Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Enantioselective nickel-catalyzed arylative and alkenylative intramolecular 1,2-allylations of tethered allene–ketones

Riccardo Di Sanza,^{†,a,b} Thi Le Nhon Nguyen,^{†,a,b} Naeem Iqbal,^{a,b} Stephen P. Argent,^{§,b} William Lewis,^{§,b} and Hon Wai Lam^{*,a,b}

[†] These authors contributed equally

[§] To whom enquiries regarding X-ray crystallography should be addressed

^a The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom

and

^b School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

Contents

General Information	2
Preparation of Tethered Allene–Ketones	3
Enantioselective Nickel-Catalyzed Arylative and Alkenylative Intramolecular Allylations	17
Further Transformations	35
NMR Spectra	37
HPLC Traces	90
References	.119

General Information

All air-sensitive reactions were carried out under an inert atmosphere using oven-dried apparatus. 2,2,2-Trifluoroethanol (TFE) was purchased from Alfa Aesar and used as received. MeCN was dried and purified by passage through activated alumina columns using a solvent purification system. All commercially available reagents were used as received unless otherwise stated. Petroleum ether refers to Sigma-Aldrich product 24587 (petroleum ether boiling point 40-60 °C). Thin layer chromatography (TLC) was performed on Merck DF Alufoilien 60F254 0.2 mm precoated plates. Compounds were visualized by exposure to UV light or by dipping the plates into solutions of potassium permanganate or vanillin followed by gentle heating. Column chromatography was carried out using silica gel (Fisher Scientific 60 Å particle size 35-70 micron or Fluorochem 60 Å particle size 40-63 micron). Melting points were recorded on a Gallenkamp melting point apparatus and are uncorrected. The solvent of recrystallization is reported in parentheses. Infrared (IR) spectra were recorded on a Bruker platinum ALPHA FTIR spectrometer on the neat compound using the attenuated total refraction technique. NMR spectra were acquired on Bruker Ascend 400 or Ascend 500 spectrometers. ¹H and ¹³C NMR spectra were referenced to external tetramethylsilane via the residual protonated solvent (¹H) or the solvent itself (¹³C). ¹⁹F NMR spectra were referenced through the solvent lock (²H) signal according to the IUPAC-recommended secondary referencing method following Bruker protocols. All chemical shifts are reported in parts per million (ppm). For CDCl₃, the shifts are referenced to 7.26 ppm for ¹H NMR spectroscopy and 77.16 ppm for ¹³C NMR spectroscopy. Abbreviations used in the description of resonances are: s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), sept (septet), br (broad) and m (multiplet) Coupling constants (J) are quoted to the nearest 0.1 Hz. ¹³C NMR assignments were made using the DEPT sequence with secondary pulses at 90° and 135°. High-resolution mass spectra were recorded using electrospray ionization (ESI). X-ray diffraction data were collected at 120 K on an Agilent SuperNova diffractometer using CuKa radiation. Chiral HPLC analysis was performed on an Agilent 1290 series instrument using 4.6×250 mm columns. 2-[2-(Diphenylphosphino)ethyl]pyridine was used as an achiral ligand to obtain authentic racemic compounds.

Preparation of Tethered Allene–Ketones

Preparation of Tethered Allene–Ketone 1a

N-(4-Methoxyphenyl)-2-oxo-2-phenyl-N-(prop-2-yn-1-yl)acetamide (S2). To a

solution of phenylglyoxylic acid (4.69 g, 31.3 mmol) in CH₂Cl₂ (25 mL) at 0 °C under inert atmosphere was added dichloromethyl methyl ether (3.39 mL, 37.5 mmol) dropwise. The mixture was stirred at room temperature for 1.5 h and then diluted with CH₂Cl₂ (80 mL). Na₂CO₃ (26.3 g, 250 mmol) was added, followed by a solution of propargylamine $S1^1$ (4.03) g, 25.0 mmol) in CH₂Cl₂ (20 mL). The mixture was stirred at room temperature for 36 h, quenched with H_2O (100 mL), and extracted with CH_2Cl_2 (2 × 50 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (30% EtOAc/petroleum ether) gave alkyne S2 (6.99 g, 95%) as a white solid. $R_f = 0.36$ (30% EtOAc/petroleum ether); m.p. 83–85 °C (Et₂O); IR 3309, 3275, 2975, 2840, 1651 (C=O), 1508, 1434, 1255, 1240, 1216, 1167, 1020, 944, 837, 713, 619, 582, 540 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.82 (2H, m, ArH), 7.60–7.55 (1H, m, ArH), 7.46–7.41 (2H, m, ArH), 7.17–7.13 (2H, m, ArH), 6.76–6.72 (2H, m, ArH), 4.63 (2H, d, J = 2.5 Hz, NCH₂), 3.73 (3H, s, OCH₃), 2.31 (1H, t, J = 2.5 Hz, ≡CH); ¹³C NMR (101 MHz, CDCl₃) δ 190.5 (C), 166.9 (C), 159.7 (C), 134.5 (CH), 133.5 (C), 131.4 (C), 129.9 (2 × CH), 129.5 (2 × CH), 128.9 (2 × CH), 114.7 (CH), 78.1 (C), 73.2 (CH), 55.5 (CH₃), 38.2 (CH₂); HRMS (ESI) Exact mass calculated for $[C_{18}H_{16}NO_3]^+$ $[M + H]^+$: 294.1125, found: 294.1132.

N-(Buta-2,3-dien-1-yl)-N-(4-methoxyphenyl)-2-oxo-2-phenylacetamide (1a). To a solution of alkyne S2 (5.86 g, 20.0 mmol) in 1,4-dioxane (100 mL) at room temperature under inert atmosphere was added paraformaldehyde (3.00 g, 100

mmol), CuBr (1.43 g, 10.0 mmol), and diisopropylamine (5.61 mL, 40.0 mmol). The reaction was heated at 90 °C for 1 h, cooled to room temperature, filtered through a pad of celite using EtOAc as eluent, and concentrated in vacuo. Purification of the residue by column chromatography (20% EtOAc/petroleum ether) gave allene 1a (2.82 g, 46%) as a 10:1 mixture of rotamers as a pale yellow solid. R_f = 0.42 (30% EtOAc/petroleum ether); m.p. 50-53 °C (EtOAc); IR 2958, 2926, 1960 (C=C=C), 1656 (C=O), 1592, 1509, 1450, 1427, 1297, 1242, 1211, 1169, 1025, 945, 838, 814, 756, 732, 717, 688, 656, 550, 445 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) *major rotamer*: δ 7.87–7.84 (2H, m, Ar**H**), 7.59–7.55 (1H, m, Ar**H**), 7.46–7.41 (2H, m, Ar**H**), 7.08–7.04 (2H, m, Ar**H**), 6.74–6.70 (2H, m, Ar**H**), 5.32 (1H, quin, *J* = 6.6 Hz, CH₂C**H**=), 4.81 (2H, dt, *J* = 6.6, 2.7 Hz, =C**H**₂), 4.45 (2H, dt, *J* = 6.6, 2.7 Hz, NC**H**₂), 3.72 (3H, s, OC**H**₃); *minor rotamer*: δ 8.07–8.05 (2H, m, Ar**H**), 7.69–7.64 (1H, m, Ar**H**), 7.54–7.52 (2H, m, Ar**H**), 7.33–7.30 (2H, m, Ar**H**), 7.00–6.96 (2H, m, Ar**H**), 5.14 (1H, quin, *J* = 6.5 Hz, NCH₂C**H**), 4.59 (2H, dt, *J* = 6.6, 2.7 Hz, =C**H**₂), 4.20 (2H, dt, *J* = 6.5, 2.7 Hz, NC**H**₂CH), 3.84 (3H, s, OC**H**₃); ¹³C NMR (101 MHz, CDCl₃) *major rotamer*: δ 209.8 (C), 191.0 (C), 167.1 (C), 159.4 (C), 134.3 (CH), 133.6 (C), 132.1 (C), 129.8 (2 × CH), 129.5 (2 × CH), 128.9 (2 × CH), 114.6 (2 × CH), 85.9 (CH), 77.0 (CH₂), 55.5 (CH₃), 47.9 (CH₂); *observable signals of minor rotamer*: δ 130.1 (2 × CH), 129.1 (2 × CH), 128.3 (2 × CH), 114.8 (CH); HRMS (ESI) Exact mass calculated for [C₁₉H₁₈NO₃]⁺ [M+H]⁺: 308.1281, found: 308.1278.

Preparation of Tethered Allene–Ketone 1b

2-(Furan-2-yl)-*N***-(4-methoxyphenyl)-2-oxo-***N***-(prop-2-yn-1-yl)acetamide** (S3). To a solution of α-oxo-2-furanacetic acid (1.09 g, 7.76 mmol) in CH₂Cl₂ (15 mL) at 0 °C under inert atmosphere was added dichloromethyl methyl ether

(0.84 mL, 9.31 mmol) dropwise. The mixture was stirred at room temperature for 2 h and then diluted with CH₂Cl₂ (5 mL). Na₂CO₃ (6.58 g, 62.1 mmol) was added, followed by a solution of propargylamine **S1**¹ (1.00 g, 6.21 mmol) in CH₂Cl₂ (5 mL). The mixture was stirred at room temperature for 24 h, quenched with H₂O (20 mL), and extracted with CH₂Cl₂ (2 × 20 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (30% EtOAc/petroleum ether) gave *alkyne* **S3** (1.74 g, 99%) as a pale yellow solid. R_f = 0.29 (30% EtOAc/petroleum ether); m.p. 55–59 °C (Et₂O); IR 3283, 3125, 2835, 1640 (C=O), 1509, 1459, 1390, 1214, 1164, 1023, 928, 881, 801, 768, 724, 617, 585, 540, 408 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (1H, dd, *J* = 1.7, 0.8 Hz, Ar**H**), 7.27–7.26 (1H, m, Ar**H**), 7.21–7.17 (2H, m, Ar**H**), 6.81–6.77 (2H, m, Ar**H**), 6.54 (1H, dd, *J* = 3.6, 1.7 Hz, Ar**H**), 4.58 (2H, d, *J* = 2.5 Hz, NC**H**₂), 3.75 (3H, s, OC**H**₃), 2.28 (1H, t, *J* = 2.5 Hz, **=CH**); ¹³C NMR (101 MHz, CDCl₃)

δ 165.4 (C), 159.8 (C), 150.3 (C), 148.4 (2 × CH), 131.4 (C), 129.6 (2 × CH), 121.4 (C), 114.7 (2 × 2 CH), 112.9 (CH), 77.9 (C), 73.2 (CH), 55.5 (CH₃), 38.4 (CH₂); HRMS (ESI) Exact mass calculated for [C₁₆H₁₃NNaO₄]⁺ [M+Na]⁺: 306.0737, found: 306.0740.

paraformaldehyde (375 mg, 12.5 mmol), CuBr (287 mg, 2.00 mmol), and diisopropylamine (0.70 mL, 5.0 mmol). The reaction was heated at 90 °C for 1 h, cooled to room temperature, filtered through a pad of celite using EtOAc as eluent, and concentrated in vacuo. Purification of the residue by column chromatography (40% EtOAc/petroleum ether) gave allene 1b (293 mg, 39%) as a 10:1 mixture of rotamers as a pale yellow solid. $R_f = 0.41$ (40% EtOAc/petroleum ether); m.p. 79–81 °C (Et₂O); IR 3116, 1967 (C=C=C), 1650 (C=O), 1557, 1456, 1436, 1388, 1248, 1165, 1023, 960, 839, 805, 751, 670, 622, 592, 548, 437 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) major rotamer: δ 7.61 (1H, dd, J = 1.6, 0.7 Hz, ArH), 7.28–7.25 (1H, m, ArH), 7.12–7.08 (2H, m, ArH), 6.79–6.75 (2H, m, ArH), 6.53 (1H, dd, J = 3.6, 1.7 Hz, ArH), 5.28 (1H, quin, J = 6.7 Hz, CH₂CH=), 4.78 (2H, dt, J = 6.6, 2.6 Hz, =CH₂), 4.40 (2H, dt, J = 6.6, 2.6 Hz, NCH₂), 3.75 (3H, s, OCH₃); minor rotamer: δ 7.75 (1H, dd, J = 1.7, 0.7 Hz, ArH), 7.43 (1H, dd, J = 3.6, 0.8 Hz, ArH), 7.28–7.27 (2H, m, ArH), 6.98–6.94 (2H, m, ArH), 6.63 (1H, dd, J = 3.6, 1.6 Hz, ArCH), 5.20 (1H, quin, J = 6.5 Hz, CH₂CH=), 4.66 (2H, dt, $J = 6.6, 2.7 \text{ Hz}, =CH_2$, 4.29 (2H, dt, $J = 6.4, 2.7 \text{ Hz}, NCH_2$), 3.83 (3H, s, OCH₃); ¹³C NMR (101) MHz, CDCl₃) major rotamer: δ 209.8 (C), 178.3 (C), 165.7 (C), 159.5 (C), 150.5 (C), 148.2 (CH), 132.2 (C), 129.6 (2 × CH), 121.1 (CH), 114.7 (2 × CH), 112.8 (CH), 85.7 (CH), 76.9 (CH₂), 55.5 (CH₃), 48.1 (CH₂); observable signals of minor rotamer: δ 148.9 (CH), 128.1 (CH), 114.7 (CH), 113.1 (CH), 110.1 (CH), 87.2 (CH), 55.6 (CH₃), 50.4 (CH₂); HRMS (ESI) Exact mass calculated for $[C_{17}H_{16}NO_4]^+$ $[M+H]^+$: 298.1074, found: 298.1077.

N-(Buta-2,3-dien-1-yl)-4-methoxyaniline (S5)

To a solution of *p*-anisidine (3.14 g, 25.5 mmol) in MeCN (68 mL) at room temperature under inert atmosphere was added allylic tosylate $S4^2$ (3.82 g, 17.0 mmol) and K₂CO₃ (4.70 g, 34.0 mmol), and the mixture was stirred at room temperature for 16 h. The mixture was partitioned between Et₂O (50 mL) and saturated aqueous NaHCO₃ solution (50 mL), and the organic layer was separated and

washed with saturated aqueous NaHCO₃ solution (2 × 30 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (20% EtOAc/petroleum ether) gave *allene* **S5** (1.50 g, 50%) as a pale yellow oil. $R_f = 0.48$ (20% EtOAc/petroleum ether); IR 3387 (NH), 2831, 1954, 1617, 1509, 1463, 1407, 1294, 1232, 1178, 1116, 1034, 847, 817, 517 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.83–6.78 (2H, m, Ar**H**), 6.64–6.60 (2H, m, Ar**H**), 5.33–5.25 (1H, m, NCH₂C**H**), 4.83 (2H, dt, *J* = 6.6, 3.3 Hz, =C**H**₂), 3.76 (3H, s, OC**H**₃), 3.73 (2H, dt, *J* = 6.2, 3.2 Hz, NC**H**₂); ¹³C NMR (101 MHz, CDCl₃) δ 208.3 (C), 152.4 (C), 142.0 (C), 114.9 (2 × CH), 114.7 (2 × CH), 88.9 (CH), 77.0 (CH₂), 55.9 (CH₃), 43.3 (CH₂); HRMS (ESI) Exact mass calculated for [C₁₁H₁₄NO]⁺ [M+H]⁺: 176.1070, found: 176.1071.

N-(Buta-2,3-dien-1-yl)-*N*-(4-methoxyphenyl)-2-oxopropanamide (1c)

To a solution of pyruvic acid (95.1 mg, 1.08 mmol) in CH₂Cl₂ (1 mL) at 0 °C under inert atmosphere was added dichloromethyl methyl ether (117 µL, 1.30 mmol) dropwise. The mixture was stirred at room temperature for 1.5 h and then diluted with CH₂Cl₂ (3.5 mL). Na₂CO₃ (922 mg, 8.70 mmol) was added, followed by a solution of allenylamine S5 (152 mg, 0.87 mmol) in CH₂Cl₂ (0.5 mL). The mixture was stirred at room temperature for 17 h, quenched with H₂O (5 mL), and extracted with CH_2Cl_2 (2 × 5 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated in vacuo. Purification of the residue by column chromatography (40% EtOAc/petroleum ether) gave allene 1c (139 mg, 65%) as a 14:1 mixture of rotamers as a white solid. $R_f = 0.42$ (40%) EtOAc/petroleum ether); m.p. 38–39 °C (Et₂O); IR 3010, 2923, 1955 (C=C=C), 1707, 1641 (C=O), 1509, 1433, 1364, 1302, 1248, 1228, 1164, 1053, 1028, 945, 845, 731, 629, 580, 549, 497, 461, 428 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) major rotamer: δ 7.13–7.09 (2H, m, ArH), 6.89–6.85 (2H, m, ArH), 5.21 (1H, quin, J = 6.6 Hz, CH₂CH=), 4.76 (2H, dt, J = 6.6, 2.7 Hz, =CH₂), 4.30 (2H, dtd, J = 6.6, 2.7 Hz, NCH₂), 3.80 (3H, s, OCH₃), 2.17 (3H, s, CH₃C=O); *minor rotamer*: δ 7.19 (2H, d, J = 8.9 Hz, ArH), 6.92 (2H, d, J = 8.9 Hz, ArH), 5.28–5.26 (1H, m, CH₂CH=), 4.82–4.81 (2H, m, =CH₂), 4.27–4.26 (2H, m, NCH₂), 3.80 (3H, s, OCH₃), 2.49 (3H, s, CH₃C=O); ¹³C NMR (101 MHz, CDCl₃) *major rotamer*: δ 209.7 (C), 198.2 (C), 167.3 (C), 159.6 (C), 132.4 (C), 129.2 (2 × CH), 114.8 (2 × CH), 85.7 (CH), 76.9 (CH₂), 55.6 (CH₃), 47.9 (CH₂), 28.0 (CH₃); observable signals of minor rotamer: δ 128.0 (2 × CH), 114.6 (2 × CH), 88.0 (CH), 78.0 (CH₂), 49.9 (CH₂), 27.7 (CH₃); HRMS (ESI) Exact mass calculated for [C₁₄H₁₆NO₃]⁺ [M+H]⁺: 246.1125, found: 246.1127.

