Electronic Supplementary Information

Metabolic inhibitors of bacterial glycan biosynthesis

Daniel A. Williams,^{1,‡} Kabita Pradhan,^{2,‡} Ankita Paul,² Ilana R. Olin,¹ Owen T. Tuck,¹ Karen D. Moulton,¹ Suvarn S. Kulkarni^{2*} and Danielle H. Dube^{1*}

¹Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011 ²Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India

Supporting Information

Table of Contents

Chemistry......s-3 General.....s-3 Phenyl 2-azido-3-O-acetyl-2,6-dideoxy-1-thio- β -D-galactopyranoside (12).....s-3 Phenyl 3-O-acetyl-2.4-diazido-2.4.6-trideoxy-1-thio-*B*-D-glucopyranoside (13).....s-4 Benzyl 3-O-acetyl-2,4-diazido-2,4,6-trideoxy-α-D-glucopyranoside (14).....s-5 Benzyl 2,4-diacetamido-3-O-acetyl-2,4,6-trideoxy-α-D-glucopyranoside (1)s-5 Phenyl 3-O-acetyl-2,4-diazido-2,4,6-trideoxy-1-thio-β-D-galactopyranoside (15)s-6 Benzyl 2,4-diacetamido-3-O-acetyl-2,4,6-trideoxy- α/β -D-galactopyranoside (2)s-7 Phenyl 3,4-O-diacetyl-2-azido-2,6-dideoxy-1-thio-β-D-galactopyranoside (17)s-8 Benzyl 3,4-O-diacetyl-2-azido-2,6-dideoxy-α-D-galactopyranoside (18)s-9 Phenyl 2,3-O-(isopropilidene)-4-O-napthyl-6-deoxy-1-thio-β-D-mannopyranoside (20)....s-10 Phenyl 3-O-acetyl-4-O-napthyl-6-deoxy-1-thio- β -D-mannopyranoside (21)s-11 Phenyl 2-azido-3-O-acetyl-4-O-napthyl-2,6-dideoxy-1-thio- β -D-glucopyranoside (22)s-12 Phenyl 2-azido-4-O-napthyl-2,6-dideoxy-1-thio-β-D-glucopyranoside (23)s-13 Phenyl 2-azido-4-O-napthyl-2,6-dideoxy-1-thio-β-D-allopyranoside (24)s-13 Phenyl 2-azido-3-fluoro-4-O-napthyl-2,3,6-trideoxy-1-thio- β -D-glucopyranoside (25)s-14 Phenyl 2-azido-3-fluoro-2,3,6-trideoxy-1-thio-β-D-glucopyranoside (26)s-14 Phenyl 2-azido-3-fluoro-2,3,6-trideoxy-1-thio-β-D-galactopyranoside (27)s-15 Phenyl 2,4-diazido-3-fluoro-2,3,4,6-tetradeoxy-1-thio-β-D-glucopyranoside (28)s-16 Phenyl 2,4-diacetamido-3-fluoro-2,3,4,6-tetradeoxy-1-thio-β-D-glucopyranoside (29)s-16 Acetyl 2,4-diacetamido-3-fluoro-2,3,4,6-tetradeoxy- α -D-glucopyranoside (4)s-17 Phenyl 2,4-diazido-3-fluoro-2,3,4,6-tetradeoxy-1-thio- β -D-galactopyranoside (**30**)s-18 Phenyl 2,4-diacetamido-3-fluoro-2,3,4,6-tetradeoxy-1-thio- β -D-galactopyranoside (31) ...s-19 Acetyl 2,4-diacetamido-3-fluoro-2,3,4,6-tetradeoxy- α/β -D-galactopyranoside (5)s-19 Phenyl 4-O-acetyl-2-azido-3-fluoro-2,3,6-trideoxy-1-thio- β -D-galactopyranoside (32)s-20 Phenyl 4-O-acetyl-2-acetamido-3-fluoro-2,3,6-trideoxy-1-thio- β -D-galactopyranoside (33). Acetyl 4-*O*-acetyl-2-acetamido-3-fluoro-2,3,6-trideoxy-α-D-galactopyranoside (6)s-21

Biologys-22
Generals-22
Bacterial growth conditionss-22
Rationale for and construction of <i>H. pylori</i> glycosylation mutant strains-23
Metabolic labeling of <i>H. pylori</i> s-23
Metabolic labeling of <i>C. jejuni</i> s-24
Metabolic labeling of <i>B. fragilis</i> s-24
SDS-PAGE and Western blot analysis of azide-labeled glycanss-24
Lectin binding flow cytometry experiments with <i>H. pylori</i> s-25
Flow cytometry experiments in <i>B. fragilis</i> s-25
Growth curves
Viability assessments-26
Motility assayss-27
Biofilm formation assayss-27
Supplemental Figuress-28
Supplemental Figure 1s-28
Supplemental Figure 2s-29
Supplemental Figure 3s-30
Supplemental Figure 4s-31
Supplemental Figure 5s-32
Supplemental Referencess-34
NMRs

Williams *et al*.

Chemistry

Synthesis

General. All reactions were conducted under a dry nitrogen atmosphere. Solvents (CH₂Cl₂ >99%, THF 99.5%, Acetonitrile 99.8%, DMF 99.5%) were purchased in capped bottles and dried under sodium or CaH₂. All other solvents and reagents were used without further purification. All glasswares used were oven dried before use. TLC was performed on precoated Aluminium plates of Silica Gel 60 F254 (0.25 mm, E. Merck). Developed TLC plates were visualized under a short-wave UV lamp and by heating plates that were dipped in ammonium molybdate/cerium (IV) sulfate solution. Silica gel column chromatography was performed using Silica Gel (100-200 mesh) and employed a solvent polarity correlated with TLC mobility. NMR experiments were conducted on 400 MHz and 500 MHz instruments using CDCl₃ (D, 99.8%) or CD₃OD (D, 99.8%) as solvents. Chemical shifts are relative to the deuterated solvent peaks and are in parts per million (ppm). ¹H-¹H COSY was used to interpret proton correlation. ¹⁹F was taken to confirm fluorine assignment. Mass spectra were acquired in the ESI mode. Ac₄GlcNAc, Ac₄GlcNAz, Ac₄GalNAz, and Phos-FLAG were synthesized as previously described.^{1, 2}

Phenyl 2-azido-3-*O*-acetyl-2,6-dideoxy-1-thio-β-D-galactopyranoside (12):

Trifluoromethanesulfonic anhydride (2.30 mL, 13.8 mmol) and dry pyridine (4.4 mL, 55 mmol) were added sequentially to a stirred solution of compound **11** (1.37 g, 4.58 mmol) in dry CH₂Cl₂ (125 mL) and stirred at 0 °C for 1 h. After complete consumption of starting material, reaction mixture was washed with 1M HCl and aq. NaHCO₃ solution. Separated organic layer was dried over anhydrous Na₂SO₄, concentrated and dried in *vacuum* to give crude 2,4-bis-triflate compound. TBAN₃ (1.10 g, 3.89 mmol) was added to the reaction mixture of crude 2,4-bis-triflate selective inversion at C-2 position (indicated by TLC), reaction mixture was concentrated and kept under high *vacuum* for 15 min. Then, crude compound was dissolved in dry DMF (20 mL) and KNO₂ (3.89 g, 45.8 mmol) was added to it. The reaction was stirred at room

temperature for 5 h. After completion of reaction (indicated by TLC), reaction mixture was diluted with EtOAc (20 mL) and washed with aq. NaHCO₃ and brine solution. Separated organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography on silica gel (25% ethyl acetate: pet ether) to afford compound **12** as brown viscous liquid (1.04 g, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.58 (m, 2H, -ArH), 7.35-7.31 (m, 3H, -ArH), 4.77 (dd, J = 10.4, 2.8 Hz, 1H, H-3), 4.45 (d, J = 10.4 Hz, 1H, H-1), 3.84 (d, J = 2.8 Hz, 1H, H-4), 3.71-3.62 (m, 2H, H-2, H-5), 2.14 (s, 3H, -COCH₃), 1.32 (d, J = 6.4 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.09, 133.39, 131.36, 129.10, 128.91, 128.49, 86.41, 75.92, 74.59, 69.25, 59.35, 20.98, 16.57; HR-ESI-MS (m/z): [M + Na]⁺ calculated for C₁₄H₁₇N₃NaO₄S, 346.0810; found, 346.0813.

To a clear solution of compound 12 (0.41 g, 1.3 mmol) in dry CH₂Cl₂ (9 mL), trifluoromethanesulfonic anhydride (0.32 mL, 1.9 mmol) and dry pyridine (0.30 mL, 3.8 mmol) were added sequentially at 0 °C and allowed to stir for 1 h. After completion of starting material (indicated by TLC), the reaction mixture was washed with 1M HCl and aq. NaHCO₃ solution. The separated organic layer was dried over anhydrous Na₂SO₄, concentrated, and dried over vacuum to give mono-triflate compound. NaN₃ (1.23 gm, 18.9 mmol) was added to the clear solution of the mono-triflate compound in DMF (7.3 mL) at rt. The mixture was allowed to stir at rt for 5 h. After completion of reaction, the reaction mixture was diluted with EtOAc (25 mL) and washed with brine solution. The organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography on silica gel (10% ethyl acetate: pet ether) to afford compound 13 as a white solid (0.34 g, 78%).¹H NMR (400 MHz, CDCl₃) δ 7.57-7.54 (m, 2H, -ArH), 7.35-7.31 (m, 3H, -ArH), 5.03 (t, J = 10.0 Hz, 1H, H-3), 4.46 (d, J = 10.0 Hz, 1H, H-1), 3.39-3.29 (m, 2H, H-4, H-5), 3.12 (t, *J* = 9.6 Hz, 1H, H-2), 2.16 (s, 3H, -COCH₃), 1.39 (d, J = 6.0 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.66, 133.79, 132.68, 130.78, 129.13, 128.73, 85.93, 74.96, 74.65, 65.42, 63.15, 20.73, 18.57; HR-ESI-MS (m/z): [M + Na]⁺ calculated for C₁₄H₁₆N₆NaO₃S, 371.0897; found, 371.0895.

Benzyl 3-O-acetyl-2,4-diazido-2,4,6-trideoxy-α-D-glucopyranoside (14):

To donor **13** (0.16 g, 0.46 mmol), benzyl alcohol acceptor (40 μ L, 0.32 mmol) and molecular sieves (3Å, 150 mg) were added to dry CH₂Cl₂ (2 mL) and dry Et₂O (2 mL) and stirred at room temperature for 0.5 h. Then NIS (42 mg, 0.92 mmol) and TfOH (20 μ L, 0.27 mmol) were added sequentially to the stirring solution at 0 °C and allowed to stir at the same temperature for 1 h. After complete consumption of donor (indicated by TLC), the reaction mixture was filtered through celite pad and filtrate was dissolved in CH₂Cl₂ followed by a wash with Na₂S₂O₃ solution. The separated organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography silica gel (10% ethyl acetate: pet ether) to afford α -linked *O*-benzylated compound **14** as brown viscous liquid (0.11 g, 90%). ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.37(m, 4H, -ArH), 7.36-7.34 (m, 1H, -ArH), 5.49 (t, *J* = 10.0 Hz, 1H, H-3), 5.00 (d, *J* = 3.5 Hz, 1H, H-1 α), 4.76 (d, *J* = 12.0 Hz, 1H, -CHPh), 4.62 (d, *J* = 12.0 Hz, 1H, -CHPh), 3.79-3.73 (m, 1H, H-5), 3.22-3.16 (m, 2H, H-2, H-4), 2.20 (s, 3H, -COCH₃), 1.33 (d, *J* = 6.5 Hz, 3H, -CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 170.13, 136.48, 128.45, 128.01, 100.40, 73.57, 70.82, 69.12, 62.84, 60.69, 20.55, 17.26; HR-ESI-MS (*m*/z): [M + Na]⁺ calculated for C₁₅H₁₈N₆NaO₄, 369.1282; found, 369.1282.

Benzyl 2,4-diacetamido-3-*O*-acetyl-2,4,6-trideoxy-α-D-glucopyranoside (1):

To the stirring solution of compound **14** (0.11 g, 0.32 mmol) in THF (3 mL), activated Zn dust (0.25 g, 3.8 mmol) was added followed by dropwise addition of AcOH (0.3 mL) at rt. Mixture was stirred at rt for 9 h. After complete conversion of azide to amine, zinc was filtered through celite bed, concentrated and dried under high vacuum for 30 min.

The crude di-amine compound was dissolved in THF (2 mL). To the clear solution, Ac₂O (0.12 mL, 1.3 mmol) and DMAP (39 mg, 0.32 mmol) were added sequentially at 0 °C and the mixture was allowed to stir at room temperature for 5 h. After completion of reaction, solvents

were removed in *vacuo* and the crude product was purified by column chromatography silica gel (5% methanol: ethyl acetate) to furnish desired 2,4-diacetamido compound **1** as white solid (0.098 g, 82%). ¹H NMR (500 MHz, CDCl₃) δ 7.37-7.29 (m, 5H, -ArH), 5.80 (d, *J* = 8.8 Hz, 2H, -NH), 4.99 (t, *J* = 10.4 Hz, 1H, H-3), 4.85 (d, *J* = 3.6 Hz, 1H, H-1 α), 4.68 (d, *J* = 12.0 Hz, 1H, -CHPh), 4.47 (d, *J* = 12.0 Hz, 1H, -CHPh), 4.34 (dt, *J* = 10.0, 3.6 Hz, 1H, H-4), 3.97 (q, *J* = 10.0 Hz, 1H, H-2), 3.78-3.71 (m, 1H, H-5), 1.98 (s, 3H, -OCOCH₃), 1.91 (s, 3H, -NHAc), 1.88 (s, 3H, -NHAc), 1.20 (d, *J* = 6.0 Hz, 3H, -CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 172.17, 170.04, 169.86, 136.92, 128.61, 128.23, 128.14, 96.62, 71.59, 69.76, 67.49, 54.94, 51.79, 23.25, 23.17, 20.84, 17.77; HR-ESI-MS (*m*/*z*): [M + Na]⁺ calculated for C₁₉H₂₆KN₂O₆, 417.1422; found, 417.1422.

Phenyl 3-O-acetyl-2,4-diazido-2,4,6-trideoxy-1-thio-β-D-galactopyranoside (15):

Trifluoromethanesulfonic anhydride (0.81 mL, 4.8 mmol) and dry pyridine (0.77 mL, 9.6 mmol) were added sequentially to a stirred solution of compound **11** (0.47 g, 1.6 mmol) in dry CH₂Cl₂ (11 mL) and allowed to stir at 0 °C for 1 h. After complete consumption of starting material, the reaction mixture was washed with 1M HCl and aq. NaHCO₃ solution. Separated organic layer was dried over anhydrous Na₂SO₄, concentrated and dried over *vacuum* to give bis-triflate compound.

