Supporting Information

Regioselective/Electro-oxidative Intermolecular [3+2] Annulation for the Preparation of Indolines

Qingqing Wang, ${ }^{[a][\dagger]}$ Pan Wang, ${ }^{[a][\dagger]}$ Xinlong Gao, ${ }^{[a]}$ Dan Wang, ${ }^{[a]}$ Shengchun Wang, ${ }^{[a]}$ Xingan,Liang, ${ }^{[a]}$ Liwei Wang, ${ }^{[a]}$ Heng Zhang, ${ }^{[a]}$ and Aiwen Lei* ${ }^{[a, b]}$
[a] College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
[b] National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China
E-mail: aiwenlei@whu.edu.cn

Table of Contents

General information S3
Experimental procedure S4
Detail descriptions for products S12
References S30
Copies of product NMR spectra S31

1. General information

All glassware was oven dried at $110^{\circ} \mathrm{C}$ for hours and cooled down under vacuum. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrolysis is dual display potentiostat (DJS-292B) (made in China). Cyclic voltammograms were obtained on a CHI 760E potentiostat. The anode electrode is graphite rod and cathode electrode is platinum electrode ($1.5 \mathrm{~cm} \times 1.5 \mathrm{~cm} \times 0.3 \mathrm{~mm}$). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (bp. 60-90 ${ }^{\circ} \mathrm{C}$). GC-MS spectra were recorded on Varian GC MS 3900-2100T or SHIMADZU GC MS-2010. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were recorded with Bruker Advance III (400 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz . All chemical shifts are reported relative to tetramethylsilane and d-solvent peaks (77.00 ppm , chloroform), respectively. EPR spectra were recorded on a Bruker X-band A200 spectrometer. High resolution mass spectra (HRMS) were measured with a Bruker UltiMate 3000 \& Compact instrument and accurate masses were reported for the molecular ion + Hydrogen $(\mathrm{M}+\mathrm{H})$ or molecular ion + Sodium $(\mathrm{M}+\mathrm{Na})$.

2. Experimental procedure

2.1 General procedure for Regioselective/Electro-oxidative Intermolecular [3+2] Annulation for the Preparation of Indolines

An undivided cell was equipped with a carbon anode and a platinum cathode and connected to a DC regulated power supply. N-(4-methoxyphenyl)-4methylbenzenesulfonamide (0.20 mmol), prop-1-en-2-ylbenzene $(0.4 \mathrm{mmol})$, ${ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(0.1 \mathrm{M}), 2,3$-Dichloro-5,6-dicyano-1,4-benzoquinone (0.02 mmol), AcOH (0.2 mmol) and $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{DCE}(4 / 2 \mathrm{~mL}$) were combined and added. The bottle was equipped with graphite electrode as the anode and platinum electrode $\left(1.5 \times 1.5 \times 0.3 \mathrm{~cm}^{3}\right)$ as the cathode and was then charged with nitrogen. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under $15^{\circ} \mathrm{C}$ for 2.0 h . When the reaction was finished, the solution was extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered. The solvent was removed with a rotary evaporator. The pure product was obtained by flash chromatography on silica gel using petroleum ether and ethyl acetate as the eluent (10:1).
2.2 Procedure for gram scale synthesis: An undivided cell was equipped with a carbon anode and a platinum cathode and connected to a DC regulated power supply. N-(4-methoxyphenyl)-4-methylbenzenesulfonamide (5.0 mmol), prop-1-en-2ylbenzene (10.0 mmol), 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (0.5 mmol), $\mathrm{AcOH}(5.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{DCE}(40 / 20 \mathrm{~mL})$ were combined and added. The bottle was equipped with graphite electrode as the anode and platin5um electrodes $\left(1.5 \times 1.5 \times 0.3 \mathrm{~cm}^{\mathrm{tm}}\right)$ as the cathode and was then charged with nitrogen. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under $2^{\circ} \mathrm{C}$ for 30 h. When the reaction was finished, the solution was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered. The solvent was removed with a rotary evaporator. The pure product was obtained by flash chromatography on silica gel using petroleum ether and ethyl acetate as the eluent (10:1).
2.3 General Procedure for the Deprotection of N-Ts Group ${ }^{1}$

To a solution of the substrate $\mathbf{3 a}$ (5 mmol , 1 equiv) in $\mathrm{MeOH}(20 \mathrm{~mL})$ and THF (20 mL) was added Mg ($150 \mathrm{mmol}, 30$ equiv). After being stirred at $70^{\circ} \mathrm{C}$ for the reported time, the reaction mixture was cooled to rt. The resulting mixture was filtered through a pad of celite. The filtrate was diluted with water and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (three times). The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography on silica gel to give the corresponding product $\mathbf{4 d}$ in 99% yield.

2.4 General Procedure for the One pot two-step process for indole synthesis

N-(4-methoxyphenyl)-4-methylbenzenesulfonamide 1a (0.20 mmol), 1-(tert-butyl)-4vinylbenzene 2x (0.4 mmol), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(0.1 \mathrm{M})$, 2,3-Dichloro-5,6-dicyano-1,4benzoquinone (0.02 mmol), $\mathrm{AcOH}(0.2 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{DCE}(4 / 2 \mathrm{~mL})$ were combined and added. The bottle was equipped with graphite electrode as the anode and platinum electrode $\left(1.5 \times 1.5 \times 0.3 \mathrm{~cm}^{3}\right)$ as the cathode and was then charged with nitrogen. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under $25^{\circ} \mathrm{C}$ for 2.0 h . Then, 2,2,6,6-Tetramethylpiperidinooxy(TEMPO) ($25 \mathrm{~mol} \%$, $7.8 \mathrm{mg})$ and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ were added to the mixture. The reaction mixture was stirred and electrolyzed at a constant current of 7 mA under $25^{\circ} \mathrm{C}$ for 5.0 h . The pure product $\mathbf{4 e}$ was obtained by flash column chromatography on silica gel.
2.5 EPR experiments: EPR spectra was recorded at 298 K on EPR spectrometer operated at 9.816 GHz . Typical spectrometer parameters are shown as follows, scan range: 100 G ; center field set: 3503 G ; time constant: 163.84 ms ; S21 scan time: 30.72 s ; modulation amplitude: 0.3 G ; modulation frequency: 100 kHz ; receiver gain: 1.00×104; microwave power: 10 mW .