N-(Buta-2,3-dien-1-yl)-N-(4-methoxyphenyl)-2-oxobutanamide (1d)

To a solution of 2-ketobutyric acid (383 mg, 3.75 mmol) in CH₂Cl₂ (1.5 mL) at 0 °C under inert atmosphere was added dichloromethyl methyl ether (0.41 mL, 4.5 mmol) dropwise. The mixture was stirred for 5 h at room temperature and then diluted with CH₂Cl₂ (8 mL). K₂CO₃ (2.07 g, 15.0 mmol) was added followed by a solution of allenylamine S5 (263 mg, 1.50 mmol) in CH₂Cl₂ (0.5 mL). The mixture was stirred at room temperature for 14 h, quenched with H₂O (50 mL), and extracted with CH_2Cl_2 (2 × 50 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated in vacuo. Purification of the residue by column chromatography (20% EtOAc/petroleum ether) gave allene 1d (332 mg, 85%) as a 14:1 mixture of rotamers as a pale yellow amorphous solid. $R_f = 0.30$ (20% EtOAc/petroleum ether); IR 2981, 1955 (C=C=C), 1714, 1645 (C=O), 1509, 1441, 1404, 1295, 1248, 1217, 1171, 1116, 1028, 835, 725, 613, 544 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) major rotamer: δ 7.13-7.08 (2H, m, ArH), 6.88-6.84 (2H, m, ArH), 5.21 (1H, quin, J = 6.6 Hz, CH₂CH=), 4.75 (2H, dt, J = 6.7, 2.7 Hz, =CH₂), 4.29 (2H, dt, J = 6.6, 2.7 Hz, NCH₂), 3.80 (3H, s, OCH₃), 2.52 (2H, q, J = 7.3 Hz, CH_3CH_2), 0.91 (3H, t, J = 7.3 Hz, CH_3CH_2); minor rotamer: δ 7.19–7.11 (2H, m, ArH), 6.93–6.91 (2H, m, ArH), 5.24–5.20 (1H, m, CH₂CH=), 4.79 (2H, dt, J = 6.4, 2.8 Hz, =CH₂), 4.23 (2H, dt, *J* = 6.0, 2.8 Hz, NCH₂), 3.81 (3H, s, OCH₃), 2.89 (2H, q, *J* = 7.2 Hz, CH₃CH₂), 1.18 (3H, t, J = 7.2 Hz, CH₃CH₂); ¹³C NMR (101 MHz, CDCl₃) major rotamer: δ 209.7 (C), 201.6 (C), 167.7 (C), 159.5 (C), 132.4 (C), 129.3 (2 × CH), 114.7 (2 × CH), 85.7 (CH), 76.9 (CH₂), 55.6 (CH₃), 47.9 (CH₂), 33.8 (CH₂), 6.9 (CH₃); observable signals of minor rotamer: δ 209.1 (C), 128.1 (2 × CH), 114.6 (2 × CH), 87.7 (CH), 77.8 (CH₂), 55.6 (CH₃), 50.0 (CH₂), 33.4 (CH₂), 7.1 (CH₃); HRMS (ESI) Exact mass calculated for [C₁₅H₁₈NO₃]⁺ [M+H]⁺: 260.1281, found: 260.1286.

N-(Buta-2,3-dien-1-yl)-N-(4-methoxyphenyl)-3-methyl-2-oxobutanamide (1e)

To a solution of 3-methyl-2-oxobutyryl acid (730 mg, 6.29 mmol) in CH_2Cl_2 (6.5 mL) at 0 °C under inert atmosphere was added dichloromethyl methyl ether (0.68 mL, 7.5 mmol) dropwise. The mixture was stirred at room temperature for 4 h and then diluted with CH_2Cl_2 (10 mL). K_2CO_3 (3.46 g, 25.0 mmol) was added followed by a solution of allenylamine **S5** (438 mg, 2.50 mmol) in CH_2Cl_2 (0.5 mL). The mixture was stirred at room temperature for 17 h, quenched with H_2O (10 mL), and extracted with CH₂Cl₂ (2 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (20% EtOAc/petroleum ether) gave *allene* **1e** (205 mg, 30%) as a 14:1 mixture of rotamers as a pale yellow oil. R_f = 0.39 (20% EtOAc/petroleum ether); IR 2971, 1956 (C=C=C), 1712, 1644 (C=O), 1510, 1463, 1441, 1296, 1248, 1217, 1027, 836, 730, 619, 554 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) *major rotamer*: δ 7.14–7.10 (2H, m, Ar**H**), 6.87–6.83 (2H, m, Ar**H**), 5.22 (1H, quin, *J* = 6.6 Hz, CH₂C**H**=), 4.75 (2H, dt, *J* = 6.7, 2.6 Hz, =C**H**₂), 4.30 (2H, dt, *J* = 6.7, 2.7 Hz, NC**H**₂), 3.80 (3H, s, OC**H**₃), 2.78 (1H, sept, *J* = 6.9 Hz, (CH₃)₂C**H**), 0.98 (6H, d, *J* = 7.0 Hz, (C**H**₃)₂C**H**]), 4.74–4.72 (2H, m, =C**H**₂), 4.19–4.17 (2H, m, NC**H**₂), 3.81 (3H, s, OC**H**₃), 3.27 (1H, sept, *J* = 7.0 Hz, (CH₃)₂C**H**), 1.23 (6H, d, *J* = 7.0 Hz, (C**H**₃)₂C**H**); ¹³C NMR (101 MHz, CDCl₃) *major rotamer*: δ 209.7 (C), 204.5 (C), 167.4 (C), 159.4 (C), 132.4 (C), 129.7 (2 × CH), 114.5 (2 × CH), 85.8 (CH), 76.9 (CH₂), 55.55 (CH₃), 48.1 (CH₂), 38.1 (CH), 17.3 (2 × CH₃); *observable signals of minor rotamer*: δ 209.4 (C), 128.3 (2 × CH), 114.7 (2 × CH), 87.1 (CH), 77.4 (CH₂), 55.59 (CH₃), 50.0 (CH₂), 37.8 (CH), 17.2 (2 × CH₃); HRMS (ESI) Exact mass calculated for [C₁₆H₂₀NO₃]⁺ [M+H]⁺: 274.1438, found: 274.1442.

Preparation of Tethered Allene–Ketone 1f

N-Benzyl-2-oxo-2-phenyl-*N*-(prop-2-yn-1-yl)acetamide (S7). To a solution of phenylglyoxylic acid (2.82 g, 18.8 mmol) in CH_2Cl_2 (20 mL) at 0 °C under inert atmosphere was added dichloromethyl methyl ether (2.04 mL, 22.5 mmol)

dropwise. The mixture was stirred at room temperature for 1.5 h and then diluted with CH₂Cl₂ (50 mL). Na₂CO₃ (15.9 g, 150 mmol) was added followed by a solution of propargylamine **S6**³ (2.18 g, 15.0 mmol) in CH₂Cl₂ (5 mL). The reaction mixture was stirred at room temperature for 47 h, quenched with H₂O (30 mL), and extracted with CH₂Cl₂ (2 × 30 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated *in vacuo* to leave *alkyne* **S7** (4.15 g, >99%) as a 1.7:1 mixture of rotamers as a pale yellow oil. $R_f = 0.46$ (30% EtOAc/petroleum ether); IR 3287, 2978, 1817, 1678, 1643 (C=O), 1440, 1256, 1203, 1175, 947, 722, 696, 660, 596, 460 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) *major rotamer*: δ 8.00-7.98 (2H, m, ArH), 7.67-7.63 (2H, m, ArH), 7.54-7.49 (3H, m, ArH), 7.34-7.31 (3H, m, ArH), 4.53 (2H, s, CH₂Ph), 4.24 (2H, d, *J* = 2.5 Hz, CH₂C=), 2.35 (1H, t, *J* = 2.5 Hz, =CH); *minor rotamer*; δ 8.14-8.12 (1H, m, ArH), 8.00-7.98 (2H, m, ArH), 7.34-7.31 (1H, m, ArH), 4.89 (2H, s, CH₂Ph), 4.24 (2H, m, ArH), 7.34-7.31 (1H, m, ArH), 4.89 (2H, s, CH₂Ph), 4.24 (2H, m, ArH), 7.34-7.31 (1H, m, ArH), 7.48-7.46 (1H, m, ArH), 7.41-7.37 (4H, m, ArH), 7.34-7.31 (1H, m, ArH), 4.89 (2H, s, CH₂Ph) (4H, m, ArH), 7.34-7.31 (1H, m, ArH), 4.89 (2H, s, CH₂Ph) (4H, m, ArH), 7.34-7.31 (1H, m, ArH), 4.89 (2H, s, CH₂Ph) (4H, m, ArH), 7.34-7.31 (1H, m, ArH), 4.89 (2H, s, CH₂Ph) (4H, m, ArH), 7.34-7.31 (1H, m, ArH), 4.89 (2H, s) (

CH₂Ph), 3.91 (2H, d, J = 2.5 Hz, CH₂C=), 2.27 (1H, t, J = 2.5 Hz, =CH); ¹³C NMR (101 MHz, CDCl₃) *major rotamer*: δ 190.8 (C), 166.9 (C), 135.1 (CH), 134.2 (C), 133.1 (C), 130.0 (CH), 129.8 (2 × CH), 129.2 (2 × CH), 128.9 (2 × CH), 128.4 (2 × CH), 77.4 (C), 73.1 (CH), 50.3 (CH₂), 32.2 (CH₂); *minor rotamer*: δ 190.7 (C), 167.0 (C), 135.2 (C), 135.0 (CH), 133.0 (C), 130.7 (CH), 129.1 (2 × CH), 129.0 (CH), 128.9 (CH), 128.7 (2 × CH), 128.5 (CH), 128.2 (CH), 77.0 (C), 74.1 (CH), 46.8 (CH₂), 36.3 (CH₂); HRMS (ESI) Exact mass calculated for [C₁₈H₁₆NO₂]⁺ [M+H]⁺: 278.1176, found: 278.1176.

Ph Ph N-Benzyl-N-(buta-2,3-dien-1-yl)-2-oxo-2-phenylacetamide (1f). To a solution of alkyne S7 (693 mg, 2.50 mmol) in 1,4-dioxane (12.5 mL) at room temperature under inert atmosphere was added paraformaldehyde (375 mg, 12.5 mmol), CuBr

(287 mg, 2.00 mmol), and diisopropylamine (0.70 mL, 5.0 mmol). The reaction was heated at 90 °C for 1 h, cooled to room temperature, filtered through a pad of celite using EtOAc as eluent, and concentrated *in vacuo*. Purification of the residue by column chromatography (20% EtOAc/petroleum ether) gave allene 1f (348 mg, 48%) as a 1.3:1 mixture of rotamers as a colorless oil. $R_f = 0.52$ (30%) EtOAc/petroleum ether); IR 3063, 2929, 1955 (C=C=C), 1677, 1637 (C=O), 1595, 1446, 1360, 1316, 1259, 1202, 1175, 950, 850, 722, 699, 613, 519, 459 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) major rotamer: δ 8.02–7.97 (2H, m, ArH), 7.67–7.62 (2H, m, ArH), 7.53–7.49 (2H, m, ArH), 7.39–7.25 (4H, m, ArH), 5.04 (1H, quin, J = 6.6 Hz, $CH_2CH=$), 4.77 (2H, s, CH_2Ph), 4.74 (2H, dt, J = 6.6, 2.7Hz, =CH₂), 3.74 (2H, dt, J = 6.6, 2.7 Hz, CH₂CH=); minor rotamer: δ 8.02-7.97 (2H, m, ArH), 7.53– 7.49 (2H, m, ArH), 7.39–7.25 (6H, m, ArH), 5.23 (1H, quin, J = 6.5 Hz, CH₂CH=), 4.87 (2H, dt, J = 6.6, 2.8 Hz, =CH₂), 4.42 (2H, s, CH₂Ph), 4.04 (2H, dt, J = 6.5, 2.8 Hz, CH₂CH=); ¹³C NMR (101 MHz, CDCl₃) major rotamer: δ 209.6 (C), 191.2 (C), 167.3 (C), 135.0 (C), 134.8 (CH), 133.3 (C), 129.9 (2 × CH), 129.1 (2 × CH), 129.0 (2 × CH), 128.8 (2 × CH), 128.3 (CH), 86.1 (CH), 77.2 (CH₂), 46.9 (CH₂), 45.7 (CH₂); observable signals of minor rotamer: δ 209.7 (C), 191.4 (C), 167.2 (C), 136.1 (C), 135.0 (CH), 129.9 (2 × CH), 129.1 (2 × CH), 128.9 (2 × CH), 128.3 (2 × CH), 128.0 (CH), 110.1 (C), 85.6 (CH), 77.4 (CH₂), 50.7 (CH₂), 41.8 (CH₂); HRMS (ESI) Exact mass calculated for [C₁₉H₁₈NO₂]⁺ [M+H]⁺: 292.1332, found: 292.1333.

Preparation of Tethered Allene–Ketone 1g

2-Oxo-2-phenyl-N-(prop-2-yn-1-yl)acetamide (S8). То a solution of phenylglyoxylic acid (450 mg, 3.00 mmol) in CH₂Cl₂ (3 mL) under inert atmosphere was added dichloromethyl methyl ether (0.33 mL, 3.60 mmol) dropwise. The mixture was stirred at room temperature for 1.5 h and then diluted with CH₂Cl₂ (6 mL). Na₂CO₃ (2.11 g, 20.0 mmol) was added, followed by a solution of propargylamine (0.20 mL, 3.12 mmol) in CH₂Cl₂ (1 mL). The mixture was stirred at room temperature for 18 h, quenched with H₂O (10 mL), and extracted with CH_2Cl_2 (2 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated in vacuo. Purification of the residue by column chromatography (15% EtOAc/petroleum ether) gave alkyne **S8** (475 mg, 85%) as a white solid. $R_f = 0.23$ (15% EtOAc/petroleum ether); m.p. 87-88 °C (Et₂O); IR 3274 (NH), 1678 (C=O), 1643, 1593, 1550, 1216, 1176, 675, 621, 559, 464 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (2H, d, J = 7.6 Hz, Ar**H**), 7.64 (1H, t, J = 7.4 Hz, Ar**H**), 7.49 (2H, t, J = 7.7 Hz, ArH), 7.28 (1H, br s, NH), 4.19 (2H, dd, J = 5.4, 2.4 Hz, NCH₂), 2.30 (1H, t, J = 2.2 Hz, $\equiv CH$); ¹³C NMR (101 MHz, CDCl₃) δ 186.9 (C), 161.3 (C), 134.8 (CH), 133.2 (C), 131.4 (2 × CH), 128.7 (2 × CH), 78.5 (C), 72.5 (CH), 29.4 (CH₂); HRMS (ESI) Exact mass calcd for $[C_{11}H_9NO_2Na]^+$ $[M + Na]^+$: 210.0525, found: 210.0529.

Ph $\stackrel{\circ}{\longrightarrow}$ *N*-(**Buta-2,3-dien-1-yl**)-2-oxo-2-phenylacetamide (1g). To a solution of alkyne S8 (407 mg, 2.20 mmol) in 1,4-dioxane (11 mL) at room temperature under inert atmosphere was added paraformaldehyde (327 mg, 10.9 mmol), CuBr (158 mg, 1.10 mmol), and diisopropylamine (0.62 mL, 4.40 mmol). The reaction was heated at 90 °C for 1 h, cooled to room temperature, filtered through a pad of celite using EtOAc as eluent, and concentrated *in vacuo*. Purification of the residue by column chromatography (30% EtOAc/petroleum ether) gave *allene* 1g (112 mg, 25%) as a pale yellow amorphous solid. $R_f = 0.47$ (30% EtOAc/petroleum ether); IR 3375 (NH), 1960, 1655 (C=O), 1514, 1449, 1277, 1201, 1178, 864, 746, 690, 615, 494 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.37–8.31 (2H, m, ArH), 7.66–7.59 (1H, m, ArH), 7.48 (2H, t, *J* = 7.7 Hz, ArH), 7.22 (1H, br s, NH), 5.28 (1H, quin, *J* = 6.4 Hz, CH₂CH=), 4.90 (2H, dt, *J* = 6.5, 3.2 Hz, =CH₂), 3.99 (2H, app tt, *J* = 6.0, 3.2 Hz, NCH₂); ¹³C NMR (101 MHz, CDCl₃) δ 208.4 (C), 187.6 (C), 161.6 (C), 134.6 (CH), 133.4 (C), 131.3 (2 × CH), 128.6 (2 × CH), 87.2 (CH), 78.2 (CH₂), 37.6 (CH₂); HRMS (ESI) Exact mass calcd for [C₁₂H₁₂NO₂]⁺ [M+H]⁺: 202.0863, found: 202.0866.