To the solution of bis-triflate compound in DMF (9.1 mL), NaN₃ (1.04 g, 16.0 mmol) was added at rt. After 5 h, reaction mixture was diluted with EtOAc and aq. NaHCO₃ and brine solution. Separated organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography to afford compound **15** (0.483 g, 88%) as white solid.¹H NMR (400 MHz, CDCl₃) δ 7.61-7.52 (m, 2H, ArH), 7.36-7.33 (m, 3H, ArH), 4.90 (dd, *J* = 10.0, 3.4 Hz, 1H, H-3), 4.40 (d, *J* = 10.0 Hz, 1H, H-1), 3.82 (d, *J* = 3.4 Hz, 1H, H-4), 3.70-3.65 (m, 2H, H-2 & H-5), 2.16 (s, 3H, -COCH₃), 1.35 (d, *J* = 6.2 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 133.5, 131.2, 129.2, 128.6, 86.5, 75.5, 73.4, 63.0, 59.3, 20.7, 17.8; HR-ESI-MS (*m/z*): [M + Na]⁺ calculated for C₁₄H₁₆N₆NaO₃S, 371.0897; found, 371.0896.

Benzyl 3-*O*-acetyl-2,4-diazido-2,4,6-trideoxy- α/β -D-galactopyranoside (16):

To donor **15** (0.56 g, 1.6 mmol), benzyl alcohol (0.16 mL, 1.6 mmol) and molecular sieves 3Å (400 mg) were added dry CH₂Cl₂ (6.8 mL), dry Et₂O (6.8 mL) and the solution was stirred at room temperature for 0.5 h. Then NIS (0.72 g, 3.2 mmol) and TfOH (0.11 mL, 1.3 mmol) were added sequentially to the stirring solution at 0 °C and allowed to stir at same temperature for 1 h. After complete consumption of donor (indicated by TLC), the reaction mixture was filtered out through celite pad and crude filtrate was dissolved in CH₂Cl₂ and washed with Na₂S₂O₃ solution. The separated organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography over silica gel (10% ethyl acetate: pet ether) to afford compound **16** as brown viscous liquid (0.512 g, 93%, α : β = 1:1). for α -compound: ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.36 (m, 5H, -ArH), 5.44 (dd, J = 10.8, 3.6 Hz, 1H, H-3), 4.97 (d, J = 3.6 Hz, 1H, H-1 α), (4.69 (d, J = 12.0 Hz, 1H, -CHPh), 4.58 (d, J = 12.04 Hz, 1H, -CHPh) , 4.08 (dq, J = 7.6, 1.2 Hz, 1H, H-5), 3.91 (dd, J = 3.6, 1.6 Hz, 1H, H-4), 3.71 (dd, J = 10.8, 3.6 Hz, 1H, H-2), 2.17 (s, -CH₃), 1.22 (d, J = 6.4 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.06, 136.61, 129.44, 129.09, 128.82, 128.54, 128.10, 97.03, 71.02, 69.97, 64.79, 64.06, 57.48, 20.56, 17.03.

For β-compound: ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.34 (m, 4H, -ArH), 7.33-7.31 (m, 1H, -ArH), 4.93 (d, J = 12.0 Hz, 1H, -CHPh), 4.80 (dd, J = 11.0, 4.0 Hz, 1H, H-3), 4.66 (d, J = 12.0 Hz, 1H, -CHPh), 4.32 (d, J = 8.0 Hz, 1H, H-1β), 3.79-3.75 (m, 2H, H-2, H-4), 3.64 (dq, J = 6.5, 1.5 Hz, 1H, H-5), 2.18 (s, 3H, -CH₃), 1.36 (d, J = 6.5 Hz, 3H, -CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 170.13, 136.48, 128.45, 128.01, 100.40, 73.57, 70.82, 69.12, 62.84, 60.69, 20.55, 17.26; HR-ESI-MS (m/z): [M + Na]⁺ calculated for C₁₅H₁₈N₆O₄Na, 369.1282; found, 369.1282.

Benzyl 2,4-diacetamido-3-*O*-acetyl-2,4,6-trideoxy-*α/β*-D-galactopyranoside (2):

To the stirring solution of compound **16** (0.12 g, 0.35 mmol) in THF (2 mL), activated Zn dust (0.27 g, 3.8 mmol) was added followed by dropwise addition of AcOH (0.2 mL) at rt. Mixture was allowed to stir at rt for 9 h. After complete conversion of azide to amine (indicated by TLC), zinc was filtered through celite bed, concentrated and dried under high vacuum for 30 min.

The crude di-amine was dissolved in THF (2 mL). To the clear solution, Ac₂O (0.13, 1.4 mmol) and DMAP (0.4 mg, 0.003 mmol) were added sequentially at 0 °C, and the mixture was allowed to stir at room temperature for 5 h. After completion of reaction, solvents were removed in vacuo and the crude product was purified by silica gel column chromatography (5% methanol: ethyl acetate) to furnish desired 2,4-diacetamido compound **2** as white solid (0.112 g, 86%, α/β = 1:1). For α -compound: ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.35 (m, 2H, -ArH), 7.34-7.32 (m, 1H, -ArH), 7.31-7.29 (m, 2H, -ArH), 6.48 (bs, 1H, -NH), 5.92 (bs, 1H, -NH), 5.14 (dd, *J* = 11.5, 4.5 Hz, H-3), 4.88 (d, *J* = 4.0 Hz, 1H, H-1 α), 4.66 (d, *J* = 12.0 Hz, 1H, -CHPh), 4.47-4.37 (m, 3H, -CHPh, H-2, H-4), 4.21-4.17 (m, 1H, H-5), 2.08 (s, 3H, -OCOCH₃), 1.99 (s, 3H, -NHAc), 1.14 (d, *J* = 6.5 Hz, 3H, -CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 171.27, 171.05, 170.35, 136.93, 128.61, 128.19, 127.95, 96.98, 70.03, 69.37, 65.02, 50.65, 49.43, 48.02, 23.22, 20.98, 16.44.

For β-compound: ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.26 (m, 5H, -ArH), 6.04 (bs, 1H, -NH), 5.60 (bs, 1H, -NH), 4.94 (dd, J = 11.2, 4.4 Hz, 1H, H-3), 4.84 (d, J = 12.4 Hz, 1H, -CHPh), 4.53 (d, J = 12.8 Hz, 1H, -CHPh), 4.38-4.33 (m, 2H, H-4, H-1 β), 4.11-3.98 (m, 1H, H-2), 3.68 (q, J = 6.0 Hz, 1H, H-5), 2.03 (s, 3H, -COCH₃), 1.95 (s, 3H, -NHAc), 1.88 (s, 3H, -NHAc), 1.18 (d, J = 6.4 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.19, 170.83, 170.40, 137.07, 128.49, 128.01, 127.81, 100.73, 71.47, 70.78, 69.59, 50.91, 50.37, 23.39, 23.25, 20.91, 16.62; HR-ESI-MS (m/z): [M + Na]⁺ calculated for C₁₉H₂₆NaN₂O₆, 401.1683; found, 401.1686.

Phenyl 3,4-O-diacetyl-2-azido-2,6-dideoxy-1-thio-β-D-galactopyranoside (17):

AcCl (0.30 mL, 4.2 mmol) and dry pyridine (0.33 mL, 4.2 mmol) were added dropwise to a stirring solution of compound **12** (0.45 g, 1.39 mmol) in dry CH_2Cl_2 (4 mL) at 0 °C and allowed to keep at the same temperature over 1 h. After completion of reaction, reaction mixture was

washed with 1 M HCl and aq. NaHCO₃ solution. The separated organic layer was dried over Anhydrous Na₂SO₄, concentrated and purified by column chromatography on silica gel (10% ethyl acetate: pet ether) to give compound **17** as white solid (0.46 g, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.56 (m, 2H, -ArH), 7.29-7.27 (m, 3H, -ArH), 5.14 (s, 1H, H-4), 4.83 (dd, J = 10.0, 3.2 Hz, 1H, H-3), 4.47 (d, J = 10.0 Hz, 1H, H-1), 3.73 (q, J = 6.0 Hz, 1H, H-5), 3.58 (t, J = 10.0 Hz, 1H, H-2), 2.04 (t, J = 1.6 Hz, 3H, -OCOCH₃), 1.95 (t, J = 2.0 Hz, 3H, -OCOCH₃), 1.17-1.15 (m, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.25, 169.69, 133.18, 131.52, 128.93, 128.30, 86.14, 76.94, 73.30, 72.96, 69.63, 59.25, 20.61, 20.53, 16.55; HR-ESI-MS (*m/z*): [M + Na]⁺ calculated for C₁₆H₁₉N₃O₅NaS, 388.0938; found, 388.0936.

Benzyl 3,4-O-diacetyl-2-azido-2,6-dideoxy-α-D-galactopyranoside (18):

To donor 17 (0.17 g, 0.46 mmol), benzyl alcohol (0.03 mL, 0.3 mmol) and molecular sieves 3Å (150 mg) were added dry CH₂Cl₂ (1.1 mL) and dry Et₂O (1.1 mL). The reaction mixture was stirred at room temperature for 0.5 h. Then NIS (0.21 g, 0.93 mmol) and TfOH (0.03 mL, 0.4 mmol) were added sequentially at 0 °C and stirred at the same temperature for 1 h. After complete consumption of donor 17 (indicated by TLC), 3Å molecular sieve was filtered out through celite pad and the reaction mixture was dissolved in CH₂Cl₂ followed by a wash with Na₂S₂O₃ solution. The separated organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography over silica gel (10% ethyl acetate: pet ether) to afford exclusively α -linked benzylated compound 18 as a white solid (0.102 g, 87%).¹H NMR (500 MHz, CDCl₃) δ 7.41-7.37 (m, 4H, -ArH), 7.36-7.33 (m, 1H, -ArH), 5.43 (dd, J = 11.0, 3.0 Hz, 1H, H-3), 5.31 (dd, J = 3.0, 1.0 Hz, 1H, H-4), 5.06 (d, J = 3.5 Hz, 1H, H-1 α), 4.75 (d, J = 12.0Hz, 1H, -CHPh), 4.64 (d, J = 12.0 Hz, 1H, -CHPh), 4.16 (dq, J = 6.5, 1.0 Hz, 1H, H-5), 3.67 (dd, J = 11.5, 3.5 Hz, 1H, H-2), 2.18 (s, 3H, -OCOCH₃), 2.07 (s, 3H, -OCOCH₃), 1.13 (d, J = 7.0 Hz, 3H, -CH₃); ¹³C NMR (500 MHz, CDCl₃) δ170.41, 169.87, 136.58, 128.55, 128.07, 97.16, 70.70, 70.01, 68.74, 64.94, 57.43, 20.72, 20.64, 15.84; HR-ESI-MS (m/z): $[M + Na]^+$ calculated for C₁₇H₂₁N₃NaO₆, 386.1323; found, 386.1326.

Benzyl 2-acetamido-3,4-*O*-diacetyl-2,6-dideoxy-α-D-galactopyranoside (3):

To the stirring solution of compound **18** (0.15 g, 0.41 mmol) in THF (2.5 mL), activated Zn dust (0.32 g, 4.9 mmol) was added followed by dropwise addition of AcOH (0.25 mL) at rt. The mixture was allowed to stir at rt for 9 h. After complete conversion of azide to amine (indicated by TLC), zinc was filtered through celite bed, concentrated and dried under high *vacuum* for 30 min.

Crude amine compound was dissolved in THF (2.5 mL). To the clear solution, Ac₂O (0.15 mL, 1.6 mmol) and DMAP (0.5 mg, 0.004 mmol) were added sequentially at 0 °C, and the mixture was allowed to stir at room temperature for 5 h. After completion of reaction, solvents were removed in *vacuo* and the crude product was purified by column chromatography over silica gel (70% pet ether: ethyl acetate) to furnish desired compound **3** as white solid (0.13 g, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.29 (m, 5H, -ArH), 5.60 (d, *J* = 9.6 Hz, 1H, -NH), 5.19-5.16 (m, 2H, H-3, H-4), 4.92 (d, *J* = 4.0 Hz, 1H, H-1*a*), 4.69 (d, *J* = 11.6 Hz, 1H, -CHPh), 4.58-4.48 (m, 2H, H-2, -CHPh), 4.10 (q, *J* = 6.8 Hz, 1H, H-5), 2.17 (s, 3H, -OCOCH₃), 1.97 (s, 3H, -OCOCH₃), 1.89 (s, 3H, -NHAc), 1.11 (d, *J* = 6.8 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.03, 170.78, 169.97, 136.97, 128.63, 128.22, 128.11, 97.21, 70.46, 70.08, 68.89, 65.09, 47.64, 23.30, 20.82, 20.78, 16.03; HR-ESI-MS (*m*/*z*): [M + Na]⁺ calculated for C₁₉H₂₅NNaO₇, 402.1523; found, 402.1526.

Phenyl 2,3-*O*-(isopropilidene)-4-*O*-napthyl-6-deoxy-1-thio-β-D-mannopyranoside (20):

Camphorsulphonic acid (91 mg, 0.39 mmol) was added to the solution of mannose triol compound **19** (1.0 g, 3.9 mmol) in 2,2-DMP (38.2 mL, 312 mmol) and stirred for 1 h at room temperature. After completion of reaction (indicated by TLC), the reaction mixture was

quenched by Et₃N and concentrated under reduced pressure to give acetonide protected compound (1.15 g, quantitatively) as white solid.

2-napthylmethyl bromide (NapBr) (1.72 g, 7.80 mmol) and NaH (0.19 g, 7.8 mmol) were added sequentially to the solution of crude acetonide compound (1.15 g, 3.90 mmol) in dry DMF (19 mL) at 0 °C and allowed to stir for 1 h at rt. After completion of reaction (indicated by TLC), reaction mixture was dissolved in EtOAc (40 mL) and washed with brine solution. The separated organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography silica gel (3% ethyl acetate: pet ether) to give compound **20** as a white solid (1.39 g, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.82 (m, 4H, -ArH), 7.57-7.54 (m, 2H, -ArH), 7.52-7.46 (m, 3H, -ArH), 7.35-7.27 (m, 3H, -ArH), 5.07 (d, *J* = 12.0 Hz, 1H, -CHPh), 5.03 (d, *J* = 2.0 Hz, 1H, H-1), 4.84 (d, *J* = 11.6 Hz, 1H-CHPh), 4.67 (dd, *J* = 5.6, 2.0 Hz, 1H, H-3), 4.28 (t, *J* = 6 Hz, 1H, H-2), 3.48-3.38 (m, 2H, H-4, H-5), 1.61 (s, 3H, CH₃), 1.47 (s, 3H, CH₃), 1.41 (d, *J* = 5.6 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 135.53, 135.29, 133.23, 133.06, 130.86, 129.00, 128.19, 127.90, 127.75, 127.37, 127.02, 126.18, 126.15, 125.99, 110.53, 84.06, 80.54, 80.08, 76.43, 74.58, 73.06, 28.03, 26.49, 18.64; HR-ESI-MS (*m*/*z*): [M + Na]⁺calcd. for C₂₆H₂₈NaO₄S, 459.1601; found, 459.1607.

Phenyl 3-O-acetyl-4-O-napthyl-6-deoxy-1-thio-β-D-mannopyranoside (21):

Compound **20** (1.0 g, 2.3 mmol) was dissolved in 80% AcOH (10 mL) and kept at 80 °C for 1 h. After completion of reaction, the reaction mixture was diluted with EtOAc and washed with NaHCO₃ and brine solution. Separated organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give diol compound as a white solid (0.76 g, 84%).

