Supplementary Information

Molecularly Engineered Hole-Transport Material for Low-cost Perovskite Solar Cells

Babak Pashaei,¹ Sebastiano Bellani,² Hashem Shahroosvand,^{1,*} and Francesco Bonaccorso^{2,3,*}

1 Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran † Electronic

2 Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.

3 BeDimensional SpA, Via Albisola 121, 16163 Genova, Italy

Corresponding authors:

Hashem Shahroosvand: shahroos@znu.ac.ir

Francesco Bonaccorso: francesco.bonaccorso@iit.it

Figure S1. ¹H NMR (CDCl₃) spectrum of tris(4-bromophenyl)amine (2).

Figure S2. ¹H NMR (CDCl₃) spectrum of TPA-AZO (4).

Figure S3. J–V characteristics of thin films of HTM in their pristine state.

Figure S4. Histograms of the photovoltaic characteristics measured on 30 perovskite solar cells (PSCs) employing TPA-AZO and spiro-OMeTAD HTMs under AM1.5G illumination.

Figure S5. J–V curves of PSCs based on TPA-AZO and spiro-OMeTAD in their pristine form or doped with Li-TFSI and TBP, respectively.

Figure S6. Top-view SEM images of (a) perovskite/dopant-free TPA-AZO; (b) perovskite/doped TPA-AZO;

(c) perovskite/dopant-free spiro-OMeTAD; (d) perovskite/doped spiro-OMeTAD. Scale bar is 200 nm.

Estimation of the synthesis cost of materials

Table S1 reports the synthesis cost of 1 g TPA-AZO, as estimated by the cost models adopted by Pablo et al.¹ and Osedach et al.² The price of the materials used was obtained from Merck, Sigma Aldrich, DeJong companies. The cost of 1 g of the TPA-AZO was compared with the cost of 1 g of the spiro-OMeTAD (**Table S2**), following previous approaches reported literature.³ We also considered the cost of dopants used for TPA-AZO to estimate the overall cost of our optimized HTMs based on TPA-AZO and spiro-OMeTAD, as shown in **Table S3**.

	Chemical name	Weight reagent (g/g)	Weight solvent (g/g)	Weight workup (g/g)	Price of chemical (\$/kg)	Material cost (\$/g product)	Cost per step (\$/step)
	triphenylamine	1			2.14	1.926	
Product Step 1 (Yield: 65%.	Br ₂	1			1	0.9	5.80
1.76 g)	CHCl₃		23		66	0.91	
	CHCl₃			52	66	2.06	
	N-Phenyl-4- (phenyldiazenyl)aniline 1,10-phenantholine	0.982 0.1			12000 4000	5.16 0.4	
	Cs ₂ CO ₃	2			1000	0.9	
	Cul	0.05			439	0.022	
Product Step 2 (Yield: 45%.	Anhydrous MgSO ₄	1			66	0.066	16.96
0.66 g)	Silica	20			130	2.6	10.50
	Anhydrous DMF		5		80	0.1	
	CHCl ₃		45		66	1.98	
	CH ₂ Cl ₂		76		13	0.74	
	n-Hexane		66		50	5	
Total							22.76

 Table S1. Quantities and costs of the materials used for the synthesis of 1 g of TPA-AZO.

Table S2. Quantities and cost of the materials used for the synthesis of 1 g of spiro-OMeTAD. Reproduced from ref.

4 with permission from	the Royal So	ciety of Chemistry	copyright 2016.
------------------------	--------------	--------------------	-----------------

Chemical name	Weight reagent (g/g)	Weight solvent (g/g)	Weight workup (g/g)	Price of chemical (\$/kg)	Material cost (\$/g product)	Cost per step (\$/step)
2,2',7,7'-tetrabromo-9,9'- spirobi[9H-fluorene]	1.15			95900.00	110.29	
4,4'-dimethoxydiphenylamine	1.87			54900.00	102.66	
t-BuONa Pd₂(dba)₃ Toluene	1.04 0.067	12		307.00 14900.00 69.48	0.32 1.00 0.83	
Ethyl acetate			135	80.16	10.82	273.62
NaCl (brine)	2		1	50.70	0.05	
MgSO ₄	0.05		1	144.20	0.14	
Ethyl acetate	1		120	80.16	9.62	
n-Hexane			176	117.91	20.75	
Silica gel 60	20		263	62.20	16.36	
Total						273.62

Table S3 Costs of pristine HTMs (TA-AZO and spiro-OMeTAD) and quantities and costs of the dopants used for the 1 g of HTM.