N-(Buta-2,3-dien-1-yl)-4-methyl-N-(2-oxo-2-phenylethyl)benzenesulfonamide (4a)⁴

To a solution of sulfonamide **S9⁵** (400 mg, 1.79 mmol) in acetone (10 mL) was added K₂CO₃ (297 mg, 2.15 mmol) followed by 2-bromoacetophenone (374 mg, 1.88 mmol), and the resulting suspension was stirred at room temperature for 24 h. The reaction was quenched with H₂O (10 mL) and the acetone was removed under reduced pressure. The resulting aqueous phase was extracted with EtOAc (3×10 mL) and the combined organic layers were washed with brine (10 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (5% EtOAc/petroleum ether to 20% EtOAc/petroleum ether) gave allene 4a (470 mg, 78%) as a white solid that displayed spectroscopic data consistent with those reported previously.⁴ $R_f = 0.82$ (20%) EtOAc/petroleum ether); m.p. 69–72 °C (Et₂O); IR 2961, 1956 (C=C=C), 1733, 1686 (C=O), 1596, 1450, 1321, 1296, 1193, 1173, 991, 847, 685, 538 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.96–7.91 (2H, m, ArH), 7.76 (2H, d, J = 8.3 Hz, ArH), 7.62–7.58 (1H, m, ArH), 7.50–7.47 (2H, m, ArH), 7.31 $(2H, d, J = 8.1 \text{ Hz}, \text{Ar}\mathbf{H}), 4.99 (1H, quin, J = 6.9 \text{ Hz}, CH_2CH=), 4.77 (2H, s, O=CCH_2), 4.63 (2H, dt, dt)$ J = 6.6, 2.4 Hz, =CH₂), 3.94 (2H, dt, J = 7.3, 2.5 Hz, NCH₂CH), 2.43 (3H, s, CH₃); ¹³C NMR (126) MHz, CDCl₃) δ 209.9 (C), 194.0 (C), 143.6 (C), 137.0 (C), 135.2 (C), 133.9 (CH), 129.8 (2 × CH), 129.0 (2 × CH), 128.1 (2 × CH), 127.6 (2 × CH), 85.8 (CH), 76.4 (CH₂), 52.1 (CH₂), 47.4 (CH₂), 21.7 (CH₃); HRMS (ESI) Exact mass calculated for [C₁₉H₂₀NO₃S]⁺ [M+H]⁺: 342.1158, found: 342.1169.

N-(Buta-2,3-dien-1-yl)-4-methyl-N-(2-oxopropyl)benzenesulfonamide (4b)⁶

To a solution of sulfonamide **S9**⁵ (558 mg, 2.50 mmol) in acetone (10 mL) was added K₂CO₃ (691 mg, 5.00 mmol) followed by chloroacetone (209 μ L, 2.63 mmol), and the resulting suspension was stirred at room temperature for 24 h. The reaction was quenched with H₂O (10 mL) and the acetone was removed under reduced pressure. The resulting aqueous phase was extracted with EtOAc (3 × 10 mL) and the combined organic layers were washed with brine (10 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (5% EtOAc/petroleum ether to 20% EtOAc/petroleum ether) gave *allene* **4b** (542 mg, 78%) as a colorless oil that displayed spectroscopic data consistent with those reported previously.⁶ R_f = 0.32 (20% EtOAc/petroleum ether); IR 2924, 2928, 2967, 1955 (C=C=C), 1733 (C=O), 1597, 1416, 1153, 1098, 986, 851, 760, 658, 545, 527 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (2H, d, *J* = 8.3 Hz, Ar**H**), 7.31 (2H, d, *J* = 8.1 Hz, Ar**H**), 4.97 (1H, q, *J* = 7.0 Hz, CH₂C**H**=), 4.71 (2H, dt, *J* = 6.6, 2.4 Hz, =C**H**₂),

3.93 (2H, s, O=CCH₂), 3.83 (2H, dt, J = 7.4, 2.4 Hz, NCH₂CH), 2.43 (3H, s, CH₃C=O), 2.21 (3H, s, ArCH₃); ¹³C NMR (126 MHz, CDCl₃) δ 210.1 (C), 204.3 (C), 143.9 (C), 136.3 (C), 129.9 (2 × CH), 127.6 (2 × CH), 85.5 (CH), 76.6 (CH₂), 56.0 (CH₂), 48.2 (CH₂), 27.2 (CH₃), 21.7 (CH₃); HRMS (ESI) Exact mass calculated for [C₁₄H₁₇NaNO₃S]⁺ [M+Na]⁺: 302.0821, found: 302.0822.

2-[Buta-2,3-dien-1-yl(4-methoxyphenyl)amino]-1-phenylethan-1-one (4c)

To a solution of allenylamine **S5** (351 mg, 2.00 mmol) in acetone (10 mL) was added K₂CO₃ (553 mg, 4.00 mmol) followed by bromoacetophenone (478 mg, 2.40 mmol), and the resulting suspension was stirred at room temperature for 26 h. The reaction was quenched with H₂O (10 mL) and the acetone was removed under reduced pressure. The resulting aqueous phase was extracted with EtOAc (3 × 10 mL) and the combined organic layers were washed with brine (10 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (10% EtOAc/petroleum ether) gave *allene* **4c** (469 mg, 80%) as a colorless oil. R_f = 0.41 (10% EtOAc/petroleum ether); IR 2930, 2827, 1954 (C=C=C), 1693 (C=O), 1515, 1263, 1219, 1177, 1033, 966, 846, 805, 757, 721, 692, 519, 504 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.02–8.00 (2H, m, Ar**H**), 7.63–7.58 (1H, m, Ar**H**), 7.51–7.47 (2H, m, Ar**H**), 6.82–6.78 (2H, m, Ar**H**), 6.69–6.65 (2H, m, Ar**H**), 5.24 (1H, quin, *J* = 6.5 Hz, CH₂CH=), 4.74 (2H, dt, *J* = 6.8, 2.8 Hz, =C**H**₂), 4.71 (2H, s, O=CC**H**₂), 4.03 (2H, dt, *J* = 6.1, 2.8 Hz, NC**H**₂CH), 3.74 (3H, s, OC**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 209.2 (C), 196.9 (C), 152.4 (C), 143.0 (C), 135.7 (C), 133.6 (CH), 128.9 (2 × CH), 128.0 (2 × CH), 115.2 (2 × CH), 114.9 (2 × CH), 87.2 (CH), 76.1 (CH₂), 57.7 (CH₂), 55.8 (CH₃), 51.6 (CH₂); HRMS (ESI) Exact mass calculated for [C₁₉H₂₀NO₂]⁺ [M+H]⁺: 294.1489, found: 294.1495.

1-[Buta-2,3-dien-1-yl(4-methoxyphenyl)amino]-3,3-dimethylbutan-2-one (4d)

To a solution of aniline **S10**⁷ (487 mg, 2.20 mmol) in MeCN (8 mL) was added K₂CO₃ (553 mg, 4.00 mmol) followed by allenyl tosylate **S4**² (448 mg, 2.00 mmol), and the resulting suspension was stirred at room temperature for 19 h. The reaction was partitioned between Et₂O (10 mL) and saturated aqueous NaHCO₃ solution (10 mL). The aqueous layer was separated and extracted with Et₂O (3 × 10 mL), and the combined organic layers were washed with saturated aqueous NaHCO₃ solution (2 × 10 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (20% EtOAc/petroleum ether) gave *allene* **4d** (333 mg, 61%) as a pale yellow oil.

 R_f = 0.47 (20% EtOAc/petroleum ether); IR 2968, 1954 (C=C=C), 1716, 1673 (C=O), 1511, 1463, 1364, 1243, 1178, 1032, 835, 812, 730, 549 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.79−6.77 (2H, m, Ar**H**), 6.60−6.58 (2H, m, Ar**H**), 5.17 (1H, quin, *J* = 6.6 Hz, CH₂C**H**=), 4.73 (2H, dt, *J* = 6.6, 2.8 Hz, =C**H**₂), 4.27 (2H, s, O=CC**H**₂), 3.90 (2H, dt, *J* = 6.6, 2.8 Hz, NC**H**₂CH), 3.73 (3H, s, OC**H**₃), 1.22 (9H, s, C(C**H**₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 212.4 (C), 209.2 (C), 152.2 (C), 143.2 (C), 114.9 (2 × CH), 114.8 (2 × CH), 87.4 (CH), 75.9 (CH₂), 55.8 (CH₃), 55.5 (CH₂), 51.2 (CH₂), 43.5 (C), 26.7 (3 × CH₃); HRMS (ESI) Exact mass calculated for [C₁₇H₂₃NNaO₂]⁺ [M+Na]⁺: 296.1621, found: 296.1619.

1-[Buta-2,3-dien-1-yl(4-chlorophenyl)amino]propan-2-one (4e)

To a solution of aniline **S11**⁷ (302 mg, 1.65 mmol) in MeCN (6 mL) was added K₂CO₃ (415 mg, 3.00 mmol) followed by allenyl tosylate **S4**² (336 mg, 1.50 mmol), and the resulting suspension was stirred at room temperature for 24 h. The reaction was partitioned between Et₂O (5 mL) and saturated aqueous NaHCO₃ solution (5 mL). The aqueous layer was separated and extracted with Et₂O (3 × 5 mL), and the combined organic layers were washed with saturated aqueous NaHCO₃ solution (2 × 5 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (20% EtOAc/petroleum ether) gave *allene* **4e** (234 mg, 66%) as a yellow oil. R_f = 0.36 (20% EtOAc/petroleum ether); IR 2961, 1954 (C=C=C), 1727 (C=O), 1596, 1497, 1352, 1226, 1160, 1097, 961, 847, 808, 655, 508 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.17–7.13 (2H, m, Ar**H**), 6.54–6.50 (2H, m, Ar**H**), 5.17 (1H, quin, *J* = 6.6 Hz, CH₂C**H**=), 4.78 (2H, dt, *J* = 6.6, 2.9 Hz, =C**H**₂), 4.00-3.98 (4H, m, O=CC**H**₂ and NC**H**₂CH), 2.16 (3H, s, C**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 209.2 (C), 207.7 (C), 146.6 (C), 129.2 (2 × CH), 122.6 (C), 113.9 (2 × CH), 86.4 (CH), 76.9 (CH₂), 61.4 (CH₂), 51.1 (CH₂), 27.2 (CH₃); HRMS (ESI) Exact mass calculated for [C₁₃H₁₅ClNO]⁺ [M+H]⁺: 236.0837, found: 236.0836.

Dimethyl 2-(buta-2,3-dien-1-yl)-2-(2-oxo-2-phenylethyl)malonate (4f)

To a stirred solution of alkyne **S12**⁸ (1.00 g, 3.50 mmol) in 1,4-dioxane (20 mL) at room temperature under inert atmosphere was added paraformaldehyde (530 mg, 17.7 mmol), CuBr (251 mg, 1.75 mmol), and diisopropylamine (0.98 mL, 12.0 mmol) The reaction was heated at 110 °C for 1 h, cooled to room temperature, diluted with EtOAc, filtered through a pad of silica using EtOAc (200 mL) as eluent, and concentrated *in vacuo*. Purification of the residue by column chromatography (5% EtOAc/petroleum ether to 10% EtOAc/petroleum ether) gave *allene* **4f** (200 mg, 18%) as a colorless oil. R_f = 0.31 (10% EtOAc/petroleum ether); IR 2953, 1954 (C=C=C), 1732 (C=O), 1684 (C=O), 1596, 1434, 1356, 1283, 1199, 1068, 1002, 848, 749, 689, 554 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.02–7.91 (2H, m, Ar**H**), 7.61–7.55 (1H, m, Ar**H**), 7.51–7.43 (2H, m, Ar**H**), 4.97 (1H, tt, *J* = 8.1, 6.6 Hz, CH₂C**H**=), 4.51 (2H, dt, *J* = 6.6, 2.4 Hz, =C**H**₂), 3.76 (6H, s, 2 × CO₂C**H**₃), 3.75 (2H, s, O=CC**H**₂), 2.83 (2H, dt, *J* = 8.1, 2.4 Hz, C**H**₂C=); ¹³C NMR (101 MHz, CDCl₃) δ 210.2 (C), 196.8 (C), 171.0 (2 × C), 136.7 (C), 133.6 (CH), 128.8 (2 × CH), 128.2 (2 × CH), 84.8 (CH), 74.9 (CH₂), 55.7 (C), 53.0 (2 × CH₃), 41.4 (CH₂), 32.9 (CH₂); HRMS (ESI) Exact mass calculated for [C₁₇H₁₈NaO₅]⁺ [M+Na]⁺: 325.1046, found: 325.1051.

N-(Buta-2,3-dien-1-yl)-4-methyl-N-(3-oxo-3-phenylpropyl)benzenesulfonamide (4g)

To a suspension of sulfonamide **S9**⁵ (446 mg, 2.00 mmol), *n*-Bu₄NCl (59 mg, 0.21 mmol), and Na₂CO₃ (424 mg, 4.00 mmol) in toluene (16 mL) at 0 °C and was added 3-chloropropiophenone (371 mg, 2.20 mmol) portionwise and the mixture was stirred at room temperature for 24 h. The reaction was quenched with saturated aqueous NH₄Cl solution (20 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine (2 × 10 mL), dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (5% EtOAc/petroleum ether to 20% EtOAc/petroleum ether) gave *allene* **4g** (618 mg, 87%) as a white solid. $R_f = 0.59$ (20% EtOAc/petroleum ether); m.p 73–75 °C (Et₂O); IR 2983, 1965 (C=C=C), 1680 (C=O), 1596, 1429, 1321, 1209, 1149, 1092, 995, 936, 861, 838, 808, 740, 685, 538, 509, 426 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.96–7.94 (2H, m, Ar**H**), 7.73–7.70 (2H, m, Ar**H**), 7.61–7.56 (1H, m, Ar**H**), 7.50-7.45 (2H, m, Ar**H**), 7.32–7.28 (2H, m, Ar**H**), 4.97 (1H, quin, *J* = 6.9 Hz, CH₂CH=), 4.70 (2H, dt, *J* = 6.6, 2.5 Hz, =C**H**₂), 3.90 (2H, dt, *J* = 7.1, 2.5 Hz, NC**H**₂CH), 3.59–3.56 (2H, m, CH₂C**H**₂N), 3.41–3.37 (2H,

m, O=CCH₂), 2.42 (3H, s, ArCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 209.6 (C), 198.5 (C), 143.6 (C), 136.7 (C), 136.6 (C), 133.6 (CH), 129.9 (2 × CH), 128.8 (2 × CH), 128.2 (2 × CH), 127.4 (2 × CH), 86.3 (CH), 76.7 (CH₂), 48.3 (CH₂), 43.2 (CH₂), 39.0 (CH₂), 21.7 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₀H₂₂NO₃S]⁺ [M+H]⁺: 356.1315, found: 356.1316.

N-(Buta-2,3-dien-1-yl)-4-methyl-*N*-(3-oxobutyl)benzenesulfonamide (4h)

To a suspension of sulfonamide **S9**⁵ (1.12 g, 5.00 mmol), Na₂CO₃ (1.06 g, 10.0 mmol), and *n*-Bu₄NCl·xH₂O (148 mg, *ca*. 0.500 mmol) in toluene (150 mL) at 0 °C was added methyl vinyl ketone (458 µL, 5.50 mmol) dropwise and the mixture was stirred at room temperature for 24 h. The reaction was quenched with saturated aqueous NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL). The combined organic layers were washed with brine (20 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (5% EtOAc/petroleum ether) gave *allene* **4h** (542 mg, 78%) as a colorless oil. R_f = 0.24 (20% EtOAc/petroleum ether); IR 2924, 1954 (C=C=C), 1713 (C=O), 1598, 1336, 1154, 1097, 847, 815, 727, 656, 545 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (2H, d, *J* = 8.3 Hz, Ar**H**), 7.30 (2H, d, *J* = 8.0 Hz, Ar**H**), 4.90 (1H, quin, *J* = 6.9 Hz, CH₂CH=), 4.70 (2H, dt, *J* = 6.5, 2.5 Hz, =C**H**₂), 3.83 (2H, dt, *J* = 7.0, 2.5 Hz, NC**H**₂CH), 3.39–3.36 (2H, m, O=CCH₂C**H**₂), 2.86–2.82 (2H, m, O=CC**H**₂), 2.42 (3H, s, ArC**H**₃), 2.15 (3H, s, C**H**₃C=O); ¹³C NMR (101 MHz, CDCl₃) δ 209.6 (C), 207.0 (C), 143.6 (C), 136.6 (C), 129.9 (2 × CH), 127.4 (2 × CH), 86.1 (CH), 76.6 (CH₂), 48.0 (CH₂), 43.6 (CH₂), 42.4 (CH₂), 30.4 (CH₃), 21.7 (CH₃); HRMS (ESI) Exact mass calculated for [C₁₅H₂₀NO₃S]⁺ [M+H]⁺: 294.1158, found: 294.1163.