Me₂SnCl₂ (23 mg, 0.11 mmol), DIPEA (0.83 g, 6.4 mmol) and AcCl (0.2 mL, 2.8 mmol) were added sequentially at rt to the stirring solution of diol compound (0.85 g, 2.1 mmol) in dry THF (20 mL) and allowed to stir for 2 h. After completion of reaction (indicated by TLC), the reaction mixture was diluted with EtOAc and washed with brine solution. Separated organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography over silica gel (20% ethyl acetate: pet ether) to afford compound **21** as a white solid (0.81 g, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.81 (m, 3H, -ArH), 7.73 (s, 1H, -ArH), 7.51-7.46 (m,

4H, -ArH), 7.40-7.38 (m, 1H, -ArH), 7.34-7.30 (m, 3H, -ArH), 4.98 (dd, J = 9.6, 3.2 Hz, 1H, H-3), 4.90 (s, 1H, H-1), 4.83 (dd, J = 11.6, 1.9 Hz, 2H, -CH₂Ph), 4.32 (t, J = 2.8 Hz, 1H, H-2), 3.69 (t, J = 9.6 Hz, 1H, H-4), 3.54-3.47 (m, 1H, H-5), 2.03 (s, 3H, -CH₃), 1.42 (d, J = 6.0 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.24, 135.38, 133.62, 133.24, 133.02, 131.76, 129.10, 128.26, 127.91, 127.80, 127.69, 126.47, 126.25, 126.06, 125.70, 86.80, 78.22, 76.73, 76.64, 76.41, 75.40, 71.02, 21.09, 18.34; HR-ESI-MS (*m*/*z*): [M + Na]⁺calcd. for C₂₅H₂₆NaO₅S, 461.1393; found, 461.1393.

Phenyl 2-azido-3-*O*-acetyl-4-*O*-napthyl-2,6-dideoxy-1-thio-β-D-glucopyranoside (22):

Tf₂O (0.51 mL, 3.0 mmol) and dry pyridine (0.48 mL, 6.1 mmol) were added dropwise to the stirring solution of compound **21** (0.88 g, 2.0 mmol) in dry CH₂Cl₂ (10 mL) at 0 °C and allowed to keep at same temperature for 0.5 h. After consumption of starting material, the reaction mixture was washed with 1 M HCl and aq. NaHCO₃ solution. Separated organic layer was dried over anhydrous Na₂SO₄, concentrated and dried under *vaccum* to give triflated compound quantitatively.

NaN₃ (1.3 g, 20 mmol) was added to the solution of crude triflate compound in dry DMF (7.4 mL). The mixture was kept stirring at rt for 3 h. After completion of reaction, the crude mixture was diluted with EtOAc (30 mL) and washed with brine solution. Separated organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography over silica gel (5% ethyl acetate: pet ether) to afford compound **22** as a white solid (0.83 g, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.80 (m, 3H, -ArH), 7.69 (s, 1H, -ArH), 7.59-7.56 (m, 2H, -ArH), 7.49-7.46 (m, 2H, -ArH), 7.37-7.33 (m, 4H, -ArH), 5.16 (t, *J* = 9.2 Hz, 1H, H-3), 4.78 (d, *J* = 11.6 Hz, 1H-CHPh), 4.71 (d, *J* = 11.6 Hz, 1H, -CHPh), 4.52 (d, *J* = 10.4 Hz, 1H, H-1), 3.55-3.48 (m, 1H, H-5), 3.31 (t, *J* = 10.0 Hz, 1H, H-2), 3.23 (t, *J* = 9.6 Hz, 1H, H-4), 1.96 (s, 1H, -CH₃), 1.39 (d, *J* = 6.4 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.23, 134.92, 133.54, 133.20, 133.04, 129.06, 128.49, 128.33, 127.92, 127.69, 126.61, 126.28, 126.14, 125.70, 85.98, 81.31, 75.93, 75.85, 75.00, 63.75, 20.87, 18.23; HR-ESI-MS (*m*/*z*): [M + Na]⁺caled. for C₂₅H₂₅N₃NaO₄S, 486.1458; found, 486.1460.

Phenyl 2-azido-4-*O*-napthyl-2,6-dideoxy-1-thio-β-D-glucopyranoside (23):

To a clear solution of compound **22** (0.80 g, 1.7 mmol) in 1:1 mixture of MeOH (6.8 mL) and CH₂Cl₂ (6.8 mL), 0.2 M NaOMe (0.18 g) was added and kept for 1 h at rt. After complete consumption of starting material, the reaction mixture was neutralized with Amberlite (H+, 1.0 g). The reaction mixture was filtered, concentrated under reduced pressure and purified by column chromatography over silica gel (5% ethyl acetate: pet ether) to give compound **23** as white solid (0.56 g, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.82 (m, 3H, -ArH), 7.78 (s, 1H, -ArH), 7.59-7.57 (m, 2H, -ArH), 7.50-7.44 (m, 3H, -ArH), 7.34-7.33 (m, 3H, -ArH), 4.91 (dd, *J* = 17.6, 11.2 Hz, 2H, -CH₂Ph), 4.45 (d, *J* = 10.0 Hz, 1H, H-1), 3.59 (t, *J* = 10.4 Hz, 1H, H-3), 3.45-3.38 (m, 1H, H-5), 3.29 (t, *J* = 9.6 Hz, 1H, H-4), 3.13 (t, *J* = 9.2 Hz, 1H, H-2), 1.41 (d, *J* = 6.0 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 135.31, 133.28, 133.24, 133.11, 131.65, 129.05, 128.53, 128.32, 127.97, 127.77, 126.85, 126.35, 126.20, 125.81, 86.07, 82.92, 76.76, 75.68, 75.31, 65.50, 18.56; HR-ESI-MS (*m*/*z*): [M + Na]⁺calcd. for C₂₃H₂₃N₃NaO₃S, 444.1352; found, 444.1353.

Phenyl 2-azido-4-*O*-napthyl-2,6-dideoxy-1-thio-β-D-allopyranoside (24):

Tf₂O (0.51 mL, 3.1 mmol) and dry pyridine (0.49 mL, 6.1 mmol) were added sequentially in a dropwise manner to the clear solution of compound **23** (0.86 g, 2.1 mmol) in dry CH₂Cl₂ (55.3 mL) at 0 °C and allowed to stir at same temperature for 0.5 h. After reaction completion, the crude mixture was washed with 1 M HCl and aq. NaHCO₃ solution. The separated organic layer was dried over anhydrous Na₂SO₄ and concentrated to give triflated compound quantitatively.

 KNO_2 (2.68 g, 31.5 mmol) was added to the solution of compound in dry DMF (15 mL) and kept stirring at rt for 8 h. After completion of reaction, the crude mixture was diluted with EtOAc (25 mL) and washed with brine solution. Separated organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography over silica gel (10% ethyl acetate: pet ether) to give compound **24** as a white solid (0.45 g, 53%). ¹H NMR (400

MHz, CDCl₃) δ 7.87-7.83 (m, 3H, -ArH), 7.75 (s, 1H, ArH), 7.61- 7.58 (m, 2H, -ArH), 7.52-7.50 (m, 2H, -ArH), 7.46-7.44 (m, 1H, -ArH), 7.34-7.30 (m, 3H, -ArH), 5.08 (d, *J* = 10.4 Hz, 1H, H-1), 4.78 (d, *J* = 11.6 Hz, 1H, -CHPh), 4.68 (d, *J* = 12.0 Hz, 1H, -CHPh), 4.39 (t, *J* = 2.4 Hz, 1H, H-3), 3.92-3.85 (m, 1H, H-5), 3.13 (t, *J* = 2.4 Hz, 1H, H-2), 3.11 (t, *J* = 2.4 Hz, 1H, H-4), 1.34 (d, *J* = 6.4 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 134.47, 133.30, 133.19, 133.16, 131.88, 128.95, 128.63, 128.18, 127.93, 127.81, 127.01, 126.49, 126.38, 125.72, 82.51, 79.45, 71.84, 71.19, 67.98, 61.38, 18.12; HR-ESI-MS (*m*/*z*): [M + Na]⁺ calcd. for C₂₃H₂₃N₃NaO₃S, 444.1352; found, 444.1352.

Phenyl 2-azido-3-fluoro-4-*O*-napthyl-2,3,6-trideoxy-1-thio-β-D-glucopyranoside (25):

DAST (0.35 mL, 2.7 mmol) was added to a stirring solution of compound **24** (0.38 g, 0.89 mmol) in dry CH₂Cl₂ (4.3 mL) at -20 °C. After addition of DAST, reaction was stirred at rt for 1 h. After completion of reaction, the reaction was quenched at -20 °C by dropwise addition of EtOH and the mixture was concentrated and purified by column chromatography over silica gel (5% ethyl acetate: pet ether) to give compound **25** as white solid (0.269 g, 71%).¹H NMR (400 MHz, CDCl₃) δ 7.86-7.83 (m, 3H, -ArH), 7.78 (s, 1H, -ArH), 7.60-7.35 (m, 8H, -ArH), 5.02 (d, *J* = 11.2 Hz, 1H-CHPh), 4.78 (s, *J* = 11.2 Hz, 1H, -CHPh), 4.64 (dt, *J*_{3-F}, *J*_{3-2,4} = 51.6, 8.8 Hz, 1H, H-3), 4.41 (d, *J* = 10.0 Hz, 1H, H-1), 3.51-3.38 (m, 2H, H-2,H-5) 3.34-3.26 (m, 1H, H-4), 1.38 (d, *J* = 6.0 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 134.92, 133.67, 133.23, 133.14, 131.00, 129.12, 128.63, 128.33, 127.98, 127.74, 127.11, 126.25, 126.15, 126.07, 97.75 (d, *J*_{C,F} = 233.7 Hz, C-3), 85.17 (d, *J*_{C,F} = 10.0 Hz, C-1), 80.27 (d, *J*_{C,F} = 18.7 Hz, C-4), 74.76 (d, *J*_{C,F} = 11.25 Hz, C-5), 63.72 (d, *J*_{C,F} = 22.5 Hz, C-2), 18.09; ¹⁹F NMR (¹H decoupled) (470 MHz, CDCl₃) δ -183.19 (s); HR-ESI-MS (*m*/z): [M + Na]+calcd. for C₂₃H₂₂FN₃NaO₂S, 446.1309; found, 446.1370.

Phenyl 2-azido-3-fluoro-2,3,6-trideoxy-1-thio-β-D-glucopyranoside (26):

To a stirring solution of compound **25** (0.170 g, 0.401mmol) in CH₂Cl₂ (25.8 mL) and H₂O (19 mL) recrystallised DDQ (0.16 g, 0.72 mmol) was added and stirred at rt for 3 h. After completion of starting material (indicated by TLC), reaction mixture was quenched with Et₃N, concentrated and purified by column chromatography over silica gel (10% ethyl acetate: pet ether) to afford compound **26** as viscous liquid (0.105 g, 93%).¹H NMR (500 MHz, CDCl₃) δ 7.61-7.59 (m, 2H, -ArH), 7.37-7.36 (m, 3H, -ArH), 4.43 (dd, *J*_{1-F} , *J*₁₋₂ = 10.0, 0.5 Hz, 1H, H-1), 4.31 (dt, *J*_{3-F}, *J*₃₋₂ = 52.0, 8.5 Hz, 1H, H-3), 3.48-3.36 (m, 3H, H-2,H-4,H-5), 1.41 (d, *J* = 6.0 Hz, 3H, -CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 133.63, 130.96, 129.10, 128.65, 97.76 (d, *J*_{C,F} = 185.0 Hz, C-3) 85.40 (d, *J*_{C,F} = 6.25 Hz, C-1), 75.05 (d, *J*_{C,F} = 7.5 Hz, C-5), 73.69 (d, *J*_{C,F} = 7.5 Hz, C-4), 63.27 (d, *J*_{C,F} = 16.2 Hz, C-2), 17.62; ¹⁹F NMR (¹H decoupled) (470 MHz, CDCl₃) δ -188.26 (s); HR-ESI-MS (*m*/z): [M + Na]⁺calcd. for C₁₂H₁₄FN₃NaO₂S, 306.0683; found, 306.0687.

Phenyl 2-azido-3-fluoro-2,3,6-trideoxy-1-thio-β-D-galactopyranoside (27):

Tf₂O (0.1 mL, 0.63 mmol) and dry pyridine (0.1 mL, 1.26 mmol) were added dropwise to the stirring solution of compound **26** (0.12 g, 0.42 mmol) in dry CH₂Cl₂ (11 mL) at 0 °C and allowed to stir at 0 °C for 0.5 h. After complete consumption of starting material, the reaction mixture was washed with 1 M HCl and aq. NaHCO₃ solution. Separated organic layer was dried over anhydrous Na₂SO₄, concentrated and dried under *vaccum* to give triflated compound quantitatively.

KNO₂ (0.54 g, 6.3 mmol) was added to the solution of crude triflate compound in dry DMF (3.1 mL) at rt. After complete consumption of starting material, the reaction mixture was diluted with EtOAc (15 mL) and washed with brine solution. Separated organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography over silica gel (10% ethyl acetate: pet ether) to give compound **27** as a white solid (72 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.59 (m, 2H, -ArH), 7.35-7.33 (m, 3H, -ArH), 4.38 (ddd, *J*_{3-F}, *J*₃₋₂, *J*₃₋₄= 48.0, 9.6, 3.2 Hz, 1H, H-3), 4.36 (dd, *J*₁₋₂, *J*_{1-F} = 10.0, 0.8 Hz, 1H, H-1), 3.93 (dd, *J*_{4-F}, *J*₄₋₅ = 6.8, 2.8 Hz, 1H. H-4), 3.73 (dt, *J*_{2-F}, *J*_{2-1,3} = 12.0, 9.6 Hz, 1H, H-2), 3.69-3.58 (m, 1H, H-5), 1.38 (dd, *J*₆₋₅, *J*_{6-F} = 6.4, 0.4 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 133.47, 131.21, 129.10,

128.55, 93.74 (d, $J_{C,F} = 187.0$ Hz, C-3), 85.73 (d, $J_{C,F} = 7.0$ Hz, C-1), 73.71 (d, $J_{C,F} = 7.0$ Hz, C-5), 69.35 (d, $J_{C,F} = 16.0$ Hz, C-4), 60.05 (d, $J_{C,F} = 19.0$ Hz, C-2), 16.50 (d, $J_{C,F} = 2.0$ Hz, -CH₃); ¹⁹F NMR (¹H decoupled) (470 MHz, CDCl₃) δ -189.21 (s); HR-ESI-MS (*m/z*): [M + Na]⁺calcd. for C₁₂H₁₄FN₃NaO₂S, 306.0683; found, 306.0686.

Phenyl 2,4-diazido-3-fluoro-2,3,4,6-tetradeoxy-1-thio-β-D-glucopyranoside (28):

Trifluoromethanesulphonic anhydride (0.11 mL, 0.67 mmol) and dry pyridine (0.10 mL, 1.3 mmol) were added dropwise to the stirring solution of compound **27** (0.13 g, 0.44 mmol) in dry CH_2Cl_2 (2.2 mL) at 0 °C and allowed to stir at same temperature for 0.5 h. After complete conversion of starting material, the reaction mixture was washed with 1 M HCl and aq. NaHCO₃ solution. The separated organic layer was dried over anhydrous Na₂SO₄, concentrated and dried under *vaccum* to give triflated compound quantitatively.

