ESI material for

Enantioseparation and chiral induction in Ag₂₉ nanoclusters with

intrinsic chirality

Hiroto Yoshida,^a Masahiro Ehara,^{*b} U. Deva Priyakumar,^c Tsuyoshi Kawai^{*a} and Takuya Nakashima^{*a}

^aDivision of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-01921, Japan.

^bInstitute for Molecular Science, Research Center for Computational Science, Myodai-ji, Okazaki 444-8585, Japan.

^cCentre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India

Fig. S1 Comparison of chiral HPLC chromatograms of $Ag_{29}(BDT)_{12}(TPP)_4$ NCs monitored by CD detector (at 450 nm) using ethanol, ethanol/DMF (9/1), ethanol/methanol (9/1) and ethanol/acetonitrile (9/1). The addition of second solvent (10 vol%) did not much improve the peak separation compared to ethanol.

Fig. S2 ESI-MS of the first and second fractions together with the simulated isotope peak pattern with $[Ag_{29}(BDT)_{12}]^{3}$.

Fig. S3 (a) UV-vis and (b) photoluminescence spectra of $Ag(BDT)_{12}(TPP)_4$ NCs before enantioseparation in DMF together with NC-samples after separation in 10 mM TPP solution in DMF.

Fig. S4 CD spectra of NCs separated by the chiral HPLC after re-dispersion in (a) DMF and (b) DMF-TPP (10 mM) solutions.

Fig. S5 (a) Apparent g_{abs} -spectrum of the first fraction and (b) g_{abs} -spectra of Ag₂₉(DHLA)₁₂ NCs in water. blue: Ag₂₉(*R*-DHLA)₁₂ NCs, red: Ag₂₉(*S*-DHLA)₁₂ NCs, black: Ag₂₉(*rac*-DHLA)₁₂ NCs.

Fig. S6 Packing structure in the single crystal of Ag₂₉(BDT)₁₂(TPP)₄ NCs. (Crystal data was referred to M. Bakr et al., *J. Am. Chem. Soc.* **2015**, 137, 11970-11975.)

Fig. S7 Simulated UV-vis spectrum for the R-NC model.

Fig. S8 (a) CD spectrum of the second fraction in ethanol. (b) Simulated CD spectrum based on the L-NC model structure.

Fig. S9 Simulated CD spectra calculated with various functionals based on the optimized R-NC model.

(a) _____ Ag₁₃ core (D) (614-618)

(b)

611 (HOMO)

612 (HOMO)

613 (HOMO)

Fig. S10 (a) Orbital energy diagram and orbital character with MO numbers in the parenthesis and (b) frontier molecular orbitals of $Ag_{29}(1,3-propandithiolate)_{12}$ ⁽³⁻⁾.

			(6, 19 = 1	
State number ^{<i>a</i>}	$\lambda_{abs} (nm)$	$\Delta E_{abs} (\mathrm{eV})$	$\langle \mathbf{R} \rangle^b$	Transition character ^c
1–3	501	2.476	-17.5	$H \rightarrow L$
7–9	485	2.554	23.2	$H \rightarrow L+1$
10–12	481	2.577	-42.0	$H \rightarrow L+1$
13–15	451	2.747	26.4	$H-1 \rightarrow L$
31–33	430	2.885	-29.6	$H-1 \rightarrow L$
46-48	422	2.938	-44.7	$H-3 \rightarrow L$
54–56	411	3.015	22.3	$H-3 \rightarrow L$
68–70	407	3.048	-12.2	$H-5 \rightarrow L$
80-82	401	3.093	41.4	$H-7 \rightarrow L$
83-85	394	3.147	-28.6	$H-4 \rightarrow L+1$
95–97	391	3.168	-14.5	$H-8 \rightarrow L$
110–112	382	3.246	-41.5	$H \rightarrow L+2$
131–133	363	3.419	20.9	$H-9 \rightarrow L+1$
134–136	362	3.426	-30.1	$H-9 \rightarrow L+1$
137–139	359	3.456	-14.6	$H-1 \rightarrow L+2$
144–146	353	3.510	-95.5	$H-11 \rightarrow L$
148–150	351	3.528	16.1	$H-11 \rightarrow L$
156–158	342	3.626	-80.3	$H-8 \rightarrow L+1$
163–165	339	3.655	235.5	$H-11 \rightarrow L+1$
171–173	336	3.688	151.6	$H-4 \rightarrow L+2$
175–177	332	3.740	-118.9	$H-12 \rightarrow L+1$
186–188	327	3.788	-62.9	$H-7 \rightarrow L+2$
192–194	322	3.848	135.0	$H-8 \rightarrow L+2$
195–197	322	3.854	18.2	$H \rightarrow L+2$

Table S1 Excited states of right-handed structure with rotatory strength (<R>) larger than 10.0 au calculated by B3LYP/LANL2DZ(Ag)+3-21G(C, H, O, S)

^{*a*} Only triply degenerate (T symmetry) states have large rotatory strength.

^b Rotatory strength was calculated in velocity form; only one component out of three is shown.

^c H and L represent HOMO and LUMO, respectively.

Fig. S11 Optimized structures of Ag₂₉(*R*-butane-1,3-dithiolate)₁₂ models.

Table S2. Energy difference among the optimized structures of $Ag_{29}(R$ -butane-1,3-dithiolate)₁₂ models

Models	Energy(a.u.)	ΔE (kcalmol ⁻¹)
L-hand 1-coordination (L-1)	-15616.24770	10.50
R-hand 1-coordination (R-1)	-15616.26429	0.00
L-hand 3-coordination (L-3)	-15616.26411	0.05
R-hand 3-coordination (R-3)	-15616.22328	25.79

Fig. S12 Optimized structures of $Ag_{29}(R$ -DHLA)₄(R-butane-1,3-dithiolate)₈ models with different ligand orientations (R-1 and L-3 models). Red broken lines denote coordination interactions between the silver atom and carboxylate group.

Fig. S13 Comparison of CD spectra between (a) experimental data of $Ag_{29}(R$ -DHLA)₁₂ and (b) simulated one based on the R-1 model.

Fig. S14 (a) CD spectral change and (b) plots of g_{abs} (at 500 nm) of Ag₂₉(*R*-DHLA)₁₂ NCs as a function of preparation temperature.

Fig. S15 Possible energy diagrams for the chirality inversion between R- and L-NCs.