Dimethyl 2-(buta-2,3-dien-1-yl)-2-(3-oxobutyl)malonate (4i)

To a stirred solution of alkyne **S13**⁹ (1.40 g, 6.00 mmol) in 1,4-dioxane (30 mL) at room temperature under inert atmosphere was added paraformaldehyde (900 mg, 30.0 mmol), CuBr (430 mg, 3.00 mmol), and diisopropylamine (1.7 mL, 12.0 mmol) The reaction was heated at 110 °C for 1 h, cooled to room temperature, diluted with EtOAc (50 mL), filtered through a pad of silica using EtOAc (200 mL) as eluent, and concentrated *in vacuo*. Purification of the residue by column chromatography (5% EtOAc/pentane to 20% EtOAc/pentane) gave *allene* **4i** (423 mg, 23%) as a colorless oil. R_f = 0.25 (30% EtOAc/petroleum ether); IR 2954, 1955 (C=C=C), 1729 (C=O), 1435, 1372, 1198, 1093, 1044,

915, 848 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 4.95 (1H, tt, *J* = 8.0, 6.7 Hz, CH₂CH=), 4.67 (2H, dt, *J* = 6.7, 2.4 Hz, =CH₂), 3.72 (6H, s, 2 × OCH₃), 2.60 (2H, dt, *J* = 8.0, 2.5 Hz, CH₂CH=), 2.48–2.44 (2H, m, O=CCH₂), 2.23–2.15 (2H, m, O=CCH₂CH₂), 2.13 (3H, s, CH₃C=O); ¹³C NMR (126 MHz, CDCl₃) δ 210.2 (C), 207.3 (C), 171.4 (2 × C), 84.2 (CH), 74.9 (CH₂), 57.1 (C), 52.7 (2 × CH₃), 38.7 (CH₂), 33.2 (CH₂), 30.1 (CH₃), 26.6 (CH₂); HRMS (ESI) Exact mass calculated for [C₁₃H₁₉NO₅]⁺ [M+H]⁺: 255.1227, found: 255.1227.

1-Phenylhepta-5,6-dien-1-one (4j)

To a solution of alkyne **S14**¹⁰ (517 mg, 3.00 mmol), in 1,4-dioxane (15 mL) at room temperature under inert atmosphere was added paraformaldehyde (455 mg, 15.0 mmol), CuBr (215 mg, 1.50 mmol), and diisopropylamine (0.8 mL, 6.0 mmol). The reaction was heated at reflux for 1 h, cooled to room temperature, diluted with EtOAc (20 mL), filtered through a short plug of silica using EtOAc as eluent, and concentrated *in vacuo*. Purification of the residue by column chromatography (10% EtOAc/petroleum ether) gave *allene* **4j** (309 mg, 55%) as a yellow oil. $R_f = 0.14$ (10% Et₂O/petroleum ether); IR 2936, 1954 (C=C=C), 1681 (C=O), 1597, 1580, 1447, 1226, 1365, 1000, 841 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.00–7.92 (2H, m, Ar**H**), 7.59–7.52 (1H, m, Ar**H**), 7.50–7.42 (2H, m, Ar**H**), 5.12 (1H, quin, *J* = 6.7 Hz, CH₂CH=), 4.67 (2H, dt, *J* = 6.5, 3.2 Hz, =CH₂), 3.02 (2H, t, *J* = 7.3 Hz, O=CCH₂), 2.15–2.08 (2H, m, CH₂CH=), 1.89 (2H, quin, *J* = 7.3 Hz, CH₂CH₂CH₂); ¹³C NMR (CDCl₃, 101 MHz) δ 208.8 (C), 200.3 (C), 137.2 (C), 133.1 (CH), 128.7 (2 × CH), 128.2 (2 × CH), 89.5 (CH), 75.2 (CH₂), 37.9 (CH₂), 27.9 (CH₂), 23.7 (CH₂); HRMS (ESI) Exact mass calculated for [C₁₃H₁₅O]⁺ [M+H]⁺: 187.1117, found: 187.1121.

3,3-Dimethyl-1-phenylhepta-5,6-dien-1-one (4k)

To a solution of alkyne **S15**¹⁰ (801 mg, 4.00 mmol) in 1,4-dioxane (20 mL) at room temperature under inert atmosphere was added paraformaldehyde (606 mg, 20.0 mmol), CuBr (287 mg, 2.00 mmol), and diisopropylamine (1.1 mL, 8.0 mmol). The reaction was heated at reflux for 1 h, cooled to room temperature, diluted with EtOAc (20 mL), filtered through a short plug of silica using EtOAc as eluent, and concentrated *in vacuo*. Purification of the residue by column chromatography (5% EtOAc/pentane to 20% EtOAc/pentane) gave *allene* **4k** (174 mg, 20%) as a yellow oil. $R_f = 0.41$ (10% EtOAc/petroleum ether); IR 2957, 1953 (C=C=C) 1672 (C=O), 1596, 1579, 1466, 1357, 1222,

1006, 747 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.96–7.89 (2H, m, Ar**H**), 7.62–7.50 (1H, m, Ar**H**), 7.45 (2H, dd, J = 8.4, 7.0 Hz, Ar**H**), 5.09 (1H, tt, J = 8.1, 6.6 Hz, CH₂C**H**=), 4.59 (2H, dt, J = 6.7, 2.4 Hz, =C**H**₂), 2.89 (2H, s, O=CC**H**₂), 2.14 (2H, dt, J = 8.1, 2.4 Hz, C**H**₂CH=), 1.07 (6H, s, 2 × C**H**₃); ¹³C NMR (CDCl₃, 126 MHz) δ 210.1 (C), 200.3 (C), 138.7 (C), 132.9 (CH), 128.6 (2 × CH), 128.3 (2 × CH), 86.2 (CH), 73.7 (CH₂), 47.6 (CH₂), 41.8 (CH₂), 34.9 (C), 27.5 (2 × CH₃); HRMS (ESI) Exact mass calculated for [C₁₅H₁₉O]⁺ [M+H]⁺: 215.1430, found: 215.1431.

Enantioselective Nickel-Catalyzed Arylative and Alkenylative Intramolecular Allylations

General Procedure

To an oven-dried microwave vial charged with a magnetic stirrer, Ni(OAc)₂·4H₂O (3.7 mg, 15 µmol), (*S*)-^tBuPHOX (**L3**, 5.8 mg, 15 µmol), and boronic acid (0.450 mmol) were added. The vial was sealed and flushed with nitrogen or argon for 10 min. TFE (1.5 mL) was added, the solution was immerged in an oil bath pre-heated to 80 °C and stirred for 10 min. The allene (0.300 mmol) was added to a separate vial that was sealed and flushed with argon for 10 min. TFE (0.75 mL) was added to the allene and the resulting solution was added dropwise to the one containing the first vial containing the chiral nickel complex. The vial originally containing the substrate was rinsed with additional TFE (0.75 mL) and the rinsing solution was transferred to the first microwave vial *via* syringe. The reaction mixture was stirred at 80 °C for 24 h, cooled to room temperature, diluted with EtOAc (5 mL), filtered through a short pad of silica (3 cm height × 2 cm wide) using EtOAc (20 mL) as eluent, and concentrated *in vacuo*. If necessary, the crude mixture was purified by column chromatography to give the title compound.

(3S,4R)-3-Hydroxy-1-(4-methoxyphenyl)-3-phenyl-4-(1-phenylvinyl)pyrrolidin2-one (2a). The General Procedure was followed using allene 1a (92.2 mg, 0.300 mmol) and phenylboronic acid (54.9 mg, 0.450 mmol). Filtration through a silica pad

(OH), 2954, 1682 (C=O), 1584, 1508, 1397, 1245, 1179, 1057, 828 cm⁻¹; $[\alpha]_D^{20}$ +16.0 (*c* 1.00, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.61–7.55 (2H, m, Ar**H**), 7.41–7.37 (2H, m, Ar**H**), 7.36–7.20 (8H, m, Ar**H**), 6.98–6.92 (2H, m, Ar**H**), 5.51 (1H, s, =C**H**₂), 5.35 (1H, s, =C**H**₂), 4.03–3.92 (2H, m, C**H**₂N), 3.83 (3H, s, OC**H**₃), 3.79–3.73 (1H, m, C**H**CH₂), 3.20 (1H, s, O**H**); ¹³C NMR (101 MHz, CDCl₃) δ 173.1 (C), 157.3 (C), 146.1 (C), 142.1 (C), 141.9 (C), 131.9 (C), 128.6 (2 × CH), 128.3 (2 × CH), 128.1 (CH), 127.6 (CH), 126.9 (2 × CH), 125.6 (2 × CH), 121.9 (2 × CH), 115.9 (CH₂), 114.4 (2 × CH), 81.2 (C), 55.6 (CH₃), 51.1 (CH₂), 49.9 (CH); HRMS (ESI) Exact mass calculated for [C₂₅H₂₄NO₃]⁺ [M+H]⁺: 386.1751, found: 386.1756; Enantiomeric excess was determined by HPLC with a Chiralpak IC column (80:20 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (minor) = 25.9 min, t_r (major) = 33.3 min, 96% ee.

Slow diffusion of petroleum ether into a solution of **2a** in EtOAc gave crystals that were suitable for X-ray crystallography:

(3*S*,4*R*)-3-(Furan-2-yl)-3-hydroxy-1-(4-methoxyphenyl)-4-(1phenylvinyl)pyrrolidine-2-one (2b). The General Procedure was followed using allene 1b (89.2 mg, 0.300 mmol) and phenylboronic acid (54.9 mg, 0.450 mmol).

Filtration through a silica pad without purification by column chromatography gave the title compound (112 mg, 99%) as a white amorphous solid. $R_f = 0.41$ (40% EtOAc/petroleum ether); [α] $_D^{25}$ +14.8 (*c* 0.27, CHCl₃); IR 3366 (OH), 2955, 1681 (C=O), 1509, 1440, 1399, 1298, 1245, 1150, 1029, 1005, 886, 828, 776, 735, 699, 595, 567, 522 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.52 (2H, m, Ar**H**), 7.39–7.35 (3H, m, Ar**H**), 7.31–7.24 (3H, m, Ar**H**), 6.93–6.90 (2H, m, Ar**H**), 6.36 (1H, dd, *J* = 3.3, 0.9 Hz, Ar**H**), 6.29 (1H, dd, *J* = 3.3, 1.8 Hz, ArC**H**), 5.53 (1H, s, =C**H**₂), 5.31 (1H, s, =C**H**₂), 4.11–4.04 (2H, m, C**H**₂N), 3.94 (1H, dd, *J* = 8.7, 3.1 Hz, C**H**CH₂), 3.80 (3H, s, OC**H**₃), 3.54 (1H, s, O**H**); ¹³C NMR (101 MHz, CDCl₃) δ 170.8 (C), 157.2 (C), 153.5 (C), 145.7 (C), 142.8 (CH), 141.7 (C), 131.9 (C), 128.3 (2 × CH), 127.6 (CH), 126.7 (2 × CH), 121.8 (2 × CH), 115.5 (CH₂), 114.3 (2 × CH), 110.6 (CH), 107.8 (CH), 77.4 (C), 55.6 (CH₃), 51.3 (CH₂), 46.2 (CH); HRMS (ESI) Exact mass calculated for [C₂₃H₂₂NO₄]⁺ [M+H]⁺: 376.1543, found: 376.1542; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (60:40 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C) t_r (major) = 25.2 min, t_r (minor) = 35.5 min, 97% ee.

(3R,4R)-3-Hydroxy-1-(4-methoxyphenyl)-3-methyl-4-(1-

phenylvinyl)pyrrolidin-2-one (2c). The General Procedure was followed using allene **1c** (73.6 mg, 0.300 mmol) and phenylboronic acid (54.9 mg, 0.450 mmol). Filtration through a silica pad without purification by column chromatography gave

the title compound (96 mg, 99%) as a colorless solid. $R_f = 0.21$ (30% EtOAc/petroleum ether); m.p. 122–125 °C (Et₂O); $[\alpha]_D^{25}$ +7.41 (*c* 0.54, CHCl₃); IR 3348 (OH), 2979, 1688 (C=O), 1510, 1469, 1391, 1288, 1244, 1175, 1097, 1030, 944, 889, 827, 774, 700, 596, 555, 524 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.49 (2H, m, Ar**H**), 7.43–7.40 (2H, m, Ar**H**), 7.37–7.26 (3H, m, Ar**H**), 6.92–6.88 (2H, m, Ar**H**), 5.48 (1H, s, =C**H**₂), 5.32 (1H, s, =C**H**₂), 3.92 (2H, app d, *J* = 6.4 Hz, C**H**₂N), 3.80 (3H, s, OC**H**₃), 3.44–3.40 (1H, m, C**H**CH₂), 3.00 (1H, s, O**H**), 1.41 (3H, s, C**H**₃C); ¹³C NMR (101 MHz, CDCl₃) δ 174.0 (C), 156.9 (C), 145.9 (C), 142.4 (C), 132.1 (C), 128.4 (2 × CH), 127.7 (CH), 126.9 (2 × CH), 121.7 (2 × CH), 115.5 (CH₂), 114.2 (2 × CH), 76.4 (C), 55.5 (CH₃), 51.0 (CH₂), 48.1 (CH), 24.4 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₀H₂₂NO₃]⁺ [M+H]⁺: 324.1594, found: 324.1597; Enantiomeric excess was determined by HPLC with a Chiralpak IC column (80:20 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (major) = 26.7 min, t_r (minor) = 31.3 min, 98% ee.

HO Ph

(3*R*,4*R*)-3-Ethyl-3-hydroxy-1-(4-methoxyphenyl)-4-(1-phenylvinyl)pyrrolidin-2-one (2d). The General Procedure was followed using allene 1d (77.8 mg, 0.300 mmol) and phenylboronic acid (54.9 mg, 0.450 mmol). Filtration through a silica pad

^{bh} without purification by column chromatography gave the title compound (101 mg, >99%) as a colorless oil. $R_f = 0.10$ (20% EtOAc/petroleum ether); $[\alpha]_D^{25} +18.6$ (*c* 0.43, CHCl₃); IR 3550 (OH), 2964, 1682 (C=O), 1514, 1488, 1404, 1253, 1157, 1031, 1018, 909, 873, 823, 781, 746, 695, 575, 526, 463 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.50 (2H, m, ArH), 7.44–7.41 (2H, m, ArH), 7.36–7.26 (3H, m, ArH), 6.93–6.89 (2H, m, ArH), 5.45 (1H, s, =CH₂), 5.27 (1H, s, =CH₂), 4.00–3.95 (1H, m, CH₂N), 3.86 (1H, dd, *J* = 10.0, 4.0 Hz, CH₂N), 3.80 (3H, s, OCH₃), 3.52 (1H, dd, *J* = 7.0, 4.0 Hz, CHCH₂), 2.93 (1H, br m, OH), 1.85 (1H, dt, *J* = 14.8, 7.5 Hz, CH₃CH₂), 1.71 (1H, dt, *J* = 14.5, 7.4 Hz, CH₃CH₂), 1.00 (3H, t, *J* = 7.4 Hz, CH₃CH₂); ¹³C NMR (101 MHz, CDCl₃) δ 173.8 (C), 156.9 (C), 147.0 (C), 142.4 (C), 132.1 (C), 128.3 (2 × CH), 127.7 (CH), 126.8 (2 × CH), 121.7 (2 × CH), 115.2 (CH₂), 114.2 (2 × CH), 79.4 (C), 55.5 (CH₃), 51.4 (CH₂), 45.0 (CH), 30.3 (CH₂), 8.3 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₁H₂₄NO₃]⁺ [M+H]⁺: 338.1751, found:

338.1751; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (major) = 32.1 min, t_r (minor) = 49.1 min, >99% ee.

phenylvinyl)pyrrolidin-2-one (2e). The General Procedure was followed using

(3R,4R)-3-Hydroxy-3-isopropyl-1-(4-methoxyphenyl)-4-(1-

allene **1e** (82.0 mg, 0.300 mmol) and phenylboronic acid (54.9 mg, 0.450 mmol). Filtration through a silica pad without purification by column chromatography gave the title compound (105 mg, >99%) as a colorless oil. $R_f = 0.23$ (20% EtOAc/petroleum ether); [α] $_{\rm D}^{25}$ +14.3 (*c* 0.84, CHCl₃); IR 3422 (OH), 2960, 1681 (C=O), 1510, 1465, 1440, 1401, 1291, 1245, 1178, 1159, 1031, 906, 828, 796, 729, 701, 566, 527 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.49 (2H, m, Ar**H**), 7.44–7.41 (2H, m, Ar**H**), 7.36–7.26 (3H, m, Ar**H**), 6.94–6.89 (2H, m, Ar**H**), 5.43 (1H, s, =C**H**₂), 5.24 (1H, s, =C**H**₂), 4.00 (1H, dd, *J* = 10.3, 7.3 Hz, C**H**₂N), 3.80 (3H, s, OC**H**₃), 3.79–3.65 (1H, m, C**H**₂N), 3.60 (1H, dd, *J* = 7.3, 2.6 Hz, C**H**CH₂), 2.80 (1H, s, O**H**), 2.11 (1H, hept, *J* = 6.8 Hz, (CH₃)₂C**H**), 1.06 (3H, d, *J* = 6.9 Hz, (C**H**₃)₂CH), 1.01 (3H, d, *J* = 6.8 Hz, (C**H**₃)₂CH); ¹³C NMR (101 MHz, CDCl₃) δ 174.1 (C), 157.0 (C), 148.3 (C), 142.4 (C), 131.9 (C), 128.3 (2 × CH), 127.6 (CH), 127.0 (2 × CH), 121.8 (2 × CH), 115.3 (CH₂), 114.2 (2 × CH), 81.6 (C), 55.5 (CH₃), 52.3 (CH₂), 43.4 (CH), 35.0 (CH), 17.4 (CH₃), 16.7 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₂H₂₆NO₃]⁺ [M+H]⁺: 352.1907, found: 352.1909; Enantiomeric excess was determined by HPLC with a Chiralpak IC column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (major) = 31.0 min, t_r (minor) = 33.9 min, >99% ee.