NaN₃ (0.29 g, 4.4 mmol) was added to the solution of crude triflate compound in dry DMF (1.6 mL) and kept stirring at rt for 3 h. After complete consumption of starting material, the reaction mixture was diluted with EtOAc (20 mL) and washed with brine solution. The separated organic layer was dried over anhydrous Na₂SO₄, concentrated and purified on silica gel (5% ethyl acetate: pet ether) to give compound **28** as a white solid (0.11 g, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.55 (m, 2H, -ArH), 7.36-7.35 (m, 3H, -ArH), 4.36 (dt, *J*_{3-F}, *J*_{3-2,4} = 51.0, 8.5 Hz, 1H, H-3), 4.37 (d, *J* = 10.0 Hz, 1H, H-1), 3.44 (dt, *J*_{2-F}, *J*_{2-1,3} = 12.5, 9.0 Hz, 1H, H-2), 3.29-3.21 (m, 2H, H-4, H-5), 1.40 (d, *J* = 5.5 Hz, 1H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 133.95, 130.45, 129.17, 128.89, 95.43 (d, *J*_{C,F} = 187.5 Hz, C-3), 85.23 (d, *J*_{C,F} = 6.2 Hz, C-1), 74.18 (d, *J*_{C,F} = 3.1 Hz, C-5), 65.60 (d, *J*_{C,F} = 16.25 Hz, C-4), 63.22 (d, *J*_{C,F} = 17.5 Hz, C-2), 18.35; ¹⁹F NMR (¹H decoupled) (470 MHz, CDCl₃) δ -183.24 (s); HR-ESI-MS (*m*/*z*): [M + Na]⁺calcd. for C₁₂H₁₃FN₆NaOS, 331.0748; found, 331.0760.

Phenyl 2,4-diacetamido-3-fluoro-2,3,4,6-tetradeoxy-1-thio-β-D-glucopyranoside (29):

To the stirring solution of compound **28** (0.19 g, 0.62 mmol) in THF (3.6 mL), activated Zn dust (0.58 g, 7.4 mmol) was added followed by dropwise addition of AcOH (0.35 mL) at rt. The reaction mixture was allowed to stir at rt for 8 h. After complete conversion of azide to amine (indicated by TLC), the reaction mixture was filtered through celite bed, concentrated and dried under high *vacuum* for 30 min.

Crude di-amine compound was dissolved in THF (4.1 mL). To the clear solution, Ac₂O (23 mL, 2.48 mmol) and DMAP (4 mg, 0.06 mmol) were added sequentially at 0 °C, and the mixture was allowed to stir at room temperature for 4 h. After completion of reaction, solvents were removed in *vacuo* and the crude product was purified by column chromatography over silica gel (80% ethyl acetate: pet ether) to furnish desired product **29** as a white solid (0.16 g, 75%). ¹H NMR (500 MHz, CD₃OD) δ 7.51-7.49 (m, 2H, -ArH), 7.31-7.29 (m, 3H, -ArH), 4.84 (bs, 1H, H-1), 4.58 (dt, *J*_{3-F}, *J*_{3-2,4} = 51.5, 10.0 Hz, 1H, H-3), 3.84 (q, *J* = 10.5 Hz, 1H, H-2), 3.73 (q, *J* = 10.0 Hz, 1H, H-4), 3.56-3.50 (m, 1H, H-5), 2.01 (s, 3H, -COCH₃), 1.98 (s, 3H, -COCH₃), 1.22 (d, *J* = 6.5 Hz, 3H, -CH₃); ¹³C NMR (125 MHz, CH₃OD) δ 172.11, 171.95, 133.05, 131.91, 128.57, 127.47, 91.57 (d, *J*_{C,F} = 187.5 Hz, C-3), 85.44 (d, *J*_{C,F} = 7.5 Hz, C-1), 74.16 (d, *J*_{C,F} = 6.2 Hz, C-5), 55.78 (d, *J*_{C,F} = 16.2 Hz, C-4), 54.17 (d, *J*_{C,F} = 17.5 Hz, C-2), 21.44, 21.32, 16.78; ¹⁹F NMR (¹H decoupled) (470 MHz, CDCl₃) δ -189.98 (s); HR-ESI-MS (*m*/*z*): [M + Na]⁺calcd. for C₁₆H₂₁FN₂NaO₃S, 363.1149; found, 363.1145.

Acetyl 2,4-diacetamido-3-fluoro-2,3,4,6-tetradeoxy-α-D-glucopyranoside (4):

To the stirring solution of compound **29** (0.094 g, 0.28 mmol) in THF (3.2 mL) and H₂O (0.8 mL), NBS (0.147 g, 0.828 mmol) was added at 0 °C and allowed to stir for 15 min at rt. After complete consumption of starting material, the reaction mixture was concentrated under reduced pressure and kept in high *vacuum* overnight to provide hemiacetal compound quantitatively.

To crude hemiacetal compound in dry CH₂Cl₂ (2.0 mL), Ac₂O (0.26 mL, 2.8 mmol), Et₃N (0.38 mL, 2.8 mmol) and DMAP (3 mg, 0.03 mmol) were added sequentially at 0 °C and stirred for 5 h at rt. After reaction completion, the reaction mixture was concentrated and purified by column chromatography over silica gel (3% methanol: ethyl acetate) to obtain compound **4** as yellow viscous liquid (74 mg, 75%). ¹H NMR (500 MHz, CD₃OD) δ 6.13 (t, *J* = 3.5 Hz, 1H, H-

1*a*), 4.74 (dt, J_{3-F} , $J_{3-2,4} = 51.8$ Hz, 10.3 Hz, 1H, H-3), 4.57 (bs, 1H), 4.28 (dt, $J_{2-1,3}$, $J_{2-F} = 10.8$ Hz, 3.6 Hz, 1H, H-2), 3.94-3.84 (m, 2H, H-4, H-5), 2.14 (s, 3H, -COCH₃), 2.00 (s, 1H, -NHAc), 1.97 (s, 1H, -NHAc), 1.20 (d, J = 6.2 Hz, 3H, -CH₃); ¹³C NMR (125 MHz, CD₃OD) δ 172.33, 172.10, 169.36, 90.68 (d, $J_{C,F} = 9.9$ Hz, C-1), 88.55 (d, $J_{C,F} = 182.5$ Hz, C-3), 68.46 (d, $J_{C,F} = 6.2$ Hz, C-5), 55.48 (d, $J_{C,F} = 16.73$ Hz, C-4), 52.30 (d, $J_{C,F} = 17.8$ Hz, C-2), 21.34, 20.87, 19.24, 16.69; HR-ESI-MS (*m*/*z*): [M + K]⁺ calcd. for C₁₂H₁₉FKN₂O₅, 329.0910; found, 329.0906.

Phenyl 2,4-diazido-3-fluoro-2,3,4,6-tetradeoxy-1-thio-β-D-galactopyranoside (30):

Tf₂O (0.17 mL, 1.03 mmol) and dry pyridine (0.17 mL, 2.1 mmol) were added dropwise to the stirring solution of compound **26** (0.19 g, 0.69 mmol) in dry CH₂Cl₂ (3.5 mL) at 0 °C and allowed to stir at the same temperature for 0.5 h. After complete conversion of starting material, the reaction mixture was washed with 1 M HCl and aq. NaHCO₃ solution. The separated organic layer was dried over anhydrous Na₂SO₄, concentrated and dried under *vaccum* to give triflated compound quantitatively.

NaN₃ (0.45 g, 6.9 mmol) was added to the solution of crude triflate compound in dry DMF (2.4 mL) at rt. After 3 h, the reaction mixture was diluted with EtOAc (20 mL) and washed with brine solution. The separated organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography over silica gel (5% ethyl acetate: pet ether) to give compound **30** as a white solid (0.150 g, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.58 (m, 2H, - ArH), 7.35-7.34 (m, 3H, -ArH), 4.55 (ddd, *J*_{3-F}, *J*₃₋₂, *J*₃₋₄ = 47.6, 9.2, 4.0 Hz, 1H, H-3), 4.31 (dd, *J*₁₋₂, *J*_{1-F} = 9.2, 0.8 Hz, 1H, H-1), 3.87-3.84 (m, 1H, H-4), 3.73 (dt, *J*_{2-F}, *J*_{2-1,3} = 14.0, 9.6 Hz, 1H, H-2), 3.62-3.57 (m, 1H, H-5), 1.38 (dd, *J*₆₋₅, *J*_{6-F} = 6.4, 0.4 Hz, 1H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 133.45, 130.94, 129.11, 128.61, 93.39 (d, *J*_{C,F} = 192.0 Hz, C-3), 85.81 (d, *J*_{C,F} = 7.0 Hz, C-1), 72.61 (d, *J*_{C,F} = 5.0 Hz, C-5), 63.16 (d, *J*_{C,F} = 15.0 Hz, C-4), 60.11 (d, *J*_{C,F} = 17.0 Hz, C-5), 17.60 (d, *J*_{C,F} = 3.0 Hz, -CH₃); ¹⁹F NMR (¹H decoupled) (470 MHz, CDCl₃) δ -184.73 (s); HR-ESI-MS (*m/z*): [M + Na]⁺calcd. for C₁₂H₁₃FN₆NaOS, 331.0748; found, 331.0762.

Phenyl 2,4-diacetamido-3-fluoro-2,3,4,6-tetradeoxy-1-thio-β-D-galactopyranoside (31):

To the stirring solution of compound **30** (0.11 g, 0.32 mmol) in THF (3 mL), activated Zn dust (250 mg, 3.8 mmol) was added followed by dropwise addition of AcOH (0.3 mL) at rt. The mixture was allowed to stir at rt for 8 h. After complete conversion of azide to amine (indicated by TLC), the mixture was filtered through celite pad, concentrated and dried under high *vacuum* for 30 min.

Crude di-amine compound was dissolved in THF (2 mL). To the clear solution, Ac₂O (0.12 mL, 1.3 mmol) and DMAP (4 mg, 0.03 mmol) were added sequentially at 0 °C, and the reaction mixture was allowed to stir at room temperature for 4 h. After completion of reaction, solvents were removed in *vacuo* and the crude product was purified by column chromatography over silica gel (80% ethyl acetate: pet ether) to furnish desired derivative **31** as a brown viscous liquid (0.198 g, 72%). ¹H NMR (400 MHz,CDCl₃) δ 7.49-7.47 (m, 2H, -ArH), 7.32-7.24 (m, 3H, -ArH), 5.99 (d, *J* = 9.6 Hz, 1H, -NHAc), 4.81 (d, *J* = 10.4 Hz, 1H, H-1), 4.72 (ddd, *J*_{3-F}, *J*₃₋₂, *J*₃₋₄ = 48.0, 10.4, 4.4 Hz, 1H, H-3), 4.53-4.50 (m, 1H, H-4), 4.06-3.98 (m, 1H, H-2), 3.69-3.68 (m, 1H, H-5), 1.98 (s, 3H, -NHAc), 1.92 (s, 3H, -NHAc), 1.17 (d, *J* = 6.4 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.40, 171.36, 133.11, 132.18, 129.01, 127.96, 90.06 (d, *J*_{C,F} = 191.0 Hz, C-3), 86.54 (d, *J*_{C,F} = 8.0 Hz, C-1), 72.87, (d, *J*_{C,F} = 6.0 Hz, C-5), 51.06 (d, *J*_{C,F} = 15.0 Hz, C-4), 50.56, (d, *J*_{C,F} = 19.0 Hz, C-2), 23.32, 23.14, 16.81; ¹⁹F NMR (¹H decoupled) (470 MHz, CDCl₃) δ -191.81 (s); HR-ESI-MS (*m*/*z*): [M + Na]⁺calcd. for C₁₆H₂₁FN₂NaO₃S, 363.1149; found, 363.1171.

Acetyl 2,4-diacetamido-3-fluoro-2,3,4,6-tetradeoxy- α/β -D-galactopyranoside (5):

To the stirring solution of compound **31** (0.067 g, 0.20 mmol) in THF (2.3 mL) and H_2O (0.6 mL), NBS (0.105 g, 0.590 mmol) was added at 0 °C and the reaction was stirred for 30 min at rt.

After completion of reaction, the reaction mixture was concentrated under reduced pressure and kept under high *vacuum* overnight.

Ac₂O (0.1 mL, 1.0 mmol), Et₃N (0.14 mL, 1.0 mmol) and DMAP (2.5 mg, 0.02 mmol) were added sequentially to the crude compound in dry CH₂Cl₂ (1.4 mL) at 0 °C and stirred for 4 h at rt. The reaction mixture was then concentrated and purified by column chromatography over silica gel (5% methanol: ethyl acetate) to obtain compound **5** as a white solid (34 mg, 70%, α : β = 5:1). ¹H NMR (400 MHz,CD₃OD) δ 6.13 (t, J = 4.4 Hz, 1H, H-1 α), 4.85-4.72 (m, 1H, H-3), 4.61-4.59 (m, 1H, H-4), 4.51 (dt, $J_{2-1,3}$, J_{2-F} = 10.4, 4.0 Hz, 1H, H-2), 4.22-4.20 (m, 1H, H-5), 2.13 (s, 3H, -COCH₃), 2.06 (s, 3H, -NHAc), 1.95 (s, 3H, -NHAc), 1.11 (d, J = 6.4 Hz, 3H, -CH₃); ¹³C NMR (100 MHz,CD₃OD) δ 173.16, 172.44, 169.62, 90.98 (d, $J_{C,F}$ = 10.0 Hz, C-1), 86.68 (d, $J_{C,F}$ = 187.0 Hz, C-3), 66.92 (d, $J_{C,F}$ = 6.0 Hz, C-5), 48.23 (d, $J_{C,F}$ = 4.9 Hz, C-4), 47.06 (d, $J_{C,F}$ = 22.0 Hz, C-2), 20.99, 20.95, 19.28, 15.26; HR-ESI-MS (m/z): [M + Na]⁺calcd. for C₁₂H₁₉FKN₂O₅, 329.0910; found, 329.0909.

Phenyl 4-*O*-acetyl-2-azido-3-fluoro-2,3,6-trideoxy-1-thio-β-D-galactopyranoside (32):

AcCl (0.02 mL, 0.33 mmol) and dry pyridine (0.03 mL, 0.33 mmol) were added dropwise to the stirring solution of compound **27** (64 mg, 0.22 mmol) in dry CH₂Cl₂ (1.5 mL) at 0 °C and allowed to stir at rt. After 1 h, the reaction mixture was washed with 1 M HCl and aq. NaHCO₃ solution. The separated organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by column chromatography over silica gel (5% ethyl acetate: pet ether) to give compound **32** as brown viscous liquid (54 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.60 (m, 2H, -ArH), 7.35-7.33 (m, 3H, -ArH), 5.33 (ddd, *J*_{4-F}, *J*₄₋₃, *J*₄₋₅ = 6.0, 3.6, 0.8 Hz, 1H, H-4), 4.46 (ddd, *J*_{3-F}, *J*₃₋₂, *J*₃₋₄ = 46.8, 9.6, 3.6 Hz, 1H, H-3), 4.40 (d, *J* = 9.6 Hz, 1H, H-1), 3.73-3.65 (m, 2H, H-2, H-5), 2.19 (s, 3H, -COCH₃), 1.24 (d, *J* = 6.4 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.09, 133.48, 131.22, 128.98, 128.54, 91.08 (d, *J*_{C,F} = 193.0 Hz, C-3), 85.72 (d, *J*_{C,F} = 7.0 Hz, C-1), 72.61 (d, *J*_{C,F} = 5.0 Hz, C-5), 69.42 (d, *J*_{C,F} = 16.0 Hz, C-4), 60.43 (d, *J*_{C,F} = 18.0 Hz, C-2), 20.59, 16.58 (d, *J*_{C,F} = 2.0 Hz, -CH₃); ¹⁹F NMR (¹H decoupled) (470 MHz, CDCl₃) δ -

189.87 (s). HR-ESI-MS (m/z): [M + Na]⁺calcd. for C₁₄H₁₆FN₃NaO₃S, 348.0789; found, 331.0781.

