 5     | -OCH₃                               | -O(CO)Cl       | Н   | 0.916                  | 0.486                | 0.943                  | 0.923                | А   |
| 6     | -OCH₃                               | -Cl            | -Cl | 0.924                  | 0.887                | 0.927                  | 0.442                | В   |
| 6     | -OCH₃                               | -Cl            | -Cl | 0.923                  | 0.513                | 0.925                  | 0.886                | А   |
| 7     | -OCH(CH <sub>3</sub> ) <sub>2</sub> | -O(CO)Cl       | Н   | 0.915                  | 0.480                | 0.943                  | 0.924                | А   |
| 8     | -OCH(CH <sub>3</sub> ) <sub>2</sub> | -Cl            | -Cl | 0.921                  | 0.887                | 0.926                  | 0.457                | В   |
| 8     | -OCH(CH <sub>3</sub> ) <sub>2</sub> | -Cl            | -Cl | 0.921                  | 0.505                | 0.926                  | 0.890                | А   |
| 9     | -H                                  | -O(CO)Cl       | Н   | 0.911                  | 0.452                | 0.942                  | 0.929                | А   |
| 10    | -H                                  | -Cl            | -Cl | 0.918                  | 0.466                | 0.923                  | 0.897                | А   |
| 10    | -H                                  | -CI            | -Cl | 0.918                  | 0.881                | 0.923                  | 0.399                | В   |
| 11    | -F                                  | -O(CO)Cl       | Н   | 0.916                  | 0.429                | 0.944                  | 0.930                | А   |
| 12    | -F                                  | -Cl            | -Cl | 0.922                  | 0.441                | 0.926                  | 0.901                | А   |
| 12    | -F                                  | -CI            | -Cl | 0.922                  | 0.880                | 0.926                  | 0.370                | В   |
| 13    | -CH3                                | -O(CO)Cl       | -H  | 0.926                  | 0.512                | 0.929                  | 0.908                | А   |
| 14    | -CH3                                | -Cl            | -CI | 0.919                  | 0.881                | 0.924                  | 0.425                | В   |

## S4. External Electric Field Calculations

**External Electric Field Calculations.** External electric field (EEF) calculations were done using full optimization calculations along the -x or +x directions with geometric coordinates in *z*-matrix form. All EEF calculations were carried out using the Gaussian 09 suite of programs with "field=x+100" (0.01 au) and "field=x-100" (-0.01 au) keywords for the -x and +x electric fields, respectively. One atom unit (a.u. or au) is the field generated by an electric charge at a distance 1 Bohr and 1 au = 51.4 V Å<sup>-1</sup>.



**Figure S5**. General protocol (or workflow) for executing EEF calculations of complex organic molecules (see ref. 44 in main manuscript for more details on EEF calculations).



Figure S6. External electric field effects on divergent fragmentation of 1 (entry 6 in Table 1).



1).



1).



**Figure S9.** External electric field (a)  $F_z$  and (b)  $F_x$  effects on divergent fragmentation of **1** (entry 6 in **Table 1**). For  $F_z$  and  $F_x > 0.001$  au, transition state structures leading to A [i.e. TSS(A)'s] optimize to TSS(B).

### **S5**. Molecular Dynamics Simulations

#### Molecular Dynamics Trajectory Configuration File (used for all TSSs).

method b3lyp/6-31G(d) method2 restricted charge -1 multiplicity 1 processors 8 memory 16GB killcheck 1 diagnostics 1 title System 4 B3LYPD3BJ n1 initialdis 2 timestep 1E-15 scaling 1.0 temperature 298 method 3 Empirical Dispersion=(GD3BJ)\* numimag 1 searchdir negative classical 0 keepevery 1 highlevel 999 boxon 0 boxsize 7.5 etolerance 1.0 damping 1 reversetraj true

<sup>\*</sup>used for B3LYP-D3(BJ) only. For M06-2X, this line is not present.

## S6. Further Details for Figure 7

Final allene and alkyne energies are not reported in Williams's work. We find that the allene product is thermodynamically competitive (in stability) compared to the alkyne even after validating that the final allene and alkyne structures are in their lowest-energy conformational state. We note that the allene being thermodynamically lower in energy is counterintuitive to what is known about the thermodynamic stability of alkynes over allenes (Krause, N.; Hashmi, S. A. *Modern Allene Chemistry*; Weinheim: Wiley-VCH, 2004). After validating our computational method against already published data, we used this system as a simple and synthetically relevant model to probe how divergent fragmentations might be influenced by an EEF.

**Table S5**. Gas-phase relative enthalpies and enthalpic barriers,  $\Delta H$  and  $\Delta H^{\ddagger}$  (normal text), and relative free energies and free energy barriers,  $\Delta G$  and  $\Delta G^{\ddagger}$  (<u>underlined</u>), of vinylbromopiperidine fragmentation in the absence of an external electric field.

| Level of theory                  | Allene        | TS-I       | TS-II      | alkyne        |
|----------------------------------|---------------|------------|------------|---------------|
| B3LYP/<br>6-31+G(d) <sup>a</sup> | -             | 8.3        | 10.5       | -             |
| B3LYP-D3(BJ)/                    | - 23.3        | 4.2        | 6.9        | - 19.7        |
| 6-31G(d)                         | <u>- 28.1</u> | <u>3.5</u> | <u>6.1</u> | <u>- 24.4</u> |
| M06-2X/                          | - 22.7        | 8.7        | 10.5       | - 22.0        |
| 6-31G(d)                         | <u>- 27.1</u> | <u>7.7</u> | <u>9.6</u> | <u>- 26.4</u> |

<sup>a</sup>enthalpic barriers reproduced from Supporting Information, Williams and co-workers, *J. Am. Chem. Soc.* **2009**, *131*, 12910.

| Structure      |                          | Level of Theory | Structure    |
|----------------|--------------------------|-----------------|--------------|
| number in mol2 | Entry number, Table 1 of |                 | Shaetare     |
| file           | main text                |                 |              |
| 1              | 1                        | B3LYP-D3(BI)    | р            |
| 2              | 1                        | B3LYP-D3(BI)    | R            |
| 3              | 1                        | B3LYP-D3(BI)    | TSS          |
| 4              | 1                        | M06-2X          | P            |
| 5              | 1                        | M06-2X          | R            |
| 6              | 1                        | M06-2X          | TSS          |
| 7              | 2                        | B3LYP-D3(BJ)    | P            |
| 8              | 2                        | B3LYP-D3(BJ)    | R            |
| 9              | 2                        | B3LYP-D3(BJ)    | TSS          |
| 10             | 2                        | M06-2X          | P            |
| 11             | 2                        | M06-2X          | R            |
| 12             | 2                        | M06-2X          | TSS          |
| 13             | 3                        | B3LYP-D3(BJ)    | P (Enamine)  |
| 14             | 3                        | B3LYP-D3(BJ)    | Reactant     |
| 15             | 3                        | B3LYP-D3(BJ)    | TSS(A)       |
| 16             | 3                        | M06-2X          | Intermediate |
| 17             | 3                        | M06-2X          | P (Enamine)  |
| 18             | 3                        | M06-2X          | P (Imine)    |
| 19             | 3                        | M06-2X          | R            |
| 20             | 3                        | M06-2X          | TSS(A)       |
| 21             | 3                        | M06-2X          | TSS(i-A)     |
| 22             | 3                        | M06-2X          | TSS(i-B)     |
| 23             | 3                        | M06-2X          | TSS(i)       |
| 24             | 4                        | B3LYP-D3(BJ)    | P            |
| 25             | 4                        | B3LYP-D3(BJ)    | R            |
| 26             | 4                        | B3LYP-D3(BJ)    | TSS-A        |
| 27             | 4                        | M06-2X          | Р            |
| 28             | 4                        | M06-2X          | R            |
| 29             | 4                        | M06-2X          | TSS-A        |
| 30             | 4                        | M06-2X          | TSS-B        |
| 31             | 5                        | B3LYP-D3(BJ)    | Р            |
| 32             | 5                        | B3LYP-D3(BJ)    | R            |
| 33             | 5                        | B3LYP-D3(BJ)    | TSS          |
| 34             | 5                        | M06-2X          | Р            |
| 35             | 5                        | M06-2X          | R            |
| 36             | 5                        | M06-2X          | TSS          |
| 37             | 6                        | B3LYP-D3(BJ)    | Р            |
| 38             | 6                        | B3LYP-D3(BJ)    | R            |
| 39             | 6                        | B3LYP-D3(BJ)    | TSS-B        |
| 40             | 6                        | M06-2X          | Р            |
| 41             | 6                        | M06-2X          | R            |