EPR studies of 1a in MeCN/DCE: Under constant current conditions, a dried threenecked flask equipped with a stir bar was loaded with $\mathbf{1 a}(0.2 \mathrm{mmol}),{ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(0.4$ mmol) in 4.0 mL MeCN and 2.0 mL DCE was stirred under N_{2} atmosphere at $25^{\circ} \mathrm{C}$. Then, the solution sample was taken out into a small tube and tested by EPR. An EPR signal (the parameters observed for the spin adduct are $\mathrm{AN}=0.54 \mathrm{G}$ and $3 \mathrm{AH}=0.54$
G) which was mainly identified as a conjugated radical.

Figure S1. 1a (0.2 mmol), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(0.2 \mathrm{mmol}), \mathrm{MeCN}(4 \mathrm{~mL}), \mathrm{DCE}(2 \mathrm{~mL})$, undivided cell, constant current, 30 min.
2.6 General procedure for cyclic voltammetry (CV): Cyclic voltammetry was performed in a three-electrode cell connected to a schlenk line under nitrogen at room temperature. The working electrode was a platinum disk electrode, the counter electrode a platinum wire. The reference was an $\mathrm{Ag} / \mathrm{AgCl}$ electrode submerged in saturated aqueous KCl solution, and separated from reaction by a salt bridge. 6 mL of $\mathrm{CH}_{3} \mathrm{CN}$: DCE containing $0.6 \mathrm{mmol}{ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ were poured into the electrochemical cell in all experiments. The scan rate is $0.1 \mathrm{~V} / \mathrm{s}$, ranging from 0 V to 2.0 V . The peak potentials vs. $\mathrm{Ag} / \mathrm{AgCl}$ for used. The oxidation potentials of N -(4-methoxyphenyl)-4methylbenzenesulfonamide (1a) and α-methylstyrenes (2a) are 1.49 V and higher than 2 V , respectively.

Figure S2. Cyclic voltammograms of 1a and 2a in $0.1 \mathrm{M}^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NBF}_{4} / \mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1=\mathrm{v} / \mathrm{v})$), using Pt working electrode, Pt wire and $\mathrm{Ag} / \mathrm{AgCl}\left(0.1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$ as counter and reference electrode at $100 \mathrm{mV} / \mathrm{s}$ scan rate. a: $\mathbf{1 a}(1.0 \mathrm{mmol} / \mathrm{L})$, b: 2a $(1.0 \mathrm{mmol} / \mathrm{L})$

Figure S3. Cyclic voltammograms of $\mathbf{1 a}$ and DDQ in $0.1 \mathrm{M}^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NBF}_{4} / \mathrm{CH}_{3} \mathrm{CN}$: DCE, using glass carbon working electrode, Pt wire and $\mathrm{Ag} / \mathrm{AgCl}\left(0.1 \mathrm{M}\right.$ in $\mathrm{CH}_{3} \mathrm{CN}$: DCE $)$ as counter and reference electrode at $100 \mathrm{mV} / \mathrm{s}$ scan rate.
2.7 Ultraviolet(UV): In order to verify that DDQ did not work in the first step, we carried out the UV experiment (Figure S4.). As shown the Figure S4, when DDQ and 1a were mixed for 1 minute, no red shift occurred.

Figure S4. UV experiments of $\mathbf{1 a}$ and DDQ . The red line: $\mathrm{DDQ}\left(10^{-5} \mathrm{~mol} / \mathrm{L}\right)$; the black line: $\mathbf{1 a}\left(10^{-}\right.$ $\left.{ }^{5} \mathrm{~mol} / \mathrm{L}\right)$; the blue line: $\mathbf{1 a}\left(10^{-5} \mathrm{~mol} / \mathrm{L}\right)+\mathrm{DDQ}\left(10^{-5} \mathrm{~mol} / \mathrm{L}\right)$.

3 Kinetic studies

3.1 Procedure for kinetic order in 1a and 2a substrate

The order in substrate N-(4-methoxyphenyl)-4-methylbenzenesulfonamide 1a was determined by studying the initial rate of reaction with different concentrations of $\mathbf{1 a}$. Under N_{2} atmosphere, 1a, α-methylstyrenes (2a) ($0.2 \mathrm{mmol}, 0.3 \mathrm{mmol}, 0.4 \mathrm{mmol}$, $0.5 \mathrm{mmol}, 0.6 \mathrm{mmol}$), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, $10 \mathrm{~mol} \%$) and ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ as the supporting electrolyte. We take six samples every three minutes for each group of experiments. The HPLC yields were determined using biphenyl as an internal standard. Finally, the initial rate for different concentration of 2a vs relative concentrations could be obtained.