Phenyl 4-*O*-acetyl-2-acetamido-3-fluoro-2,3,6-trideoxy-1-thio-β-D-galactopyranoside (33):

To compound **32** (0.11 g, 0.32 mmol) in THF (3 mL), activated Zn dust (250 mg, 3.8 mmol) was added followed by dropwise addition of AcOH (0.3 mL) at rt. The mixture was allowed to stir at same temperature for 8 h. After complete conversion of azide to amine, the reaction was filtered through celite pad, concentrated and dried under high *vacuum* for 30 min.

Crude di-amine compound was dissolved in THF (2 mL). To the clear solution, Ac₂O (0.12 mL, 1.3 mmol) and DMAP (4 mg, 0.03 mmol) were added sequentially at 0 °C, and the mixture was allowed to stir at room temperature for 4 h. After completion of reaction, solvents were removed in *vacuo* and the crude product was purified by column chromatography over silica gel (50% ethyl acetate: pet ether) to furnish desired substrate **33** as brown viscous liquid (0.084 g, 73%). ¹H NMR (500 MHz, CDCl₃) δ 7.48-7.46 (m, 2H, -ArH), 7.27-7.26 (m, 3H, -ArH), 6.59 (d, *J* = 8.0 Hz, 1H, -NH), 5.34 (s, 1H, H-4), 5.06 (d, *J* = 10.8 Hz, 1H, H-1), 4.97 (ddd, *J*_{3-F}, *J*₃₋₂, *J*₃₋₄ = 37.0, 10.0, 3.0 Hz, 1H, H-3), 4.04-3.96 (m, 1H, H-2), 3.74-3.72 (m, 1H, H-5), 2.08 (s, 3H, -NHAc), 1.99 (s, 3H, -NHAc), 1.18 (d, *J* = 6.0 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 171.18, 170.55, 133.09, 132.01, 128.94, 127.77, 88.56 (d, *J*_{C,F} = 191.2 Hz, C-3), 85.43 (d, *J*_{C,F} = 7.5 Hz, C-1), 72.38 (d, *J*_{C,F} = 5.7 Hz, C-5), 70.01, (d, *J*_{C,F} = 15.0 Hz, C-4) 52.10, (d, *J*_{C,F} = 18.7 Hz, C-2), 23.49, 20.64, 16.57; ¹⁹F NMR (¹H decoupled) (470 MHz, CDCl₃) δ -192.47 (s); HR-ESI-MS (*m*/z): [M + Na]⁺calcd. for C₁₆H₂₀FNNaO₄S, 364.0989; found, 364.0983.

Acetyl 4-O-acetyl-2-acetamido-3-fluoro-2,3,6-trideoxy-α-D-galactopyranoside (6):

To the stirring solution of compound **33** (0.080 g, 0.23 mmol) in THF (2.8 mL) and H₂O (0.70 mL), NBS (0.125 g, 0.703 mmol) was added at 0 °C and the reaction was stirred for 30 min at rt. After completion of reaction, the reaction mixture was concentrated under reduced pressure and kept in high *vacuum* overnight.

Then Ac₂O (0.11 mL, 1.1 mmol), Et₃N (0.16 mL, 1.1 mmol) and DMAP (3 mg, 0.02 mmol) were added sequentially to crude amine compound in dry CH₂Cl₂ (1.69 mL) at 0 °C and stirred at rt. After 4 h, the reaction mixture was concentrated and purified by column chromatography over silica gel (70% ethyl acetate: pet ether) to obtain compound **6** as a white solid (0.051 g, 75%). ¹H NMR (400 MHz, CDCl₃) δ 6.20 (t, *J* = 4.0 Hz, 1H, H-1 α), 5.45 (dd, *J* = 4.4, 2.8 Hz, 1H, H-4), 4.80 (bs, 1H, H-2), 4.73 (ddd, *J*_{3-F}, *J*₃₋₂, *J*₃₋₄ = 38.0, 10.8, 3.2 Hz, 1H, H-3), 4.10-4.07 (m, 1H, H-5), 2.20 (s, 3H, -COCH₃), 2.15 (s, 3H, -COCH₃), 2.02 (s, 3H, -NHAc), 1.17 (d, *J* = 6.4 Hz, 3H, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.49, 170.29, 168.87, 91.88 (d, *J*_{C,F} = 9.0 Hz, C-1), 86.64 (d, *J*_{C,F} = 191.0 Hz, C-3), 69.69 (d, *J*_{C,F} = 16.0 Hz, C-4), 67.09 (d, *J*_{C,F} = 5.0 Hz, C-5), 47.49 (d, *J*_{C,F} = 19.0 Hz, C-2), 23.27, 20.97, 20.69, 16.07; LR-ESI-MS (*m/z*): [M + Na]⁺calcd. for C₁₂H₁₈FKNO₆, 330.0755; found, 330.3450.

Biology

General. All biological reagents were obtained from commercial suppliers and used without further purification. *Helicobacter pylori* strain G27³ was a gift from Manuel Amieva (Stanford University). Glycosylation mutant (Δ GT, HPG27_580::Cm^R) was a gift from Nina Salama (Fred Hutchinson Cancer Research Center); it is *H. pylori* G27 insertionally inactivated in HPG27_580 with a chloramphenicol resistance cassette⁴. Other bacterial cells (*C. jejuni* ATCC 33560; *B. fragilis* ATCC 23745) were purchased from ATCC and grown according to the supplier's instructions.

Bacterial growth conditions. Three bacterial species were used to examine the effect of metabolic inhibitors. *H. pylori* was grown on horse blood agar plates (4% Columbia agar, 5% horse blood, 10 µg/mL vancomycin, 5 µg/mL cefsulodin, 0.3 µg/mL polymixin B, 5 µg/mL trimethoprim, and 8 µg/mL amphotericin B) or in Brucella Broth (with 10% Fetal Bovine Serum (FBS) and 6 µg/mL vancomycin) in 14% CO₂ at 37 °C. *C. jejuni* was grown on 4% Müller-

Hinton agar plates or in Müller-Hinton broth in 14% CO₂ at 37 °C. *B. fragilis* was grown on brain-heart infusion plates (1.5% Bacto agar, 3.7% brain-heart infusion broth, 0.5% yeast extract, and 15 μ g/mL hematin porcine) or in brain-heart infusion broth (3.7% brain-heart infusion broth, 0.5% yeast extract, and 15 μ g/mL hematin porcine). *B. fragilis* cultures were incubated at 37 °C under anaerobic conditions generated using an Oxoid AnaeroGen 2.5L Sachet (Thermo Scientific).⁵

Rationale for and construction of *H. pylori* glycosylation mutant strain. Targeted insertional inactivation⁶ was employed to mutate the putative glycosyltransferase gene HpG27 580 within H. pylori G27. This gene was chosen as it encodes a glycosyltransferase gene from family GT-25 with unknown function; though this gene has homology to JHP0563, a β -1,3galactosyltransferase essential for production of type 1 Lewis antigens on lipopolysaccharide in J99 H. pylori, mutating this gene in H. pylori strain G27 has no effect on lipopolysaccharide biosynthesis based on reports in the literature⁷ and our own unpublished observations. Therefore, we explored the role of this gene in glycoprotein biosynthesis within strain G27. Toward this end, a mutant strain containing the *Campylobacter coli* chloramphenicol acetyl transferase (cat) resistance cassette (Cm^R) within HpG27 580 was produced. Genomic DNA (gDNA) from this mutant was used in the generation of the *H. pylori* G27 mutant transformant used in this study. The patch method was used to transform wildtype H. pylori G27 with mutant gDNA. Briefly, log-phase H. pylori G27 in Brucella Broth was placed in patches onto HBA plates, incubated for five hours in a 14% CO₂ incubator at 37 °C, and then mixed with 10 µg of mutant gDNA. These patches were incubated for 24 hours in a 14% CO₂ incubator at 37 °C, then plated onto HBA containing chloramphenicol (Cm) for selection of H. pylori mutants for 7-10 days. Individual transformants were propagated from single colonies and stored at -80 °C in brain heart infusion freezing media. Polymerase Chain Reaction (PCR) amplification of HpG27 580 from genomic DNA using a forward primer (5'-acatatggtttttagaaaaattaaaagaaaactc-3') and a reverse primer (5'ctctagattaaacctctttaggggtttttaa-3') was used to confirm the presence and size of the insertionally inactivated target gene (580::Cm^R) within the *H. pylori* mutant strain Δ GT (Supplemental Figure 2A). This mutant strain exhibits a defective glycoprotein biosynthesis fingerprint (Supplemental Figure 2B), indicating HpG27 580 plays a role in glycoprotein biosynthesis.

Metabolic labeling of *H. pylori. H. pylori* from a frozen stock was streaked onto agar plates using a sterile tip applicator and then incubated in Brucella broth under microaerophilic conditions (see *Bacterial growth conditions*). After 3-4 days of growth on plates, *H. pylori* were inoculated at an OD₆₀₀ of 0.1-0.4 in liquid media supplemented with 0.5 mM of Ac₄GlcNAc, 0.5 mM of Ac₄GlcNAz, or 0.5 mM Ac₄GlcNAz and varying concentrations (0.5 mM - 2 mM) of compounds 1-10. After metabolic labeling for 3-4 days in liquid media, *H. pylori* were centrifuged at 3500 rpm using a Sorvall Legend RT⁺ centrifuge (Thermo Scientific, Waltham, MA) and washed three times with PBS.

Metabolic labeling of *C. jejuni. C. jejuni* from a frozen stock was streaked onto agar plates using a sterile tip applicator and then incubated in liquid broth under microaerophilic conditions (see *Bacterial growth conditions*). After 3 days of growth on plates, *C. jejuni* were inoculated at an OD₆₀₀ of 0.1-0.2 in liquid media supplemented with 1 mM of Ac₄GlcNAc, 1 mM of Ac₄GalNAz, or 1 mM Ac₄GalNAz and varying concentrations (0.5 mM - 2 mM) of compounds **1-8**. After metabolic labeling for 4 days in liquid media, *C. jejuni* were centrifuged at 3500 rpm using a Sorvall Legend RT⁺ centrifuge (Thermo Scientific, Waltham, MA) and washed three times with PBS.

Metabolic labeling of *B. fragilis. B. fragilis* from a frozen stock was streaked onto agar plates using a sterile tip applicator and then incubated in liquid broth under anaerobic conditions (see *Bacterial growth conditions*). After overnight growth on plates, *B. fragilis* were inoculated at an OD_{600} of 0.1-0.2 in liquid media supplemented with 0.1 mM of Ac₄GlcNAc, 0.1 mM of Ac₄GalNAz, or 0.1 mM Ac₄GalNAz and varying concentrations (0.5 mM - 2 mM) of compounds **1-8**. After metabolic labeling for 2 days in liquid media, *B. fragilis* were centrifuged at 3500 rpm using a Sorvall Legend RT⁺ centrifuge (Thermo Scientific, Waltham, MA) and washed three times with PBS.

SDS-PAGE and Western blot analysis of azide-labeled glycans. To probe for azide-labeled glycans produced by cells, metabolically labeled and rinsed cells were lysed in lysis buffer (20 mM Tris-HCl, pH 7.4, 1% Igepal, 150 mM NaCl, 1 mM EDTA) containing protease inhibitor

cocktail (Sigma Aldrich, St. Louis, MO) for 15-30 minutes at room temperature. Lysates were pelleted at 10,000 rpm using an Eppendorf microcentrifuge, then protein concentrations of supernatants were measured using the DC Protein Assay (Bio-Rad, Hercules, CA) and standardized to equal concentrations (~2 mg/mL). Standardized samples were subsequently reacted 1:1 with 500 µM Phos-FLAG at 37°C overnight, then analyzed by SDS-PAGE and Western blot. In preparation for electrophoresis, reacted samples were combined in a 1:1 ratio with 2X SDS reducing loading buffer and boiled at 95 °C for 5-10 minutes. Samples (20 µg), alongside a molecular weight ladder (EZ-Run Prestained Rec Protein Ladder, Fisher Scientific), were loaded onto a 12% Tris-HCl SDS-PAGE gel with a 4% stacking layer. After electrophoresis at 200 V for 60 minutes on ice, proteins were transferred to a nitrocellulose membrane (Bio-Rad - Amersham, GE Healthcare Life Sciences) at 100 V for 1 hour or stained with Coomassie (Stain: 45% deionized water, 45% Methanol, 10% acetic acid, 0.25% Coomassie brilliant blue/Destain: 50% deionized water, 40% methanol, 10% acetic acid) to visualize equal protein loading. Immunoblots were blocked for 1 hour with 5% non-fat dried milk in 0.05% TBS-T buffer (5 mM Tris-HCl, 0.05% Tween-20 (BioRad), pH 7.4). Anti-FLAG-HRP (Sigma Aldrich; 1:1000 dilution in blocking buffer) was employed to visualize FLAG-tagged proteins via chemiluminescence (SuperSignal West Pico Chemiluminescent Substrate) with the G:BOX Chemi XRQ gel documentation system (Syngene).

Lectin binding flow cytometry experiments with *H. pylori*. *H. pylori* were cultured for four days in rich liquid media supplemented with 2 mM of compounds 1-6 or without any additional supplement (wildtype), then thoroughly washed with 1X PBS prior to incubation with Alexa Fluor 488-conjugated *Concanavilin A* (ConA) lectin (15 μ g/ml in 1X PBS; Thermo Fischer, Waltham, MA; ex: 488/em: 519) for 45 mins at 37 °C in 14% CO₂. As a control, ConA was preincubated with 400 mM mannose for 60 mins at 37 °C prior to binding to untreated (wildtype) *H. pylori*. Cells were then washed three times with 1X PBS and analyzed by flow cytometry using a BD Accuri C6 (BD Biosciences) instrument, with 10,000 live cells gated for each replicate experiment. Labeling was performed in triplicate and is reported as number of cells versus fluorescence intensity in histogram plots. Alternatively, flow cytometry data are reported as the mean fluorescence intensity (MFI) of a population of cells from replicate experiments, as calculated using FlowJo software (Ashland, OR).

Williams *et al*.

Flow cytometry experiments with *B. fragilis.* To complement Western blot analyses, the presence of azides on *B. fragilis* was also probed via flow cytometry. For these experiments, metabolically labeled *B. fragilis* were washed with FACS buffer (1X PBS containing 1% fetal bovine serum (FBS)), then reacted with Alexa Fluor 488 DBCO (Click Chemistry Tools) for strain-promoted azide-alkyne cycloaddition detection of azides. In this case, whole cells metabolically labeled as described above (see *Metabolic labeling of B. fragilis*) were reacted with 20 μM Alexa Fluor Dye 488 DBCO (AF488-DBCO; ex: 488/em: 519) for 5 hours in the dark. Cells were then rinsed with PBS supplemented with 1% BSA, and analyzed using a BD Accuri C6 (BD Biosciences) instrument, with 30,000 live cells gated for each replicate experiment. Labeling was performed in triplicate and is reported as number of cells versus fluorescence intensity in histogram plots. Alternatively, flow data are reported as the mean fluorescence intensity (MFI) of a population of cells from replicate experiments, as calculated using FlowJo software (Ashland, OR).