## S7. Energies and Frequencies of Computed Structures

Table S6. Order of computed structures for mol2 file that comes with SI.

| 42 | 6  | M06-2X       | TSS-A |
|----|----|--------------|-------|
| 43 | 6  | M06-2X       | TSS-B |
| 44 | 7  | B3LYP-D3(BJ) | Р     |
| 45 | 7  | B3LYP-D3(BJ) | R     |
| 46 | 7  | B3LYP-D3(BJ) | TSS   |
| 47 | 7  | M06-2X       | Р     |
| 48 | 7  | M06-2X       | R     |
| 49 | 7  | M06-2X       | TSS   |
| 50 | 8  | B3LYP-D3(BJ) | Р     |
| 51 | 8  | B3LYP-D3(BJ) | R     |
| 52 | 8  | B3LYP-D3(BJ) | TSS-A |
| 53 | 8  | B3LYP-D3(BJ) | TSS-B |
| 54 | 8  | M06-2X       | Р     |
| 55 | 8  | M06-2X       | R     |
| 56 | 8  | M06-2X       | TSS-A |
| 57 | 8  | M06-2X       | TSS-B |
| 58 | 9  | B3LYP-D3(BJ) | Р     |
| 59 | 9  | B3LYP-D3(BJ) | R     |
| 60 | 9  | B3LYP-D3(BJ) | TSS   |
| 61 | 9  | M06-2X       | Р     |
| 62 | 9  | M06-2X       | R     |
| 63 | 9  | M06-2X       | TSS   |
| 64 | 10 | B3LYP-D3(BJ) | Р     |
| 65 | 10 | B3LYP-D3(BJ) | R     |
| 66 | 10 | B3LYP-D3(BJ) | TSS-A |
| 67 | 10 | B3LYP-D3(BJ) | TSS-B |
| 68 | 10 | M06-2X       | Р     |
| 69 | 10 | M06-2X       | R     |
| 70 | 10 | M06-2X       | TSS-A |
| 71 | 10 | M06-2X       | TSS-B |
| 72 | 11 | B3LYP-D3(BJ) | Р     |
| 73 | 11 | B3LYP-D3(BJ) | R     |
| 74 | 11 | B3LYP-D3(BJ) | TSS   |
| 75 | 11 | M06-2X       | Р     |
| 76 | 11 | M06-2X       | R     |
| 77 | 11 | M06-2X       | TSS   |
| 78 | 12 | B3LYP-D3(BJ) | Р     |
| 79 | 12 | B3LYP-D3(BJ) | R     |
| 80 | 12 | B3LYP-D3(BJ) | TSS-A |
| 81 | 12 | B3LYP-D3(BJ) | TSS-B |
| 82 | 12 | M06-2X       | Р     |
| 83 | 12 | M06-2X       | R     |
| 84 | 12 | M06-2X       | TSS-A |
| 85 | 12 | M06-2X       | TSS-B |

**Table S7.** All B3LYP-D3(BJ)/6-31G(d) Electronic, Free Energies, and Frequencies of computed structures for Table 1.

| Entry | Structure                | Х                                  | Y <sub>1</sub> | Y <sub>2</sub> | EE + Thermal<br>Free Energy<br>Corr. (a.u) | Electronic<br>Energy (EE)<br>(a.u) | Lowest<br>frequency<br>(cm <sup>-1</sup> ) |
|-------|--------------------------|------------------------------------|----------------|----------------|--------------------------------------------|------------------------------------|--------------------------------------------|
| 1     | Reactant 1               | N(CH <sub>3</sub> ) <sub>2</sub>   | O(CO)Cl        | Н              | -1373.269795                               | -1373.482457                       | 38.5655                                    |
|       | TSS 1                    | $N(CH_3)_2$                        | O(CO)CI        | Н              | -1373.215991                               | -1373.42315                        | -747.7492                                  |
|       | Product 1                | N(CH3)2                            | O(CO)Cl        | Н              | -1373.395004                               | -1373.59012                        | 8.9995                                     |
| 2     | Reactant 2               | N(CH <sub>3</sub> ) <sub>2</sub>   | CI             | CI             | -1644.319283                               | -1644.511048                       | 49.8891                                    |
|       | TSS 2                    | N(CH <sub>3</sub> ) <sub>2</sub>   | CI             | CI             | -1644.266895                               | -1644.451259                       | -491.2602                                  |
|       | Product 2                | N(CH3)2                            | CI             | CI             | -1644.383965                               | -1644.56353                        | 27.6968                                    |
| 3     | Reactant 3               | NH <sub>2</sub>                    | O(CO)Cl        | Н              | -1294.696457                               | -1294.85567                        | 43.9652                                    |
|       | TSSA 3                   | NH <sub>2</sub>                    | O(CO)Cl        | Н              | -1294.650978                               | -1294.804822                       | -756.9172                                  |
|       | Enamine<br>Product 3     | NH2                                | O(CO)Cl        | Н              | -1294.829907                               | -1294.971958                       | 11.9924                                    |
| 4     | Reactant 4               | NH <sub>2</sub>                    | CI             | CI             | -1565.74643                                | -1565.88451                        | 115.335                                    |
|       | TSS 4                    | NH <sub>2</sub>                    | CI             | CI             | -1565.701455                               | -1565.832455                       | -506.4546                                  |
|       | Product 4                | NH2                                | CI             | CI             | -1565.835008                               | -1565.962565                       | 23.8321                                    |
| 5     | Reactant 5               | OCH₃                               | O(CO)Cl        | Н              | -1353.870239                               | -1354.04243                        | 39.1926                                    |
|       | TSS 5                    | OCH₃                               | O(CO)Cl        | Н              | -1353.81537                                | -1353.982558                       | -685.2259                                  |
| _     | Product 5                | OCH₃                               | O(CO)CI        | Н              | -1353.98736                                | -1354.144007                       | 10.2524                                    |
| 6     | Reactant 6               | OCH <sub>3</sub>                   | CI             | Cl             | -1624.919133                               | -1625.070584                       | 69.0745                                    |
|       | TSS-B 6                  | OCH <sub>3</sub>                   | CI             | CI             | -1624.865589                               | -1625.010496                       | -627.6178                                  |
|       | Product 6                | OCH <sub>3</sub>                   | CI             | CI             | -1624.968666                               | -1625.108912                       | 20.6839                                    |
| _     | Reactant /               | OCH(CH <sub>3</sub> ) <sub>2</sub> | O(CO)CI        | н              | -1432.463365                               | -1432.68927                        | 36.0168                                    |
| /     |                          |                                    |                | н              | -1432.405111                               | -1432.625363                       | -670.9647                                  |
|       | Product /                |                                    |                | H              | -1432.584807                               | -1432.79205                        | 5.6254                                     |
| 0     | Reactant 8               | $OCH(CH_3)_2$                      | CI             | CI             | -1/03.516612                               | -1/03./21695                       | 43.3807                                    |
| 8     | 155-88                   |                                    | CI             |                |                                            |                                    | -634.2226                                  |
|       | ISS-A8<br>Draduat 9      |                                    |                |                | -1703.510012                               | -1/03./21095                       | -/35./903                                  |
|       | Product 8                |                                    |                |                | -1/03.30443                                | -1/03./3844                        | 20.4309                                    |
| 0     | Reactant 9               | П                                  |                |                | -1239.343182                               | -1239.48800                        | 38.9833                                    |
| 9     | Droduct 0                |                                    |                |                | -1239.209102                               | 1239.420413                        | -030.3903                                  |
|       | Product 9<br>Popotont 10 |                                    |                |                | -1239.434636                               | -1239.379920                       | 10.7730                                    |
| 10    |                          |                                    |                |                | 1510.39932                                 | 1510.021013                        | 572 0300                                   |
| 10    | TSS-D 10<br>TSS-Δ 10     | н                                  |                |                | -1510.344132                               | -1510.459022                       | -70/ 0218                                  |
|       | Product 10               | н                                  |                |                | -1510.341303                               | -1510.450720                       | 25 1/6                                     |
|       | Reactant 11              | F                                  |                | н              | -1338 622195                               | -1338 757095                       | 38 1675                                    |
| 11    | TSS 11                   | F                                  |                | н              | -1338 561404                               | -1338 690222                       | -633 2892                                  |
|       | Product 11               | F                                  |                | н              | -1338 725010                               | -1338 841733                       | 3 688                                      |
|       | Reactant 12              | F                                  | CI             | CI             | -1609 675364                               | -1609 789427                       | 120 0446                                   |
| 12    | TSS-B 12                 | F                                  | CI             | CI             | -1609 61549                                | -1609 722475                       | -582 1129                                  |
| 12    | TSS-A 12                 | F                                  | CI             | CI             | -1609 6129                                 | -1609 720007                       | -684 7478                                  |
|       | Product 12               | F                                  | CI             | CI             | -1609.739738                               | -1609.840808                       | 22.5649                                    |