Compound	Cost per g (\$/g)	Cost per g of LiTFSI (\$)	Cost per g of TBP (\$)	Amount required of LiTFSI + TBP per 1g of HTM (g)	Total cost of HTM and LiTFSI per 1 g of HTM (\$)
TPA-AZO	22.76	5.04 (Aldrich Co.)	6.28 (Aldrich Co.)	0.124 + 0.367	25.68
spiro- OMeTAD	273.62	5.04 (Aldrich Co.)	6.28 (Aldrich Co.)	0.124 + 0.367	276.54

No.	нтм	Catalyst used for synthesis	Cost per 1 g of HTM (\$/g)	Jsc (mA cm ⁻²)	Voc (V)	FF	η (%)	Ref.
1		t-BuONa Pd2(dba)₃ P(t-Bu)₃	273.62	20.7	1.00	0.71	14.9	5
2		Pd(PPh₃)₄ K₂CO₃	842.08	20.98	0.97	0.67	13.6 3	6
3	H ₃ CO H	Pd(PPh ₃) ₄ K ₂ CO ₃	420.22	20.88	0.95	0.62	12.3 1	6
4	$H_{3}CO - \bigcup_{H_{13}C_{e}}^{OCH_{3}} H_{13}C_{e} + H_{13}$	Pd(PPh ₃) ₄ K ₂ CO ₃	695.87	21.21	1.09	0.78	18.3 6	7

Table S4. Examples of organic HTMs reported in relevant literatures, together with: the catalysts used for their synthesis;the synthesis cost for 1 g of materials; the photovoltaic characteristics of the corresponding PSCs under AM1.5G illumination.

5	$H_{3}CO \bigoplus_{N} \bigoplus_{C_{\theta}H_{13}} OCH_{3}$ $H_{3}CO \bigoplus_{N} \bigoplus_{C_{\theta}H_{13}} OCH_{3}$ $H_{3}CO \bigoplus_{N} \bigoplus_{C_{\theta}H_{13}} OCH_{3}$ $H_{13}C_{\theta}N \bigoplus_{C_{\theta}H_{13}} OCH_{3}$ $GCH_{3} \bigoplus_{OCH_{3}} OCH_{3}$	t-BuONa Pd(OAc) ₂ P(t-Bu) ₃	245.84	20.6	0.88	0.63	11.5 4	7
6	H ₃ CO N- N- N- N- OCH ₃ OCH ₃	t-BuONa P(t-Bu)₃ Pd₂(dba)₃	148.57	20.4	1.13	0.68	15.8	8
7	$H_{3}CO + H_{3}CO + H_{3$	Cul 1,10- phenanthroline K ₂ CO ₃	216.46	23.2	1.02	0.79	18.6	8
8	$H_{3}CO + H_{N} + H_{3}CO + H_{N} + H_{3}CO + H_{N} + H_{3}CO + H_{3} + H_{3$	t-BuONa Pd(OAc)₂ [(t-Bu)₃PH]BF₄	168.42	21.0	0.92	0.67	12.9 2	9
9	$H_{3}CO O O CH_{3} O CH_{3}$ $H_{3}CO O O CH_{3} O CH_{3} O CH_{3}$ $H_{3}CO O O O CH_{3} O CH_{3} O CH_{3}$ $H_{3}CO O O O CH_{3} O CH_{3} O CH_{3}$	Pd(OAc)₂ Tri-t- butyIphosphine t-BuONa	434.12	20.28	1.02	0.71	14.7 9	10

10	$H_{3}CO \bigcirc OCH_{3} \bigcirc OCH_{3}$	Pd(OAc) ₂ Tri-t- butylphosphine t-BuONa	450.13	20.35	0.99	0.69	13.8 6	10
11	$H_{3}CO \qquad OCH_{3}$	K2CO3 Pd(PPh3)4	579.16	17.63	1.02	0.73	13.4 4	11
12	H ₃ CO H ₃ CO OCH ₃ OCH ₃	K₂CO₃ Pd(PPh₃)₄	633.88	13.8	0.98	0.76	10.3	12
13	H ₃ CO H ₃ CO H ₃ CO H ₃ CO	Pd₂(dba)₃ X-Phos t-BuONa	376.30	20.4	1.04	0.72	16.0	13