Growth curves. Growth was measured over the course of 4-5 days. Bacteria were inoculated at a starting optical density at 600 nm (OD₆₀₀) of ~0.2-0.5 into culture tubes containing 3 mL of liquid media (see *Bacterial growth conditions*) supplemented with 1 mM (*H. pylori*) or 2 mM (*C. jejuni*) of the indicated compound **1-8**. Untreated wildtype (WT) or glycosylation mutant (Δ GT) cells were grown in parallel under analogous conditions. Cultures were kept at 37°C and 14% CO₂ with gentle shaking. The OD₆₀₀ of each culture was measured using spectrophotometry (SPECTROstarNano plate reader) at the indicated timepoints.

Viability assessment. Viability of inhibitor-treated or untreated wildtype *H. pylori* was assessed over the course of 4 days by enumerating colony forming units (CFUs) or by scoring percent of live cells. *H. pylori* were inoculated at a starting optical density at 600 nm (OD₆₀₀) of ~0.2-0.3 into culture tubes containing 3 mL of Brucella Broth supplemented with 2 mM of the indicated compound or left untreated (wildtype). To measure CFUs, cells were harvested at 0, 2, or 4 days, serially diluted, and grown on horse blood agar plates in triplicate under microaerophilic conditions. The number of colony forming units were enumerated after five days of incubation, once colonies became visible and could be counted. In parallel to scoring CFUs, percentage of

live cells in cultures was measured using the LIVE/DEAD BacLight Bacterial Viability and Counting Kit (Invitrogen) according to manufacturer's instructions. Briefly, cells were rinsed with 0.85% NaCl three times before staining with LIVE/DEAD BacLight Bacterial Viability solution (Invitrogen), consisting of propidium iodide and SYTO 9 diluted in 0.85% NaCl according to manufacturer's instructions. The cells were kept in the dark for 15 min and then analyzed by flow cytometry using a BD Accuri C6 (BD Biosciences) instrument, with 50,000 live cells gated for each replicate experiment. Cells were scored as live or dead by using gates established with live and dead controls. The number of dead (red) and live (green) *Hp* cells were counted using FlowJo software (Ashland, OR) to determine the percentage of live *Hp* (percentage live cells = 100*[(# live cells)/(# live cells + # dead cells)]).

Motility assays. The ability of the bacteria to swarm in the presence of different inhibitors was monitored over the course of 4-8 days using a soft agar motility assay. Bacteria were standardized to an OD₆₀₀ of 1.0 and grown overnight in liquid media supplemented with with 1 mM (*H. pylori*) or 2 mM (*C. jejuni*) of compounds **1-8**. After overnight incubation, 1 mL of each sample was centrifuged at 5000 rpm for 10 minutes using a Sorvall Legend RT⁺ centrifuge (Thermo Scientific, Waltham, MA). Pelleted cells were resuspended in 50 µL of Brucella Broth, and 10 µL was plated into soft agar Brucella Broth plates (4% agar and 10% fetal bovine serum) and incubated at 37°C and 14% CO₂. *H. pylori* colony diameter was measured for daily.

Biofilm formation assays. Biofilm formation was measured over the course of 4 days for *H. pylori* and *C. jejuni* cultured in the presence of compounds **1-8** using a literature protocol⁸. Bacteria were standardized to an OD₆₀₀ of 1.0 in liquid media (see *Bacterial growth conditions*), and aliquoted into the side wells of a 96 well plate in three replicates. To the experimental wells, 1 mM (*H. pylori*) or 2 mM (*C. jejuni*) of compounds **1-8** was added. The bacteria were incubated for 4 days at 37 °C and 14% CO₂. After incubation, liquid was removed and wells were gently washed with sterile water. Then biofilm was stained with 0.30% crystal violet and incubated at room temperature for 10-15 minutes. The wells were washed 3-4 times with sterile water and allowed to dry. Biofilm was imaged and then quantified by adding 300 µL acetic acid in water to solubilize the crystal violet. The absorbance at 562 nm was measured using a SPECTROstar^{Nano} plate reader.

Supplemental Figures

Supplemental Figure 1. Protein loading for samples presented in Figure 3, and graphical depiction of flow cytometry data from Figure 3C. A, B) Coomassie staining of electrophoresed samples from Figure 3 reveal that all Western samples contain roughly equivalent protein levels. C) Mean fluorescence intensity (MFI) of *H. pylori* cell populations probed with ConA. These MFIs correspond to the flow cytometry histograms in Figure 3C. Asterisks (*) indicate samples that were significantly statistically different from wildtype (WT) untreated cells as measured by a Student's t-test (p-value < 0.01). Error bars represent the standard deviation of triplicate samples.

Supplemental Figure 2. Glycoprotein biosynthesis is impeded in Δ GT versus wildtype (WT)

H. pylori. A) Characterization of an H. pylori G27 glycosylation mutant strain (ΔGT , HPG27 580::Cm^R), which contains a chloramphenicol transferase (cat) cassette (Cm^R) within gene HPG27 580. PCR amplification of HPG27 580 from wildtype G27 and from ΔGT , followed by analysis on agarose gel, revealed the expected 633 nucleotide (nt) gene present in WT G27. A substantially larger amplification product was observed in Δ GT, consistent with insertional inactivation of the target gene HPG27 580 with the chloramphenicol transferase cassette (580::Cm^R). B) Comparison of the azide-labeled glycoprotein profile in G27 wildtype (WT) *H. pylori* versus in Δ GT. In this experiment, *H. pylori* strains were grown for four days in media supplemented with 1.0 mM Ac₄GlcNAz (Az), then harvested by lysis. The presence of azides in cellular glycoproteins was detected by reacting lysates with 250 µM Phos-FLAG for 12 h at 37 °C and then analyzing samples via Western blot with anti-FLAG antibody. C) Protein loading for samples presented in Figure B. Coomassie staining of electrophoresed samples reveal that these Western samples contain roughly equivalent protein levels. Note that the WT and ΔGT samples were prepared and analyzed in parallel; images are cropped to remove intervening sample lanes. The data shown are representative of replicates $(n \ge 2)$. This genetic interruption of H. pylori's general protein glycosylation system occurs by an as-yet uncharacterized mechanism that does not influence lipopolysaccharide structure in H. pylori G27.7

Supplemental Figure 3. *Helicobacter pylori* viability, motility, and biofilm production is hindered by metabolic inhibitors. A, B) *H. pylori* were cultured in liquid media containing 2 mM of the indicated inhibitor or no inhibitor (WT) and scored for viability by (A) enumerating colony forming units (CFUs) and (B) measuring percent of live cells in each sample at 0, 2 and 4 days, as noted. C) *H. pylori* were cultured overnight in liquid media containing 1 mM of the indicated inhibitor, then plated on soft agar. Colony diameter was monitored daily. D) *H. pylori* were cultured for 4 days in edge wells of 96 well plates in the presence or absence of 1 mM of the indicated inhibitors. Biofilm was subsequently stained by crystal violet, resuspended in 30% acetic acid, and quantified by measurement of optical density at 562 nm (OD₅₆₂) via spectrophotometry. Error bars represent the standard deviation of triplicates. WT = wildtype *H. pylori* treated with no inhibitor. $\Delta GT = glycosyltransferase mutant.$

Supplemental Figure 4. Metabolic inhibitors do not have a significant effect on growth or biofilm formation in *Campylobacter jejuni*. A) Protein loading for samples presented in Figure 5A. Coomassie staining of electrophoresed samples from Figure 5A reveal that all Western samples contain roughly equivalent protein levels. Note that BnBac samples were treated with 1 and 2 mM compound, BnDAT samples were treated with 0.5 and 2 mM compound, and all others were treated with 0.5, 1, and 2 mM of the indicated metabolic inhibitor. B) *C. jejuni* were cultured in media containing 2 mM of the indicated inhibitors and scored for growth each day by monitoring optical density at 600 nm (OD₆₀₀). C) *C. jejuni* were cultured for 4 days in 96 well plates in the presence or absence of 2 mM of the indicated inhibitors. Biofilm was subsequently stained by crystal violet, resuspended in 30% acetic acid, and quantified by measurement of optical density at 562 nm (OD₅₆₂) via spectrophotometry.

Supplemental Figure 5. Metabolic inhibitors have a subtle effect on *Bacteroides fragilis*' glycan biosynthesis. A) Protein loading for samples presented in Figure 6A. Coomassie staining of electrophoresed samples from Figure 6A reveal that all Western samples contain roughly equivalent protein levels. B, C) Flow cytometry-based assay to measure levels of azide-labeled glycans on *B. fragilis*. *B. fragilis* were treated with 1 mM metabolic inhibitors (1-6, 8) and 0.1 mM Ac₄GalNAz for two days, with 0.1 mM Ac₄GalNAz (GalNAz) in the absence of inhibitor, or with the azide-free control sugar Ac₄GlcNAc (Ac), then probed for the presence of azide-labeled glycans on cells by reaction with 20 µM DIBO-488 and subsequent flow cytometry analysis. B) Flow cytometry histograms of treated cell populations indicate BnGalNAc has a minimal effect on glycan biosynthesis. C) Mean fluorescence intensity (MFI) of treated cell populations was measured by flow cytometry analysis. These MFIs correspond to the flow cytometry histograms in Figure 6B and panel B of this figure. BnFucNAc and BnDAT treatments (*) were significantly statistically different from Ac₄GalNAz (GalNAz)-treated cells as measured by a Student's t-test (p-value < 0.05). D) Effect of increasing concentrations of BnFucNAc and BnDAT on *B. fragilis* azide-labeled glycans. B. fragilis were treated with increasing concentration of BnFucNAc (3) and BnDAT (2) in tandem with 0.1 mM Ac4GalNAz for two days, then reacted with 20 µM DIBO-488 and mean fluorescence intensity (MFI) of each cell population was measured by flow

cytometry analysis. Error bars represent the standard deviation of triplicate samples. Triangles indicate relative concentration, with the shortest point representing 0.5 mM and the tallest part representing 2 mM of the indicated compound.

Supplemental References

1. Luchansky, S. J.; Hang, H. C.; Saxon, E.; Grunwell, J. R.; Yu, C.; Dube, D. H.; Bertozzi, C. R., Constructing azide-labeled cell surfaces using polysaccharide biosynthetic pathways. *Methods in Enzymology* **2003**, *362*, 249-72.

2. Laughlin, S. T.; Bertozzi, C. R., Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. *Nature Protocols* **2007**, 2 (11), 2930 - 2944.

3. Baltrus, D. A.; Amieva, M. R.; Covacci, A.; Lowe, T. M.; Merrell, D. S.; Ottemann, K. M.; Stein, M.; Salama, N. R.; Guillemin, K., The complete genome sequence of *Helicobacter pylori* strain G27. *Journal of Bacteriology* **2009**, *191* (1), 447-448.

4. Salama, N. R.; Shepherd, B.; Falkow, S., Global transposon mutagenesis and essential gene analysis of *Helicobacter pylori*. *Journal of Bacteriology* **2004**, *186* (23), 7926-7935.

5. Brigham, C.; Caughlan, R.; Gallegos, R.; Dallas, M. B.; Godoy, V. G.; Malamy, M. H., Sialic acid (N-acetyl neuraminic acid) utilization by *Bacteroides fragilis* requires a novel N-acetyl mannosamine epimerase. *Journal of Bacteriology* **2009**, *191* (11), 3629-38.

6. Baldwin, D. N.; Shepherd, B.; Kraemer, P.; Hall, M. K.; Sycuro, L. K.; Pinto-Santini, D. M.; Salama, N. R., Identification of *Helicobacter pylori* genes that contribute to stomach colonization. *Infection and Immunity* **2007**, *75* (2), 1005-1016.

7. Li, H.; Marceau, M.; Yang, T.; Liao, T.; Tang, X.; Hu, R.; Xie, Y.; Tang, H.; Tay, A.; Shi, Y.; Shen, Y.; Yang, T.; Pi, X.; Lamichhane, B.; Luo, Y.; Debowski, A. W.; Nilsson, H.-O.; Haslam, S. M.; Mulloy, B.; Dell, A.; Stubbs, K. A.; Marshall, B. J.; Benghezal, M., East-Asian *Helicobacter pylori* strains synthesize heptan-deficient lipopolysaccharide. *PLOS Genetics* **2019**, *15* (11), e1008497.

8. O'Toole, G. A., Microtiter dish biofilm formation assay. *Journal of Visualized Experiments* **2011**, DOI: 10.3791/2437..

SSK-17-KP-548-1H ^M & C 4 6 6 8 9 5 5 5 	7.351 7.351 7.351 7.351 7.351 7.351 7.351 7.325 7.315 7.315 7.315	4.796 4.7796 4.771 4.763 4.469 4.443 3.840	3.833 3.707 3.691 3.659 3.651 3.651 3.655 3.651 3.655	2.143	∕_1.332 ∕_1.316
Current Data Parameters NAME SSK-17-KP-548-1H EXPNO 2 PROCNO 1				Ι	Y
$\begin{array}{ccccc} F2 & - \ Acquisition \ Parameters \\ Date_ 20190717 \\ Time 15.36 \\ INSTRUM spect \\ PROBHD 5 mm \ PABBO \ BB- \\ PULPROG 2g30 \\ TD 54274 \\ SOLVENT CDC13 \\ NS 6 \\ DS 0 \\ SWH 8223.685 \ Hz \\ FIDRES 0.151522 \ Hz \\ AQ 3.2998593 \ sec \\ RG 71.8 \\ DW 60.800 \ usec \\ DE 6.50 \ usec \\ TE 297.4 \ K \\ D1 1.00000000 \ sec \\ TD0 1 \\ \end{array}$	A	HO CO N_3 SPh 12			
====== CHANNEL f1 ====== NUC1 1H P1 14.75 usec PL1 -1.00 dB PL1W 10.56200695 W SFO1 400.1324710 MHz					
F2 - Processing parameters SI 32768 SF 400.1300095 WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00	∫ ∫		1)r		/
		M	IML	lau	
9.5 9.0 8.5 8.0	7.5 7.0 6.5 6. 10.2	.0 5.5 5.0 4.5	4.0 3.5 3.0 2.5	2.0 	1.5 1.0 ppm