| Entry | Structure                                     | x                                                                                                                                                                                          | Y <sub>1</sub>             | Y <sub>2</sub>       | EE + Thermal<br>Free Energy<br>Corr. (a.u)                  | Electronic<br>Energy (a.u)                                  | Lowest<br>frequency<br>(cm <sup>-1</sup> ) |
|-------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|
| 1     | Reactant 1                                    | N(CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                           | O(CO)Cl                    | H                    | -1372.817042                                                | -1373.033744                                                | 35.9671                                    |
|       | TSS 1                                         | N(CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                           | O(CO)Cl                    | H                    | -1372.742257                                                | -1372.953926                                                | -836.8673                                  |
|       | Product 1                                     | N(CH3)2                                                                                                                                                                                    | O(CO)Cl                    | H                    | -1372.917106                                                | -1373.120713                                                | 31.2334                                    |
| 2     | Reactant 2                                    | N(CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                           | CI                         | CI                   | -1643.907916                                                | -1644.103095                                                | 43.4229                                    |
|       | TSS 2                                         | N(CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                           | CI                         | CI                   | -1643.837653                                                | -1644.025606                                                | -700.6995                                  |
|       | Product 2                                     | N(CH3)2                                                                                                                                                                                    | CI                         | CI                   | -1643.962181                                                | -1644.145735                                                | 19.5719                                    |
| 3     | Reactant 3                                    | NH <sub>2</sub>                                                                                                                                                                            | O(CO)CI                    | H                    | -1294.293944                                                | -1294.457097                                                | 47.1917                                    |
|       | TSSA 3                                        | NH <sub>2</sub>                                                                                                                                                                            | O(CO)CI                    | H                    | -1294.231188                                                | -1294.388481                                                | -856.7606                                  |
|       | Product 3                                     | NH2                                                                                                                                                                                        | O(CO)Cl                    | Н                    | -1294.401017                                                | -1294.550737                                                | 25.9946                                    |
|       | TSSi 3                                        | NH <sub>2</sub>                                                                                                                                                                            | O(CO)CI                    | Н                    | -1294.233116                                                | -1294.389811                                                | -542.4581                                  |
|       | Int 3                                         | $NH_2$                                                                                                                                                                                     | O(CO)CI                    | Н                    | -1294.238657                                                | -1294.396718                                                | 36.7106                                    |
|       | B<br>TSS-int-to-                              | NH <sub>2</sub>                                                                                                                                                                            | O(CO)CI                    | Н                    | -1294.234846                                                | -1294.389876                                                | -424.1904                                  |
|       | A<br>Imine                                    | NH <sub>2</sub>                                                                                                                                                                            | O(CO)CI                    | H                    | -1294.238549                                                | -1294.395941                                                | -380.0193                                  |
|       | Product 3                                     | NH2                                                                                                                                                                                        | O(CO)Cl                    | Н                    | -1294.353673                                                | -1294.498993                                                | 25.2286                                    |
| 4     | Reactant 4                                    | NH2                                                                                                                                                                                        | CI                         | CI                   | -1565.385197                                                | -1565.526399                                                | 108.7459                                   |
|       | TSS-B 4                                       | NH2                                                                                                                                                                                        | CI                         | CI                   | -1565.323424                                                | -1565.457975                                                | -513.7688                                  |
|       | TSS-A 4                                       | NH2                                                                                                                                                                                        | CI                         | CI                   | -1565.45414                                                 | -1565.319062                                                | -853.9383                                  |
|       | Product 4                                     | NH2                                                                                                                                                                                        | CI                         | CI                   | -1565.441655                                                | -1565.571749                                                | 26 6844                                    |
| 5     | Reactant 5                                    | OCH <sub>3</sub>                                                                                                                                                                           | 0(CO)Cl                    | H                    | -1353.441544                                                | -1353.617593                                                | 37.6505                                    |
|       | TSS 5                                         | OCH <sub>3</sub>                                                                                                                                                                           | 0(CO)Cl                    | H                    | -1353.366984                                                | -1353.538272                                                | -801.0666                                  |
|       | Product 5                                     | OCH <sub>3</sub>                                                                                                                                                                           | 0(CO)Cl                    | H                    | -1353.537775                                                | -1353.700499                                                | 19.0107                                    |
| 6     | Reactant 6                                    | OCH <sub>3</sub>                                                                                                                                                                           | CÌ                         | CI                   | -1624.531894                                                | -1624.686347                                                | 48.9481                                    |
|       | TSS-B 6                                       | OCH <sub>3</sub>                                                                                                                                                                           | CI                         | CI                   | -1624.46213                                                 | -1624.61083                                                 | -693.845                                   |
|       | TSS-A 6                                       | OCH <sub>3</sub>                                                                                                                                                                           | CI                         | CI                   | -1624.455053                                                | -1624.603906                                                | -804.9737                                  |
|       | Product 6                                     | OCH <sub>3</sub>                                                                                                                                                                           | CI                         | CI                   | -1624.571441                                                | -1624.715773                                                | 23.4109                                    |
| 7     | Reactant 7                                    | OCH(CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                         | O(CO)CI                    | H                    | -1703.114486                                                | -1432.210512                                                | 29.7043                                    |
|       | TSS 7                                         | OCH(CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                         | O(CO)CI                    | H                    | -1431.903928                                                | -1432.128767                                                | -798.7771                                  |
|       | Product 7                                     | OCH(CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                         | O(CO)CI                    | H                    | -1703.114486                                                | -1703.313427                                                | 32.3372                                    |
| 8     | Reactant 8<br>TSS-B 8<br>TSS-A 8<br>Product 8 | OCH(CH <sub>3</sub> ) <sub>2</sub><br>OCH(CH <sub>3</sub> ) <sub>2</sub><br>OCH(CH <sub>3</sub> ) <sub>2</sub><br>OCH(CH <sub>3</sub> ) <sub>2</sub><br>OCH(CH <sub>3</sub> ) <sub>2</sub> | CI<br>CI<br>CI<br>CI<br>CI | CI<br>CI<br>CI<br>CI | -1703.078107<br>-1703.003183<br>-1702.99663<br>-1703.114491 | -1703.285641<br>-1703.20548<br>-1703.199084<br>-1703.313427 | 22.744<br>-702.5273<br>-814.1151<br>32.3   |
| 9     | Reactant 9                                    | H                                                                                                                                                                                          | O(CO)CI                    | H                    | -1238.965774                                                | -1239.112542                                                | 32.51                                      |
|       | TSS 9                                         | H                                                                                                                                                                                          | O(CO)CI                    | H                    | -1238.890153                                                | -1239.030321                                                | -776.92                                    |
|       | Product 9                                     | H                                                                                                                                                                                          | O(CO)CI                    | H                    | -1239.055829                                                | -1239.186589                                                | 31.98                                      |
| 10    | Reactant<br>10                                | Н                                                                                                                                                                                          | CI                         | CI                   | -1510.061281                                                | -1510.186693                                                | 112.5                                      |
|       | TSS-B 10                                      | H                                                                                                                                                                                          | CI                         | CI                   | -1509.990276                                                | -1510.10823                                                 | -654.3815                                  |
|       | TSS-A 10                                      | H                                                                                                                                                                                          | CI                         | CI                   | -1509.982587                                                | -1510.100822                                                | -788.38                                    |
|       | Product 10                                    | H                                                                                                                                                                                          | CI                         | CI                   | -1510.118694                                                | -1510.230325                                                | 22.86                                      |
| 11    | Reactant                                      | F                                                                                                                                                                                          | O(CO)CI                    | Н                    | -1338.216536                                                | -1338.354736                                                | 37.17                                      |
| 12    | TSS 11                                        | F                                                                                                                                                                                          | O(CO)CI                    | H                    | -1338.135945                                                | -1338.267744                                                | -774.98                                    |
|       | Product 11                                    | F                                                                                                                                                                                          | O(CO)CI                    | H                    | -1338.299644                                                | -1338.422389                                                | 22.73                                      |
|       | Reactant                                      | F                                                                                                                                                                                          | CI                         | Cl                   | -1609.311349                                                | -1609.428219                                                | 120.35                                     |