Figure S5. Kinetic studies

3.2 Procedure for hydrogen quantification

An undivided cell was equipped with a carbon anode and a platinum cathode and connected to a DC regulated power supply. N-(4-methoxyphenyl)-4methylbenzenesulfonamide (0.50 mmol), prop-1-en-2-ylbenzene (1.0 mmol), ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(0.1 \mathrm{M}), \mathrm{AcOH}(0.2 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{DCE}(4 / 2 \mathrm{~mL})$ were combined and added. The bottle was equipped with graphite electrode as the anode and platinum electrode $\left(1.5 \times 1.5 \times 0.3 \mathrm{~cm}^{3}\right)$ as the cathode and was then charged with nitrogen. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under $15^{\circ} \mathrm{C}$ for 2.0 h (Scheme S1).

Scheme S1. The quantitative experiment of hydrogen

At the same time, the reaction was finished, the reaction is quantified by hydrogen to investigate the cathodic reactions (as shown the Figure S6).

Figure S6: left picture: with DDQ; middle picture: without DDQ

3.3 Substrate Scope of other amines

At the same time, considering the effect of electronic effect, we also have made efforts to try other substituted amines in an undivided cell under constant current or constant voltage electrolysis. We found that a trace amount of products could be monitored in these reactions (Scheme S2, 1d-5). To provide a justification for this outcome, the cyclic voltammetry (CV) experiments were conducted. 1a gave oxidation wave at 1.47 V vs. $\mathrm{Ag} / \mathrm{AgCl}$. Whereas, higher oxidative potentials of 3-5 (>1.71 v) suggested that 3-5 were difficult to be oxidized under our conditions.

Scheme S2: the scop of other amines

Table S1. the ratio of 3:2a

${ }^{a}$ undivided cell, nitrogen
Table S2. the effect of the Additive

${ }^{a}$ undivided cell, nitrogen
Table S3. the effect of the Current

${ }^{a}$ undivided cell, nitrogen
After, the reaction was carried out in an undivided cell under constant potential electrolysis (CCE) with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, $10 \mathrm{~mol} \%$). As the shown table S4. N-(4-(tert-butyl) phenyl) -4-methylbenzenesulfonamide (1) gave oxidation wave at 1.49 V vs. $\mathrm{Ag} / \mathrm{AgCl}$.

Table S4. The effect of the Voltage

${ }^{a}$ undivided cell, nitrogen
Table S5. The effect of the controlled oxidation potential

 3 0.2 mmol	 2a 0.4 mmol	$\xrightarrow[\substack{n^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}(0.1 \mathrm{mmol}) \\ \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot(0.2 \mathrm{mmol}) \\ \mathrm{MeCN}(6 \mathrm{ml}) \\ \mathrm{Ct}, \mathrm{~N}_{2}}]{\mathrm{C}+) \mid \mathrm{Ptt}(-)}$	I)
			3
Entry		V (v)	Yield of 3 (\%) ${ }^{[a]}$
1		1.4 V	only 1and 3 was not detected
2		1.5 v	only 1 and $\mathbf{3}$ was not detected
3		1.58 v	only 1 and 3 was not detected
4		1.6 v	only 1 and $\mathbf{3}$ was not detected
5		1.7 v	No new point

${ }^{a}$ undivided cell, nitrogen
Scheme S3 Comparing the voltage of reaction a with reaction b

SchemeS4. Other Substrate Scope of alkenes

Acyclic olefin

Detail descriptions for products

5-methoxy-2-methyl-2-phenyl-1-tosylindoline (3aa) ${ }^{[2]}$: Yellow solid was obtained in 94% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.75$ (dd, $J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=2.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.22(\mathrm{~m}$, 2H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.98,145.28,143.08$, $138.55,136.07,129.76,129.25,128.20,127.28,126.73,125.81,114.52,112.67$, $110.99,72.87,55.68,49.14,27.07,21.51$.

2-(4-fluorophenyl)-5-methoxy-2-methyl-1-tosylindoline (3ab) ${ }^{[2]}$: A yellow oil was obtained in 87% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{t}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 6.80 (dd, $J=8.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.70-6.89$ (m, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.38-3,26$ $(\mathrm{m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.92\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ 244.6) , 156.06, 143.24, 141.13, 138.55, 135.95, 129.37(d, $\left.J_{\mathrm{C}-\mathrm{F}}=16.8\right), 127.60,127.52$, $126.60,114.96,114.67\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=16.0\right), 112.77,111.01,72.24,55.68,49.11,27.21$,
21.49. ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.52$.

2-(4-chlorophenyl)-5-methoxy-2-methyl-1-tosylindoline (3ac) ${ }^{[2]}$: A yellow oil was obtained in 81% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.43 (d, J=8.4 Hz, 2H), 7.38-7.36(m, 2H), 7.22-7.21 (m, 3H), 7.10-7.08 (m, 2H), $6.75(\mathrm{dd}, J=8.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.64(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.22(\mathrm{~m}, 2 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.98,145.29,143.08$, $138.55,136.07,129.76,129.26,128.20,127.28,126.73,125.81,114.52,112.67$, $110.99,72.88,55.68,49.14,27.07,21.50$.

2-(4-bromophenyl)-5-methoxy-2-methyl-1-tosylindoline (3ad) ${ }^{[2]}$: A yellow oil was obtained in 83% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.44 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30-7.28$ (m, 2H), $7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.77$ (dd, $J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.21$ $(\mathrm{m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 156.03, 144.22, $143.25,138.40,135.93,131.11,129.31,129.27,128.81,127.50,126.47,121.32$, 114.57, 112.77, 110.93, 72.11, 55.62, 48.87, 26.88, 21.47, 19.14.