14	$H_{1}CO - G + H_{1}CO + G + H_{2}CO + G + G + H_{2}CO + G + G + G + G + G + G + G + G + G + $	Pd2(dba)3 X-Phos t-BuONa	591.57	20.6	1.09	0.77	17.0	13
15		Pd(PPh₃)₄ K₃PO₄ NH₄Cl	800.49	21.9	1.07	0.77	18.2	13
16	H ₃ CO H ₃ CO	Zn TiCl ₄	101.34	18.2	1.03	0.61	11.4	14
17	H ₃ CO N-O-OCH ₃ N-O-OCH ₃ OCH ₃ H ₃ CO-O-N H ₃ CO-O-N	Zn TiCl₄	52.59	21.2	0.92	0.67	13.1	14
18	H ₃ CO H ₃ CO H ₃ CO CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	t-BuONa P(t-Bu) ₃ Pd(OAc) ₂	112.23	23.4	1.13	0.73	19.8	15

нтм	Jsc (mA cm ⁻²)	Voc (V)	FF	ղ (%)	Ref.
TPA-AZO	17.01	0.94	63	10.07	This Work
CuSCN	19.7	1.02	0.62	12.4	17
NiO	14.2	0.79	0.65	7.3	18
Cu ₂ O	15.8	0.96	0.59	8.93	19
Cu ₂ ZnSnS ₄	20.54	1.06	0.59	12.75	20
CuInS ₂ /ZnS	18.6	0.92	0.49	8.4	21
CuMePc	16.9	0.70	0.40	5.2	22
CuGaO ₂	21.7	1.11	0.77	18.5	23
SubPc	21.3	0.67	0.46	6.6	24
TiOPc	12.6	0.73	0.53	5.1	25
РЗНТ	24.3	0.98	0.57	13.6	26
PF8-TAA	6.1	1.40	0.79	6.7	27
PIF8-TAA	19.0	1.04	0.46	9.1	27
PANI	14.5	0.78	0.65	7.3	28
PCBTDPP	13.9	0.83	0.48	5.6	29
Conjugated D-A copolymer (P)	12.0	0.84	0.66	6.6	30
РТВ-ВО	14.4	0.83	0.62	7.4	31
PTB-DCB21	15.4	0.89	0.64	8.7	31
PDPP3T	20.5	0.98	61.2	12.3	32

Table S5. Figures of merit of PSCs based on various dopant-free HTMs under AM1.5G illumination, as reported in relevant literature.

References

1. M. Petrus, T. Bein, T. Dingemans and P. Docampo, J. Mater. Chem. A, 2015, 3, 12159.

2. T. P. Osedach, T. L. Andrew and V. Bulović, Energy Environ. Sci., 2013, 6, 711.

3. (a) B. Xu, D. Bi, Y. Hua, P. Liu, M. Cheng, M. Grätzel, L. Kloo, A. Hagfeldt and L. Sun, *Energy Environ. Sci.*, 2016, **9**, 873; (b) M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi and K.-H. Dahmen, *Nat. Energy*, 2016, **1**, 15017.

4. C. H. Teh, R. Daik, E. L. Lim, C. C. Yap, M. A. Ibrahim, N. A. Ludin, K. Sopian and M. A. M. Teridi, J. Mater. Chem. A, 2016, **4**, 15788.

5. N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee and S. I. Seok, *J. Am. Chem. Soc.*, 2014, **136**, 7837.

6. H. Choi, S. Paek, N. Lim, Y. H. Lee, M. K. Nazeeruddin and J. Ko, Chem. -Eur. J., 2014, 20, 10894.

7. K. Rakstys, A. Abate, M. I. Dar, P. Gao, V. Jankauskas, G. n. Jacopin, E. Kamarauskas, S. Kazim, S. Ahmad and M. Grätzel, *J. Am. Chem. Soc.*, 2015, **137**, 16172.

8. B. Xu, E. Sheibani, P. Liu, J. Zhang, H. Tian, N. Vlachopoulos, G. Boschloo, L. Kloo, A. Hagfeldt and L. Sun, *Adv. Mater.*, 2014, **26**, 6629.

9. P. Gratia, A. Magomedov, T. Malinauskas, M. Daskeviciene, A. Abate, S. Ahmad, M. Grätzel, V. Getautis and M. K. Nazeeruddin, *Angew. Chem. Int. Ed.*, 2015, **54**, 11409.