**Table S8.** All M06-2X/6-31G(d) Electronic, Free Energies, and Frequencies of computed structures for Table 1.

| 12<br>TSS-B 12 | F | CI | CI | -1609 235356 | -1609 34494  | -673 3424 |
|----------------|---|----|----|--------------|--------------|-----------|
| 100 0 12       |   | 01 | 01 | 1000.200000  | 1000.01101   | 070.0121  |
| TSS-A 12       | F | CI | CI | -1609.227388 | -1609.337643 | -787.32   |
| Product 12     | F | CI | CI | -1609.361115 | -1609.464989 | 19.82     |

**Table S9.** All B3LYP-D3(BJ)/6-31G(d) Electronic, Free Energies, and Frequencies of computed structures in intrinsic solvent (cpcm, water).

| Entry      | Structure            | x                                | Y <sub>1</sub> | Y <sub>2</sub> | EE + Thermal<br>Free Energy<br>Corr. (a.u) | Electronic<br>Energy (a.u) | Lowest<br>frequency<br>(cm <sup>-1</sup> ) |
|------------|----------------------|----------------------------------|----------------|----------------|--------------------------------------------|----------------------------|--------------------------------------------|
| 1          | Reactant 1           | N(CH <sub>3</sub> ) <sub>2</sub> | O(CO)CI        | Н              | -1373.343032                               | -1373.555408               | 42.88                                      |
|            | TSS 1                | $N(CH_3)_2$                      | O(CO)CI        | Н              | -1373.287953                               | -1373.495586               | -786.14                                    |
|            | Product 1            | N(CH3)2                          | O(CO)CI        | Н              | -1373.487715                               | -1373.683201               | 17.22                                      |
| 2*         | Reactant 2           | N(CH <sub>3</sub> ) <sub>2</sub> | CI             | CI             | -1644.396437                               | -1644.588048               | 42.12                                      |
|            | TSS-B 2              | N(CH <sub>3</sub> ) <sub>2</sub> | CI             | CI             | -1644.344122                               | -1644.528672               | -604.60                                    |
|            | TSS-A 2              | N(CH <sub>3</sub> ) <sub>2</sub> | CI             | CI             | -1644.346035                               | -1644.53087                | -540.99                                    |
| -          | Product 2A           | N(CH3)2                          | CI             | CI             | -1644.510196                               | -1644.68754                | 11.49                                      |
| 3          | Reactant 3           | NH <sub>2</sub>                  | O(CO)Cl        | Н              | -1294.778706                               | -1294.938171               | 43.68                                      |
|            | TSS-A 3              | NH <sub>2</sub>                  | O(CO)Cl        | Н              | -1294.726598                               | -1294.880931               | -787.76                                    |
|            | Product 3            | NH2                              | O(CO)Cl        | Н              | -1294.922005                               | -1295.063991               | 14.23                                      |
| 4          | Reactant 4           | NH <sub>2</sub>                  | CI             | CI             | -1565.826738                               | -1565.965468               | 116.55                                     |
|            | ISS-A4               | NH <sub>2</sub>                  | CI             | CI             | -1565./81/59                               | -1565.913247               | -550.27                                    |
| -          | Product 4A           | NH2                              | CI             | CI             | -1565.940829                               | -1566.066405               | 18.97                                      |
| 5          | Reactant 5           | OCH <sub>3</sub>                 |                | н              | -1353.949929                               | -1354.122542               | 39.48                                      |
|            | ISS-A5               | OCH <sub>3</sub>                 |                | н              | -1353.890702                               | -1354.058608               | -/55.3                                     |
| <b>C</b> * | Product 5A           |                                  |                | Н              | -1354.0/3///                               | -1354.229315               | 15.05                                      |
| 0          | Reactant 6           |                                  |                |                | -1024.99080                                | -1625.149269               |                                            |
|            |                      |                                  |                |                | -1024.940489                               | -1020.091100               | -001.75                                    |
|            | ISS-A0<br>Droduct 6A |                                  |                |                | -1024.94/208                               | -1020.0922                 | -004.7                                     |
| 7          | Product 0A           |                                  |                |                | -1020.094979                               | -1023.234700               | 20.49                                      |
| /          |                      |                                  |                |                | -1432.33030                                | -1432.703973               | 34.0<br>747.66                             |
|            | Droduct 7A           |                                  |                |                | -1432.479090                               | -1432.700307               | -747.00                                    |
| 8*         | Product /A           |                                  |                |                | 1703 501376                                | 1703 705308                | 0.07                                       |
| 0          |                      |                                  |                |                | -1703.591370                               | -1703.733300               | -552 72                                    |
|            | Product 84           |                                  |                |                | -1703.690807                               | -1703.730703               | 16 5                                       |
| 9          | Reactant 9           | Н                                |                | н              | -1239 424297                               | -1239 56791                | 40.28                                      |
| 3          |                      | н                                |                | н              | -1239.424237                               | -1239.30731                | -719 89                                    |
|            | Product 9A           | Н                                |                | н              | -1239 544233                               | -1239.43333                | 26.02                                      |
|            | Reactant             |                                  | 0(00)0         |                | 1203.044200                                | 1200.070122                | 20.02                                      |
| 10         | 10                   | Н                                | CI             | CI             | -1510 477204                               | -1510 599905               | 110                                        |
|            | TSS-B 10             | н                                | CI             | CI             | -1510.426098                               | -1510.540431               | -520.35                                    |
|            | Product              |                                  |                | 0.             | 10101120000                                |                            | 020.00                                     |
|            | 10B                  | Н                                | CI             | CI             | -1510.529307                               | -1510.638275               | 20.85                                      |
|            | Reactant             | -                                |                |                |                                            |                            |                                            |
| 11         | 11                   | F                                | 0(00)0         | н              | -1338.704305                               | -1338.839189               | 39.95                                      |
|            | TSS-A 11             | F                                | O(CO)CI        | Н              | -1338.635694                               | -1338.764652               | -694.32                                    |
|            | Product              | F                                |                | ы              |                                            |                            |                                            |
|            | 11A                  | Г                                |                | п              | -1338.813084                               | -1338.929671               | 17.87                                      |
| 10         | Reactant             | F                                | CI             | CI             |                                            |                            |                                            |
| 12         | 12                   | I <sup></sup>                    | G              | G              | -1609.755747                               | -1609.86987                | 115.13                                     |
|            | TSS-B 12             | F                                | CI             | CI             | -1609.69784                                | -1609.803533               | -530.86                                    |
|            | Product              | F                                | CI             | CI             |                                            |                            |                                            |
|            | 12B                  | 1                                | 0              | 0              | -1609.794666                               | -1609.896309               | 35.21                                      |