5-methoxy-2-methyl-2-(p-tolyl)-1-tosylindoline (3ae) [2]: A colorless oil was obtained in 95% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{dd}, J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.70(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.43-$ $3.26(\mathrm{~m}, 12 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ S13
155.84, 142.89, 142.23, 138.53, 136.83, 136.01, 129.74, 129.07, 128.68, 126.61, $125.61,114.42,112.54,110.86,72.64,55.56,48.99,26.99,21.40,20.93$.

2-([1,1'-biphenyl]-4-yl)-5-methoxy-2-methyl-1-tosylindoline (3af): Colorless liquid was obtained in 83% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{dd}, J=8.9$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.42-$ $7.40(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.74(\mathrm{~m}, 1 \mathrm{H}), 3.50$ $-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $156.06,144.14,143.03,140.63,140.12,138.63,136.17,129.76,129.25,128.83$, $127.39,127.02,126.78,126.67,126.32,114.60,112.79,111.03,72.55,55.70,49.14$, 27.23, 21.49. HRMS (EI) calculated for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 492.1604; found: 456.1609 .

5-methoxy-2-methyl-2-(m-tolyl)-1-tosylindoline (3ag) [2]: A colorless oil was obtained in 92% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.01$ $(\mathrm{m}, 4 \mathrm{H}), 6.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.34$ (s, 3H), 2.19 (s, 3H), 2.09 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.83, 144.81, $142.88,138.46,137.57,135.99,129.72,129.06,128.01,127.93,126.79,126.61$, $122.95,114.41,112.60,110.90,72.68,55.61,49.22,27.14,21.40$.

5-methoxy-2-(3-methoxyphenyl)-2-methyl-1-tosylindoline (3ah) ${ }^{[2]}$: A colorless oil was obtained in 84% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-$ $7.02(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.68(\mathrm{~m}, 1 \mathrm{H}), 3.79$ ($\mathrm{s}, 3 \mathrm{H}$), $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.68,156.32,147.17,143.42,138.89,136.42,130.08,129.55,129.49$, $127.05,118.54,114.85,113.05,112.82,112.36,111.33,73.18,56.02,55.36,49.49$, 27.46, 21.83.

2-(3-chlorophenyl)-5-methoxy-2-methyl-1-tosylindoline (3ai) ${ }^{[2]}$: Colorless liquid was obtained in 61% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17$ (m, 3H), 7.18 (d, J = 8.4 $\mathrm{Hz}, 2 \mathrm{H}), 6.78(\mathrm{dd}, J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.35-$ $3.21(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 156.03,147.14$, $143.34,138.27,135.80,134.08,129.36,129.30,129.21,127.42,126.43,126.27$, $124.02,114.55,112.83,110.95,72.16,55.62,49.00,26.87,21.44$.

5'-methoxy-6-methyl-1'-tosyl-2,3-dihydrospiro[indene-1,2'-indoline] (3aj): Yellow oil was obtained in 62% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, \mathrm{~J}=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.82$ (dd, $J=8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.48-$ 3.42 (m, 1H), 3.40 (s, 2H), $3.30-3.23$ (m, 1H), $2.95-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.39$ (m, $1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.84, 143.76, 142.69,
$141.23,137.86,136.36,135.92,129.92,129.61,128.84,126.72,124.59,123.84$, $114.44,112.53,110.64,80.76,55.68,47.67,40.84,30.10,21.41,20.90$. HRMS (EI) calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]+: 442.1447$; found: 442.1428.

5-methoxy-2-methyl-2-(thiophen-2-yl)-1-tosylindoline (3ak): A colorless oil was obtained in 52% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.48(\mathrm{~m}, 3 \mathrm{H})$, $7.14-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{dd}, J=3.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=$ $8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}$, 3H), $2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 156.04, 149.24, 143.11, 138.49, $135.49,129.23,126.75,126.17,125.11,124.49,114.85,112.72,111.03,70.86,55.65$, 49.50, 28.14. HRMS (EI) calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 422.0855; found: 422.0840 .

5-methoxy-2-methyl-2-(naphthalen-2-yl)-1-tosylindoline (3al): A colorless liquid was obtained in 67% isolated yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.93$ (d, $J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.53$ $(\mathrm{m}, 4 \mathrm{H}), 7.48(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~s}$, $1 \mathrm{H}), 4.15(\mathrm{dd}, J=5.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.16-4.14$ $(\mathrm{m}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=6.4,0.52 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 0.56 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.91,142.89,141.93,138.31,136.12,132.69,132.46$, 129.70, 128.97, 128.35, 127.84, 127.19, 126.47, 126.01, 125.97, 124.49, 124.12, 114.53, 112.71, 110.89, 72.64, 55.60, 48.95, 27.07, 21.31. HRMS (EI) calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 466.1383$; found: 466.1387.

5-methoxy-2-methyl-2-(3-(prop-1-en-2-yl) phenyl)-1-tosylindoline (3am): A colorless liquid was obtained in 53% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61$ (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.45-7.41$ (m, 3H), $7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.10$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.94,144.85,143.06,142.97,140.92,138.47,136.07,129.71$, $129.23,128.03,126.62,125.07,124.45,123.23,114.49,112.70,112.57,111.00,72.94$, 55.68, 49.20, 27.14, 21.72, 21.46. HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 456.1604; found: 456.1607.