10. S. Do Sung, M. S. Kang, I. T. Choi, H. M. Kim, H. Kim, M. Hong, H. K. Kim and W. I. Lee, *Chem. Commun.*, 2014, **50**, 14161.

11. P. Ganesan, K. Fu, P. Gao, I. Raabe, K. Schenk, R. Scopelliti, J. Luo, L. H. Wong, M. Grätzel and M. K. Nazeeruddin, *Energy Environ. Sci.*, 2015, **8**, 1986.

12. M. Franckevičius, A. Mishra, F. Kreuzer, J. Luo, S. M. Zakeeruddin and M. Grätzel, *Mater. Horiz.*, 2015, **2**, 613.

A. Molina-Ontoria, I. Zimmermann, I. Garcia-Benito, P. Gratia, C. Roldán-Carmona, S. Aghazada, M. Graetzel, M. K. Nazeeruddin and N. Martín, *Angew. Chem. Int. Ed.*, 2016, **55**, 6270.
 H. Choi, K. Do, S. Park, J. S. Yu and J. Ko, *Chem. -Eur. J.*, 2015, **21**, 15919.

15. D. Bi, B. Xu, P. Gao, L. Sun, M. Grätzel and A. Hagfeldt, Nano Energy, 2016, 23, 138.

16. J. Cao, Y.-M. Liu, X. Jing, J. Yin, J. Li, B. Xu, Y.-Z. Tan and N. Zheng, *J. Am. Chem. Soc.*, 2015, **137**, 10914.

17. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin and M. Grätzel, *Nat. Commun.*, 2014, **5**, 3834.

18. A. S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes and S. K. Sarkar, *J. Phys. Chem. Lett.*, 2014, **5**, 1748.

19. (a) M. I. Hossain, F. H. Alharbi and N. Tabet, *Sol. Energy*, 2015, **120**, 370; (b) B. A. Nejand, V. Ahmadi, S. Gharibzadeh and H. R. Shahverdi, *ChemSusChem*, 2016, **9**, 302.

20. Q. Wu, C. Xue, Y. Li, P. Zhou, W. Liu, J. Zhu, S. Dai, C. Zhu and S. Yang, *ACS Appl. Mater. Interfaces*, 2015, **7**, 28466.

21. M. Lv, J. Zhu, Y. Huang, Y. Li, Z. Shao, Y. Xu and S. Dai, *ACS Appl. Mater. Interfaces*, 2015, **7**, 17482.

22. G. Sfyri, C. V. Kumar, Y.-L. Wang, Z.-X. Xu, C. Krontiras and P. Lianos, *Appl. Surf. Sci.*, 2016, **360**, 767.

23. H. Zhang, H. Wang, W. Chen and A. K. Y. Jen, Adv. Mater., 2017, 29, 1604984.

24. G. Sfyri, C. V. Kumar, G. Sabapathi, L. Giribabu, K. S. Andrikopoulos, E. Stathatos and P. Lianos,

RSC Adv., 2015, **5**, 69813.

25. M. Sun, S. Wang, Y. Xiao, Z. Song and X. Li, J. Energy Chem., 2015, 24, 756.

26. H. Lu, Y. Ma, B. Gu, W. Tian and L. Li, J. Mater. Chem. A, 2015, 3, 16445.

27. S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo and S. I. Seok, *Energy Environ. Sci.*, 2014, **7**, 2614.

28. Y. Xiao, G. Han, Y. Chang, H. Zhou, M. Li and Y. Li, J. Power Sources, 2014, 267, 1.

29. B. Cai, Y. Xing, Z. Yang, W.-H. Zhang and J. Qiu, *Energy Environ. Sci.*, 2013, 6, 1480.

30. P. Nagarjuna, K. Narayanaswamy, T. Swetha, G. H. Rao, S. P. Singh and G. Sharma, *Electrochim. Acta*, 2015, **151**, 21.

31. J. W. Lee, S. Park, M. J. Ko, H. J. Son and N. G. Park, ChemPhysChem, 2014, 15, 2595.

32. A. Dubey, N. Adhikari, S. Venkatesan, S. Gu, D. Khatiwada, Q. Wang, L. Mohammad, M. Kumar and Q. Qiao, *Sol. Energy Mater. Sol. Cells*, 2016, **145**, 193.