(3*S*,4*R*)-1-Benzyl-3-hydroxy-3-phenyl-4-(1-phenylvinyl)pyrrolidin-2-one (2f). Using TFE as the solvent: The General Procedure was followed using allene 1f (87.4 mg, 0.300 mmol) and phenylboronic acid (54.9 mg, 0.450 mmol). Purification

by passing the compound through a short pad of silica using pentane as eluent gave the title compound (110 mg, 99%) as a colorless solid. $R_f = 0.29$ (30% EtOAc/petroleum ether); m.p. 158–162 °C (Et₂O); $[\alpha]_D^{25}$ –31.6 (*c* 0.38, CHCl₃); IR 3326 (OH), 3060, 2912, 1683 (C=O), 1483, 1436, 1340, 1258, 1024, 950, 895, 741, 695, 659, 589, 510, 465 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.31 (5H, m, ArH), 7.30–7.23 (5H, m, ArH), 7.17–7.12 (3H, m, ArH), 7.10–7.07 (2H, m, ArH), 5.43 (1H, d, J = 0.3 Hz, =CH₂), 5.17 (1H, s, =CH₂), 4.70 (1H, d, J = 14.5 Hz, CH₂Ph), 4.51 (1H, d, J = 6.5, 0.9 Hz, CHCH₂), 3.47 (2H, app dd, J = 6.4, 1.2 Hz, CHCH₂), 2.88 (1H, s, OH); ¹³C NMR (101 MHz, CDCl₃) δ 174.2 (C), 145.1 (C), 142.0 (C), 141.8 (C), 135.8 (C), 128.9 (2 × CH), 128.5 (2 × CH), 128.2 (2 × CH), 128.0 (2 × CH), 127.9 (CH), 127.6 (CH), 127.3 (CH), 126.8 (2 × CH), 125.5 (2 × CH), 116.3 (CH₂), 80.2 (C), 50.5 (CH), 49.0 (CH₂),

47.3 (CH₂); HRMS (ESI) Exact mass calculated for $[C_{25}H_{24}NO_2]^+$ [M+H]⁺: 370.1802, found: 370.1803; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (major) = 19.4 min, t_r (minor) = 22.2 min, 87% ee.

Using MeCN as the solvent: A modification of the General Procedure was followed using allene **1f** (87.4 mg, 0.30 mmol) and phenylboronic acid (54.9 mg, 0.45 mmol) but using MeCN in place of TFE as the solvent. Purification by column chromatography (20% EtOAc/petroleum ether) gave the title compound (71.8 mg, 65%) as a colorless solid. $[\alpha]_{D}^{25}$ –34.8 (*c* 0.46, CHCl₃); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (major) = 19.8 min, t_r (minor) = 22.8 min, 99% ee.

EtOAc/petroleum ether); m.p. 57-59 °C (Et₂O); IR 3365 (OH), 2935, 1752 (C=O), 1686 (C=O), 1510, 1247, 1194, 908, 829, 697 cm⁻¹; $[\alpha]_D^{28}$ +16.0 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.53 (2H, m, Ar**H**), 7.42–7.34 (2H, m, Ar**H**), 7.34–7.21 (5H, m, Ar**H**), 6.98–6.88 (4H, m, Ar**H**), 5.48 (1H, s, =C**H**₂), 5.34 (1H, s, =C**H**₂), 3.99–3.92 (2H, m, C**H**₂N), 3.82 (3H, s, OC**H**₃), 3.70 (1H, dd, *J* = 6.5, 4.9 Hz, CHCH₂), 3.31 (1H, s, O**H**), 2.28 (2H, s, CC**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 173.0 (C), 169.5 (C), 157.2 (C), 150.1 (C), 145.1 (C), 142.0 (C), 139.6 (C), 131.9 (C), 128.6 (2 × CH), 128.1 (CH), 128.0 (2 × CH), 125.6 (2 × CH), 121.9 (2 × CH), 121.3 (2 × CH), 116.2 (CH₂), 114.4 (2 × CH), 81.1 (C), 55.6 (CH₃), 51.1 (CH₂), 50.0 (CH), 21.2 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₇H₂₅NNaO₅]⁺ [M+Na]⁺: 466.1625, found: 466.1619; Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (90:10 *iso*-hexane:EtOH, 1.0 mL/min, 210 nm, 25 °C) t_r (minor) = 29.0 min, t_r (major) = 37.0 min, 97% ee.

` OAc

(3S,4R)-4-[1-(4-Chlorophenyl)vinyl]-3-hydroxy-1-(4-methoxyphenyl)-3-phenylpyrrolidin-2-one (2h). The General Procedure was followed using allene 1a (92.2 mg, 0.300 mmol) and 4-chlorophenylboronic acid (70.4 mg, 0.450 mmol). Filtration through a silica pad without purification by column chromatography gave the title compound (125 mg, 99%) as a white solid. R_f = 0.21 (30% EtOAc/petroleum

ether); m.p. 54-56 °C (Et₂O); IR 3401 (OH), 2905, 1672 (C=O), 1511, 1489, 1395, 1247, 1102, 830,

516 cm⁻¹; $[\alpha]_D^{20}$ +12.0 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.54 (2H, m, Ar**H**), 7.34–7.26 (5H, m, Ar**H**), 7.18–7.13 (4H, m, Ar**H**), 6.95–6.91 (2H, m, Ar**H**), 5.45 (1H, s, =C**H**₂), 5.33 (1H, s, =C**H**₂), 3.95 (2H, d, *J* = 5.9 Hz, C**H**₂N), 3.82 (3H, s, OC**H**₃), 3.67 (1H, t, *J* = 5.9 Hz, C**H**CH₂), 3.60 (1H, s, O**H**); ¹³C (101 MHz, CDCl₃) δ 173.1 (C), 157.2 (C), 144.6 (C), 141.9 (C), 140.4 (C), 133.3 (C), 131.8 (C), 128.5 (2 × CH), 128.3 (2 × CH), 128.2 (2 × CH), 128.0 (CH), 125.6 (2 × CH), 121.9 (2 × CH), 116.4 (CH₂), 114.3 (2 × CH), 81.1 (C), 55.6 (CH₃), 50.8 (CH₂), 50.0 (CH); HRMS (ESI) Exact mass calculated for [C₂₅H₂₃CINO₃]⁺ [M+H]⁺: 420.1361, found: 420.1362; Enantiomeric excess was determined by HPLC with a Chiralpak IC column (80:20 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (minor) = 22.1 min, t_r (major) = 29.3 min, 98% ee.

(3S,4R)-3-Hydroxy-1-(4-methoxyphenyl)-3-phenyl-4-[1-(4-vinylphenyl)vinyl]pyrrolidin-2-one (2i). The General Procedure was followed using allene 1a но (92.2 mg, 0.300 mmol) and 4-vinylphenylboronic acid (66.6 mg, 0.450 mmol). Purification by column chromatography (5% EtOAc/pentane to 30% EtOAc/pentane) gave the title compound (87.6 mg, 71%) as a white solid. $R_f = 0.26$ (30%) EtOAc/petroleum ether); m.p. 117-119 °C (Et₂O); IR 3404 (OH), 2921, 1684 (C=O), 1508, 1397, 1244, 1179, 1027, 828, 752, 710 cm⁻¹; $[\alpha]_{D}^{21}$ +8.0 (c 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.56 (2H, m, ArH), 7.42–7.37 (2H, m, ArH), 7.37–7.20 (7H, m, ArH), 7.00–6.90 (2H, m, ArH), 6.68 (1H, dd, J = 17.6, 10.9 Hz, CH=CH₂), 5.72 (1H, dd, J = 17.6, 0.9 Hz, CH=CH₂), 5.53 (1H, s, $C=CH_2$), 5.33 (1H, s, $C=CH_2$), 5.24 (1H, dd, J = 10.9, 0.9 Hz, $CH=CH_2$), 4.05–3.91 (2H, m, CH_2N), 3.83 (3H, s, OCH₃), 3.79–3.72 (1H, m, CHCH₂), 3.10 (1H, s, OH); ¹³C NMR (101 MHz, CDCl₃) δ 173.1 (C), 157.3 (C), 145.7 (C), 142.1 (C), 141.4 (C), 136.9 (C), 136.4 (CH), 131.9 (C), 128.7 (2 × CH), 128.1 (CH), 127.0 (2 × CH), 126.2 (2 × CH), 125.6 (2 × CH), 121.9 (2 × CH), 115.5 (CH₂), 114.4 (2 × CH), 114.0 (CH₂), 81.2 (C), 55.7 (CH₃), 51.1 (CH₂), 49.6 (CH); HRMS (ESI) Exact mass calculated for [C₂₇H₂₆NO₃]⁺ [M+H]⁺: 412.1907, found: 412.1908; Enantiomeric excess was determined by HPLC with a Chiralpak IC column (80:20 iso-hexane:i-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (minor) = 26.5 min, t_r (major) = 33.3 min, 99% ee.

(3S,4R)-4-[1-(4-Fluorophenyl)vinyl]-3-hydroxy-1-(4-methoxyphenyl)-3-

phenylpyrrolidin-2-one (2j). The General Procedure was followed using allene **1a** (92.2 mg, 0.300 mmol) and 3-fluorophenylboronic acid (63.0 mg, 0.450 mmol). Filtration through a silica pad without purification by column chromatography gave the title compound (121 mg, >99%) as a white solid. $R_f = 0.17$ (30%)

EtOAc/petroleum ether); m.p. 120-121 °C (Et₂O); IR 3378 (OH), 2925, 1672 (C=O), 1580, 1512,

1247, 1064, 829, 695, 528 cm⁻¹; $[\alpha]_D^{22}$ +28.0 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.64– 7.54 (2H, m, Ar**H**), 7.40–7.34 (2H, m, Ar**H**), 7.34–7.25 (3H, m, Ar**H**), 7.19 (1H, td, *J* = 8.0, 6.0 Hz, Ar**H**), 7.04 (1H, ddd, *J* = 7.8, 1.7, 1.0 Hz, Ar**H**), 7.00–6.88 (4H, m, Ar**H**), 5.51 (1H, s, =C**H**₂), 5.36 (1H, s, =C**H**₂), 4.03–3.92 (2H, m, C**H**₂N), 3.83 (3H, s, OC**H**₃), 3.73–3.67 (1H, m, C**H**CH₂), 3.21 (1H, s, O**H**); ¹³C (101 MHz, CDCl₃) δ 173.0 (C), 162.7 (d, *J*_{C-F} = 245.6 Hz, C), 157.3 (C), 145.0 (d, *J*_{C-F} = 2.1 Hz, C), 144.3 (d, *J*_{C-F} = 7.6 Hz, C), 141.9 (C), 131.9 (C), 129.7 (d, *J*_{C-F} = 8.3 Hz, CH), 128.7 (2 × CH), 128.2 (CH), 125.5 (2 × CH), 122.6 (d, *J*_{C-F} = 2.8 Hz, CH), 121.8 (2 × CH), 116.6 (CH₂), 114.41 (2 × CH), 114.38 (d, *J*_{C-F} = 21.1 Hz, CH), 114.0 (d, *J*_{C-F} = 22.0 Hz, CH), 81.2 (C), 55.7 (CH₃), 51.0 (CH₂), 49.8 (CH); HRMS (ESI) Exact mass calculated for [C₂₅H₂₂FNNaO₃]⁺ [M+Na]⁺: 426.1476, found: 426.1479; Enantiomeric excess was determined by HPLC with a Chiralpak IC column (80:20 *iso*-hexane:*i*-PrOH), 1.0 mL/min, 254 nm, 25 °C) t_r (minor) = 19.7 min, t_r (major) = 25.1 min, 98% ee.

Ph, N-PMP

3-{1-[(3*R*,4*S*)-4-Hydroxy-1-(4-methoxyphenyl)-5-oxo-4-phenylpyrrolidin-3yl]vinyl}benzonitrile (2k). The General Procedure was followed using allene 1a (92.2 mg, 0.300 mmol) and 3-cyanophenylboronic acid (66.1 mg, 0.450 mmol). Purification by column chromatography (5% EtOAc/pentane to 50% EtOAc/pentane) gave the title compound (111 mg, 90%) as a white solid. $R_f = 0.18$ (30%

EtOAc/petroleum ether); m.p. 76-78 °C (Et₂O); IR 3349 (OH), 2931, 2228 (CN), 1679 (C=O), 1510, 1398, 1246, 1180, 829, 697 cm⁻¹; $[\alpha]_D^{20}$ +16.0 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.53 (2H, m, Ar**H**), 7.47–7.43 (2H, m, Ar**H**), 7.43–7.40 (1H, m, Ar**H**), 7.32–7.25 (6H, m, Ar**H**), 6.97–6.91 (2H, m, Ar**H**), 5.47 (1H, s, =C**H**₂), 5.38 (1H, s, =C**H**₂), 3.97 (2H, d, *J* = 5.9 Hz, C**H**₂N), 3.81 (3H, s, OC**H**₃), 3.65 (1H, td, *J* = 5.9, 1.0 Hz, C**H**CH₂), 3.24 (1H, s, O**H**); ¹³C NMR (101 MHz, CDCl₃) δ 172.9 (C), 157.3 (C), 143.9 (C), 143.1 (C), 141.6 (C), 131.7 (C), 131.5 (CH), 130.9 (CH), 130.7 (CH), 129.0 (CH), 128.6 (2 × CH), 128.3 (CH), 125.5 (2 × CH), 121.9 (2 × CH), 118.8 (CN), 117.9 (CH₂), 114.4 (2 × CH), 112.3 (C), 81.1 (C), 55.6 (CH₃), 50.6 (CH₂), 50.1 (CH); HRMS (ESI) Exact mass calculated for [C₂₆H₂₃N₂O₃]⁺ [M+H]⁺: 411.1703, found: 411.1707; Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (80:20 *iso*-hexane:EtOH, 1.0 mL/min, 254 nm, 25 °C) t_r (minor) = 35.2 min, t_r (major) = 50.2 min, 99% ee.

(3S,4R)-3-Hydroxy-1-(4-methoxyphenyl)-3-phenyl-4-[1-(o-

tolyl)vinyl]pyrrolidin-2-one (2l). The General Procedure was followed using allene **1a** (92.2 mg, 0.300 mmol) and 2-methylphenylboronic acid (61.2 mg, 0.450 mmol). Purification by column chromatography (5% EtOAc/pentane to 30%

EtOAc/pentane) gave the title compound (83.2 mg, 69%) as a white solid. $R_f = 0.43$ (30% EtOAc/petroleum ether); m.p. 147-149 °C (CHCl₃); IR 3373 (OH), 2914, 1673 (C=O), 1511, 1444, 1245, 1032, 962, 828, 616 cm⁻¹; $[\alpha]_D^{25}$ –10.0 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.48 (2H, m, Ar**H**), 7.31–7.21 (5H, m, Ar**H**), 7.15–7.01 (4H, m, Ar**H**), 7.00–6.88 (2H, m, Ar**H**), 5.49 (1H, d, *J* =1.1 Hz, =C**H**₂), 5.21 (1H, d, *J* =1.0 Hz, =C**H**₂), 3.95–3.87 (2H, m, C**H**₂N), 3.82 (3H, s, OC**H**₃), 3.63–3.52 (1H, m, C**H**CH₂), 3.25 (1H, s, O**H**), 2.25 (3H, s, ArC**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 173.3 (C), 157.2 (C), 145.3 (C), 142.0 (C), 141.7 (C), 134.8 (C), 132.0 (C), 130.2 (CH), 128.9 (CH), 128.4 (2 × CH), 127.9 (CH), 127.2 (CH), 125.7 (2 × CH), 125.5 (CH), 122.0 (2 × CH), 117.8 (CH₂), 114.3 (2 × CH), 81.3 (C), 55.6 (CH₃), 51.1 (CH), 50.6 (CH₂), 20.2 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₆H₂₆NO₃]⁺ [M+H]⁺: 400.1907, found: 400.1905; Enantiomeric excess was determined by HPLC with a Chiralpak IC column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (minor) = 39.3 min, t_r (major) = 47.3 min, 84% ee.

(3S,4R)-4-[1-(2-Fluorophenyl)vinyl]-3-hydroxy-1-(4-methoxyphenyl)-3phenylpyrrolidin-2-one (2m). The General Procedure was followed using allene 1a (92.2 mg, 0.300 mmol) and 2-fluorophenylboronic acid (63.0 mg, 0.450 mmol). Purification by column chromatography (5% EtOAc/pentane to 30% EtOAc/pentane) gave the title compound (82.3 mg, 68%) as a white solid. R_f = 0.22 (30%

EtOAc/petroleum ether); m.p. 167-170 °C (Et₂O); IR 3398 (OH), 2844, 1672 (C=O), 1513, 1486, 1303, 1245, 1230, 831, 758 cm⁻¹; $[\alpha]_D^{20}$ –12.0 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.50 (2H, m, Ar**H**), 7.31–7.18 (6H, m Ar**H**), 7.16 (1H, dddd, *J* = 8.2, 7.2, 5.2, 1.9 Hz, Ar**H**), 7.03 (1H, td, *J* = 7.5, 1.2 Hz, Ar**H**), 6.96–6.90 (2H, m, Ar**H**), 6.84 (1H, ddd, *J* = 10.8, 8.2, 1.2 Hz, Ar**H**), 5.46 (1H, s, =C**H**₂), 5.38 (1H, s, =C**H**₂), 4.03 (1H, dd, *J* = 9.8, 5.5 Hz, C**H**₂N), 3.97 (1H, dd, 9.8, 6.6 Hz, C**H**₂N), 3.82 (3H, s, OC**H**₃), 3.77 (1H, ddd, *J*=6.6, 5.5, 1.0 Hz, C**H**CH₂), 3.09 (1H, s, O**H**); ¹³C NMR (101 MHz, CDCl₃) δ 173.1 (C), 159.5 (d, *J*_{C-F} = 245.1 Hz, C), 157.2 (C), 141.3 (d, *J*_{C-F} = 55.8 Hz, C), 132.0 (C), 131.0 (d, *J*_{C-F} = 3.7 Hz, CH), 129.7 (d, *J*_{C-F} = 14.0 Hz, C), 129.2 (d, *J*_{C-F} = 8.6 Hz, CH), 128.4 (2 × CH), 127.9 (CH), 125.7 (2 × CH), 110.1 (C), 81.2 (C), 55.7 (CH₃), 50.4 (d, *J*_{C-F} = 2.8 Hz, CH), 50.3 (CH₂); HRMS (ESI) Exact mass calculated for [C₂₅H₂₃FNO₃]⁺ [M+H]⁺: 404.1656, found: 404.1652; Enantiomeric excess was determined by HPLC with a Chiralpak IC column (85:15 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (minor) = 27.5 min, t_r (major) = 32.9 min, 97% ee.

(3*S*,4*R*)-4-[1-(2-Aminophenyl)vinyl]-3-hydroxy-1-(4-methoxyphenyl)-3-phenylpyrrolidin-2one (2n)

A modification of the General Procedure (in that the pinacol boronate was used instead of the boronic acid) was followed using allene **1a** (92.2 mg, 0.300 mmol) and 2-aminophenylboronic acid pinacol ester (98.6 mg, 0.450 mmol). Purification by column chromatography (20% EtOAc/pentane to 50% EtOAc/pentane) gave the title compound (57.2 mg, 48%) as a white solid. $R_f = 0.13$ (30%) EtOAc/petroleum ether); m.p. 68-70 °C (CHCl₃); IR 3364 (OH), 2927, 1657 (C=O), 1615, 1510, 1325, 1121, 1071, 928, 695 cm⁻¹; $[\alpha]_D^{24}$ –6.00 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (2H, dd, J = 9.2, 2.7 Hz, ArH), 7.40–7.34 (2H, m, ArH), 7.32–7.21 (3H, m, ArH), 7.01 (1H, td, J =7.7, 1.5 Hz, ArH), 6.94–6.86 (3H, m, ArH), 6.67–6.59 (2H, m, ArH), 5.45 (1H, d, J=1.5 Hz, =CH₂), 5.30 (1H, d, J=1.2 Hz, =CH₂), 4.03 (3H, br s, NH₂ and OH), 3.97–3.84 (2H, m, CH₂N), 3.81 (3H, s, OCH₃), 3.70–3.63 (1H, m, CHCH₂); ¹³C NMR (101 MHz, CDCl₃) δ 173.1 (C), 157.2 (C), 143.9 (C), 143.1 (C), 141.9 (C), 132.0 (C), 129.1 (CH), 128.54 (C), 128.51 (2 × CH), 128.46 (CH), 128.0 (CH), 125.7 (2 × CH), 122.1 (2 × CH), 118.8 (CH₂), 118.7 (CH), 116.4 (CH), 114.3 (2 × CH), 81.4 (C), 55.6 (CH₃), 51.5 (CH), 50.4 (CH₂); HRMS (ESI) Exact mass calculated for [C₂₅H₂₅N₂O₃]⁺ [M+H]⁺: 401.1860, found: 401.1862; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (70:30 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 254 nm, 25 °C) t_r (major) = 12.6 min, t_r (minor) = 18.3 min, 56% ee.

(3S,4R)-4-[1-(3-Bromo-5-methylphenyl)vinyl]-3-hydroxy-1-(4-methoxyphenyl)-3-phenylpyrrolidin-2-one (2o). The General Procedure was followed using allene 1a (92.2 mg, 0.300 mmol) and 3-methyl-5-bromophenylboronic acid (96.7 mg, 0.450 mmol). Filtration through a silica pad without purification by column chromatography gave the title compound (143 mg, >99%) as a white solid. R_f = 0.31

(30% EtOAc/petroleum ether); m.p. 59-62 °C (Et₂O); IR 3359 (OH), 2916, 1678 (C=O), 1510, 1442, 1246, 1180, 1140, 1030, 827 cm⁻¹; $[\alpha]_D^{25}$ +20.0 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.55 (2H, m, Ar**H**), 7.36–7.21 (5H, m, Ar**H**), 7.15 (2H, dd, *J* = 1.6, 0.8 Hz, Ar**H**), 6.96–6.91 (2H, m, Ar**H**), 6.84 (1H, td, *J* = 1.5, 0.8 Hz, Ar**H**), 5.48 (1H, s, =C**H**₂), 5.36 (1H, d, *J* = 0.9 Hz, =C**H**₂), 4.02–

3.90 (2H, m, CH₂N), 3.82 (3H, s, OCH₃), 3.64 (1H, t, J = 6.2 Hz CHCH₂), 3.45 (1H, s, OH), 2.19 (3H, d, J = 0.8 Hz, ArCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 173.0 (C), 157.2 (C), 144.3 (C), 143.7 (C), 141.8 (C), 139.8 (C), 131.9 (C), 131.0 (CH), 128.5 (2 × CH), 128.1 (CH), 127.1 (CH), 126.4 (CH), 125.6 (2 × CH), 122.1 (C), 121.9 (2 × CH), 116.8 (CH₂), 114.4 (2 × CH), 81.1 (C), 55.6 (CH₃), 50.9 (CH₂), 50.0 (CH), 21.2 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₆H₂₅BrNO₃]⁺ [M+H]⁺: 478.1012, found: 478.1023; Enantiomeric excess was determined by HPLC with a Chiralpak IC column 90:10 (*iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (minor) = 41.2 min, t_r (major) = 54.2 min, 98% ee.

HO HO CI Fil

(3*S*,4*R*)-4-[1-(3,4-Dichlorophenyl)vinyl]-3-hydroxy-1-(4-methoxyphenyl)-3phenylpyrrolidin-2-one (2p). The General Procedure was followed using allene 1a (92.2 mg, 0.300 mmol) and 3,4-dichlorophenylboronic acid (85.9 mg, 0.450 mmol). Filtration through a silica pad without purification by column chromatography gave

^{\lambda_{Cl}} the title compound (136 mg, >99%) as a white solid. $R_f = 0.27$ (30% EtOAc/petroleum ether); m.p. 61-64 °C (Et₂O); 3348 (OH), 2954, 1677 (C=O), 1509, 1469, 1396, 1244, 1027, 825, 696 cm⁻¹; $[\alpha]_D^{25}$ +8.0 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.53 (2H, m, Ar**H**), 7.32–7.23 (7H, m, Ar**H**), 7.05 (1H, dd, *J* = 8.3, 2.2 Hz, Ar**H**), 6.97–6.91 (2H, m, Ar**H**), 5.47 (1H, s, =C**H**₂), 5.35 (1H, d, *J* = 0.9 Hz, =C**H**₂), 3.96 (2H, d, *J* = 5.9 Hz, C**H**₂N), 3.83 (3H, s, OC**H**₃), 3.66–3.58 (1H, m, C**H**CH₂), 3.42 (1H, s, O**H**); ¹³C NMR (101 MHz, CDCl₃) δ 173.0 (C), 157.3 (C), 143.7 (C), 142.0 (C), 141.7 (C), 132.2 (C), 131.8 (C), 131.4 (C), 130.0 (CH), 129.0 (CH), 128.6 (2 × CH), 128.2 (CH), 126.3 (CH), 125.5 (2 × CH), 121.9 (2 × CH), 117.2 (CH₂), 114.4 (2 × CH), 81.1 (C), 55.6 (CH₃), 50.7 (CH₂), 50.0 (CH); HRMS (ESI) Exact mass calculated for [C₂₅H₂₂Cl₂NO₃]⁺ [M+H]⁺: 454.0971, found: 454.0972; Enantiomeric excess was determined by HPLC with a Chiralpak IC column (80:20 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (minor) = 19.2 min, t_r (major) = 25.3 min, 98% ee.

(3S,4R)-4-[1-(Furan-3-yl)vinyl]-3-hydroxy-1-(4-methoxyphenyl)-3-

phenylpyrrolidin-2-one (2q). The General Procedure was followed using allene **1a** (92.2 mg, 0.300 mmol) and 3-furylboronic acid (50.4 mg, 0.450 mmol). Purification by column chromatography (5% EtOAc/pentane to 30% EtOAc/pentane) gave the title compound (103 mg, 91%) as a white solid as a 7:1 mixture of diastereomers. R_f

= 0.22 (30% EtOAc/petroleum ether); m.p. 160-162 °C (Et₂O); IR 3309 (OH), 2949, 1687 (C=O), 1510, 1396, 1291, 1273, 1214, 906, 698 cm⁻¹; $[\alpha]_D^{25}$ +48.0 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) *major diasteromer*: δ 7.70–7.59 (2H, m, Ar**H**), 7.49–7.42 (2H, m, Ar**H**), 7.42–7.31 (4H, m,

Ar**H**), 7.15 (1H, t, J = 1.2 Hz, Ar**H**), 7.05–6.94 (2H, m, Ar**H**), 6.48 (1H, dd, J = 1.9, 0.9 Hz, Ar**H**), 5.54 (1H, s, =C**H**₂), 5.23 (1H, s, =C**H**₂), 4.05–3.93 (2H, m, C**H**₂N), 3.85 (3H, s, OC**H**₃), 3.57–3.49 (1H, m, C**H**CH₂), 3.23 (1H, s, O**H**); *characteristic signals for the minor diastereomer*: 7.14 (1H, t, J = 1.2 Hz, Ar**H**), 3.35 (1H, s, O**H**); ¹³C NMR (101 MHz, CDCl₃) *major diasteromer*: δ 172.9 (C), 157.3 (C), 143.3 (CH), 142.4 (C), 139.5 (CH), 136.5 (C), 131.9 (C), 128.8 (2 × CH), 128.3 (CH), 127.2 (C), 125.5 (2 × CH), 121.8 (2 × CH), 114.4 (2 × CH), 113.6 (CH₂), 108.8 (CH), 80.8 (C), 55.6 (CH₃), 50.7 (CH₂), 49.9 (CH); HRMS (ESI) Exact mass calculated for [C₂₃H₂₂NO₄]⁺ [M+H]⁺: 376.1543, found: 376.1542; Enantiomeric excess was determined by HPLC with a Chiralpak ODH column (85:15 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (minor) = 18.1 min, t_r (major) = 20.9 min, 91% ee.

(3S,4R)-3-Hydroxy-3-phenyl-4-(1-phenylvinyl)pyrrolidin-2-one (2r). A modificationof the General Procedure (in that the reaction time was 40 h rather than 24 h) was followedusing allene**1g**(60.4 mg, 0.300 mmol) and phenylboronic acid (54.9 mg, 0.450 mmol).Purification by column chromatography (8% MeOH/CH₂Cl₂) gave the title compound $(75.3 mg, 90%) as a white solid. R_f = 0.37 (8% MeOH/CH₂Cl₂); m.p. 200–204 °C (CH₂Cl₂); <math>[\alpha]_D^{25}$ +36.4 (*c* 0.22, (CH₃)₂CO); IR 3263 (OH), 1692 (C=O), 1403, 1279, 1128, 931, 795, 745, 692, 602, 549, 514, 429 cm⁻¹; ¹H NMR (400 MHz, (CD₃)₂SO) δ 8.16 (1H, s, NH), 7.23–7.10 (5H, m, ArH), 7.09–6.96 (5H, m, ArH), 5.88 (1H, s, OH), 5.34 (1H, d, *J* = 1.2 Hz, =CH₂), 5.31 (1H, s, =CH₂), 3.57 (1H, t, *J* = 7.8 Hz, CHCH₂), 3.48-3.38 (2H, m, NCH₂); ¹³C NMR (101 MHz, (CD₃)₂SO) δ 176.1 (C), 144.2 (C), 142.8 (C), 142.1 (C), 127.6 (2 × CH), 127.1 (2 × CH), 126.7 (CH), 126.4 (CH), 126.3 (2 × CH), 126.1 (2 × CH), 116.2 (CH₂), 78.6 (C), 52.1 (CH), 43.6 (CH₂); HRMS (ESI) Exact mass calcd for [C₁₈H₁₇NNaO₂]⁺ [M+Na]⁺: 302.1151, found: 302.1144. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (70:30 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (major) = 10.5 min, t_r (minor) = 18.8 min, 99% ee.

(3S,4R)-4-(Buta-1,3-dien-2-yl)-3-hydroxy-1-(4-methoxyphenyl)-3-phenylpyrrolidin-2-one (3)

A modification of the General Procedure (in that potassium vinyltrifluoroborate was used instead of a boronic acid) was followed using allene **1a** (92.2 mg, 0.300 mmol) and potassium

vinyltrifluoroborate (60.3 mg, 0.450 mmol). Purification by column chromatography (5% EtOAc/pentane to 30% EtOAc/pentane) gave the title compound (83.4 mg, 65%) as a white oil. $R_f = 0.26$ (30% EtOAc/petroleum ether); IR 3369 (OH), 2931, 1681 (C=O), 1593, 1510, 1441, 1399, 1245, 1180, 828 cm⁻¹; $[\alpha]_D^{25}$ +92.0 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.69–7.61 (2H, m, Ar**H**), 7.47–7.40 (2H, m, Ar**H**), 7.40–7.28 (3H, m, Ar**H**), 7.00–6.93 (2H, m, Ar**H**), 6.41 (1H, ddd, *J* = 17.5, 11.0, 0.8 Hz, CH₂=C**H**), 5.36 (1H, s, C**H**₂=C), 5.20 (1H, d, *J* = 1.0 Hz, C**H**₂=C), 5.12 (1H, d, *J* = 17.5 Hz, C**H**₂=CH), 5.04 (1H, dd, *J* = 11.0, 0.9 Hz, CHC**H**₂), 3.93 (1H, dd, *J* = 10.0, 6.8 Hz, C**H**₂N), 3.88–3.84 (1H, m, C**H**₂N), 3.83 (3H, s, OC**H**₃), 3.53 (1H, dd, *J* = 6.8, 4.0 Hz, C**H**CH₂N), 3.18 (1H, s, O**H**); ¹³C NMR (101 MHz, CDCl₃) δ 173.1 (C), 157.2 (C), 143.3 (C), 142.3 (C), 138.8 (CH), 131.9 (C), 128.8 (2 × CH), 128.2 (CH), 125.5 (2 × CH), 121.7 (2 × CH), 117.2 (CH₂), 114.6 (CH₂), 114.4 (2 × CH), 80.8 (C), 55.6 (CH₃), 50.7 (CH₂), 46.3 (CH); HRMS (ESI) Exact mass calculated for [C₂₁H₂₂NO₃]⁺ [M+H]⁺: 336.1594, found: 336.1589; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (90:10 *iso*-hexane:*i*-PrOH), 1.0 mL/min, 230 nm, 25 °C) t_r (minor) = 16.7 min, t_r (major) = 20.6 min, 93% ee.

(3*S*,4*R*)-3-Phenyl-4-(1-phenylvinyl)-1-tosylpyrrolidin-3-ol (5a). The General Ρh HO Procedure was followed using allene 4a (102 mg, 0.300 mmol) and phenylboronic acid (54.9 mg, 0.450 mmol). Purification by column chromatography (20% EtOAc/petroleum ether) gave the title compound (116 mg, 92%) as a colorless amorphous solid. Rf = 0.33 (20% EtOAc/petroleum ether); $[\alpha]_{D}^{25}$ -36.4 (*c* 0.33, CHCl₃); IR 3486 (OH), 2894, 1632, 1595, 1489, 1446, 1292, 1137, 1102, 907, 818, 752, 682, 639, 595, 544, 516, 470 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.78 (2H, m, ArH), 7.38–7.35 (2H, m, ArH), 7.17–7.13 (2H, m, ArH), 7.11–7.01 (6H. m, Ar**H**), 6.88–6.84 (2H, m, Ar**H**), 5.32 (1H, s, =C**H**₂), 5.15 (1H, s, =C**H**₂), 3.92 (1H, dd, J = 9.3, 7.2Hz, CHCH₂), 3.76 (1H, d, J = 11.4 Hz, CCH₂N), 3.75–3.70 (1H, m, CHCH₂), 3.64 (1H, d, J = 11.4 Hz, CCH₂N), 3.54 (1H, dd, J = 11.4, 9.3 Hz, CHCH₂), 2.47 (3H, s, ArCH₃), 2.26 (1H, s, OH); ¹³C NMR (101 MHz, CDCl₃) δ 143.9 (C), 143.7 (C), 141.6 (C), 140.8 (C), 134.0 (C), 129.8 (2 × CH), 128.1 (2 × CH), 128.0 (2 × CH), 127.7 (2 × CH), 127.4 (CH), 127.3 (CH), 126.6 (2 × CH), 125.1 (2 × CH), 117.3 (CH₂), 80.4 (C), 62.8 (CH₂), 53.6 (CH), 51.4 (CH₂), 21.7 (CH₃); HRMS (ESI) Exact mass calculated for $[C_{25}H_{26}NO_3S]^+$ $[M+H]^+$: 420.1628, found: 420.1631; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 iso-hexane:i-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (minor) = 23.0 min, t_r (major) = 31.9 min, 84% ee.

Slow diffusion of petroleum ether into a solution of **5a** in EtOAc gave crystals that were suitable for X-ray crystallography:

(3R,4R)-3-Methyl-4-(1-phenylvinyl)-1-tosylpyrrolidin-3-ol (5b). The General Me Procedure was followed using allene 4b (83.8 mg, 0.300 mmol) and phenylboronic acid (54.9 mg, 0.450 mmol). Purification by column chromatography (20% EtOAc/petroleum ether) gave the title compound (103 mg, 96%) as a colorless oil. $R_f = 0.38$ (20%) EtOAc/petroleum ether); [α] ²⁵_D -80.0 (*c* 0.35, CHCl₃); IR 3512 (OH), 2968, 1626, 1598, 1493, 1380, 1152, 1092, 934, 812, 778, 704, 664, 588, 547 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (2H, d, J = 8.2 Hz, ArH), 7.34 (2H, d, J = 8.2 Hz, ArH), 7.33–7.24 (5H, m, ArH), 5.46 (1H, s, =CH₂), 5.15 (1H, s, =CH₂), 3.75 (1H, dd, J = 9.5, 7.3 Hz, CHCH₂), 3.47–3.42 (2H, m, one of CHCH₂ and one of CCH₂N), 3.35 (1H, d, *J* = 11.0 Hz, CCH₂N), 3.17 (1H, dd, *J* = 11.2, 7.3 Hz, CHCH₂), 2.45 (3H, s, ArCH₃), 1.53 (1H, s, OH), 0.94 (3H, s, CH₃COH); ¹³C NMR (126 MHz, CDCl₃) δ 144.0 (C), 143.6 (C), 142.5 (C), 134.3 (C), 129.8 (2 × CH), 128.8 (2 × CH), 128.1 (CH), 127.7 (2 × CH), 126.6 (2 × CH), 116.8 (CH₂), 77.0 (C), 60.7 (CH₂), 52.0 (CH), 51.4 (CH₂), 25.0 (CH₃), 21.7 (CH₃); HRMS (ESI) Exact mass calculated for $[C_{20}H_{24}NO_3S]^+$ $[M+H]^+$: 358.1471, found: 358.1474; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (90:10 iso-hexane:i-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (minor) = 27.2 min, t_r (major) = 30.6 min, 83% ee.

 $\begin{array}{l} (3S,4R) - 1 - (4 - Methoxyphenyl) - 3 - phenyl - 4 - (1 - phenylvinyl) pyrrolidin - 3 - ol (5c). \\ \hline \\ HO \\ \rightarrow \\ Ph \end{array} \qquad (3S,4R) - 1 - (4 - Methoxyphenyl) - 3 - phenyl - 4 - (1 - phenylvinyl) pyrrolidin - 3 - ol (5c). \\ \hline \\ \\ The General Procedure was followed using allene 4c (87.9 mg, 0.300 mmol) and \\ \\ \\ phenylboronic acid (54.9 mg, 0.450 mmol). Purification by column chromatography (10% EtOAc/pentane) gave the title compound (69.1 mg, 62%) as a pale yellow solid. R_f = 0.47 (20% EtOAc/petroleum ether); m.p. 170 - 174 °C (Et_2O); [\alpha] _D^{25} - 21.1 (c 0.19, CHCl_3); IR 3529 (OH), 2906, \\ 1620, 1511, 1471, 1445, 1371, 1346, 1270, 1238, 1178, 1109, 1038, 898, 815, 766, 664, 596, 511, \\ 410 cm^{-1}; ^{1}H NMR (400 MHz, CDCl_3) \delta 7.40 - 7.37 (2H, m, ArH), 7.21 - 7.16 (2H, m, ArH), 7.15 - \\ 7.10 (4H, m, ArH), 7.07 - 7.03 (2H, m, ArH), 6.90 - 6.86 (2H, m, ArH), 6.58 - 6.53 (2H, m, ArH), 5.46 \\ \end{array}$

(1H, d, J = 0.8 Hz, =CH₂), 5.41 (1H, s, =CH₂), 4.01–3.96 (1H, m, CHCH₂), 3.83 (1H, d, J = 10.0 Hz, CCH₂N), 3.80–3.74 (1H, m, CHCH₂), 3.78 (3H, s, OCH₃), 3.68 (1H, dd, J = 10.1, 9.0 Hz, CHCH₂), 3.63 (1H, d, J = 10.4 Hz, CCH₂N), 2.49 (1H, s, OH); ¹³C NMR (101 MHz, CDCl₃) δ 151.4 (C), 145.8 (C), 142.8 (C), 142.5 (C), 142.4 (C), 128.1 (4 × CH), 127.4 (CH), 127.1 (CH), 126.8 (2 × CH), 125.4 (2 × CH), 116.8 (CH₂), 115.2 (2 × CH), 112.6 (2 × CH), 80.7 (C), 64.5 (CH₂), 56.1 (CH₃), 53.8 (CH), 52.6 (CH₂); HRMS (ESI) Exact mass calculated for [C₂₅H₂₆NO₂]⁺ [M+H]⁺: 372.1958, found: 372.1962; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (major) = 28.8 min, t_r (minor) = 37.0 min, 75% ee.

Using MeCN as the solvent: A modification of the General Procedure was followed using allene **4c** (87.9 mg, 0.30 mmol) and phenylboronic acid (54.9 mg, 0.45 mmol) but using MeCN in place of TFE as the solvent. Purification by column chromatography (20% EtOAc/petroleum ether) gave the title compound (60.4 mg, 54%) as a pale yellow solid. [α] $_{\rm D}^{25}$ –28.6 (*c* 0.28, CHCl₃); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (major) = 29.1 min, t_r (minor) = 37.3 min, 80% ee.

(3S,4R)-3-(tert-Butyl)-1-(4-methoxyphenyl)-4-(1-phenylvinyl)pyrrolidin-3-ol t-Bu _PMP HO (5d). The General Procedure was followed using allene xx (81.9 mg, 0.300 mmol) and phenylboronic acid (54.9 mg, 0.450 mmol). Purification by column chromatography (1% EtOAc/CH₂Cl₂) gave a 7.7:1 inseparable mixture of the title compound and unreacted allene 4d (85.2 mg, 73% yield of 5d, adjusted for the presence of unreacted 4d), as a colorless oil. $R_f = 0.50$ (20% EtOAc/petroleum ether); $[\alpha]_D^{25}$ -47.1 (*c* 0.68, CHCl₃); IR 2965, 1953, 1716, 1673, 1511, 1465, 1365, 1240, 1179, 1036, 974, 905, 812, 775, 710, 547 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.26 (5H, m, ArH), 6.88–6.86 (2H, m, ArH), 6.61–6.54 (2H, m, ArH), 5.55 (1H, s, =CH₂), 5.54 (1H, s, =CH₂), 3.78–3.74 (1H, m, one of CHCH₂), 3.77 (3H, s, OCH₃), 3.67– 3.53 (3H, m, CCH₂N and two of CHCH₂), 3.27 (1H, d, J = 10.3 Hz, CCH₂N), 2.12 (1H, s, OH), 0.86 (9H, s, C(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 151.3 (C), 147.4 (C), 143.5 (C), 142.8 (C), 128.7 (2 × CH), 127.7 (CH), 126.8 (2 × CH), 117.4 (CH₂), 115.2 (2 × CH), 112.6 (2 × CH), 85.0 (C), 58.7 (CH₂), 56.7 (CH₂), 56.1 (CH₃), 46.8 (CH), 37.3 (C), 26.2 (3 × CH₃); HRMS (ESI) Exact mass calculated for $[C_{23}H_{30}NO_2]^+$ $[M+H]^+$: 352.2271, found: 352.2272; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 iso-hexane:i-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (major) = 11.5 min, t_r (minor) = 12.9 min, 99% ee.

Recrystallization of **5d** from EtOAc gave crystals that were suitable for X-ray crystallography:

Me HO

Ph

нο

(3*R*,4*R*)-1-(4-Chlorophenyl)-3-methyl-4-(1-phenylvinyl)pyrrolidin-3-ol (5e). The General Procedure was followed using allene 4e (70.7 mg, 0.300

mmol) and phenylboronic acid (54.9 mg, 0.450 mmol). Purification by column chromatography (10% EtOAc/pentane) gave the title compound (89.3 mg, 91%) as a pale yellow solid. $R_f = 0.43$ (20% EtOAc/petroleum ether); m.p. 90–94 °C (Et₂O); [α] $_D^{25}$ –53.3 (*c* 0.30, CHCl₃); IR 3546 (OH), 2974, 2845, 1629, 1596, 1498, 1471, 1376, 1324, 1184, 1120, 939, 908, 813, 778, 703, 647, 600, 509, 458 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.32 (5H, m, ArH), 7.21–7.17 (2H, m, ArH), 6.49–6.45 (2H, m, ArH), 5.60 (1H, d, *J* = 0.6 Hz, =CH₂), 5.41 (1H, s, =CH₂), 3.68–3.59 (2H, m, CHCH₂), 3.49–3.38 (3H, m, CCH₂N and CHCH₂), 1.94 (1H, s, OH), 1.17 (3H, s, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 146.1 (C), 145.2 (C), 143.1 (C), 129.0 (2 × CH), 128.7 (2 × CH), 127.9 (CH), 126.7 (2 × CH), 120.6 (C), 116.4 (CH₂), 112.4 (2 × CH), 77.1 (C), 61.4 (CH₂), 52.1 (CH), 51.9 (CH₂), 25.4 (CH₃); HRMS (ESI) Exact mass calculated for [C₁₉H₂₁ClNO]⁺ [M+H]⁺: 314.1306, found: 314.1302; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (major) = 11.0 min, t_r (minor) = 25.1 min, 90% ee.

^{CO₂Me ^{CO₂Me **Dimethyl** (3S,4S)-3-hydroxy-3-phenyl-4-(1-phenylvinyl)cyclopentane-1,1 **dicarboxylate** (5f). A modification of the General Procedure (in that MeCN was used as the solvent in place of TFE) was followed using allene 4f (90.7 mg, 0.300}}

mmol) and phenylboronic acid (54.9 mg, 0.450 mmol). Purification by column chromatography (5% EtOAc/petroleum ether to 20% EtOAc/petroleum ether) gave the title compound (37.1 mg, 33%) as a colorless oil. $R_f = 0.41$ (30% EtOAc/petroleum ether); $[\alpha]_D^{20} + 0.28$ (*c* 1.00, CHCl₃); IR 3520 (OH), 2953, 1727 (C=O), 1494, 1434, 1251, 1198, 1168, 1033, 907, 756, 697, 550 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.31–7.27 (2H, m, Ar**H**), 7.13–7.07 (2H, m, Ar**H**), 7.06–7.01 (4H, m, Ar**H**), 6.95–6.89 (2H, m, Ar**H**), 5.34–5.33 (2H, m, C=C**H**₂), 3.81 (3H, s, C**H**₃), 3.80 (3H, s, C**H**₃), 3.73 (1H, dd, *J* = 12.5, 7.2 Hz, CHCH₂), 2.89 (1H, dd, *J* = 13.6, 12.5 Hz, CHCH₂), 2.87–2.80 (2H, m, HOCCH₂), 2.69 (1H, dd, *J* = 13.6, 7.2 Hz, CHCH₂) 2.47 (1H, s, O**H**); ¹³C NMR (126 MHz, CDCl₃) δ 173.5 (C),

173.0 (C), 146.7 (C), 143.4 (C), 142.5 (C), 128.0 (2 × CH), 127.9 (2 × CH), 127.1 (CH), 126.79 (2 × CH), 126.77 (CH), 125.2 (2 × CH), 116.5 (CH₂), 82.3 (C), 57.2 (C), 54.8 (CH), 53.24 (CH₃), 53.17 (CH₃), 50.6 (CH₂), 38.5 (CH₂); HRMS (ESI) Exact mass calculated for $[C_{23}H_{24}NaO_5]^+$ [M+Na]⁺: 403.1516, found: 403.1523. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (90:10 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (major) = 9.1 min, t_r (minor) = 10.5 min, 90% ee.

Dimethyl (3*S*,4*S*)-4-[1-(4-chlorophenyl)vinyl]-3-hydroxy-3-phenylcyclopentane-1,1-dicarboxylate (5g). A modification of the General Procedure (in that MeCN was used as the solvent in place of TFE) was followed using allene 4f (90.7 mg, 0.300 mmol) and 4-chlorophenylboronic acid (70.4 mg, 0.450 mmol). Purification by column chromatography (5% EtOAc/pentane to 40%

EtOAc/pentane) gave the title compound (57.9 mg, 47%) as a colorless oil. $R_f = 0.42$ (30% EtOAc/petroleum ether); IR 3523 (OH), 2953, 1726 (C=O), 1622, 1491, 1434, 1250, 1099, 964, 731 cm⁻¹; $[\alpha]_D^{25}$ +40.0 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.20–7.15 (2H, m, Ar**H**), 7.06–6.94 (3H, m, Ar**H**), 6.93–6.86 (2H, m, Ar**H**), 6.77–6.70 (2H, m, Ar**H**), 5.27 (1H, s, =C**H**₂), 5.25 (1H, s, =C**H**₂), 3.73 (3H, s, C**H**₃), 3.72 (3H, s, C**H**₃), 3.62–3.50 (1H, m, C**H**CH₂), 2.78 (1H, dd, *J* = 13.6, 12.5 Hz, CHC**H**₂), 2.76 (2H, br s, HOCC**H**₂), 2.60 (1H, dd, *J* = 13.6, 7.3 Hz, CHC**H**₂), 2.36 (1H, s, O**H**); ¹³C NMR (101 MHz, CDCl₃) δ 173.4 (C), 172.9 (C), 145.5 (C), 143.2 (C), 140.9 (C), 132.9 (C), 128.1 (2 × CH), 128.00 (2 × CH), 127.95 (2 × CH), 126.8 (CH), 125.1 (2 × CH), 117.0 (CH₂), 82.3 (C), 57.1 (C), 55.0 (CH), 53.25 (CH₃), 53.19 (CH₃), 50.5 (CH₂), 38.3 (CH₂); HRMS (ESI) Exact mass calculated for [C₂₃H₂₄ClO₅]⁺ [M+H]⁺: 415.1307, found: 415.1305; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 *iso*-hexane:*i*PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (minor) = 12.3 min, t_r (major) = 21.2 min, 93% ee.

Dimethyl (3*S*,4*S*)-3-hydroxy-3-phenyl-4-{1-[4-(trimethylsilyl)phenyl]vinyl}cyclopentane-1,1-dicarboxylate (5h). A modification of the General Procedure (in that MeCN was used as the solvent in place of TFE) was followed using allene 4f (90.7 mg, 0.300 mmol) and 4-(trimethylsilyl)phenylboronic acid (87.3 mg, 0.450 mmol). Purification by column chromatography (5%

EtOAc/pentane to 20% EtOAc/pentane) gave the title compound (46.0 mg, 34%) as a colorless oil. $R_f = 0.56$ (30% EtOAc/petroleum ether); IR 3523 (OH), 2953, 1729 (C=O), 1597, 1495, 1247, 1168, 1092, 908, 826 cm⁻¹; $[\alpha]_D^{25}$ +32.0 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (2H, d, *J* = 7.2 Hz, Ar**H**), 7.20–7.13 (2H, m, Ar**H**), 7.11–7.03 (2H, m, Ar**H**), 7.03–6.97 (1H, m, Ar**H**), 6.89–6.83 (2H, m, Ar**H**), 5.36 (1H, s, =C**H**₂), 5.34 (1H, s, =C**H**₂), 3.81 (3H, s, C**H**₃), 3.79 (3H, s, C**H**₃), 3.70 (1H, dd, J = 12.4, 7.2 Hz, C**H**CH₂), 2.89 (1H, dd, J = 13.6, 12.5 Hz, CHC**H**₂), 2.84 (2H, s, HOCC**H**₂), 2.68 (1H, dd, J = 13.6, 7.3 Hz, CHC**H**₂), 2.44 (1H, br s, O**H**), 0.20 (9H, s, Si(C**H**₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ 173.5 (C), 172.9 (C), 146.7 (C), 143.5 (C), 142.7 (C), 139.0 (C), 132.9 (2 × CH), 127.9 (2 × CH), 126.7 (CH), 126.2 (2 × CH), 125.2 (2 × CH), 116.5 (CH₂), 82.3 (C), 57.1 (C), 54.9 (CH), 53.22 (CH₃), 53.15 (CH₃), 50.6 (CH₂), 38.3 (CH₂), -1.1 (3 × CH₃); HRMS (ESI) Exact mass calculated for [C₂₆H₃₃O₅Si]⁺ [M+H]⁺: 453.2092, found: 453.2083; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (97:3 *iso*-hexane:*i*PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (major) = 11.3 min, t_r (minor) = 13.2 min, 89% ee.

(3R,4S)-4-Phenyl-4-(1-phenylvinyl)-1-tosylpiperidin-4-ol (5i). A modification of Phy the General Procedure (in that the reaction time was 48 h rather than 24 h) was followed using allene 4g (107 mg, 0.300 mmol) and phenylboronic acid (54.9 mg, 0.450 mmol). Purification by column chromatography (10% EtOAc/pentane) gave the title compound (65.6 mg, 50%) as a colorless solid. $R_f = 0.18$ (20% EtOAc/petroleum ether); m.p. 151–152 °C (Et₂O); $[\alpha]_D^{25}$ +107 (c 0.15, CHCl₃); IR 3548 (OH), 2980, 1599, 1444, 1341, 1159, 1091, 1043, 988, 917, 846, 814, 742, 693, 659, 573, 547, 434 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.76–7.72 (2H, m, ArH), 7.39– 7.37 (2H, m, ArH), 7.07–6.95 (8H, m, ArH), 6.75–6.73 (2H, m, ArH), 5.14 (1H, s, =CH₂), 5.03 (1H, s, $=CH_2$), 3.91 (1H, ddd, J = 11.5, 4.1, 1.9 Hz, CH_2 N), 3.78 (1H, ddt, J = 11.6, 4.5, 2.0 Hz, CH_2 N), 3.53 (1H, dd, J = 12.1, 4.0 Hz, CH₂N), 2.93–2.81 (2H, m, CH₂N and CHCH₂), 2.48 (3H, s, ArCH₃), 2.24–2.19 (1H, m, CH₂CH₂N), 2.15 (1H, d, J = 2.2 Hz, OH), 1.80 (1H, dt, J = 13.8, 2.5 Hz, CH₂CH₂N); ¹³C NMR (101 MHz, CDCl₃) δ 148.9 (C), 144.9 (C), 143.8 (C), 143.6 (C), 133.8 (C), 130.0 (2 × CH), 127.92 (2 × CH), 127.87 (2 × CH), 127.8 (2 × CH), 127.0 (CH), 126.9 (CH), 126.4 (2 × CH), 124.7 (2 × CH), 116.0 (CH₂), 72.5 (C), 49.9 (CH), 47.2 (CH₂), 42.5 (CH₂), 39.0 (CH₂), 21.7 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₆H₂₈NO₃S]⁺ [M+H]⁺: 434.1784, found: 434.1792; Enantiomeric excess was determined by HPLC with a Chiralpak IC column (90:10 isohexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C) t_r (major) = 33.3 min, t_r (minor) = 36.0 min, 99% ee.

(3*R*,4*S*)-4-Methyl-4-(1-phenylvinyl)-1-tosylpiperidin-4-ol (5j). A modification of the General Procedure (in that MeCN was used as the solvent in place of TFE) was followed using allene 4h (88.0 mg, 0.300 mmol) and phenylboronic acid (54.9 mg, 0.450 mmol). Purification by column chromatography (5% EtOAc/petroleum ether to 20% EtOAc/petroleum ether) gave the title compound (74.5 mg, 67%) as a sticky amorphous solid. $R_f = 0.20$ (20% EtOAc/petroleum ether); $[\alpha]_D^{25}$ +36.0 (*c* 1.00, CHCl₃); IR 3493 (OH), 2927, 2869, 1716,

1597, 1448, 1337, 1155, 1089, 907, 737, 547 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.69–7.67 (2H, m, Ar**H**), 7.37–7.26 (7H, m), 5.41 (1H, s, =C**H**₂), 5.04 (1H, s, =C**H**₂), 3.73 (1H, ddd, *J* = 11.3, 3.9, 2.0 Hz, C**H**₂N), 3.67 (1H, ddt, *J* = 11.5, 4.8, 2.3 Hz, C**H**₂N), 2.98 (1H, dd, *J* = 12.1, 3.9 Hz, C**H**₂N), 2.75–2.67 (2H, m, C**H**₂N and C**H**CH₂), 2.45 (3H, s, ArC**H**₃), 1.81–1.67 (2H, m, C**H**₂CH₂N), 1.52 (1H, s, O**H**), 0.94 (3H, s, C**H**₃COH); ¹³C NMR (126 MHz, CDCl₃) δ 148.3 (C), 143.7 (C), 143.6 (C), 133.7 (C), 129.9 (2 × CH), 128.8 (2 × CH), 127.9 (CH), 127.8 (2 × CH), 126.4 (2 × CH), 115.6 (CH₂), 68.7 (C), 49.0 (CH), 47.1 (CH₂), 42.3 (CH₂), 38.3 (CH₂), 29.8 (CH₃), 21.7 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₁H₂₆NO₃S]⁺ [M+H]⁺: 372.1628, found: 372.1627; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (90:10 *iso*-hexane:*i*-PrOH, 1.5 mL/min, 210 nm, 25 °C) t_r (major) = 29.3 min, t_r (minor) = 35.2 min, 85% ee.

Dimethyl (3*S*,4*S*)-3-[1-(4-chlorophenyl)vinyl]-4-hydroxy-4-methylcyclohexane-1,1dicarboxylate (5k)

To an oven-dried microwave vial charged with a magnetic stirrer, Ni(OAc)₂·4H₂O (7.5 mg, 30 µmol), (*S*)-'BuPHOX (**L3**, 11.6 mg, 30 µmol), and 4-chlorophenylboronic acid (70.4 mg, 0.450 mmol) were added. The vial was sealed and flushed with nitrogen or argon for 10 min. MeCN (1.5 mL) was added, the solution was immerged in an oil bath pre-heated to 80 °C and stirred for 10 min. Allene **4i** (76.3 mg, 0.300 mmol) was added to a separate vial that was sealed and flushed with argon for 10 min. MeCN (0.75 mL) was added to the allene and the resulting solution was added dropwise to the one containing the first vial containing the chiral nickel complex. The vial originally containing the substrate was rinsed with additional MeCN (0.75 mL) and the rinsing solution was transferred to the first microwave vial *via* syringe. The reaction mixture was stirred at 80 °C for 48 h, cooled to room temperature, diluted with EtOAc (5 mL), filtered through a short pad of silica (3 cm height × 2 cm wide) using EtOAc (20 mL) as eluent, and concentrated *in vacuo*. Purification of the residue by column chromatography (5% EtOAc/pentane to 20% EtOAc/pentane) gave the title compound (83.2 mg, 76%) as a yellow oil. $R_f = 0.29$ (30% EtOAc/petroleum ether); IR 3538 (OH), 2952, 1721 (C=O), 1489, 1431, 1302, 1226, 1155, 1119, 893 cm⁻¹; $[\alpha]_D^{25} + 88.0$ (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.27 (4H, m, Ar**H**), 5.40 (1H, s, =C**H**₂), 5.27 (1H, s, =C**H**₂), 3.81 (3H, s, OC**H**₃), 3.73

(3H, s, OCH₃), 2.82 (1H, dd, J = 13.2, 3.4 Hz, CHCH₂), 2.33 (1H, ddd, J = 13.3, 3.5, 2.2 Hz, CHCH₂), 2.28–2.13 (3H, m, CHCH₂ and CH₂), 1.74 (1H, ddd, J = 14.3, 3.9, 2.9 Hz, CH₂), 1.61 (1H, br s, OH), 1.45 (1H, ddd, J = 14.4, 13.4, 4.8 Hz, CH₂), 0.90 (3H, s, CH₃COH); ¹³C NMR (101 MHz, CDCl₃) δ 172.4 (C), 171.9 (C), 149.7 (C), 143.2 (C), 133.4 (C), 128.8 (2 × CH), 127.6 (2 × CH), 115.7 (CH₂), 69.7 (C), 55.5 (C), 52.9 (CH₃), 52.7 (CH₃), 46.8 (CH), 36.7 (CH₂), 33.6 (CH₂), 30.0 (CH₃), 26.5 (CH₂); HRMS (ESI) Exact mass calculated for [C₁₉H₂₄ClO₅]⁺ [M+H]⁺: 367.1307, found: 367.1307; Enantiomeric excess was determined by HPLC with a Chiralpak IC column (95:5 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 210 nm, 25 °C) t_r (minor) = 14.5 min, t_r (major) = 28.9 min, 76% ee.

Further Transformations

(3S,4R)-3-Hydroxy-3-phenyl-4-(1-phenylvinyl)pyrrolidin-2-one (2r)

To a solution of pyrrolidin-2-one **2a** (77.0 mg, 0.20 mmol, 96% ee) in MeCN (4 mL) at -10 °C was added a solution of CAN (274 mg, 0.50 mmol) in H₂O (4 mL) dropwise. The reaction was stirred for 30 min at this temperature, diluted with H₂O (20 mL), and extracted with EtOAc (2 × 15 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (8% MeOH/CH₂Cl₂) gave the *lactam* **2r** (54.7 mg, 98%) as a white solid that displayed spectrosocopic data consistent with those reported above. [α]_D²⁵ +32.0 (*c* 0.25, (CH₃)₂CO). Enantiomeric excess was determined by HPLC with a Chiralpak IC column (70:30 *iso*-hexane:*i*-PrOH, 1.0 mL/min, 254 nm, 25 °C); t_r (major) = 10.5 min, t_r (minor) = 18.8 min, 96% ee.

(3*S*,4*R*)-4-Benzoyl-3-hydroxy-1-(4-methoxyphenyl)-3-phenylpyrrolidin-2-one (12)

To a mixture of **2a** (77.0 mg, 0.200 mmol) and NaIO₄ (257 mg, 1.20 mmol) in THF (4 mL) and H₂O (1.6 mL) at 0 °C was added K₂[OsO₂(OH)₄] (7.4 mg, 0.020 mmol) in one portion and the mixture was stirred for 3 h at 0 °C, and then allowed to stand for 18 h at room temperature. The mixture was filtered to remove the white solid, and the filtrate was concentrated *in vacuo*. EtOAc (30 mL) was

added and the mixture was washed with H₂O (2 × 15 mL), saturated aqueous NaHCO₃ solution (15 mL), and brine (15 mL), and then dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (40% EtOAc/cyclohexane) gave the *ketone* **12** (70.6 mg, 91%) as a white solid. R_f = 0.38 (40% EtOAc/cyclohexane); m.p. 160–162 °C (Et₂O); $[\alpha]_D^{25}$ –22.6 (*c* 0.53, CHCl₃); IR 3377, 2981, 1675 (C=O), 1511, 1246, 1224, 1180, 1030, 829, 687, 623, 522 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.84 (2H, m, Ar**H**), 7.72–7.65 (2H, m, Ar**H**), 7.62–7.55 (1H, m, Ar**H**), 7.53–7.34 (7H, m, Ar**H**), 7.02–6.94 (2H, m, Ar**H**), 4.46 (1H, dd, *J* = 7.0, 2.8 Hz, NC**H**₂), 4.36 (1H, dd, *J* = 10.0, 2.8 Hz, NC**H**₂), 3.96 (1H, dd, *J* = 10.0, 6.9 Hz, C**H**CH₂), 3.84 (3H, s, OC**H**₃), 3.48 (1H, s, O**H**); ¹³C NMR (101 MHz, CDCl₃) δ 197.0 (C), 172.0 (C), 157.6 (C), 142.2 (C), 137.3 (C), 133.7 (CH), 131.8 (C), 129.1 (2 × CH), 128.74 (2 × CH), 128.69 (2 × CH), 128.63 (CH), 125.0 (2 × CH), 122.5 (2 × CH), 114.5 (2 × CH), 80.6 (C), 55.7 (CH₃), 50.5 (CH), 47.9 (CH₂); HRMS (ESI) Exact mass calcd for [C₂₄H₂₁NO₄Na]⁺ [M + Na]⁺: 410.1363, found: 410.1359.
NMR Spectra

Supplementary Information

5.5 5.0 4.5 f1 (ppm)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0 -C

6.0

7.5

7.0

6.5

8.0

).5

10.0

9.5

9.0

8.5

120 110 100 f1 (ppm) . 170

-172.99 -163.91 -167.29 -157.29 -157.29 -157.29 -144.96 -144.43 -144.23 -144.23 -144.23 -122.56 -114.44 -114.44 -114.44 -112.185 -25.65 -55.65 -55.65 -55.65

20 210

. . . .

110 100 f1 (ppm) . , . .

HPLC Traces

25.929	MM	0.9225	557.040	10.0644	2.19
33.327	BB	1.0700	24847.635	355.2706	97.81

Signal:	DAD	1 A, SIg=254,	4 Ref=360,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
25.369	MM	1.1079	13234.310	199.0919	50.04
35.561	MM	1.5401	13212.133	142.9782	49.96

RT [min]	Туре	Width [min]	Area	Height	Area%
26.815	MM	0.7933	12564.892	263.9943	50.44
31.025	MM	0.9252	12344.252	222.3730	49.56

Signal:	DAD	JT A, SIG-254,4 Rei-560,100					
RT [min]	Туре	Width [min]	Area	Height	Area%		
32.604	MM	1.6617	77293.281	775.2402	49.81		
49.633	MM	3.1803	77878.516	408.1319	50.19		

Reaction carried out in TFE:

Reaction as carried out in MeCN:

Signal: DAD1 B, Sig=210,4 Ref=360,100

RT [min]	Туре	Width [min]	Area	Height	Area%
22.105	BB	0.5936	370.359	8.0981	0.95
29.303	BB	0.9912	38502.746	596.3964	99.05

RT [min]	Туре	Width [min]	Area	Height	Area%
34.682	BB	1.0932	1425.551	16.1906	50.07
49.440	MM	1.5591	1421.671	10.7336	49.93

		, ,	,		
RT [min]	Туре	Width [min]	Area	Height	Area%
35.169	MM	0.8906	246.686	3.3919	0.58
50.171	BV	2.0299	42359.777	309.2750	99.42

		· •			
RT [min]	Туре	Width [min]	Area	Height	Area%
39.276	BB	1.1717	3183.034	40.1155	50.62
47.491	BB	1.3588	3104.945	32.7299	49.38

orginan	0/10	17, olg 201,	11101 000,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
39.347	BB	0.9473	800.232	10.0459	7.86
47.330	BB	1.4280	9376.770	97.6720	92.14

RT [min]	Туре	Width [min]	Area	Height	Area%
41.184	MM	1.3828	134.670	1.6232	1.13
54.194	BB	1.6949	11835.738	99.5656	98.87

3					
RT [min]	Туре	Width [min]	Area	Height	Area%
18.089	MM	0.9076	222.466	4.0851	4.44
20.913	BB	1.0110	4790.959	72.1197	95.56

RT [min]	Туре	Width [min]	Area	Height	Area%
10.541	BB	0.3147	151.400	7.5259	50.11
18.888	BB	0.5333	150.721	3.9134	49.89

Arylative cyclization to produce 2r:

Deprotection of 2a (96% ee) to produce 2r:

RT [min]	Туре	Width [min]	Area	Height	Area%
23.646	BB	0.6878	7175.295	157.9983	49.66
33.090	BB	1.1129	7272.276	99.2466	50.34

12.5

10 7.5 2.5 0 -2.5 -5 -7.5

mAU

-10 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Signal:	DAD1 A, Sig=254,4 Ref=360,100					
RT [min]	Туре	Width [min]	Area	Height	Area%	
27.276	BB	1.1473	2596.034	33.2342	50.03	
31.237	BB	1.3070	2593.351	27.2815	49.97	

RT [min]	Туре	Width [min]	Area	Height	Area%
28.869	BB	0.8571	4739.494	82.1530	49.67
36.756	BB	1.6185	4802.273	41.7956	50.33

Reaction carried out in TFE:

Reaction as carried out in MeCN:

RT [min]	Туре	Width [min]	Area	Height	Area%
11.509	BB	0.3267	402.336	18.2870	49.06
12.980	BB	0.3631	417.676	16.9732	50.94

24.960

0.8638

BΒ

13356.048

241.2753

50.41

<u> </u>		, ,	· · · · · · · · · · · · · · · · · · ·		
RT [min]	Туре	Width [min]	Area	Height	Area%
9.289	BB	0.3497	699.403	30.4857	49.20
10.518	BB	0.4158	722.033	26.6784	50.80

olgilul.	0/10	17, Olg 204,			
RT [min]	Туре	Width [min]	Area	Height	Area%
11.475	MM	0.4166	140.926	5.6384	49.91
13.475	MM	0.5123	141.455	4.6017	50.09

Signal:	DAD	DADT A, SIG=254,4 Ret=360,100					
RT [min]	Туре	Width [min]	Area	Height	Area%		
32.948	BB	0.7080	311.942	5.6333	48.83		
35.608	BB	0.7360	326.890	5.2966	51.17		

34.442

MM

2.0086

29977.330

248.7364

50.17

Signal:	DAD1 B, Sig=210,4 Ref=360,100					
RT [min]	Туре	Width [min]	Area	Height	Area%	
14.502	BB	0.3436	3152.104	142.7668	50.65	
29.224	BB	0.7574	3071.185	62.9227	49.35	

References

- 1. Prepared according to: N. Sakai, H. Hori, Y. Ogiwara, *Eur. J. Org. Chem.* 2015, 1905-1909.
- 2. Prepared according to: M. W. Wright, T. L. Smalley, M. E. Welker, A. L. Rheingold, J. Am. Chem. Soc. 1994, 116, 6777-6791.
- 3. Prepared according to: W. Hess, J. W. Burton, *Chem. Eur. J.* **2010**, *16*, 12303-12306.
- 4. C.-M. Yu, Y.-T. Hong, J.-H. Lee, J. Org. Chem. 2004, 69, 8506-8509.
- 5. Prepared according to: Y. H. Shin, M. Maheswara, J. Y. Hwang, E. J. Kang, *Eur. J. Org. Chem.* **2014**, 2305-2311.
- 6. H. Tsukamoto, T. Matsumoto, Y. Kondo, Org. Lett. 2008, 10, 1047-1050.
- 7. Prepared according to: D. W. Low, G. Pattison, M. D. Wieczysty, G. H. Churchill, H. W. Lam, *Org. Lett.* **2012**, *14*, 2548-2551.
- 8. Prepared according to: F. Cambeiro, S. López, J. A. Varela, C. Saá, *Angew. Chem., Int. Ed.* **2014**, *53*, 5959-5963.
- 9. Prepared according to: A. G. Campaña, N. Fuentes, E. Gómez-Bengoa, C. Mateo, J. E. Oltra, A. M. Echavarren, J. M. Cuerva, *J. Org. Chem.* **2007**, *72*, 8127-8130.
- 10. Prepared according to: S. Kamijo, G. B. Dudley, J. Am. Chem. Soc. 2006, 128, 6499-6507.