2-ethyl-6-methoxy-2-phenyl-1-tosylindoline (3an) ${ }^{[3]}$: A colorless liquid was obtained in 93% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.00-6.98(\mathrm{~m}, 2 \mathrm{H})$, $6.80(\mathrm{dd}, J=8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.75(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 3.04-$ $2.95(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.34,143.60,142.35,137.54,136.36,129.80,128.53,127.63,127.02$, 126.40, 113.51, 112.23, 110.17, 74.91, 55.30, 45.38, 31.18, 21.06, 8.16.

5-methoxy-2-phenyl-2-propyl-1-tosylindoline (3ao) ${ }^{[2]}$: Yellow oil was obtained in 89% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 7.23-7.120(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{dd}$, $J=8.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 2.96-2.89(\mathrm{~m}$,

1H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.07$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.61,144.02,142.64,137.85$, $136.54,130.06,128.81,127.90,127.29,126.68,126.64,113.80,112.50,110.45,74.72$, 55.60, 46.32, 41.17, 21.35, 17.27, 14.40.

2-cyclobutyl-5-methoxy-2-phenyl-1-tosylindoline (3ap): Yellow oil was obtained in 81% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.17$ (m, 3H), $7.14-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.96$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.44-$ $4.35(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=19.6,1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~d}, J=22.0,1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, $2.24-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.64,143.19,142.63,137.82,136.90,130.09,129.06,128.85,128.25$, $128.05,127.43,126.96,126.75,125.32,113.73,112.56,110.64,55.69,42.22,40.17$, 25.02, 22.55, 21.43, 17.18. HRMS (EI) calculated for $\mathrm{C}_{26} \mathrm{H}_{2} 7 \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 456.1604$; found: 456.1609.

5-methoxy-2,2-diphenyl-1-tosylindoline (3aq) ${ }^{[2]}$:A colorless liquid was obtained in 83% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.44$ $(\mathrm{m}, 4 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 6 \mathrm{H}), 6.96-6.88(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.13,143.50,142.81,137.76,135.80,129.33,129.16,128.79,127.70,127.27$, $126.65,114.90,112.98,110.47,78.94,55.66,52.03,21.46$.

5-methoxy-2-phenyl-2-(p-tolyl)-1-tosylindoline (3ar) ${ }^{[2]}$: A white solid was obtained in 69% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}$,
$J=6.6,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 4 \mathrm{H})$, $6.83(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}$, 3 H), 2.38 ($\mathrm{s}, 3 \mathrm{H}$), $2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 156.11, 143.81, 142.71, $140.35,137.93,137.04,135.89,129.40$, 129.19, 129.01, 128.68, 128.27, 127.68, 127.17, 126.63, 114.94, 112.95, 110.46, 78.80, 55.65, 51.87, 21.46, 21.04.

2-([1,1'-biphenyl]-4-yl)-5-methoxy-2-phenyl-1-tosylindoline (3as) ${ }^{[2]}$: A white solid was obtained in 72% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 8 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.92(\mathrm{~m}$, $4 \mathrm{H}), 6.87$ (dd, $J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.81$ $(\mathrm{s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.18,143.71,142.75,142.33$, 140.56, 140.10, 137.94, 135.90, 129.72, 129.27, 128.97, 128.86, 128.79, 127.79, $127.45,127.28,127.05,126.55,126.23,114.95,113.07,110.49,78.60,55.68,52.06$, 21.46. HRMS (ESI) calculated for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}$ [M+Na] +: 554.1760; found: 554.1752.

2-(4-fluorophenyl)-5-methoxy-2-phenyl-1-tosylindoline(3at): A yellow oil was obtained in 59% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45-7.38$ (m, 4H), $7.30-7.29$ (m, 2H), $6.99-6.91$ (m, 7H), 6.85 (dd, $J=8.9,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.93\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=247.9\right), 156.25,143.45,143.01,139.14,137.85$, $135.74,131.06\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.0\right.$) , 129.07, 128.91, 128.84, 127.82, 127.39, 126.45, 115.05, $114.38\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.5\right), 113.10,110.48,78.34,55.66,51.95,21.46 .{ }^{19} \mathrm{~F}$ NMR (377 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-115.29. HRMS (ESI) calculated for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{FNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]+$: 496.1353; found: 496.1351 .

2-(3,4-dimethylphenyl)-5-methoxy-2-phenyl-1-tosylindoline(3au): A colorless lipuid was obtained in 61% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47$ (m, 2H), 7.32 - 7.29 (m, 3H), $7.16-7.14$ (m, 1H), $7.07-7.03$ $(\mathrm{m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 4 \mathrm{H}), 6.85(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}$, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$, $2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.01,144.01,142.52,140.32,138.00$, 135.91, 135.66, 135.48, 130.26, 129.40, 128.77, 128.64, 128.50, 127.61, 127.30, 127.00, 126.43, 114.89, 112.87, 110.38, 78.65, 55.57, 51.92, 21.37, 19.80, 19.35. HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{2} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 506.1760$; found: 506.1753.

5-methoxy-2-phenyl-1-tosylindoline (3av) ${ }^{[3]}$: white solid was obtained in 59% isolated yield. 1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=9.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 3 \mathrm{H}), 3.12(\mathrm{dd}, J=$ 16.2, $9.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81 (dd, $J=16.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}$).$^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.52,143.78,142.52,135.17,135.01,133.46,129.57,128.63,127.60$, $127.19,125.99,118.25,112.94,110.80,65.00,55.60,37.84,21.59$.

