Supporting Information

Tailor-Made Thermoplastic Elastomers: Customizable Materials via Modulation of Molecular Weight Distributions

Stephanie I. Rosenbloom[†] Dillon T. Gentekos[†] Meredith N. Silberstein,[‡] and Brett P. Fors[†]

[†]Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States

[‡]Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States

Table of Contents

General procedure for Dynamic Mechanical Analysis (DMA)	S2
General procedure for Small-Angle X-ray Scattering (SAXS)	S2
Fig. S1. Illustration for the calculation of the asymmetry factor (A_s)	S2
Fig. S2. Controlling the shape and breadth of the MWD of the first PS block	S3
Fig. S3. Library of SIS triblock copolymers prepared	S3
Procedure for Fig. S3: Constant Rate Addition Profiles	S4
Table S1. Constant Rate Addition Profiles	S4
Procedure for Fig. S3: Exponentially Ramped Addition Rate Profiles	S4
Table S2. Exponentially Ramped Rate Addition Profiles	S4
Table S3. Average Yield Stress and Yield Strain	S5
Table S4. Average Strain Hardening Rates.	S5
Fig. S4. Stress-strain curves showing loading/unloading cycle to 100% elongation	S6
Fig. S5. Stress-strain curves showing loading/unloading cycle to 300% elongation	S6
Fig. S6. Stress-strain curves showing loading/unloading cycle to 500% elongation	S7
Fig. S7. Bar graph results from loading/unloading cycle to 100% elongation	S7
Fig. S8. Bar graph results from loading/unloading cycle to 300% elongation	S8
Table S5. Average hysteresis energy and toughness for loading/unloading cycles	S8
Fig. S9. Specifications for stainless steel dog bone mould	S9
Fig. S10. Representative ¹ H NMR of SIS triblock copolymer	S9
Fig. S11. SAXS traces of SIS samples with similar polymer composition	S10
Table S6. Stress Relaxation and Strain Recovery from Dynamic Mechanical Analysis	S11
Fig. S12. Stress/strain curves of polymer 1 in pristine and reprocessed conditions	S11
References	S11

General procedure for Dynamic Mechanical Analysis (DMA). Polymers were compression moulded under 3,000 lbs of pressure for 1 minute at 130 °C into straight specimens. Stress relaxation and strain recovery data were obtained on a TA Instruments DMA Q800 fitted with tension grips. Samples were stretched to 5% strain and held there to afford a total stress relaxation time of 10 minutes. Strain recovery was measured for 10 minutes after load removal. Each stress relaxation and strain recovery value are an average of three measurements.

General procedure for Small-Angle X-ray Scattering (SAXS). SIS samples were prepared by solution casting polymer samples (6 mL, 7 wt% in toluene) into aluminum pans and allowing the solvent to slowly evaporate. The samples were subsequently thermally annealed at 130 °C in a vacuum oven for 48 h before cooling to room temperature under vacuum. After annealing, polymers were removed from aluminum pans, and a small piece was cut from each polymer to be placed into the center of a stainless steel washer (4.42 mm I.D., 9.53 mm O.D., 0.79 mm thickness). The washers were sealed between Kapton tape, and were used directly for the small-angle X-ray scattering measurements which were performed at the G1 beamline at Cornell High Energy Synchrotron Source (CHESS). 2D-SAXS patterns were recorded with a Dectris Eiger 1M detector (1030 x 1065 pixels, 77 x 80 mm2 active area) at a sample to detector distance of 2.027 m and an X-ray wavelength (λ) of 1.252 Å. The data was corrected for detector response, calibrated with silver behenate, and, using the Nika package in Igor Pro,¹ reduced by azimuthally integrating the 2D pattern to acquire a 1D plot of intensity versus the scattering wavevector (*q*).

Fig. S1. Illustration for the calculation of the asymmetry factor (A_s) .²

Fig. S2. Controlling the shape and breadth (dispersity, *D*) of the MWD of the first PS block in PS-*b*-PI-*b*-PS (SIS) triblock copolymer with constant (a-d) and exponentially ramped (e-h) rates of initiator addition.

Fig. S3. Library of SIS triblock copolymers prepared via chain extension from PS with varying degrees of skewness and D. ^aDetermined from RI GPC traces. ^b M_n s are given in kg/mol. ^cDetermined by ¹H NMR spectra. Subscripts "L" and "H" indicate the direction of tailing in the first PS block MWD, either towards low or high molar mass species.

Procedure for Fig. S3: Constant Rate Addition Profiles

The synthesis was performed according to the general procedure. The New Era NE4000 Double Syringe Pump was programmed according to Table S1.

Addition Time (min)	dition Time Addition Rate (min) (μL/h)			
50	739	615		
67	551	615		
100	369	615		

Table S1. Constant Rate Addition Profiles

Procedure for Fig. S3: Exponentially Ramped Addition Rate Profiles

The synthesis was performed according to the general procedure. All exponentially increasing addition profiles were programmed as a sequence of 20 step increments with each step corresponding to a phase in the New Era NE4000 Double Syringe Pump program, according to Table S2.

