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Experimental procedures

Materials and general experimental procedures
The reagents, solvents, and restriction enzymes were purchased from standard commercial
sources and used directly. The TDP-4-keto-6-deoxy-D-glucose was purchased from
Carbosynth China Ltd. DNA isolation and manipulation in Streptomyces were performed
according to standard protocols.” PCR amplifications were carried out on Biometra
professional thermocycler (070-851, An Analytik Jena Company) using either Taqg DNA
polymerase (TaKaRa) or Pfu DNA polymerase (Vazyme). Glucose-6-phosphate
dehydrogenase (Coolaber) and active recombinant bacterial alcohol dehydrogenase (Biovision)
were purchased from Beijing Lablead Biotechnology Co. Ltd. Primer synthesis and DNA
sequencing were performed at TsingKke Company.

HPLC analysis was conducted on a HITACHI Chromaster system equipped with a DAD detector,
a Dionex carbopac PA10 carbohydrate column (4 x 250 mm, Thermo), and a flow rate of 1.0 mL/min
at a column temperature of 28°C. NMR spectra were recorded in D20 using a Bruker Ascend
800 spectrometer (Bruker Corp.), and TMS was used as internal standard. HRESIMS data
were obtained using an Agilent G6230 Q-TOF mass instrument (Agilent Corp.).
Protein expression and purification
The genes encoding RubS3, RubS4 and RubS5 were amplified by PCR from genomic DNA
of Streptomyces sp. KIB-HO033 with primers listed in Table S3. The genes encoding dTDP-4-
keto-6-deoxy-D-glucose reductase Fcd, dTDP-4-keto-6-deoxy-D-glucose 3,4-ketoisomerase
FdtA, RbIE, three homologs (SFQ20469, WP009948706, and WP094006909) and nine
RubS3 mutants (H102V, T111V, Y113F, Y135F, K139A, R144L, W160T, S163A and E177G)
were synthesized by GENEWIZ company. The genes were cloned into the pET-26b vector
using the Ndel and Xhol (Hindlll) restriction sites. The resulting constructs were used to
transform Escherichia coli BL21(DE3) cells, and cultivated in 500 mL LB media containing
kanamycin (50 pug/mL) for 4 h at 37 °C until the ODso0o reached 0.6. The cultures were cooled
to 16 °C and induced with 0.25 mM isopropyl-B-D-thiogalactopyranoside (IPTG) for 18 h at
16 °C. The cells were centrifuged for 10 min at 4,000 rpm at 4 °C and the pellet resuspended
in 50 mL of lysis buffer (50 mM Tris, 300 mM NaCl, 15 mM imidiazole, 10% glycerol, pH 8.0)
and lysed on ice by sonication. The cell lysates were centrifugated at 24,000 rpm for 30 min
and the supernatant was filtered and purified using the AKTA pure system with a 5 mL

Histrap™ FF column (GE Healthcare). The target proteins were desalted using a PD-10



desalting column (GE Healthcare) and concentrated by ultrafiltration using Amicon Ultra-4 (10
K, Millipore) and stored at -80 °C in buffer (100 mM NaH2PO4,10% glycerol, pH 7.2). Protein
concentrations were determined using the Bradford method. SDS-PAGE analysis of proteins
are shown in Fig S2.

In vitro enzymatic assay of RubS3-S5 and RubS3 mutants.

The RubS5-catalyzed reaction was carried out in a 200 yL reaction mixture containing 50 mM
Tris/HCI (pH 7.5), 1.25 mM D-glucose-1-phosphate, 2 mM dTTP, 10 yM RubS5. The RubS4-
catalyzed reaction mixture (200uL) contained 50 mM Tris/HCI (pH 7.5), 10 mM MgClz, 1.25
mM D-glucose-1-phosphate, 2 mM dTTP, 2 mM NADPH, 10 uM RubS5 and 10 yM RubS4.
The RubS3 and mutants reactions were performed in 200 uL system including 50 mM Tris/HCI
(pH 7.5), 1 mM TDP-4-keto-6-deoxy-D-glucose (1), 2 mM NADPH, and 10 pM RubS3 or
mutants. After incubation at 30 °C for 2 h, the reactions were quenched by adding 50 pL
chloroform. The reaction mixtures were then centrifuged at 12,000 rpm for 5 min and the
supernatants were analyzed by analytical HPLC. The HPLC analysis was performed at a flow
rate of 1 mL/min with UV detection at 278 nm using a 28 min solvent gradient as follows: 5%
B (0-5 min); 20% B (5-10 min); 40% B (10-15 min); 60% B (15-20 min); 80% B (20-22 min);
100% B (22-25 min); 5% B (25-28 min). {A: H20; B: acetic acid — ammonium acetate buffer
(700 mM, pH 5.2)}.