2-(4-(tert-butyl) phenyl)-5-methoxy-1-tosylindoline (3aw): A colorless oil was obtained in 78% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.55 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34-7.27$ (m, 4H), 7.19 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.81$ (m, $1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=9.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dd}, J=$
$16.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=16.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.47,150.42,143.69,139.40,135.18,133.73,129.54,127.15$, $125.69,125.52,118.26,112.88,110.80,64.79,55.60,37.68,34.49,31.36,21.60$. HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 458.1760$; found: 458.1767 .

5-methoxy-2-(p-tolyl)-1-tosylindoline (3ax) ${ }^{[2]}$: A colorless oil was obtained in 73% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19$ (dd, $J=17.0,7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{dd}, J=8.8,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=9.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{dd}$, $J=16.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=16.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.48,143.75,139.60,137.28,135.17,135.03,133.59$, $129.56,129.28,127.19,125.94,118.26,112.91,110.77,64.88,55.60,37.82,21.60$, 21.12.

5-methoxy-2,3-diphenyl-1-tosylindolinee (3ay): A colorless oil was obtained in 56\% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}$, $4 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 5 \mathrm{H}), 6.84(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}$, $J=2.8,1 \mathrm{H}) 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.\mathrm{CD}_{3}\right) \delta$ 156.12, 143.49, 142.79, 137.76, 135.80, 129.32, 129.15, 128.78, 127.69, 127.26, 126.64, 125.98, 125.98, 114.90, 112.96, 110.47, 78.93, 77.37, 77.05, 76.74, 55.66, 52.02, 21.45. HRMS (EI) calculated for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 456.16299$; found: 456.16279.

2-methyl-5-(methylthio)-2-phenyl-1-tosylindoline (3ba) Yellow solid was obtained in 70% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-$ 7.39 (m, 2H), $7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{dd}$, $J=8.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-7.02(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, $2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.13,143.40,140.80,138.46,131.87$, $129.39,129.28,128.34,127.74,127.49,126.92,125.96,124.73,114.25,73.08,49.14$, 27.19, 21.58, 17.39. HRMS (EI) calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 410.12430$; found: 410.12238 .

6-methyl-6-phenyl-5-tosyl-6,7-dihydro-5H- [1,3] dioxolo [4,5-f] indole (3ca): A yellow oil was obtained in 82% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=6.7,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.15$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}$, 3 H), 2.12 ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13}{ }^{\mathrm{C}}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.34,145.30,143.59,143.19$, $138.57,136.40,129.35,128.20,127.30,126.72,125.77,120.21,105.22,101.37,97.35$, 73.49, 48.78, 27.10, 21.52. HRMS (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]+$: 430.1083; found: 430.1067.

5-(tert-butyl)-2-methyl-2-phenyl-1-tosylindoline (3da) Yellow oil was obtained in 23% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 4 \mathrm{H})$, $3.89-3.78(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H})$. HRMS (EI) calculated for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 419.19190$; found: 419.19200.

5-methoxy-2,6-dimethyl-2-phenyl-1-tosylindoline(3ea) ${ }^{\text {[2] }}$: white solid was obtained in 78% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.01,145.36,142.84,138.70,135.38,129.14,128.06,127.11,126.55$, $126.15,125.91,125.71,116.27,107.02,72.68,55.64,49.19,26.99,21.40,16.81$.

6-fluoro-5-methoxy-2-methyl-2-phenyl-1-tosylindoline(3fa) ${ }^{[2]}$: A white solid was obtained in 81% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=6.8,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 152.4(\mathrm{~d}, J=243.7 \mathrm{~Hz}), 144.8$, $143.6(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 143.4,138.3,135.8(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 129.4,128.2,127.4,126.7$, $125.8,123.0,110.5(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 103.4(\mathrm{~d}, J=26.1 \mathrm{~Hz}), 73.4,57.0,48.9,27.0,21.5$.

6-chloro-5-methoxy-2-methyl-2-phenyl-1-tosylindoline(3ga) ${ }^{[2]}$: A white solid was obtained in 69% isolated yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ $(\mathrm{s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.48,144.78,143.38,138.25,136.30,129.37,128.27,127.74,127.45$, $126.66,125.78,121.54,115.76,109.23,73.27,56.62,49.04,27.05,21.52$.

6-bromo-5-methoxy-2-methyl-2-phenyl-1-tosylindoline(3ha): A white solid was obtained in 75% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ (s, 1H), $7.43(\mathrm{~d}, ~ J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.36$ (m, 2H), $7.26-7.24$ (m, 3H), 7.14 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ (s, $1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.14,144.77,143.38,138.23,136.72,129.38,128.69,128.27,127.45$, $126.65,125.78,118.54,110.45,109.04,73.27,56.70,49.06,27.07,21.53$. HRMS (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]+: 494.0396$; found: 494.0450.

5-methoxy-2,7-dimethyl-2-phenyl-1-tosylindoline (3ia) ${ }^{[2]}$: white solid was obtained in 58% isolated yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 0.3 \mathrm{H})$, 3.13 (d, J = $15.8 \mathrm{~Hz}, 1.2 \mathrm{H}), 2.95(\mathrm{~s}, 0.31 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 158.36,146.79,144.27,139.52,137.95,136.30,133.85$, 130.12, 128.56, 127.52, 127.35, 125.39, 114.69, 108.46, 75.70, 55.61, 42.42, 27.73, 21.48, 20.37. HRMS (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}$ [M+Na] +: 430.1447; found: 430.1434.

5-methoxy-2-methyl-1-(methylsulfonyl)-2-phenylindoline (3ja) ${ }^{[2]}$: white solid was obtained in 82% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}$, 2H), $7.38-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.60$ (s, 3H), 2.15 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 156.06, 144.55, 135.72, 129.74, $128.43,127.83,125.73,113.54,112.85,111.30,72.30,55.78,49.03,38.70,26.63$.

