## **Supporting Information**

## Auto-Controlled Fabrication of Metal-Porphyrin Framework Thin Film with Tunable Optical Limiting Effect

De-Jing Li,<sup>ab</sup> Zhi-Gang Gu\*<sup>a</sup> and Jian Zhang\*<sup>a</sup>

<sup>a</sup> State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the

Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.

<sup>b</sup> University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

Address correspondence to <a href="mailto:zggu@fjirsm.ac.cn">zggu@fjirsm.ac.cn</a> and <a href="mailto:zggu@fjirsm.ac.cn">zhj@fjirsm.ac.cn</a>

## **Table of content**

**Figure S1.** The scheme illustration of the preparation process of SURMOF (a) and guest@SURMOF (b) by the autoarm immersion method.

**Figure S2.** (a) The distribution curves of the domain width size for PIZA-1 thin film (b) The AFM images of PIZA-1 thin film (inset: The surface roughness of PIZA-1 thin film) (c) The cross-sectional SEM images of PIZA-1 thin film with different cycles of 5 cycles, 10 cycles, 15 cycles, 20 cycles, 25 cycles.

**Figure S3.** The XRD (a) and surface SEM images (b) of HKUST-1 thin film prepared by the autoarm immersion method.

**Figure S4.** The XRD (a) and surface SEM images (b) of MOF-2 thin film prepared by the autoarm immersion method.

**Figure S5.** The XRD (a) and surface SEM images (b) of  $Co_2(BDC)_2TED$  thin film prepared by the autoarm immersion method.

**Figure S6**. The nonlinear absorption coefficient of PIZA-1 thin film with different thickness versus different incident pulse energy.

Table S1. Linear and NLO data of the samples

**Figure S7**. The optical limiting curves of PIZA-1 thin film with different thickness at the incident pulse energy of  $100 \mu$ J.

**Figure S8.** The nonlinear refraction response of PIZA-1 thin film with different thickness at the incident pulse energy of  $100 \mu$ J.

Figure S9. The UV-vis absorbance spectra of PIZA-1 thin film with different thickness.

**Figure S10.** The diagram used to calculate the band gap of the PIZA-1 thin film with different thickness.

Figure S11. The mass uptakes of water for PIZA-1 and  $C_{60}$ @PIZA-1 thin film with 10 cycles.

**Figure S12.** The UV-vis absorbance spectra of PIZA-1 ,  $C_{60}$ @PIZA-1 thin film with 10 cycles and  $C_{60}$  in toluene.

**Figure S13.** The photocurrent response of PIZA-1 and  $C_{60}$ @PIZA-1 thin film with 10 cycles.

Figure S14. The current–voltage curve of PIZA-1 and C<sub>60</sub>@PIZA-1 thin film with 10 cycles.

Figure S15. The XRD of  $C_{60}$ @PIZA-1 thin film prepared by the autoarm immersion method.

**Figure S16.** The IR of PIZA-1 thin film,  $C_{60}$ @PIZA-1 thin film and  $C_{60}$ .

**Figure S17.** The SEM image of  $C_{60}$ @PIZA-1 thin film prepared by using the autoarm immersion method.

**Figure S18.** The NLO behavior of the  $C_{60}$ @PIZA-1 thin film at the different incident pulse energy.

**Figure S19.** The NLO behavior of the porphyrin ligand,  $C_{60}$  and porphyrin ligand mixed with  $C_{60}$  film quartz glass at 100  $\mu$ J.

**Figure S20.** The thicknesses of porphyrin ligand,  $C_{60}$  and the porphyrin ligand mixed with  $C_{60}$  film on quartz glass.

**Figure S21.** The curves of output fluence versus input fluence for bare glass, PIZA-1 thin film and  $C_{60}$ @PIZA-1 thin film.

Figure S22. The fluorescence spectra of PIZA-1 and C<sub>60</sub>@PIZA-1 thin film.

Figure S23. The EIS curves of  $C_{60}$ @PIZA-1 thin film with and without laser irradiation.

 Table S2. Comparison of band gap of porphyrin-fullerene systems



**Figure S1.** The scheme illustration of the preparation process of SURMOF (a) and guest@SURMOF (b) by the autoarm immersion method.



**Figure S2**. (a) The distribution curves of the domain width size for PIZA-1 thin film (b) The AFM images of PIZA-1 thin film (inset: The surface roughness of PIZA-1 thin film) (c) The cross-sectional SEM images of PIZA-1 thin film with different cycles of 5 cycles, 10 cycles, 15 cycles, 20 cycles, 25 cycles.



**Figure S3.** The XRD (a) and surface SEM images (b) of HKUST-1 thin film prepared by the autoarm immersion method.



**Figure S4.** The XRD (a) and surface SEM images (b) of MOF-2 thin film prepared by the autoarm immersion method.



**Figure S5.** The XRD and surface SEM images of  $Co_2(BDC)_2TED$  thin film prepared by the autoarm immersion method.



**Figure S6.** The nonlinear absorption coefficient of PIZA-1 thin film with different thickness versus different incident pulse energy.

**Table S1.** Linear and NLO data of the samples. E: incident pulse energy;  $T_0$ : linear transmittance;  $\beta$ : nonlinear coefficient.

| sample    | Ε (μJ) | T <sub>0</sub> (%) | T <sub>min</sub> | β(×10 <sup>-6</sup> m/W) |
|-----------|--------|--------------------|------------------|--------------------------|
| PIZA-1-5  | 30     | 95                 | 1                |                          |
|           | 50     | 96                 | 0.96             | 0.42                     |
|           | 80     | 94                 | 0.81             | 1.70                     |
|           | 100    | 94                 | 0.74             | 1.85                     |
| PIZA-1-10 | 30     | 88                 | 0.87             | 1.50                     |
|           | 50     | 88                 | 0.78             | 1.80                     |
|           | 80     | 87                 | 0.70             | 1.87                     |
|           | 100    | 86                 | 0.65             | 1.90                     |
| PIZA-1-25 | 30     | 35                 | 1.26             | -1.55                    |
|           | 50     | 35                 | 1.79             | -1.48                    |
|           | 80     | 35                 | 2.07             | -1.00                    |
|           | 100    | 34                 | 2.27             | -0.84                    |



**Figure S7.** The normalized transmittance of PIZA-1 thin film with different thickness as a function of input intensity.



**Figure S8.** The nonlinear refraction response of PIZA-1 thin film with different thickness at the incident pulse energy of 100  $\mu$ J.



Figure S9. The UV-vis absorbance spectra of PIZA-1 thin film with different thickness.



**Figure S10.** The diagram used to calculate the band gap of the PIZA-1 thin film with different thickness.



Figure S11. The mass uptakes of water for PIZA-1 and  $C_{60}$ @PIZA-1 thin film with 10 cycles.



**Figure S12.** The UV-vis absorbance spectra of PIZA-1,  $C_{60}$ @PIZA-1 thin film with 10 cycles and  $C_{60}$  in toluene.



Figure S13. The photocurrent response of PIZA-1 and  $C_{60}$ @PIZA-1 thin film with 10 cycles.



**Figure S14.** The current–voltage curve of PIZA-1 thin film and  $C_{60}$ @PIZA-1 thin film with 10 cycles.



Figure S15. The XRD of  $C_{60}$ @PIZA-1 thin film prepared by using the autoarm immersion method.



Figure S16. The IR of PIZA-1 thin film,  $C_{60}$ @PIZA-1 thin film and  $C_{60}$ .



**Figure S17.** The SEM image of  $C_{60}$ @PIZA-1 thin film prepared by using the autoarm immersion method.



**Figure S18.** The NLO behavior of the  $C_{60}$ @PIZA-1 thin film at the different incident pulse energy.



Figure S19. The NLO behavior of the porphyrin ligand,  $C_{60}$  and porphyrin ligand mixed with  $C_{60}$  film on quartz glass at 100  $\mu$ J.



**Figure S20.** The thicknesses of porphyrin ligand,  $C_{60}$  and the porphyrin ligand mixed with  $C_{60}$  film on quartz glass.



**Figure S21.** The curves of output fluence versus input fluence for bare glass, PIZA-1 thin film and  $C_{60}$ @PIZA-1 thin film.



Figure S22. The fluorescence spectra of PIZA-1 and  $C_{60}$ @PIZA-1 thin film.



Figure S23. The EIS curves of  $C_{60}$ @PIZA-1 thin film with and without laser irradiation.

**Table S2.** Comparison of band gap of porphyrin-fullerene systems

| Material                         | LUMO level | HOMO level | Band gap | Reference |
|----------------------------------|------------|------------|----------|-----------|
| (Si-TCP)n -PhC60NH3 <sup>+</sup> | -3.87 eV   | -5.45 eV   | 1.58 eV  | 1         |
| ZnP–Ph–C <sub>60</sub>           | -3.36 eV   | -5.17 eV   | 1.81 eV  | 2         |
| ZnP–EDOTV–C <sub>60</sub>        | -3.34 eV   | -5.05 eV   | 1.71 eV  | 2         |
| H <sub>2</sub> P-C <sub>60</sub> |            |            | 1.91 eV  | 3         |
| ZnP-C <sub>60</sub>              |            |            | 2.09 eV  | 3         |
| C <sub>60</sub> @PIZA-1          |            |            | ~1.69 eV | This work |

- 1 P. Zhu, F. Song, P. Ma, S. Li and Y. Wang, *Dyes Pigments*, 2018, **151**, 385-390.
- B. Pelado, F. Abou-Chahine, J. Calbo, R. Caballero, P. de la Cruz, J. M. Junquera-Hernandez, E. Orti, N. V. Tkachenko and F. Langa, *Chem. Eur. J.*, 2015, **21**, 5814-5825.
- M.-L. Yu, S.-M. Wang, K. Feng, T. Khoury, M. J. Crossley, F. Yang, J.-P. Zhang, C.H. Tung and L.-Z. Wu, *J. Phys. Chem. C*, 2011, **115**, 23634-23641.