<sup>\*</sup>Note: Entries that switch their kinetic product selectivity in implicit solvent are highlighted in red. IRC calculations that confirm this switch will be provided at the end of S8. Entries 2 and 6 switched their kinetic product from B to A due to a change in activation barriers when implicit solvent is included at B3LYP-D3(BJ). For entries 2 and 6, we fail to identify TSS-A as a viable TSS at M06-2X, hence these entries agree with our original gas phase results at M06-2X. Entry 8 also changed from B to A, but in this case, there is no viable TSS leading to product B at B3LYP-D3(BJ).

EE + Thermal Lowest Electronic Entry Structure Х  $Y_1$ Y<sub>2</sub> Free Energy frequency Energy (a.u) (cm<sup>-1</sup>) Corr. (a.u) O(CO)CI 1  $N(CH_3)_2$ Н -1373.114057 37.05 Reactant 1 -1372.89712 O(CO)CI -925.22 TSS 1  $N(CH_3)_2$ Н -1372.815972 -1373.027842 N(CH3)2 O(CO)CI 14.44 Product 1 Н -1373.013321 -1373.212297 2 CI 39.99 Reactant 2  $N(CH_3)_2$ CI -1643.986073 -1644.181289 CI TSS-B2  $N(CH_3)_2$ CI -1643.915716 -1644.103804 -743.1 CI Product 2B N(CH3)2 CI -1644.05669 -1644.238625 8.26 3 O(CO)CI Reactant 3  $NH_2$ Н -1294.378861 -1294.541823 42.14 O(CO)CI -948.36 TSSA 3  $NH_2$ Н -1294.307312 -1294.465476 Product 3A NH2 O(CO)CI Н -1294.497261-1294.64324120.34 4 Reactant 4  $NH_2$ CI CI -1565.467556 -1565.60947 115.3 TSS-B4  $NH_2$ CI CI -1565.403303 -1565.535722 -766.26 Product 4B NH2 CI CI -1565.537434 -1565.667722 36.55 5 O(CO)CI Reactant 5 OCH<sub>3</sub> Н -1353.522658 -1353.699891 45.44 O(CO)CI -916.43 TSS-A 5 OCH<sub>3</sub> Н -1353.443945 -1353.615958 Product 5A OCH<sub>3</sub> O(CO)CI Н -1353.629581 -1353.791828 21.49 6 Reactant 6 OCH<sub>3</sub> CI CI -1624.611382 -1624.766952 89.95 TSS-B6 OCH<sub>3</sub> CI CI -1624.543389 -1624.69056 -749.68 Product 6 OCH<sub>3</sub> CI CI -1624.665336 -1624.810237 32.16 7 Reactant 7 OCH(CH<sub>3</sub>)<sub>2</sub> O(CO)CI Н -1431.980281 -1432.210511 29.66 TSS-A7 OCH(CH<sub>3</sub>)<sub>2</sub> O(CO)CI Н -1431.903928 -1432.128767 -798.7771 Product 7A OCH(CH<sub>3</sub>)<sub>2</sub> O(CO)CI Н -1432.079331 -1432.296171 19.91 8 CI -1703.152197 51.8 Reactant 8  $OCH(CH_3)_2$ -1703.360979 CI -763.44 TSS-B8  $OCH(CH_3)_2$ CI CI -1703.083619-1703.284375OCH(CH<sub>3</sub>)<sub>2</sub> CI CI -1703.210141 -1703.405103 19.32 Product 8B 9 O(CO)CI Н Reactant 9 -1239.046936 -1239.194029 38.97 Н O(CO)CI -903.94 TSS 9 Н Н -1238.963594 -1239.104256 Product 9 Н O(CO)CI Н -1239.146539 -1239.275734 -2.14 Reactant 10 н CI CI -1510.141352 -1510.266885 108.88 10 CI CI **TSS-B 10** н -1510.072105 -1510.188576 -644.43CI -919.75 **TSS-A 10** н CI -1510.057159 -1510.175341 Product 10 CI 34.80 Н CI -1510.183873 -1510.297222 Reactant F 11 O(CO)CI Н 36.26 -1338.300378 -1338.438416 11 O(CO)CI F Н -1338.210441 -1338.342822 -892 **TSS-A 11** Product F O(CO)CI Н -1338.388648 -1338.512077 37.92 11A Reactant F 12 CI CI -1609.361115 -1609.46498919.82 12

**Table S10.** All M06-2X/6-31G(d) Electronic, Free Energies, and Frequencies of computed structures intrinsic solvent (cpcm, water).

| TSS-B 12       | F | CI | CI | -1609.317198 | -1609.425225 | -639.99 |  |
|----------------|---|----|----|--------------|--------------|---------|--|
| TSS-A 12       | F | CI | CI | -1609.302987 | -1609.412962 | -917.65 |  |
| Product<br>12B | F | CI | CI | -1609.423909 | -1609.528481 | 34.23   |  |