Current Data Parameters NAME SSK-17-KP-548-13C EXPNO 3 PROCNO 1	170.09		133.39 131.36 129.10 128.91 128.49		86.41 77.40 77.08 76.76 75.92 69.25 69.25 59.35	20.98 16.57	
$\begin{array}{rrrr} F2 & - Acquisition Parameters \\ Date_ 20190717 \\ Time 15.38 \\ INSTRUM spect \\ PROBHD 5 mm PABBO BB- \\ PULPROG zgpg30 \\ TD 65536 \\ SOLVENT CDC13 \\ NS 15 \\ DS 0 \\ SWH 26041.666 \ Hz \\ FIDRES 0.397364 \ Hz \\ AQ 1.2582912 \ sec \\ RG 1030 \\ DW 19.200 \ usec \\ DE 6.50 \ usec \\ TE 297.8 \ K \\ D1 1.0000000 \ sec \\ D11 0.03000000 \ sec \\ TD0 1 \\ \end{array}$			н АсО	0 N ₃ 12	}Ph		
===== CHANNEL f1 ===== NUC1 13C P1 8.50 usec PL1 -2.00 dB PL1W 56.53121948 W SFO1 100.6238364 MHz			1				
CHANNEL f2 CPDPRG[2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 -1.00 dB PL12 13.69 dB PL13 14.50 dB PL2W 10.56200695 W PL12W 0.35871249 W PL13W 0.29767781 W SFO2 400.1316005 MHz					L		
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40	of the set of the state of the state of the	el a contra la fina que a se contra de contra de la sec. La dificiente de la fina de la contra de la contra de	a second at the lag at the short when	here a the state of the barres of the ly, and	te dest bit had some steller, des hit, stlare betreburg ste	לביטיויה של הגיב לאלים ועל הימול לעוב לאלים לא המשל היה לא מלא מינה אל עוברי ליה. המה האנקול להעוב אלי לעי	duite to a
230 220 210 200 190	тарентар парта тарита 		0 130 120	110 100	- жили и каладор и каладор и кала и кала 90 80 70 60 50	กษณะสารสิทธิตระหะ (((กะจะ)/ไปกุษุประวารให้ ระหารสุทธรรมสารสิทธรรมสาร 	ppm

Current Data Parameters NAME SSK-17-KP-551-13C EXPNO 3 PROCNO 1			133.74 130.83 129.13 128.71					77.49 77.18 76.86	74.92 74.64	63.15				20.71 18.56		
$\begin{array}{rrrr} F2 - Acquisition Parameters \\ Date_ 20180419 \\ Time 9.39 \\ INSTRUM spect \\ PROBHD 5 mm PABBO BB- \\ PULPROG zgpg30 \\ TD 65536 \\ SOLVENT CDCI3 \\ NS 12 \\ DS 0 \\ SWH 26041.666 \ Hz \\ FIDRES 0.397364 \ Hz \\ AQ 1.2582912 \ sec \\ RG 25.4 \\ DW 19.200 \ usec \\ DE 6.50 \ usec \\ TE 297.7 \ K \\ D1 1.0000000 \ sec \\ D1 0.03000000 \ sec \\ TD0 1 \\ \end{array}$				N ₃ AcO-	13) 3 1 ₃	Ph									
CHANNEL f1 NUC1 13C P1 8.50 usec PL1 -2.00 dB PL1W 56.53121948 W SF01 100.6238364 MHz =====CHANNEL f2 ===== CPDPRG[2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 -1.00 dB PL12 13.69 dB PL13 14.50 dB PL2W 10.56200695 W PL12W 0.35871249 W PL13W 0.29767781 W																
SF02 400.1316005 MHz F2 - Processing parameters SI SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40																Manufacture and the second
210 200 190 180	170 160	150 140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

5.518 5.478 5.478 5.478 5.478 5.406 3.7755 3.7755 3.7755 3.7755 3.77555 3.775555555555	1.333 1.320
	\bigvee

Current E	Data Parameters SSK-17-KP-562-1H
EXPNO	2
PROCNO	1

	— 169.83	136.61 136.61 136.25 129.45 128.58 127.58	96.73	77.29 76.78 76.78 70.75 69.82 66.38 61.26	20.79	
Current Data Parameters NAME SSK-17-KP-562-13C EXPNO 3 PROCNO 1						
F2 - Acquisition Parameters Date20180427 Time 23.02 INSTRUM spect PROBHD_5 mm PABBO BB/ PULPROG zgpg30 TD 65536 SOLVENT CDCI3 NS 75 DS 0 SWH 29761.904 Hz FIDRES 0.454131 Hz AQ 1.010048 sec RG 197.27 DW 16.800 usec DE 6.50 usec TE 298.1 K D1 1.0000000 sec D11 0.03000000 sec TD0 1		N ₃ Aco 14	O N ₃ OBn			
======================================						
====== CHANNEL f2 f2 second field f2 second field f2 second field f2 f2 <th f<="" th=""><th></th><th></th><th></th><th>L</th><th></th></th>	<th></th> <th></th> <th></th> <th>L</th> <th></th>				L	
F2 - Processing parameters SI 32768 SF 125.7577890 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40						
210 200 190 180	170 160		.0 100 90	80 70 60	50 40 30 20 10 ppm	

Current Data Parameters NAME SSK-17-KP-BACNHAcOBn-1H EXPNO 3 PROCNO 1

9.0 8.5	8.0	0.7 5.7 بنا	6.5 6.0 5.6 [2]	5.5 5.0 4.5 00.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.0 3.5 66.0 66.	3.0 2.5	2.0 1.5 1.0 2.322 3.088 2.322 2.3	0.5 ppm
			 	, ∥ , , , ∥ M	 M^	-		
NUC1 1H P1 14.75 usec PL1 -1.00 dB PL1W 10.56200695 W SF01 400.1324710 MHz F2 - Processing parameters SI SI 32768 SF 400.1300102 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00		ſ	~				J 1f J	
P2 - Acquisition Parameters Date 20190301 Time 18.05 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zg30 TD 54274 SOLVENT CDCI3 NS 10 DS 0 SWH 8223.685 Hz FIDRES 0.151522 Hz AQ 3.2998593 sec RG 57 DW 60.800 usec DE 6.50 usec TE 296.1 K D1 1.00000000 sec TD0 1			AcHN AcO AcHN 1	OBn				

Current Data Parameters NAME SSK-17-KP-BACNHAcOBn-13C EXPNO 4 PROCNO 1	170.04 169.86		— 136.92 _ 128.61	128.23			77.40	76.77		01.43 			23.25	← 23.17 20.84		
F2 - Acquisition Parameters Date20190301 Time 18.06 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zgpg30 TD 65536 SOLVENT CDCI3 NS 55 DS 0 SWH 26041.666 Hz FIDRES 0.397364 Hz AQ 1.2582912 sec RG 2050 DW 19.200 usec DE 6.50 usec TE 296.2 K D1 1.0000000 sec D11 0.03000000 sec TD0 1	Δ	cHN∽ AcO-	AcHN 1	OBn												
====== CHANNEL f2 ====== CPDPRG[2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 -1.00 dB PL12 13.69 dB PL13 14.50 dB PL2W 10.56200695 W PL12W 0.35871249 W PL13W 0.29767781 W SFO2 400.1316005 MHz																
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40	a a the property of the second data	na silla di se sa sila di su Jang Tang Tang Jang Jang Jang		(act digitized as a set	uutum ya futu mini aa da	the ball of the pro-	Anglish man til det av st	-talia ⁿ Jandari				en let 6 das Mil Jan Merika	ngi ti Manakan ng		for the second	ite a starting in the
220 210 200 190 180 1	170 160	150	140 1	30 12	0 110	100	90 8	 30	70		50	40	30	20	10	ppm

1.3651.349

2.167

Current Data Parameters NAME SSK-17-KP-539-1H

	9.0 8	,, 8.5 8.	0 7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0 3.5	.	2.5	2.0	1.5	1.0	0.5	, , , , , , , , , , , , , , , , , , ,
				L				# N	,,	 							l
F2 - Pro SI SF WDW SSB LB GB PC	ocessing paran 32768 400.1300100 EM 0 0 0.30 Hz 0 1.00	neters MHz						_	_								
NUC1 P1 PL1 PL1W SF01	=== CHANNEL 1 1H 14.75 use -1.00 dB 10.5620069 400.1324710	1 ======= c 5 W 0 MHz	=														
NS DS SWH FIDRES AQ RG DW DE TE D1 TD0	16 0 8223.685 S 0.151522 3.2998593 s 32 60.800 us 6.50 used 297.2 K 1.00000000 s 1	Hz Hz ec ec c															
Time INSTRU PROBH PULPR TD SOLVE	20180222 15.05 UM spect HD 5 mm PAB ROG zg30 54274 ENT CDCI	BO BB-) 3				AcO	15	A∕SPł N₃	h								
F2 - Ac	quisition Parar	neters					M)									

Current Data Parameters NAME SSK-17-KP-539-13C EXPNO 2 PROCNO 1	170.04		133.42	07.071~			86.47 77.36 77.04 76.72 75.48 73.36					20.58 17.70		
F2 - Acquisition Parameters Date_ 20180222 Time 15.06 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zgpg30 TD 65536 SOLVENT CDCI3 NS 70 DS 0 SWH 26041.666 Hz FIDRES 0.397364 Hz AQ 1.2582912 sec RG 2050 DW 19.200 usec DE 6.50 usec TE 297.3 K D1 1.0000000 sec D11 0.0300000 sec TD0 1				AcO	³ 0 N ₃ 15	-SPh								
====== CHANNEL f1 ======= NUC1 13C P1 8.50 usec PL1 -2.00 dB PL1W 56.53121948 W SFO1 100.6238364 MHz														
CPDPRG[2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 -1.00 dB PL12 13.69 dB PL3 14.50 dB PL2W 10.56200695 W PL13W 0.29767781 W SFO2 400.1316005 MHz														
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40				11111-11-11-11-11-11-11-11-11-11-11-11-	1996-1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1									
210 200 190 180) 170 1	60 150 1	L40 130	120	110 1	.00 90	80 70	60	50	40	30	20	 10	ndd

	 136.61 129.44 128.82 128.54 128.54 128.10 128.05 127.57	.03.03	71.02 69.97 64.79 64.06 57.48	
Current Data Parameters NAME SSK-17-KP-DAT-OBn-UP-13C EXPNO 5 PROCNO 1 F2 - Acquisition Parameters Dato 20100204				
Date 20130204 Time 16.49 INSTRUM spect PROBHD 5mm PABBO BB- PULPROG zgpg30 TD 65536 SOLVENT CDCI3 NS 10 DS 0 SWH 26041.666 Hz FIDRES 0.397364 Hz AQ 1.2582912 sec RG 2050 DW 19.200 usec DE 6.50 usec TE 298.8 K D1 1.00000000 sec D11 0.03000000 sec TD0 1	N AcO	O N ₃ OBn 16		
CHANNEL f1 f1 f1 f1 f1 f2 f2 <thf2< th=""> <thf2< th=""> <thf2< th=""></thf2<></thf2<></thf2<>				
======= CPDPRG[2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 -1.00 dB PL12 13.69 dB PL13 14.50 dB PL2W 10.56200695 W PL12W 0.35871249 W PL12W 0.35877149 W SFO2 400.1316005 MHz				
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40				
	lı			

Current Data Parameters NAME SSK-17-KP-542-1H EXPNO 6 PROCNO 1		N	3				
F2 - Acquisition Parameters Date_ 20180225 Time 15.06 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zg30 TD 65536 SOLVENT CDCI3 NS 18 DS 0 SWH 10000.000 Hz FIDRES 0.152588 Hz AQ 3.2767999 sec RG 80.35 DW 50.000 user		AcO-	O N ₃ OBn 16				
DE 6.50 usec TE 296.3 K D1 1.00000000 sec TD0 1	5-				ۍ ا	Г	
====== CHANNEL f1 ====== SF01 500.1330885 MHz NUC1 1H P1 13.35 usec PLW1 16.00000000 W							
F2 - Processing parameters SI 65536 SF 500.1300133 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00	1					4 	
				h, n M⊥X			
9.0 8.5 8.0	7.5 7.0 6.5 98. <u>6</u> .0	6.0 5.5	5.0 4.5 00660 1001	4.0 3.5 3	2.0 2.5 2.0	1.5 1.0	0.5 ppm

			100.40	77.27 76.76 76.76 73.57 73.57 73.57 69.12 60.69	
Current Data Parameters NAME SSK-17-KP-542-13C EXPNO 7 PROCNO 1					
F2 - Acquisition Parameters Date_ 20180225 Time 15.07 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgpg30 TD 65536 SOLVENT CDCI3 NS 109 DS 0 SWH 29761.904 Hz FIDRES 0.454131 Hz AQ 1.1010048 sec RG 197.27 DW 16.800 usec DE 6.50 usec TE 296.5 K D1 1.00000000 sec D11 0.03000000 sec TD0 1		AcO N 16	OBn 3		
======= CHANNEL f1 ======= SFO1 125.7703637 MHz NUC1 13C P1 8.90 usec PLW1 103.00000000 W					
======= CHANNEL f2 ====== SFO2 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 16.0000000 W PLW12 0.44556001 W PLW13 0.22411001 W					
F2 - Processing parameters SI 32768 SF 125.7577938 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40					
	170 160 150 1	L40 130 120 110	100 90	80 70 60 50	40 30 20 10 ppm

Current Data Parameters NAME SSK-17-KP-DAT-NHAC EXPNO 4 PROCNO 1 F2 - Acquisition Parameters Date20190208 Time 21.11 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG Zg30 TD 65536 SOLVENT DS 0 SWH 10000.000 Hz FIDRES 0.152588 Hz AQ 3.2767999 sec RG 30.72 DW 50.000 usec DE 6.50 usec TE 295.3 K D1 1.00000000 sec TD0 1	5-1H		Ac Ac	HN AcHNOBn 2			
====== CHANNEL f1 ====== SF01 500.1330885 MHz NUC1 1H P1 13.35 usec PLW1 16.0000000 W F2 - Processing parameters SI SI 65536			_			, , ,	~
SF 500.1300134 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00	" 	11	1				
8.5 8.0	7.5 7.0 1.81 1.81	6.5	6.0 5.5 66.0	0.4.5 4.0 0.1 10 1100 1100 1100 1100 1100 1100	3.5 3.0 2.	5 2.0 1.5 3.50 5.50 5.50 5.50 5.50 5.50 5.50 5.	1.0 ppm

	.27 .05 .34		.93 .61 .19 .95	8	0 3 3 3 4 4 0 0 3 4 0 0 3 3 4 0 0 3 3 0 0 0 0	6502	22 9 4 4	
	$\overbrace{170}^{171}$		-136 128 128 127 127	- 96 	77. 76. 76. 69.	50. 48.	23. 20. 16.	
Current Data Parameters NAME SSK-17-KP-DAT-NHAC-13C EXPNO 5 PROCNO 1	٦٢		l)r	I	אר אר ד	1 1		
F2 - Acquisition Parameters Date_ 20190208 Time 21.13 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgpg30 TD 65536 SOLVENT CDCI3 NS 47 DS 0 SWH 29761.904 Hz FIDRES 0.454131 Hz AQ 1.1010048 sec RG 197.27 DW 16.800 usec DE 6.50 usec TE 295.9 K D1 1.00000000 sec D11 0.03000000 sec TD0 1		Acł AcC	HN AcHNOBn 2					
======= CHANNEL f1 ======= SFO1 125.7703637 MHz NUC1 13C P1 8.90 usec PLW1 103.00000000 W								
====== CHANNEL f2 ====== SF02 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 16.0000000 W PLW12 0.44556001 W PLW13 0.22411001 W								
F2 - Processing parameters SI 32768 SF 125.7577890 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40								
210 200 190 1	80 170	160 150 2	140 130 120	110 100 90	80 70 60	50 40	30 20 10	mqq

Current Data Parameters NAME SSK-17-KP-549-1H EXPNO 1 PROCNO 1

F2 - Acquisition Parameters
Date_ 20180313
Time 14.43
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zg30
TD 54274
SOLVENT CDCI3
NS 16
DS 0
SWH 8223.685 Hz
FIDRES 0.151522 Hz
AQ 3.2998593 sec
RG 12.7
DW 60.800 usec
DE 6.50 usec
TE 296.2 K
D1 1.0000000 sec
TD0 1
======= CHANNEL †1 ========