The RubS3-, RubS4- and RubS5-catalyzed reactions were each scaled up to a 6 mL
volume. After incubation at 30 °C for 2 h, the enzymatic reactions were quenched by chloroform
and centrifuged, and the supernatant was evaporated and the compounds were isolated by
analytical HPLC using a Dionex carbopac PA10 carbohydrate column. The structures of 1, 3 and
4 were determined by analyses of HRESIMS data (Figs. S13-S15) and NMR spectra (Figs.
S24-S33).

Compound 1 (0.9 mg), produced by RubS4, white powder; 'H-NMR data see Table S1;
HRESIMS m/z 545.0588 [M-H] for C16H24N2015P2 (calcd. 545.0579).

Compound 3 (1.0 mg), produced by RubS5, white powder; '"H-NMR data see Table S1;
HRESIMS m/z 563.0682 [M-H] for C16H26N2016P2 (calcd. 563.0685).

Compound 4 (1.2 mg), produced by RubS3, white powder; 1D and 2D NMR data see Table
S3; HRESIMS m/z 547.0723 [M-H] for C16H26N2015P2 (calcd. 547.0736).

Synthesis of TDP-D-fucose (2)

The TDP-D-fucose (2) was synthesized by TDP-4-keto-6-deoxy-D-glucose reductase Fcd,

and the reaction was carried out in a 6 mL reaction mixture containing 50 mM Tris/HCI (pH



7.5), T1mM TDP-4-keto-6-deoxy-D-glucose (1), 2 mM NADPH, and 10 uM Fcd. The isolation
was performed as above for RubS3-catalyzed reactions. The structure of 2 was determined
by analyses of HRESIMS data (Fig S16) and 'H-NMR spectrum (Fig. S34).

Compound 2 (0.8 mg) produced by Fcd; "H-NMR data see Table S1; HRESIMS m/z 547.0754
[M-H]- for C16H26N2015P2 (calcd. 547.0736).

Synthesis of compound TDP-3-keto-D-fucose (7)

The TDP-3-keto-D-fucose (7) was obtained from the FdtA-catalyzed reaction using 1 as the
substrate in a 1 mL mixture. Compound 7 was purified using the method mentioned above for
compound 3. The structure of 7 was determined by analysing HRESIMS data (Fig. S17).
Compound 7 (0.15 mg) produced by FdtA; HRESIMS m/z 545.0587 [M-H]- for C16H24N2015P2
(calcd. 545.0579).

Deuterium exchange experiments.

RubS3 reaction in deuterium water: The reaction mixture of RubS3 contained 750 uL 0.4 M
Tris/HCI (pH 7.5, final 50 mM), 150 pL 40 mM TDP-4-keto-6-deoxy-D-glucose (1) (final 1 mM),
300 pL 40 mM NADPH (final 2mM), 60 yL 1 mM RubS3 (final 10 yuM), and 4740 uL deuterium
water. After incubation at 30 °C for 2 h, the enzymatic reaction was quenched by chloroform
and centrifuged, the supernatant was evaporated and the compound was isolated by
analytical HPLC using a Dionex carbopac PA10 carbohydrate column. The structure of 4’ was
determined by analysing '"H-NMR (Fig. S35) and HRESIMS data (Fig. S18).

Compound 4’ (1.1 mg), white powder; "H-NMR data see Fig. S35; HRESIMS m/z 548.0816 [M-
H]- for C16H25DN2015P2 (calcd. 548.0798).