**Table S11.** All B3LYP-D3(BJ)/6-31G(d) Electronic, Free Energies, and Frequencies of computed structures for Table S5.

| Structure | EE + Thermal     | EE + Thermal Free  | Electronic Energy | Lowest frequency    |
|-----------|------------------|--------------------|-------------------|---------------------|
|           | Enthalpies (a.u) | Energy Corr. (a.u) | (a.u)             | (cm <sup>-1</sup> ) |
| Allene    | -2821.087821     | -2821.135968       | -2821.204282      | 19.7912             |
| TS-I      | -2821.044107     | -2821.085566       | -2821.158695      | -321.0759           |
| Reactant  | -2821.050769     | -2821.091152       | -2821.166432      | 92.0399             |
| TS-II     | -2821.039701     | -2821.081389       | -2821.154758      | -311.7494           |
| Alkyne    | -2821.082196     | -2821.129999       | -2821.19902       | 25.5604             |

**Table S12.** All M06-2X/6-31G(d) Electronic, Free Energies, and Frequencies of computed structures for Table S5.

| Structure | EE + Thermal<br>Enthalpies (a.u) | EE + Thermal Free<br>Energy Corr. (a.u) | Electronic Energy<br>(a.u) | Lowest frequency<br>(cm <sup>-1</sup> ) |
|-----------|----------------------------------|-----------------------------------------|----------------------------|-----------------------------------------|
| Allene    | -2821.01671                      | -2821.063445                            | -2821.134715               | 53.5215                                 |
| TS-I      | -2820.966692                     | -2821.007943                            | -2821.082686               | -296.6608                               |
| Reactant  | -2820.980616                     | -2821.020229                            | -2821.097829               | 112.3043                                |
| TS-II     | -2820.96394                      | -2821.004969                            | -2821.080337               | -294.5554                               |
| Alkyne    | -2821.01562                      | -2821.06227                             | -2821.134059               | 46.7943                                 |

**Table S13.** All M06-2X/6-31G(d) Electronic, Free Energies, and Frequencies of computed structures for Figure 7, "Path A" (i.e. computed structures corresponding to red circles).

| Structure | Electric Field, $F_x$ (a.u.) | Electronic Energy<br>(a.u) | EE + Thermal Free<br>Energy Corr. (a.u) | Lowest frequency<br>(cm <sup>-1</sup> ) |
|-----------|------------------------------|----------------------------|-----------------------------------------|-----------------------------------------|
| TSS       | -0.013                       | -2821.089777               | -2821.01687                             | -279.3364                               |
| Reactant  |                              | -2821.10647                | 112.5578                                | 112.5578                                |
| TSS       | -0.012                       | -2821.088457               | -2821.014915                            | -274.5964                               |
| Reactant  |                              | -2821.105254               | 112.402                                 | 112.402                                 |
| TSS       | -0.011                       | -2821.087261               | -2821.013496                            | -271.0758                               |
| Reactant  |                              | -2821.10413                | 112.2267                                | 112.2267                                |
| TSS       | -0.01                        | -2821.086194               | -2821.012315                            | -269.1069                               |
| Reactant  |                              | -2821.103098               | 112.0283                                | 112.0283                                |
| TSS       | -0.009                       | -2821.085264               | -2821.011173                            | -267.8724                               |
| Reactant  |                              | -2821.102157               | 111.9116                                | 111.9116                                |

| TSS      | -0.008 | -2821.084456 | -2821.01024  | -267.1136 |
|----------|--------|--------------|--------------|-----------|
| Reactant |        | -2821.101307 | 111.5928     | 111.5928  |
| TSS      | -0.007 | -2821.083767 | -2821.009463 | -267.1037 |
| Reactant |        | -2821.100551 | -2821.023071 | 111.3269  |
| TSS      | -0.006 | -2821.083199 | -2821.008892 | -268.1234 |
| Reactant |        | -2821.099885 | -2821.02239  | 111.0864  |
| TSS      | -0.005 | -2821.082775 | -2821.008415 | -268.0966 |
| Reactant |        | -2821.099311 | -2821.021801 | 110.911   |
| TSS      | -0.004 | -2821.08253  | -2821.007962 | -271.8453 |
| Reactant |        | -2821.098828 | -2821.021309 | 110.6961  |
| TSS      | -0.003 | -2821.082405 | -2821.007699 | -276.4384 |
| Reactant |        | -2821.098437 | -2821.020912 | 110.4956  |
| TSS      | -0.002 | -2821.082398 | -2821.007578 | -281.4872 |
| Reactant |        | -2821.098136 | -2821.020609 | 110.3111  |
| TSS      | -0.001 | -2821.082507 | -2821.0076   | -286.3528 |
| Reactant |        | -2821.097927 | -2821.020401 | 110.1429  |
| TSS      | 0      | -2821.08273  | -2821.007943 | -291.0887 |
| Reactant |        | -2821.097829 | -2821.020231 | 112.3043  |
| TSS      | 0.001  | -2821.083068 | -2821.008039 | -295.4792 |
| Reactant |        | -2821.097784 | -2821.020275 | 109.716   |
| TSS      | 0.002  | -2821.083519 | -2821.00845  | -299.399  |
| Reactant |        | -2821.097849 | -2821.020355 | 109.6048  |
| TSS      | 0.003  | -2821.084086 | -2821.008987 | -302.2601 |
| Reactant |        | -2821.098006 | -2821.020529 | 109.4987  |
| TSS      | 0.004  | -2821.084766 | -2821.009651 | -303.9776 |
| Reactant |        | -2821.098254 | -2821.0208   | 109.4028  |
| TSS      | 0.005  | -2821.085561 | -2821.010439 | -304.1189 |
| Reactant |        | -2821.098596 | -2821.021178 | 109.1714  |
| TSS      | 0.006  | -2821.086472 | -2821.011336 | -302.0619 |
| Reactant |        | -2821.099029 | -2821.021632 | 109.2452  |
| TSS      | 0.007  | -2821.087496 | -2821.012311 | -294.783  |

| Reactant |       | -2821.099552 | -2821.022193 | 109.1837  |
|----------|-------|--------------|--------------|-----------|
| TSS      | 0.008 | -2821.088633 | -2821.01339  | -285.5938 |
| Reactant |       | -2821.10017  | -2821.022855 | 109.0863  |
| TSS      | 0.009 | -2821.089878 | -2821.01457  | -272.5679 |
| Reactant |       | -2821.100881 | -2821.023612 | 109.0486  |
| TSS      | 0.01  | -2821.091227 | -2821.015842 | -256.8915 |
| Reactant |       | -2821.101686 | -2821.024479 | 108.8424  |
| TSS      | 0.011 | -2821.092676 | -2821.017202 | -238.9821 |
| Reactant |       | -2821.102581 | -2821.025419 | 109.0563  |
| TSS      | 0.012 | -2821.094219 | -2821.018652 | -219.8945 |
| Reactant |       | -2821.103574 | -2821.026482 | 108.9642  |
| TSS      | 0.013 | -2821.095851 | -2821.020194 | -200.8479 |
| Reactant |       | -2821.104659 | -2821.027629 | 109.0659  |
| TSS      | 0.014 | -2821.097568 | -2821.021827 | -183.4867 |
| Reactant |       | -2821.105844 | -2821.028901 | 108.914   |
| TSS      | 0.015 | -2821.099365 | -2821.023556 | -168.8583 |
| Reactant |       | -2821.107117 | -2821.030245 | 109.1469  |
| TSS      | 0.016 | -2821.101239 | -2821.025385 | -158.5769 |
| Reactant |       | -2821.108495 | -2821.031722 | 108.942   |
| TSS      | 0.017 | -2821.103187 | -2821.027315 | -152.0324 |
| Reactant |       | -2821.109966 | -2821.03329  | 108.8616  |
| TSS      | 0.018 | -2821.10521  | -2821.029335 | -148.3664 |
| Reactant |       | -2821.111536 | -2821.034965 | 109.0456  |
| TSS      | 0.019 | -2821.107307 | -2821.031447 | -145.5935 |
| Reactant |       | -2821.113205 | -2821.036746 | 109.0525  |
| TSS      | 0.02  | -2821.109481 | -2821.033642 | -142.7807 |
| Reactant |       | -2821.114973 | -2821.038633 | 109.1803  |
| TSS      | 0.021 | -2821.111731 | -2821.035932 | -139.1938 |
| Reactant |       | -2821.116844 | -2821.040637 | 109.4014  |
| TSS      | 0.022 | -2821.114059 | -2821.038288 | -132.6079 |
| Reactant |       | -2821.118817 | -2821.042742 | 109.674   |