5-methoxy-2-methyl-2-phenyl-1-(propylsulfonyl) indoline (3ka) white solid was obtained in 80% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.38$ $-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.81-6.79(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.37(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.82(\mathrm{~m}$, $1 \mathrm{H}), 2.61-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.87$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.74,145.00,135.96,129.24$, $128.23,127.53,125.59,113.43,112.62,111.11,72.21,55.62,52.18,48.98,26.72$, 24.76, 21.45, 13.34. HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]+: 382.1447$; found: 382.1439.

5-methoxy-1-((4-methoxyphenyl) sulfonyl)-2-methyl-2-phenylindoline (3la) A yellow solid was obtained in 84% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.79$ (dd, $J=9.1,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.70(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.44-$ $3.27(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.58,155.93,145.23$, $136.09,133.21,129.77,128.85,128.20,127.30,125.85,114.40,113.76,112.67$, 111.00, $72.75,55.68,55.57,49.20,27.10$. HRMS (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ [M+Na]+: 432.1240; found: 432.1232

5-methoxy-2-methyl-1-((4-nitrophenyl) sulfonyl)-2-phenylindoline (3ma) ${ }^{[2]}$ A yellow solid was obtained in 66% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{dd}, J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.74$ (m, 1H), 3.83 (s, 3H), $3.59-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.01,148.92,146.04,143.19,134.67,129.35,127.60,127.27,126.98,125.62$, 123.13, 113.91, 112.56, 110.60, 72.25, 55.15, 48.65, 26.96.

1-((4-chlorophenyl) sulfonyl)-5-methoxy-2-methyl-2-phenylindoline (3na): A yellow oil was obtained in 75% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}$, $5 \mathrm{H}), 6.82$ (dd, $J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.29$ $(\mathrm{m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.21,144.47,139.75,138.65$, $135.68,129.83,128.82,128.21,127.99,127.52,125.99,114.45,112.86,111.08,72.78$, 55.70, 49.20, 27.31. HRMS (ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]+: 436.0744$; found: 436.0693.

1-((4-fluorophenyl)sulfonyl) -5-methoxy-2-methyl-2-phenylindoline(3oa): A yellow oil was obtained in 76% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dd}, \mathrm{J}=7.9,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.12(\mathrm{~m}$, $3 \mathrm{H}), 6.96(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{dd}, \mathrm{J}=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.69(\mathrm{~m}, 1 \mathrm{H}), 3.81$ $(\mathrm{s}, 3 \mathrm{H}), 3.48-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8$ (d, JC$\mathrm{F}=252.7), 156.16,144.51,137.43\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.2\right), 135.78,129.24\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.2\right), 129.19$, $128.18,127.48,125.99,115.71\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.3\right), 114.40,112.83,111.07,72.72,55.69$, 49.23, 27.27.

5-methoxy-2-methyl-1-(naphthalen-2-ylsulfonyl)-2-phenylindoline (3pa) ${ }^{[2]}$: A yellow solid was obtained in 83% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96$ (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{dd}, J=8.9$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.05,144.51,138.27,136.02,134.63,131.91,129.79$, $129.47,128.79,128.55,128.10,128.07,127.69,127.47,127.16,126.04,122.02$, 114.57, 112.80, 111.02, 72.86, 55.69, 49.22, 27.28.

tert-butyl 5-methoxy-2-methyl-2-phenylindoline-1-carboxylate (3qa) A yellow solid was obtained in 56% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=12$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=9.1,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80-6.70(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.16(\mathrm{~m}, 10 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.15$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.40,152.77,128.47,128.21,126.43,124.59$, 115.64, 114.43, 113.32, 112.30, 110.65, 80.80, 55.68, 29.73, 28.33, 27.94, 25.11. HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]+$: 362.17267 ; found: 362.17266 .

pentyl 5-methoxy-2-methyl-2-phenylindoline-1-carboxylate(3ra) A yellow solid was obtained in 53% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.37-$ 7.32 (m, 4H), 7.26 - 7.24 (m, 1H), 6.83 (dd, $J=9.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $0 \mathrm{H}), 4.00-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=16.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.83$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.82,128.45,126.63,124.56,115.75,114.48$, 113.40, 112.44, 110.67, 68.26, 64.98, 55.67, 48.79, 28.62, 28.01, 27.84, 22.26, 14.03. HRMS (ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]+: 376.1883$; found: 376.1883.

5-methoxy-2-methyl-2-phenylindoline (4a) A yellow liquid was obtained in 99\% isolated yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, 2H), $7.32-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.67(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.28$ $-3.19(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.50,148.76,143.93$, 129.32, 128.37, 126.52, 125.24, 112.39, 111.80, 109.94, 66.67, 55.97, 46.20, 29.52. HRMS (ESI) calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]+: 240.1383$; found: 240.1377 .

2-(4-(tert butyl) phenyl)-5-methoxy-1-tosylindoline (4b) A yellow liquid was obtained in 53% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47 (s, 4H), 7.27 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{dd}, J=9.1,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.01,151.70,144.34,143.32,134.29,132.80,131.83$, $129.85,129.48,129.10,126.86,124.49,117.76,113.63,113.21,103.05,55.58,34.78$, 31.39, 21.56. HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]+$: 434.1770; found: 434.1784.

diethyl (5-methoxy-2-((4-methylphenyl) sulfonamido) phenyl) phosphonate (4c): A yellow liquid was obtained in 50% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.86$ (s, 1H), 7.80 (dd, $J=9.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.07(\mathrm{dd}, J=9.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=15.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.87(\mathrm{~m}, 2 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.64(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}), 143.46,136.52,135.03(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 129.44$, $127.46,122.87(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 120.06(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 117.32,116.75(\mathrm{~d}, J=6.9 \mathrm{~Hz})$. 115.55, $62.52(\mathrm{~d}, ~ J=4.9 \mathrm{~Hz}), 55.61,21.52,16.13(\mathrm{~d}, J=6.7 \mathrm{~Hz})$. HRMS (ESI) calculated for C18H24NO6PS [M+Na] +: 436.0954; found: 436.0962.