RubS3 reaction using [4S-2H] NADPH as cofactor: [4S-?°H] NADPH was synthesized using
the method reported by Barber. 2 The reaction (200 uL) contain 83 mM phosphate buffer (pH
8.0), 9.3 mM NADP*, 14.7 mM D-glucose-1-°H, 40% DMSO and 5 units of glucose-6-
phosphate dehydrogenase. After incubation at 30 °C for 1 h, 5 yL reaction solution was used
for HRESIMS analysis (Fig. S19, HRESIMS m/z 745.0924 [M-H] for C21H20DN7O17P3, calcd for
745.0901). Then, other 20 pL reaction solution was added to the RubS3 reaction system
including 50 mM Tris/HCI (pH 7.5), 1 mM TDP-4-keto-6-deoxy-D-glucose (1), and 10 yM
RubS3. The enzymatic reaction was quenched by chloroform and centrifuged, the supernatant
was isolated by analytical HPLC using a Dionex carbopac PA10 carbohydrate column. The
structure of 4” was determined by analysing HRESIMS data (Fig. S20).

Compound 4”, HRESIMS m/z 548.0796 [M-H] for C16H2sDN2015P2 (calcd. 548.0798).

RubS3 reaction using [4R-’H]NADPH as cofactor: [4R-2H] NADPH was synthesized by the



method of Barber. 2 The reaction (200 uL) contained 25 mM Tris buffer (pH 9.0), 2.8 mM NADP*,
1 M 2-propanol-?Hs, and 5 units of alcohol dehydrogenase. After incubation at 30 °C for 1 h, 5
ML reaction solution was used for HRESIMS analysis (Fig. S21, HRESIMS m/z 372.0436 [M-
2H]? for C21H29DN7017P3, calcd for 372.0414) and other 20 pL reaction solution was added to the
RubS3 reaction system containing 50 mM Tris/HCI (pH 7.5), 1 mM TDP-4-keto-6-deoxy-D-
glucose, and 10 yM RubS3. This reaction was quenched by chloroform and centrifuged, the
supernatant was isolated by analytical HPLC using a Dionex carbopac PA10 carbohydrate
column. The structure of 4 was determined by analysing HRESIMS data (Fig. S22).
Compound 4, HRESIMS m/z 547.0700 [M-H] for C16H26N2015P2 (calcd. 547.0736).

RubS3 reaction using [4S-2H]INADPH as cofactor in deuterium water: The 200 L reaction
mixture of RubS3 was prepared by adding 20 pL glucose-6-phosphate dehydrogenase
reaction solution, 25 uL 0.4 M Tris/HCI (pH 7.5), 5 uL 40 mM TDP-4-keto-6-deoxy-D-glucose
(1), 2 L 1 mM RubS3, and 148 uL deuterium water. After incubation at 30 °C for 2 h, the
enzymatic reaction was quenched by chloroform and centrifuged, the supernatant was isolated
by analytical HPLC using a Dionex carbopac PA10 carbohydrate column. The structure of 4’ was
determined by analysing HRESIMS data (Fig. S23).

Compound 4, 549.0866 [M-H] for C16H24D2N2015P2 (calcd. 549.0861).

Kinetic analysis of RubS3 and RbIE

The RubS3 or RbIE concentration was 0.005 mg/mL (0.16 uM) in the reaction mixture contained 50
mM Tris/HCI (pH 7.5), 0.5 mM NADPH and TDP-4-keto-6-deoxy-D-glucose (1) concentrations
ranging between 20 uM and 200 pM. The kinetics was measured by the decrease in absorbance at
340 nm using an extinction coefficient of 6220 M-'cm-" for NADPH. Recordings were carried out with
a NanoDrop instrument (Fisher Scientific). All assays were performed in triplicate, the Km and Vmax
values were calculated from curve fitting to the Michaelis-Menten equation vo = (Vmax * [S])/(Ku + [S]).
The kcat values were calculated according to the equation kcat = Vmax/[E].

Phylogenetic and sequence analysis

The sequence data was analyzed by the neighbor-joining method using the NEIGHBOR program
Phylogeny Inference Package (PHYLIP). 2 Bootstrapping and decay analysis were performed by NJ
plot. Parsimony analysis and various clades were determined by MEGA. # The sequence alignment

was created using Clustal Omega® and the figure was produced using EsPript 3.0. 6



Table S1. NMR data of compounds 1-3 in D20. (6 in ppm, J in Hz).

1 2 3
No.

OH OH OH
1 5.55 (dd, 6.8, 3.6) 5.54 (m) 5.54 (d, 2.3)
2 3.62 (d, 9.8) 3.73 (dt, 10.4, 3.2) 3.47 (d, 9.6)
3 3.78 (d, 9.8) 3.89 (dd, 10.4, 3.0) 3.40 (t, 9.6)
4 3.80 (br s) 3.72 (d, 10.1)
5 4.10 (q, 6.5) 4.25 (br q, 6.5) 3.84 (d, 10.1)
6 1.22 (d, 6.5) 1.19 (d, 6.5) 3.71 (d, 12.8)

3.80 (d, 12.8)

7 6.35 (t, 6.8) 6.32 (t, 6.9) 6.29(t, 6.9)
8 2.35 (m) 2.36 (m) 2.32 (m)
9 4.63 (m) 4.59 (m) 4.56 (m)
10  4.18-4.19 (overlapped) 4.14-4.16 (overlapped) 4.12-4.13 (overlapped)
11 4.18-4.19 (overlapped) 4.14-4.16 (overlapped) 4.12-4.13 (overlapped)
12 7.75(s) 7.71(s) 7.68 (s)
13 1.93(s) 1.90 (s) 1.87 (s)
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Table S2. NMR data of compound 4 in this study and the NMR data of compounds 2, 5, and 6
reported in the literatures?®

TDP-D- TDP-D-fucose TDP-D-allose TDP-D-quinovose
No. antiarose (4) (2)” (5)8 (6)7
OH OH OH On
1 5.54 (dd, 6.9, 3.8) 5.56 (dd, 6.8, 3.6) 5.38 (dd) Jp 7.15; 5.53 (dd, 7.0, 3.6)
J1,23.75
2 3.90 (br s) 3.74 (dt, 10.5, 3.2) 3.65 (dd) J2,33.6 3.52 (dt, 9.5, 3.6)
3 3.96 (t, 3.8) 3.91(dd, 10.5,3.2) 3.95(m) J343.2 3.71 (t, 9.5)
4 3.74 (d, 3.8) 3.81 (brd, 3.2) 3.25 (dd) Ja,510.1 3.15 (t, 9.5)
5 4.45 (q, 6.6) 4.28 (br q, 6.6) 4.02 (m) J566.3 3.97 (dq, 9.5, 6.2)
6 1.21 (d, 6.6) 1.21 (d, 6.6) 1.13 (d) 1.27 (d, 6.2)
7 6.34 (t, 7.0) 6.34 (t, 7.0) 6.24 (t) 6.34 (t, 6.9)
8 2.37 (m) 2.36 (m) 2.24 (m) 2.36 (m)
9 4.62 (m) 4.62 (m) 4.48 (m) 4.62 (m)
10 4.17-4.19° 4.17 (m) 4.06 (m) 417 (m)
1 4.17-419° 4.17 (m) 4.04 (dd) 417 (m)
12 7.74(s) 7.74 (s) 7.59 (s) 7.74 (s)
13 1.93(s) 1.93 (s) 1.78 (s) 1.93 (s)
aMeasured in D20, & in ppm, J in Hz. ® Overlapped signals.
OH ¢ OH ¢
4 5_0 4 s -0
HO 3 2 H 1 3 2 H1 0
™ \)\0«3‘5 H TDP o o HN)'ijVn
2 w o ?/ 4 ?g_o_g_o O)Q;N |12
o) I I "
OH OH o
. N Ho%) - ) :@L
oo paq?‘/ ] TDP\'L°H045O A
HO—~— T Ge,,\,/ = TP OH
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Table S3. NMR data of compound 4 in D20. (& in ppm, J in Hz).

TDP-D-antiarose(4)

No- 5c S 1H-1H COSY HMBC ROESY
1 9539  5.54(dd,6.9,3.8) 2 3,5 2

2 64.56  3.90 (brs) 1,3 1,3

3 7035  3.96 (t, 3.8) 2,4 4

4 7148  3.74(d, 3.8 3 2,3 3,5,6
5 6329  4.45(q, 6.6) 6 1,4,6 4,6

6 14.82  1.21(d, 6.6) 5 4,5 4,5

7 84.95  6.34(t 7.0) 8 12, 16 8, 10

8 3851  2.37 (m) 7,9 7,9 7,9, 12
9 7092  4.62 (m) 8, 10 7

10 65.43  4.17-4.192 9 11

11 8531  4.17-4.192 9

12 137.35  7.74(s) 7,13,15,16 8,13
13 1162  1.93(s) 12, 14, 15 12

14 111.75

15 166.58

16 151.73

a2 Qverlapped signals.
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Table S4. Strains, plasmids and primers used and generated in this study

Strains/Plasmid Purpose Sources
Strains

E. coli

DH10B Host strain for cloning Invitrogen
BL21(DE3) Heterologous host for protein expression NEB
Streptomyces

Streptomyces sp. | Rubrolones wild type producing strain This study
KIB-H033

Plasmids

pET26b(+) Kan', Protein expression vector used in E.coli, encoding C-terminal His-tag, | Novagen
pET26b-rubS5 pET26b(+) derived plasmid for expression C-terminal His-tag RubS5 This study
pET26b-rubS4 pET26b(+) derived plasmid for expression C-terminal His-tag RubS4 This study
pET26b-rubS3 pET26b(+) derived plasmid for expression C-terminal His-tag RubS3 This study
pET26b-rblE pET26b(+) derived plasmid for expression C-terminal His-tag RbIE This study
pET26b-fcd pET26b(+) derived plasmid for expression C-terminal His-tag Fcd This study
pET26b-fdtA pET26b(+) derived plasmid for expression C-terminal His-tag FdtA This study
pET26b-sfq20469 pET26b(+) derived plasmid for expression C-terminal His-tag SFQ20469 This study
pET26b-w8706 pET26b(+) derived plasmid for expression C-terminal His-tag WP009948706 | This study
pET26b-w6909 pET26b(+) derived plasmid for expression C-terminal His-tag wp094006909 | This study
Primers

RubS5-pET26b-S 5'- GGAATTCCATATGAAAGGGATCATCCTCG-3 This study
RubS5-pET26b-A | 5- CCGCTCGAGGCCGGCCTGCGCCGC -3’ This study
RubS4-pET26b-S 5'- GGAATTCCATATGTCGCGACAGCTGCGGATCCTG-3 This study
RubS4-pET26b-A | 5- CCGCTCGAGTGCCCCCCGGGCCGGGGCG -3 This study
RubS3-pET26b-S 5'- GGAATTCCATATGATGAGGAAGGCGATCTG-3 This study
RubS3-pET26b-A | 5- CCGCTCGAGGGCCCGCTGGACGGC-3’ This study

S10
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Figure S1. Proposed pathways for the formation of deoxysugar dTDP-2-keto-D-fucose in rubrolone biosynthesis. a

originally proposed. b revised in this study.
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Figure S2. SDS-PAGE analysis of proteins. a. Lane 1, RubS5 (calculated molecular weight 31.5 KDa); b. Lane 1,
RubS4 (calculated molecular weight 37.4 KDa); c. Lane 1, RubS3 (calculated molecular weight 32.9 KDa). d. Lane
1, RbIE (calculated molecular weight 32.9 KDa). e. Lane 1, SFQ20469 (calculated molecular weight 32.6 KDa). f.
Lane 1, WP009948706 (calculated molecular weight 32.5 KDa). g. Lane 1, WP094006909 (calculated molecular

weight 31.5 KDa). h. Lane 1, Fcd (calculated molecular weight 35.5 KDa). i. Lane 1, FdtA (calculated molecular
weight 16.0 KDa).
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Figure S3. Enlargerd'H-NMR spectra of compounds 2 and 4 in D20. A '"H-NMR of TDP-D-Fucose (2). B

"H-NMR of TDP-D-antiarose (4).
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Figure S4. Enlargerd."H-"H COSY NMR spectrum of compound 4 in D20.
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Figure S5. Key '"H-"H COSY, HMBC and ROESY correlations for compound 4.
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Figure S6. HPLC analysis of the products by enzymes. a Fcd reaction. b RubS3 reaction with substrate 2.
¢ FdtA reaction. d RubS3 reaction with substrate 7. RubS3 homologues reaction: e SFQ20469. f
WP009948706. g WP094006909.Triangle = NADP*.

S14



a I g m
548.0816 548.0796 549.0866
547.0735 5
H H
H D Do
D H i H
TOP HO TOP 548.0813 "° L
547.0747
547 547.5 548 5485 547 547.5 548 548 548.5 549
b ? ’ H3 H4
)' ; H2
m \‘Js \
| | | il
A " |- JULA!
[ 3 L g% %
b - - e S
C ) H4
H2
H1 / ke
J | ﬂ o
3 g K 8
- - S S -
58 5.6 5.4 5.2 50 4.8 4.6 44 42 40 3.8 3.6
(ppm)

Figure S7. Deuterium exchange experiments. a HRESIMS analysis. |, TDP-D-antiarose formed with RubS3

in D20; Il, TDP-D-antiarose formed with RubS3 and [4S-°H]NADPH as cofactor; Ill, TDP-D-antiarose

formed with RubS3 in D20 and [4S-?H]NADPH as cofactor. b '"H-NMR of TDP-D-antiarose formed with

RubS3 in H20. ¢ "H-NMR of TDP-D-antiarose formed with RubS3 in D20.
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Figure S8. Phylogenetic analysis of RubS3 and its selected homologues. Sequences including two NDP-
glucose-4,6-dehydratases (6Bl4, RfbB from B. anthracis; 2PZL, WbmG from B. bronchiseptica) and four
TDP-4-dehydrorhamnose reductases (3SC6, RfbD from B. anthracis; 4WPG, RmID from Streptococcus

pyogenes; 1KC3, RmID from Salmonella enterica; 1VLO, RfbD from Clostridium acetobutylicum) are from

Protein Data Dank (PDB). Others are selected homologues indicated by GenBank accession code.
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Figure S9. Alignment of the amino acid sequences for RubS3, RbIE and four TDP-4-dehydrorhamnose

reductases (1KC3, RmID from Salmonella enterica; 4WPG, RmID from Streptococcus pyogenes; 1VLO,
RfbD from Clostridium acetobutylicum; 3SC6, RfbD from B. anthracis). The conserved GXXGXXG motif

and catalytic TYK triad residues are indicated by triangle and circular, respectively.
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Figure $10. In vitro enzyme assays of mutants in parallel with RubS3-WT (wild type). All assays were
conducted in duplicate and the relative activities were calculated from peak area ratios of product 4 between
RubS3-WT and mutants. ND, the activity was not detected.
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Figure S11. Radical S-adenosylmethionine dependent enzyme DeslI-catalyzed reactions. a Desll can synthesize
TDP-D-antiarose (4), TDP-3-keto-D-fucose (7), and TDP-4,6-dideoxy-3-keto-D-glucose (11) using the poor
substrate TDP-D-fucose (2), which is not related to natural products biosynthesis. b Desll reaction using the
true substrate 10 to generate the intermediate 11 in natural product biosynthesis.
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Figure S13. HRESIMS analysis of compound 3.
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Figure S15. HRESIMS analysis of compound 4.
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Figure S16. HRESIMS analysis of compound 2.
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Figure S18. HRESIMS analysis of compound 4’ formed with RubS3 in D20
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Figure S19. HRESIMS analysis of synthesized [4S-°H] NADPH.
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Figure $S20. HRESIMS analysis of 4” formed with RubS3 use [4S-?H] NADPH as cofactor
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Figure S$21. HRESIMS analysis of synthesized [4R-?H] NADPH.
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Figure $S22. HRESIMS analysis of compound 4 formed with RubS3 use [4R-?H] NADPH as cofactor.
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Figure $23. HRESIMS analysis of compound 4’ formed with RubS3 in D20 and use [4S-?HINADPH as cofactor.
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Figure S24. "H NMR spectrum of compound 3 in D20.
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Figure S$25. '"H NMR spectrum of compound 1 in D20
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Figure S27. *H NMR spectrum of compound 4 in D20.
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Figure S31. HMBC NMR spectrum of compound 4 in D20.
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Figure S33. 3P NMR spectrum of compound 4 in D20.
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