| TSS      | 0.023 | -2821.116466 | -2821.040741 | -124.8629 |
|----------|-------|--------------|--------------|-----------|
| Reactant |       | -2821.120895 | -2821.044957 | 110.0535  |
| TSS      | 0.024 | -2821.118952 | -2821.043289 | -116.3223 |
| Reactant |       | -2821.12308  | -2821.047284 | 110.5546  |
| TSS      | 0.025 | -2821.121518 | -2821.045934 | -109.9413 |
| Reactant |       | -2821.125373 | -2821.049727 | 111.1831  |
| TSS      | 0.026 | -2821.124166 | -2821.048677 | -106.2372 |
| Reactant |       | -2821.127777 | -2821.052291 | 111.9428  |
| TSS      | 0.027 | -2821.126898 | -2821.051525 | -105.7098 |
| Reactant |       | -2821.130297 | -2821.054978 | 112.8261  |
| TSS      | 0.028 | -2821.129716 | -2821.05447  | -107.2314 |
| Reactant |       | -2821.132935 | -2821.057808 | 113.7877  |
| TSS      | 0.029 | -2821.132626 | -2821.057518 | -110.4882 |
| Reactant |       | -2821.135697 | -2821.060812 | 114.7841  |
| TSS      | 0.03  | -2821.13563  | -2821.060677 | -114.2721 |
| Reactant |       | -2821.138591 | -2821.064034 | 115.7713  |
| TSS      | 0.031 | -2821.138733 | -2821.063952 | -117.9826 |
| Reactant |       | -2821.141634 | -2821.067577 | 116.9822  |

**Table S14.** All M06-2X/6-31G(d) Electronic, Free Energies, and Frequencies of computed structures for Figure 7, "Path B" (i.e. computed structures corresponding to blue squares).

| Structure | Electric Field, <i>F<sub>x</sub></i> | Electronic Energy | EE + Thermal Free  | Lowest frequency |
|-----------|--------------------------------------|-------------------|--------------------|------------------|
| Suucluie  | (a.u.)                               | (a.u)             | Energy Corr. (a.u) | (cm⁻¹)           |
| TSS       | -0.036                               | -2821.160323      | -2821.085022       | -46.0698         |
| Reactant  |                                      | -2821.160658      | -2821.085461       | 119.9547         |
| TSS       | -0.035                               | -2821.156743      | -2821.0813         | -65.8516         |
| Reactant  |                                      | -2821.157214      | -2821.081855       | 119.8376         |
| TSS       | -0.034                               | -2821.153248      | -2821.077677       | -77.8992         |
| Reactant  |                                      | -2821.153874      | -2821.078363       | 119.6616         |
| TSS       | -0.033                               | -2821.149838      | -2821.074148       | -88.7619         |
| Reactant  |                                      | -2821.150638      | -2821.074984       | 119.4433         |
| TSS       | -0.032                               | -2821.146512      | -2821.070708       | -94.7644         |
| Reactant  |                                      | -2821.147503      | -2821.071715       | 119.1926         |
| TSS       | -0.031                               | -2821.143268      | -2821.067364       | -100.2788        |
| Reactant  |                                      | -2821.14447       | -2821.068558       | 118.7734         |
| TSS       | -0.03                                | -2821.140105      | -2821.064107       | -103.3795        |
| Reactant  |                                      | -2821.141538      | -2821.065502       | 118.4925         |
| TSS       | -0.029                               | -2821.137022      | -2821.060939       | -104.4314        |
| Reactant  |                                      | -2821.138705      | -2821.062551       | 118.1926         |

| TSS      | -0.028 | -2821.134017 | -2821.057864 | -102.99   |
|----------|--------|--------------|--------------|-----------|
| Reactant |        | -2821.135971 | -2821.059709 | 117.7567  |
| TSS      | -0.027 | -2821.131089 | -2821.054859 | -99.2838  |
| Reactant |        | -2821.133336 | -2821.056964 | 117.4665  |
| TSS      | -0.026 | -2821.128233 | -2821.051946 | -98.3259  |
| Reactant |        | -2821.130797 | -2821.054326 | 117.0343  |
| TSS      | -0.025 | -2821.125449 | -2821.049119 | -102.7782 |
| Reactant |        | -2821.128354 | -2821.051804 | 116.0789  |
| TSS      | -0.024 | -2821.122733 | -2821.046385 | -112.192  |
| Reactant |        | -2821.126012 | -2821.049358 | 116.1173  |
| TSS      | -0.023 | -2821.120086 | -2821.043729 | -122.1342 |
| Reactant |        | -2821.123761 | -2821.047037 | 115.1904  |
| TSS      | -0.022 | -2821.117509 | -2821.041154 | -130.6959 |
| Reactant |        | -2821.12161  | -2821.044794 | 115.1914  |
| TSS      | -0.021 | -2821.115003 | -2821.038648 | -135.9378 |
| Reactant |        | -2821.119551 | -2821.042669 | 114.5528  |
| TSS      | -0.02  | -2821.112566 | -2821.036214 | -137.747  |
| Reactant |        | -2821.117588 | -2821.040637 | 114.1897  |
| TSS      | -0.019 | -2821.110199 | -2821.033853 | -137.1124 |
| Reactant |        | -2821.115719 | -2821.038703 | 113.8698  |
| TSS      | -0.018 | -2821.107899 | -2821.031566 | -135.374  |
| Reactant |        | -2821.113944 | -2821.036868 | 113.482   |
| TSS      | -0.017 | -2821.105665 | -2821.029361 | -135.126  |
| Reactant |        | -2821.112263 | -2821.035131 | 113.2759  |
| TSS      | -0.016 | -2821.103496 | -2821.027243 | -138.6753 |
| Reactant |        | -2821.110675 | -2821.033491 | 113.1705  |
| TSS      | -0.015 | -2821.101389 | -2821.025207 | -147.1586 |
| Reactant |        | -2821.109181 | -2821.031948 | 112.9719  |
| TSS      | -0.014 | -2821.099346 | -2821.023256 | -159.9379 |
| Reactant |        | -2821.107779 | -2821.030499 | 112.7013  |
| TSS      | -0.013 | -2821.097371 | -2821.021381 | -177.3588 |
| Reactant |        | -2821.10647  | -2821.02915  | 112.5578  |
| TSS      | -0.012 | -2821.095469 | -2821.019581 | -198.3589 |
| Reactant |        | -2821.105254 | -2821.027898 | 112.402   |
| TSS      | -0.011 | -2821.093646 | -2821.017851 | -221.7764 |
| Reactant |        | -2821.10413  | -2821.026742 | 112.2267  |
| TSS      | -0.01  | -2821.091909 | -2821.016187 | -245.1477 |
| Reactant |        | -2821.103098 | -2821.025682 | 112.0283  |
| TSS      | -0.009 | -2821.090266 | -2821.014594 | -266.0546 |
| Reactant |        | -2821.102157 | -2821.024714 | 111.9116  |
| TSS      | -0.008 | -2821.088724 | -2821.013078 | -282.4528 |
| Reactant |        | -2821.101307 | -2821.023846 | 111.5928  |
| TSS      | -0.007 | -2821.087288 | -2821.011652 | -294.2756 |
| Reactant |        | -2821.100551 | -2821.023071 | 111.3269  |
| TSS      | -0.006 | -2821.085962 | -2821.010331 | -301.7698 |
| Reactant |        | -2821.099885 | -2821.02239  | 111.0864  |
| TSS      | -0.005 | -2821.084749 | -2821.009128 | -305.684  |
| Reactant |        | -2821.099311 | -2821.021801 | 110.911   |
| TSS      | -0.004 | -2821.08365  | -2821.008051 | -306.8716 |
| Reactant |        | -2821.098828 | -2821.021309 | 110.6961  |
| TSS      | -0.003 | -2821.082667 | -2821.007102 | -305.9138 |
| Reactant |        | -2821.098437 | -2821.020912 | 110.4956  |
| TSS      | -0.002 | -2821.0818   | -2821.006286 | -303.0472 |
| Reactant |        | -2821.098136 | -2821.020609 | 110.3111  |
| TSS      | -0.001 | -2821.081052 | -2821.005597 | -298.3393 |
| Reactant | -      | -2821.097927 | -2821.020401 | 110.1429  |
| ISS      | 0      | -2821.080422 | -2821.004969 | -292.3049 |