N, N '-bis(4-methoxyphenyl)-4-methyl $-N^{\prime}$-tosylbenzenesulfonohydrazide (4d): A yellow liquid was obtained in 3% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.01-6.99(\mathrm{~m}, 4 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~s}$, $6 \mathrm{H}), 2.41$ (s, 6H). HRMS (ESI) calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]+: 575.1281$; found: 575.1271.

4-methyl-N-(4-oxocyclohexa-2,5-dien-1-ylidene) benzenesulfonamide(4e), A yellow liquid was obtained in 53% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24$ (dd, $J=10.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.01$ (dd, $J=10.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.91,163.68,144.99,140.47,136.68,135.61,135.21,130.26,129.85,127.69$, 77.07, 21.74. HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]+: 284.0352$; found: 284.0346 .

References

[1] F. Zhou, D.-S. Wang, T. G. Driver, Adv. Synth. Catal. 2015, 357, 3463.
[2] N. Yang, Q. -L. Yu, Q.-H. Liu, H.-H. Zuo, H.-B. Yu, W.-J. Wei, R.-Z. Liao, F.R. Zhang, Org. Lett. 2018, 20, 1404.
[3] Y.-J. Hu, T. Kamitanaka, Y. Mishima, T.Dohi, Y. Kita, J. Org. Chem. 2013, 78, 5530.

Copies of product NMR Spectra

3aa

${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

F NMR

[^0]3 ac

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

$$
\begin{aligned}
& \underbrace{\circ}
\end{aligned}
$$

3ad

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

3ae

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR
$\underbrace{\text { ®. }}$

3af

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

$3 a g$

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

3ah

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

3ai

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

3aj

${ }^{1}$ H NMR

${ }^{13}$ C NMR

3ak

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

$$
\begin{aligned}
& -80.758 \\
& -55.681 \\
& -47.670 \\
& -40.837 \\
& -30.096 \\
& \zeta^{21.410} \\
& \chi_{20.901}
\end{aligned}
$$

3al

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR
$\xrightarrow{\stackrel{n}{\sigma} \text { G }}$

\% ¢	右			
$\stackrel{\sim}{1}$	セ			

3am

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

3 an

${ }^{1} \mathrm{H}$ NMR

§öagom

${ }^{13} \mathrm{C}$ NMR

| 80 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | $\underset{f 1}{90}$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | |
| :--- |

${ }^{1} \mathbf{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

3ap

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

$3 a q$

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

$\stackrel{\stackrel{8}{4}}{\substack{1 \\ 1}}$

3ar

${ }^{1} \mathrm{H}$ NMR

 No ヴल

${ }^{13}$ C NMR

$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \underset{\sim}{\infty} \stackrel{\rightharpoonup}{N} \end{aligned}$

No

3as

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

$\stackrel{\text { U. }}{\stackrel{\rightharpoonup}{0}}$	

3at

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

F NMR

+

3au

${ }^{1}$ H NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

MeO

${ }^{13}$ C NMR
$\stackrel{\infty}{\text { No }}$

$\left.\begin{array}{lllllllllllllllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$
3aw
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

$\begin{array}{llllllllllllllllllllll}00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & & \\ f 1(\mathrm{ppm})\end{array}$
3ba
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

	iot	

${ }^{13}$ C NMR

${ }^{13}$ C NMR

$\begin{array}{lllllllllll}80 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ f 1(\mathrm{ppm})\end{array}$

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

3ga

${ }^{1} \mathrm{H}$ NMR

					$\begin{aligned} & \text { HH } \\ & \stackrel{H}{\circ} \\ & \text { i } \\ & \hline \end{aligned}$							¢	$\begin{array}{\|c} \underset{N}{N} \\ \hline \end{array}$		$\frac{\text { d }}{\text { ¢ }}$	\%					
J. 0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0		4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-C

${ }^{13} \mathrm{C}$ NMR

3ha

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

3ia

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

3ja

${ }^{1} \mathrm{H}$ NMR

$\stackrel{\text { ì }}{\substack{\text { ion } \\ i}}$

${ }^{13} \mathrm{C}$ NMR

3ka

${ }^{1}$ H NMR

${ }^{13} \mathrm{C}$ NMR

3la

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

$\stackrel{\text { din }}{\substack{~}}$

3ma

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

3na

${ }^{1} \mathrm{H}$ NMR

Noccon $\stackrel{\text { n }}{\stackrel{\text { N }}{i}}$

${ }^{13} \mathrm{C}$ NMR

	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$

$\stackrel{\stackrel{\circ}{0}}{\stackrel{1}{1}}$

${ }^{1} \mathrm{H}$ NMR

CoCles

${ }^{13} \mathrm{C}$ NMR

[^1]
3pa

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

3ra

${ }^{1} \mathrm{H}$ NMR

Coces

${ }^{13}$ CNMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

∞
∞
∞
∞

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

$\stackrel{\text { ® }}{\substack{0}}$

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

[^0]:

[^1]:

