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EXPERIMENTAL PROCEDURES

Synthesis of Lignin Model Compounds

The lignin model compounds (a, b) were prepared following previously reported
procedures, as shown in Scheme 1 .

'H NMR of lignin model compound a (400 MHz, DMSO-dj): 8 7.55 — 6.77 (m, 11H), 5.51
(d, J=4.6 Hz, 1H), 5.06 (d, ] = 4.7 Hz, 3H), 4.86 (q, J = 5.2 Hz, 1H), 4.65 (p, J = 6.2 Hz, 1H),
3.99 (ddd, J =28.8, 12.3, 5.8 Hz, 2H), 3.79 (s, 6H), 1.30 (d, ] = 6.4 Hz, 3H).

'H NMR of lignin model compound b (400 MHz, DMSO-dy): 6 7.37 (ddd, J = 26.7, 18.4,
7.2 Hz, 5H), 7.07 — 6.92 (m, 2H), 6.87 (d, J = 8.0 Hz, 1H), 6.64 (s, 2H), 5.18 — 4.98 (m, 4H),
4.81 —4.70 (m, 1H), 4.70 — 4.55 (m, 1H), 3.91 (dd, J = 10.0, 4.6 Hz, 1H), 3.86 — 3.80 (m, 1H),
3.75(d,J=5.8 Hz,9H), 1.31 (d, J = 6.4 Hz, 3H).
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Supplementary Scheme 1. Synthesis of lignin model compounds.
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Fig. S1. (A) The GC and MS spectra of the reaction mixture after lignin transformation
(Reaction condition, see Table 1, entry 9); (B) The GC trace of the gaseous sample after lignin
transformation (Reaction condition, see Table 1, entry 9); (C) The HPLC traces of the liquid
mixture after the reaction and guaiacol standard sample. (Reaction condition, see Table 1, entry
9); (D) and (E) The 2D-HSQC NMR spectra of the reaction mixture in deuterated methanol
(methanol-d,) after reaction.

Reaction conditions: 50 mg organosolv lignin, 20 mg La(OTf);, 4 mL deuterated methanol

(methanol- d,), 10 puL water, 270 °C, 0.1 MPa Ar, 24 h.
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Fig. S2. The GC graphics of gaseous(A) and liquid (B) samples after lignin model compound a

transformation.
Reaction conditions: 50 mg lignin model compound a, 20 mg La(OTf);, 4 mL methanol, 10 pL
water, 270 °C, 0.1 MPa Ar, 24 h.
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Fig. S3. The GC trace of the gaseous sample after 4-ethylguaiacol transformation.
Reaction conditions: 50 mg 4-ethylguaiacol, 20 mg La(OTf);, 4 mL methanol, 10 pL water, 270
°C, 0.1 MPa Ar, 24 h.
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Fig. S4. Transformation route of lignin model compound a in the ethanol/water.
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Reaction conditions: 50 mg lignin model compound a, 20 mg La(OTf);, 4 mL ethanol, 10 pL
water, 270 °C, 0.1 MPa Ar, 24 h.
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Fig. S5. (A) Transformation route of lignin model compound b. Reaction conditions: 50 mg
lignin model compound b, 20 mg La(OT¥);, 4 mL methanol, 10 pL water, 270 °C, 0.1 MPa Ar,
24 h; (B) Transformation route of 2,6-dimethoxy-4-methylphenol. Reaction conditions: 20 mg
2,6-dimethoxy-4-methylphenol, 50 mg La(OTf);, 4 mL methanol, 10 puL water, 270 °C, 0.1 MPa
Ar, 24 h.
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Fig. S6. The GC trace of gaseous (A) and liquid (B) samples after lignin model compound b
transformation.

Reaction conditions: 50 mg lignin model compound b, 20 mg La(OTf);, 4 mL methanol, 10 uL.
water, 270 °C, 0.1 MPa Ar, 24 h.
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Fig. S7. (A) The HPLC traces of the liquid mixture after the scale up reaction and guaiacol
standard sample. (B) The GC trace of the gaseous sample after the reaction.

Reaction condition: 1.50 g organosolv lignin, 600 mg La(OTf);, 120 mL methanol, 0.3 mL water,
270 °C, 0.1 MPa Ar, 24 h.
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Fig. S8. The 2D-HSQC NMR spectrum of the reaction mixture after the scale-up reaction.

Reaction condition: 1.50 g organosolv lignin, 600 mg La(OTf);, 120 mL methanol, 0.3 mL water,
270 °C, 0.1 MPa Ar, 24 h.
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Table S1 Transformation of lignin under different reaction conditions ?

—_— + Residual solid
OCH;
OH
Guaiacol
Catalytic system” Tem. Catalyst Gugiacol Mplar
Entry 1 methanol/water (oC) (mg) yield Yield
Catalyst (mL/mL) g (Wt %)b  (mol%) ¢

1 La(OTf); 2.0/2.0 270 20 3.0 4.8
2 La(OTf); 2.4/1.6 270 20 5.1 8.2
3 La(OTf); 3.2/0.8 270 20 11.6 18.7
4 La(OTf); 3.6/0.4 270 20 17.6 28.4
5 La(OTf); 3.8/0.2 270 20 20.5 33.0
6 La(OTf); 4.0/0.01 270 0 0.3 0.5
7 La(OTf); 4.0/0.01 270 5 53 8.5
8 La(OTf); 4.0/0.01 270 10 13.5 21.7
9 La(OTf); 4.0/0.01 270 15 20.6 33.2
10 La(OTf); 4.0/0.01 270 20 22.5 36.2

a Reaction conditions: 50 mg organosolv lignin, 24 h, 0.1 MPa Ar, 500 rpm. ® Guaiacol yield is

calculated based on the mass of lignin. ¢ The calculation of molar yield was estimated as follow:

_ mlignin
Npenzene ring in lignin — M X (nS + nG)
hypothesis (S 1)
n. .
A guaiacol
Molar yield (mol%) = X 100
Npenzene ring in lignin (Sz)

In the equations S1 and S2:

Npenzene ring in lignin (MOI): the mole number of benzene ring in lignin;

Miignin (g): the amount of lignin used in this work;

Miypothesis (g/mol): the hypothesis molecular weight.

For example, the S/G ratio in the organosolv lignin is determined as 1.45:1 according to the 2D-
HSQC NMR. Based on this result, we hypothesized that lignin was composed of 1.45*n S units
and n G units. To simplify, 4-(3-hydroxypropyl)-2,6-dimethoxyphenol represented S units and 4-
(3-hydroxypropyl)-2-methoxyphenol represented G units. So the Mygpomesis (g/mol) is
(1.45*n*Mw(4-(3-hydroxypropyl)-2,6-dimethoxyphenol)+n*Mw(4-(3-hydroxypropyl)-2,6-
dimethoxyphenol)), namely 489.635*n (g/mol);
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ng and ng (mol): the hypothesis mole number of S units and n G units. For example, in the
organosolv lignin, ng is 1.45*n (mol) and ng is n (mol);

Nguaiacol (Mol): the mole number of the guaiacol obtained from this work.
Under optimal conditions (Entry 10, the same as Table 1, entry 9 in main text), the yields of

guaiacol and residue solid are 22.5% and 72.1%, respectively, which suggested that nearly all of

the lignin was transformed into guaiacol and the solid residue.
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Table S2 The ratio of S/G/FA/H/PCE in various lignins?

Lignin Samples S G : FA H : PCE
Organosolv lignin from 145 - 1.00 - 0 - 0 - 0
hardwood
EMAL-p 0 : 1.00 : 0 : 0 : 0
EMAL-b 1.35 : 1.00 : 0.02 : 0.10 : 0.68

2S:G:FA:H:PCE= 0.5 I(S2,6):1(G2): I(FA,): 0.51(H»6):0.5 I(PCE,). S: syringyl units, G: guaiacyl
units; FA: ferulates; H: p-hydroxyphenyl units; PCE: p-coumarates
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