Step #	Rate (µL/h)			Volume /Step (µL)
	80 min	100 min	147 min	
1	4.4	3.5	2.4	0.3
2	6.2	4.9	3.4	0.4
3	8.7	6.9	4.8	0.6
4	12	9.7	6.7	0.8
5	17	14	9.4	1.1
6	24	19	13	1.6
7	33	27	18	2.2
8	47	37	26	3.1
9	65	52	36	4.3
10	91	73	50	6.1
11	128	102	71	8.5
12	179	143	99	12
13	251	200	138	17
14	351	281	194	23
15	491	393	271	33
16	687	550	379	46
17	962	770	531	64
18	1347	1078	743	90
19	1886	1509	1041	126
20	2641	2112	1457	176

Table S2. Exponentially Ramped Rate Addition Profiles

Entry		Đ	$A_{ m s}$	Yield Stress	Yield Strain
		PS Block 1	PS Block 1	(MPa)	(%)
1		1.06	1.62	1.5	27
$2_{\rm L}$		1.25	1.78	0.8	44
2_{H}		1.21	0.52	1.2	36
$3_{\rm L}$		1.43	2.41	0.7	38
3_{H}		1.54	0.35	1.1	38
4_{L}		1.63	3.37	0.7	48
4_{H}		1.68	0.26	0.9	42

Table S3. Average Yield Stress and Yield Strain

Table S4. Average Strain Hardening Rates

Entry		Đ	$A_{ m s}$	Strain	Strain
		PS Block 1	PS Block 1	Hardening 1	Hardening 2
				(MPa/ε)	(MPa/ε)
1		1.06	1.62	0.3	0.3
$2_{\rm L}$		1.25	1.78	0.3	0.5
2_{H}		1.21	0.52	0.5	0.6
$3_{\rm L}$		1.43	2.41	0.3	0.4
3_{H}		1.54	0.35	0.5	0.6
4_{L}		1.63	3.37	0.3	0.5
4_{H}		1.68	0.26	0.4	0.6

Due to the nonlinearity of the stress/strain curves following yielding, stress/strain curves were divided into two regions each with linear slopes. Strain hardening 1 is the slope measured from the yield strain to a strain (ϵ) of three (corresponding to 300% elongation). Strain hardening 2 is the slope measured from $\epsilon = 3$ to $\epsilon = 5$ (corresponding to 300-500% elongation).

Fig. S4. Stress-strain curves showing loading/unloading cycle for polymers stretched to 100% elongation. Each displayed stress-strain curve is an average of three specimens.

Fig. S5. Stress-strain curves showing loading/unloading cycle for polymers stretched to 300% elongation. Each displayed stress-strain curve is an average of three specimens.

Fig. S6. Stress-strain curves showing loading/unloading cycle for polymers stretched to 500% elongation. Each displayed stress-strain curve is an average of three specimens.

Fig. S7. Bar graphs showing (a) toughness or (b) hysteresis energy for the load/unload cycle for polymers stretched to 100% elongation. Values are an average of three measurements.

Fig. S8. Bar graphs showing (a) toughness or (b) hysteresis energy for the load/unload cycle for polymers stretched to 300% elongation. Values are an average of three measurements.

Entry	Đ	$A_{\rm s}$	100%	Strain	300%	Strain	500%	Strain
	PS	PS	$W_{ m H}$	U_{T}	$W_{ m H}$	U_{T}	$W_{ m H}$	U_{T}
	Block 1	Block 1	(MJ	/m ³)	(MJ	/m ³)	(MJ	/m ³)
1 —	1.06	1.62	0.5	1.1	2.2	5.1	5.5	11
2 _L	1.25	1.78	0.2	0.8	1.2	3.5	2.4	7.4
2 _H	1.21	0.52	0.4	1.1	1.3	4.3	3.9	11
3 _L —	1.43	2.41	0.2	0.6	1.1	2.6	2.9	6.3
3 _H	1.54	0.35	0.3	1.1	1.3	5.5	3.5	12
4 _L	1.63	3.37	0.2	0.6	0.9	3.0	2.4	6.9
4 _H	1.68	0.26	0.3	1.0	1.2	4.0	3.4	9.3

Fable S5. Average hysteresis	energy $(W_{\rm H})$ and	toughness (U_T) for	loading/unloading cycle
-------------------------------------	--------------------------	-----------------------	-------------------------

Fig. S9. (a) Specifications for stainless steel dog bone mould with plate thickness = 0.024". Units are provided in inches. (b) Photograph of dog bone mould.

Fig. S10. Representative ¹H NMR of SIS triblock copolymer.

Fig. S11. Small-angle x-ray scattering (SAXS) traces of SIS samples with similar polymer composition and MWD features as those presented in the main text. Traces are offset for visual clarity. The volume fraction of PS is 0.22 in each sample, and the total molecular weights are as listed (top-to-bottom): 96, 101, 110, 109, and 109 kg/mol. Domain spacing was determined from the position of the principle wavevector ($D_{sp} = 2\pi/q^*$). The indexed reflections indicate that all of the polymers share the same morphology of hexagonally packed cylinders.

En	try	<i>Ð</i> PS Block 1	$A_{\rm s}$ PS Block 1	Total Stress Relaxation (%)	Total Strain Recovery (%)
1		1.06	1.62	55	53
2_{L}		1.25	1.78	36	77
$2_{\rm H}$		1.21	0.52	27	84
$3_{\rm L}$		1.43	2.41	46	65
$3_{\rm H}$		1.54	0.35	21	86
4_{L}		1.63	3.37	38	85
4_{H}		1.68	0.26	33	81

Table S6. Stress Relaxation and Strain Recovery from Dynamic Mechanical Analysis

Fig. S12. Stress/strain curves of reference polymer **1** in pristine condition (black curve) and the same polymer after being reprocessed several times (orange curve).

References

- 1. Ilavsky, J. Nika: Softward for Two-Dimensional Data Reduction. J. Appl. Cryst. 2012, 45, 324.
- J. J Kirkland, W. W. Yau, H. J. Stoklosa, and C. H. J. Dilks, J. Chromatogr. Sci. 1977, 15, 303-316.