| Reactant -2821.097829  | -2821.020231 | 112.3043  |
|------------------------|--------------|-----------|
| TSS 0.001 -2821.079912 | -2821.004579 | -285.2719 |
| Reactant -2821.097784  | -2821.020275 | 109.716   |
| TSS 0.002 -2821.079522 | -2821.004254 | -277.8535 |
| Reactant -2821.097849  | -2821.020355 | 109.6048  |
| TSS 0.003 -2821.079251 | -2821.00405  | -269.8659 |
| Reactant -2821.098006  | -2821.020529 | 109.4987  |
| TSS 0.004 -2821.0791   | -2821.003987 | -263.2727 |
| Reactant -2821.098254  | -2821.0208   | 109.4028  |
| TSS 0.005 -2821.07907  | -2821.004053 | -256.6789 |
| Reactant -2821.098596  | -2821.021178 | 109.1714  |
| TSS 0.006 -2821.079162 | -2821.004256 | -250.7652 |
| Reactant -2821.099029  | -2821.021632 | 109.2452  |
| TSS 0.007 -2821.079376 | -2821.004595 | -246.4147 |
| Reactant -2821.099552  | -2821.022193 | 109.1837  |
| TSS 0.008 -2821.079715 | -2821.005078 | -241.8906 |
| Reactant -2821.10017   | -2821.022855 | 109.0863  |
| TSS 0.009 -2821.080179 | -2821.00569  | -237.6434 |
| Reactant -2821.100881  | -2821.023612 | 109.0486  |
| TSS 0.01 -2821.080772  | -2821.00639  | -234.5714 |
| Reactant -2821.101686  | -2821.024479 | 108.8424  |

**Energies and Frequencies for selected structures from Figure 5**. These electric field magnitudes were selected as representative of the other data reported in Figure 5 of the main text.

**Table S15.** Selected M06-2X/6-31G(d) Electronic, Free Energies, and Frequencies of computed structures for Figure 5a.

| Structure | Electric<br>Field<br>Orientation | Electric Field<br>Magnitude (a.u.) | Electronic<br>Energy (a.u) | EE + Thermal<br>Free Energy<br>Corr. (a.u) | Lowest frequency (cm <sup>-1</sup> ) |
|-----------|----------------------------------|------------------------------------|----------------------------|--------------------------------------------|--------------------------------------|
| TSS       | - Z                              | 0.009                              | -1353.50695202             | -1353.335235                               | -723.4406                            |
| Reactant  | - Z                              | 0.009                              | -1353.60611140             | -1353.429378                               | 37.4440                              |
| TSS       | + Z                              | 0.005                              | -1353.56420139             | -1353.395154                               | -824.3495                            |
| Reactant  | + Z                              | 0.005                              | -1353.63165352             | -1353.45573                                | 35.8897                              |
| TSS       | - <i>y</i>                       | 0.01                               | -1353.54183977             | -1353.371754                               | -808.8271                            |
| Reactant  | - <i>y</i>                       | 0.01                               | -1353.62393201             | -1353.447870                               | 37.4316                              |
| TSS       | + y                              | 0.01                               | -1353.55922012             | -1353.390339                               | -869.5986                            |
| Reactant  | +y                               | 0.01                               | -1353.63642099             | -1353.460093                               | 42.1180                              |
| TSS       | - X                              | 0.01                               | -1353.55288018             | -1353.382571                               | -849.0915                            |
| Reactant  | - X                              | 0.01                               | -1353.63970206             | -1353.464397                               | 34.6943                              |
| TSS       | + X                              | 0.008                              | -1353.54919698             | -1353.379089                               | -507.3482                            |
| Reactant  | + X                              | 0.008                              | -1353.61313922             | -1353.436501                               | 41.2199                              |

**Table S16.** Selected M06-2X/6-31G(d) Electronic, Free Energies, and Frequencies of computed structures for Figure 5b.

| Structure | Electric<br>Field<br>Orientation | Electric Field<br>Magnitude (a.u.) | Electronic Energy<br>(a.u) | EE + Thermal<br>Free Energy<br>Corr. (a.u) | Lowest frequency (cm <sup>-1</sup> ) |
|-----------|----------------------------------|------------------------------------|----------------------------|--------------------------------------------|--------------------------------------|
| TSS       | - Z                              | 0.01                               | -1624.564579               | -1624.416272                               | -602.7448                            |
| Reactant  | - Z                              | 0.01                               | -1624.673996               | -1624.518702                               | 63.4948                              |
| TSS       | + Z                              | 0.01                               | -1624.676175               | -1624.528013                               | -608.1987                            |
| Reactant  | + Z                              | 0.01                               | -1624.738477               | -1624.587123                               | 50.1178                              |
| TSS       | - <i>y</i>                       | 0.01                               | -1624.611779               | -1624.463329                               | -696.7201                            |
| Reactant  | - <i>y</i>                       | 0.01                               | -1624.686136               | -1624.531186                               | 62.73                                |
| TSS       | + y                              | 0.01                               | -1624.625538               | -1624.477033                               | -713.56                              |
| Reactant  | + y                              | 0.01                               | -1624.700686               | -1624.546627                               | 61.4060                              |
| TSS       | - X                              | 0.008                              | -1624.631917               | -1624.484716                               | -668.17                              |
| Reactant  | - X                              | 0.008                              | -1624.696963               | -1624.542353                               | 59.7804                              |
| TSS       | + X                              | 0.009                              | -1624.620813               | -1624.470985                               | -562.40                              |
| Reactant  | + X                              | 0.009                              | -1624.686898               | -1624.532075                               | 78.6549                              |

S8. Intrinsic Reaction Coordinates (IRCs) of Computed Transition State Structures in Table 1







































