NUC1 1H P1 14.75 usec PL1 -1.00 dB PL1W 10.56200695 W SFO1 400.1324710 MHz F2 - Processing parameters SI 32768 SF 400.1300100 MHz WDW ËM SSB 0 LB 0.30 Hz GB 0

PC 1.00

Ourself Data Davastara	∽170.25 ∽169.69	<pre>~133.18 ~131.52 ~128.93 ~128.30</pre>		- 59.25	∼20.61 ~20.53 ~16.55
NAME SSK-17-KP-549-13C EXPNO 2 PROCNO 1	$\backslash /$				Y I
F2 - Acquisition Parameters Date_ 20180313 Time 14.45 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 68 DS 0 SWH 26041.666 Hz FIDRES 0.397364 Hz AQ 1.2582912 sec RG 28.5 DW 19.200 usec DE 6.50 usec TE 296.7 K D1 1.00000000 sec D11 0.0300000 sec TD0 1		AcO AcO	SPh N ₃ I7		
====== CHANNEL f1 ======= NUC1 13C P1 8.50 usec PL1 -2.00 dB PL1W 56.53121948 W SFO1 100.6238364 MHz					
====== CHANNEL f2 CPDPRG[2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 -1.00 dB PL12 13.69 dB PL13 14.50 dB PL2W 10.56200695 W PL12W 0.35871249 W PL13W 0.29767781 W SFO2 400.1316005 MHz					
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40					
			100 90 80 70	60 50 40 3	

Current Data Parameters NAME SSK-17-KP-552-1H EXPNO 2 PROCNO 1					
F2 - Acquisition Parameters Date20180313 Time 16.13 INSTRUM spect PROBHD_5 mm PABBO BB/ PULPROG zg30 TD 65536 SOLVENT CDCI3 NS 12 DS 0 SWH 10000.000 Hz FIDRES 0.152588 Hz AQ 3.2767999 sec RG 30.72 DW 50.000 usec DE 6.50 usec TE 297.1 K D1 1.00000000 sec TD0 1		AcO AcO N ₃ OBn 18			
======= CHANNEL f1 ======= SFO1 500.1330885 MHz NUC1 1H P1 13.35 usec PLW1 16.00000000 W	~-		_		
F2 - Processing parameters SI 65536 SF 500.1300000 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00					
			11 M		l.
9.5 9.0 8.5 8.0) 7.5 7.0 6.5 86:5 86:5 86:5	0.10 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.98	4.0 3.5 3.0 2.9	5 2.0 1.5 9010 9010 9010 9010 9010 9010 9010 901	1.0 0.5 ppm

Current Data Parameters		33N	-17-KF-55Z	-130		
NAME SSK-17-KP-552-13C EXPNO 3 PROCNO 1	.41	. 58	.55	16	70 74 94 33	6 6 4 2 6 4 12
F2 - Acquisition Parameters Date20180313 Time16.14 INSTRUMspect PROBHD 5 mm PABBO BB/ PULPROGgpg30 TD65536 SOLVENTCDCI3 NS30	170		128	- 76	70. 70. 64. 57.	20. 150.
DS 0 SWH 29761.904 Hz FIDRES 0.454131 Hz AQ 1.1010048 sec RG 197.27 DW 16.800 usec DE 6.50 usec TE 297.2 K D1 1.00000000 sec D11 0.03000000 sec TD0 1			Act AcO	O N ₃ OBn 18		
======= CHANNEL f1 ======= SFO1 125.7703637 MHz NUC1 13C P1 8.90 usec PLW1 103.0000000 W						
====== CHANNEL f2 ====== SFO2 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 16.000 usec PLW2 16.0000000 W PLW12 0.44556001 W PLW13 0.22411001 W						
F2 - Processing parameters SI 32768 SF 125.7577890 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40						
210 200 190 180	170 160	150 140	130 120	110 100 90	80 70 60 50	40 30 20 10 ppm

SSK-17-KP-552-13C

Current Data Parameters NAME SSK-17-KP-FUCOSEN EXPNO 4 PROCNO 1	HAC-OBN-13C		— 97.21 77.38	77.06 76.74 70.46 70.08 68.89 65.09		23.30 20.82 20.78 16.03
F2 - Acquisition Parameters Date_ 20190227 Time 16.30 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 25 DS 0 SWH 26041.666 FIDRES 0.397364 AQ 1.2582912 DE 6.50 DW 19.200 DE 6.50 DI 1.0000000 SE 26.5		AcO AcO AcHN 3	OBn			
ID0 I ====== CHANNEL fl ====== NUC1 13C Pl 8.50 usg PL1 -2.00 dB PL1W 56.53121948 W SF01 100.6238364 MH: ====== CHANNEL f2 ====== CPDPRG[2 waltz16 NUC2 1H PCPD2 80.00 usg PL12 13.69 dB PL13 14.50 dB PL2W 10.56200695 W PL12W 0.35871249 W PL13W 0.29767781 W SF02 400.1316005 MH:	== ec ec					
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40 Multiple of the state of the		ւլ	44 4 4 10 4 11 2 4 12 12 2 4 12 12 2 4 12 12 12 12 12 12 12 12 12 12 12 12 12		1	լ
210 200 190 18	30 170 160 150 1	40 130 120 110 1	00 90	80 70 60 5	50 40 3	80 20 10 0 ppm

1.612 1.474 1.425 1.411

SSK-23-AP-149-1H

SSK-23-AP-149-13C

Current Data Parameters NAME SSK-23-AP-149-13C EXPNO 6 PROCNO 1	135.53 135.53 135.29 135.29 133.08 133.08 133.08 133.08 133.08 133.08 133.08 133.08 127.90 127.90 127.91 127.92 126.15 126.15 126.15 126.15 126.15 126.15 126.15 126.15 126.16 126.16 127.59	84.06 80.54 80.08 771.17 76.85 76.85 77.49 77.49 77.49 77.43	28.03 28.03 26.49 18.64	
$\begin{array}{cccc} F2 & - \ Acquisition \ Parameters \\ Date_ 20180627 \\ Time 5.20 \\ INSTRUM spect \\ PROBHD 5 mm PABBO BB- \\ PULPROG 2gpg30 \\ TD 65536 \\ SOLVENT CDC13 \\ NS 23 \\ DS 0 \\ SWH 26041.666 \ Hz \\ FIDRES 0.397364 \ Hz \\ AQ 1.2582912 \ sec \\ RG 724 \\ DW 19.200 \ usec \\ DE 6.50 \ usec \\ TE 296.4 \ K \\ D1 1.00000000 \ sec \\ TD0 1 \\ 0.0300000 \ sec \\ TD0 1 \\ \end{array}$	NapO (SPh 20		
====== CHANNEL fl ====== NUC1 13C Pl 8.50 usec PL1 -2.00 dB PL1W 56.53121948 W SF01 100.6238364 MHz				
====== CHANNEL f2 CPDPRG[2 waltz16 NUC2 1H PCPD2 80.00 PL2 -1.00 PL12 13.69 PL13 14.50 PL2W 10.55200695 PL13W 0.29767781 W SF02 400.1316005 MHz				
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40				

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

SSK-23-AP-137-1H

SSK-23-AP-137-13C

		134.92 133.54 133.20 133.04 129.06	128.33 127.92 127.69 126.61 126.28	125.70		85.98 81.31 77.22	75.00	63.75			20.87 18.23	
Current Data Parameters NAME SSK-23-AP-138-13C EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date 20180609 Time 10.41 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zgpg30 TD 65536 SOLVENT CDCI3 NS 158 DS 0 SWH 26041.666 Hz FIDRES 0.397364 Hz AQ 1.2582912 sec RG 2050 DW 19.200 usec DE 6.50 usec TE 299.0 K			Naj		-0 N ₃ SP 22	h						
D11 0.03000000 sec TD0 1 ======= CHANNEL f1 ======= NUC1 13C P1 8.50 usec PL1 -2.00 dB PL1W 56.53121948 W SFO1 100.6238364 MHz												
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40 PC 1.40	and and have the state of the second state of the second state of the second state of the second state of the s	1) - 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14		si d 1-112 g stars fished Principality Manggara Sep	alland Laborat Party and	lin a su data a data Na fara data a		(la de la casa de se la sel a de la casa de se la seconda de se casa de se se la seconda de se se se se se se s Nota de se	saladı U, asındı ası sı Perminin ve ayın şerinin	kalajal latados por Bostos, Ancida La 19 milion a naj posicipa naj signa kanyal	h la Mahara da kata sa ka A ja ma paga kata sa ka	alman fan tur an stad a hala a fala a fala a 19 a fan fan fan fan fan fan fan fan fan f
190 180 170	160 150) 140 1		110		80		60	50 4	40 30	20	10 ppm

SSK-23-AP-139-1H

SSK-23-AP-139-13C

ppm

SSK-23-AP-141-1H

Current Data Parameters NAME SSK-23-AP-141-13C EXPNO 6 PROCNO 1

F2 - Acquisition Parameters Date20180612 Time 5.10 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zgpg30 TD 65536 SOLVENT CDCI3 NS 15
DS 0
RG 2050
DW 19.200 usec
DE 6.50 usec
TE 297.2 K
D1 1.0000000 sec
D11 0.0300000 sec
TD0 1
======= CHANNEL 11 ========
NUC1 13C
PL1W 56 53121948 W
SFO1 100.6238364 MHz
======= CHANNEL f2 ========
CPDPRG[2 waltz16
NUC2 1H
PCPD2 80.00 usec
PL2 -1.00 dB
PL12 13.69 dB
PL13 14.30 0B
PL2W 10.30200093 W
PI 13W 0 29767781 W
SEO2 400 1316005 MHz
F2 - Processing parameters
SI 32768
SF 100.6127690 MHz
WDW EM
55B U

SSK-23-AP-141-13C

\sim	0	S	G	ω	ഫ	\sim	ω	\sim	-	-	S	ω	\sim	
4	\sim	Ч	Ч	ω	σ	9	Ч	σ	ω	0	4	\sim	\sim	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	
4	\sim	\sim	\sim	Ч	ω	ω	ω	\sim	\sim	\sim	9	9	വ	
\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim							
Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	Ч	
Ļ						$\overline{\langle}$						_		
					רר	1 I	nırr	TT -						

<u>ч</u> ч	408	α	
4 5	ю H 0	\sim	
• •	• • •	•	
0 0	4 1 1	\vdash	
8 1	C C 9	9	
	$\langle \rangle /$		

-18.12

NapO O HO N ₃ SF	^{>} h

90

80

70

60

50

40

30

20

10

ppm

210 200 190 180 170 160 150 140 130 120 110 100

SSK-23-AP-143-1H

Current D	ata Parameters					SSI	<-23- A	AP-143	-13C											
EXPNO PROCNO	6 1	130			. 92	.23 .14		. 98 47.11	. 15	6 9 8 2	21 35 35	0 0 0 0 0 0	76 81 72	81 63				60		
F2 - Acqui Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS	isition Paramet 20180613 5.24 5 mm PABBO 5 zgpg30 65536 CDCl3 50 0	ers BB-			ر 134 آر 133	// 133 // 133	128		L 126	98	85.	80.	74.	63.				— 18.		
SWH FIDRES AQ RG DW DE TE D1 1 D11 1 TD0	26041.666 Hz 0.397364 Hz 1.2582912 sec 2050 19.200 usec 6.50 usec 297.5 K 1.00000000 sec 0.03000000 sec 1							Nap	^{DO} F	N ₃	-SPI	ו								
NUC1 P1 PL1 PL1W SFO1	CHANNEL f1 = 13C 8.50 usec -2.00 dB 56.53121948 W 100.6238364 M	 								25										
CPDPRG[NUC2 PCPD2 PL12 PL12 PL13 PL2W PL12W PL12W PL13W SFO2	CHANNEL f2 = 2 waltz16 1H 80.00 usec -1.00 dB 13.69 dB 14.50 dB 10.56200695 W 0.35871249 W 0.29767781 W 400.1316005 M	 																		
F2 - Proce Si SF 1 WDW SSB 0 LB GB 0 PC	essing paramete 32768 00.6127690 MH EM 1.00 Hz 1.40	srs 2 Seda utilikki ki deku	r, alka) aibr, alkais		دە يەر مۇر يەر يولىر	black for the state of the stat		able bits, and all most	s bi Manma jaalka na ku	-) 144 a 146 a 14	ія, <u>6</u> фиц., 4 , 1		h La La dhaana dh	L. M. Miles South (s.	L. Maria da Branda L	1. Studd Jorna (يەل يەلەر لەللەر بىلەر ئەللەر بىلەر ئە		July Lasted and	elsabus, (ekildatk
210	200 19	0 180	<u></u> 170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	mqq

NAME SSK-23-AP-25-F-19F EXPNO 7		
PROCNO 1	25	
F2 - Acquisition Parameters		
Time 22.33		
INSTRUM spect		
PROBHD 5 mm PABBO BB/		
TD 131072		
SOLVENT CDC13		
NS 11		
SWH 113636.367 Hz		
FIDRES 0.866977 Hz		
AQ 0.5767168 sec		
DW 4.400 usec		
DE 6.50 usec		
TE 296.8 K D1 1.00000000 sec		
D11 0.03000000 sec		
D12 0.00002000 sec		
100 1		
CHANNEL fl		
SF01 470.5453180 MHZ NUC1 19F		
Pl 19.75 usec		
PLW1 55.0000000 W		
====== CHANNEL f2 =======		
SF02 500.1320005 MHz		
CPDPRG[2 waltz16		1
PCPD2 80.00 usec		
PLW2 16.00000000 W PLW12 0.44556001 W		
FIN12 0.11550001 W		
F2 - Processing parameters		
SF 470.5923770 MHz		
WDW EM		
SSB 0		
GB 0		
PC 1.00		

NapO F N₃ SPh 25

SSK-23-AP-25-F-19F

SSK-23-AP-152-1H

NUC1 13C P1 8.90 usec PLW1 103.000000 W ====================================	Current Data Parameters NAME SSK-23-AP-152-13C SZPNO 6 PROCNO 1 F2 - Acquisition Parameters 0ate20180628 Fime 17.20 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgpg30 FD 65536 SOLVENT CDC13 NS 50 DS 0 SWH 29761.904 Hz FIDRES 0.454131 Hz AQ 1.1010048 sec RG 197.27 DW 16.800 usec DE 6.50 usec FE 300.6 K D1 1.00000000 sec D1 0.03000000 sec D1 0.03000000 sec FD0 125.7703637 MHz		ŀ	10 <u>F</u>	O N ₃ 26	SPh				
PC 1.40	Abit 123.7703037 MHZ VIC1 13C P1 8.90 usec P2W1 103.0000000 W ====== FR02 SF02 500.1320005 MHz NUC2 1H P2PDPRG[2 waltz16 PCCPD2 80.00 usec PLW12 0.44556001 W PLW12 0.22411001 W F2 Processing parameters SI 32768 SF 125.7577890 MHz WW EM SB 0 C 1.00 Hz B 0 PC 1.40			1.			1			

97.50

77.29 717.03 75.08 75.08 75.02 73.72 73.72 63.34

133.63 130.96 129.10 128.65

- 17.62

Current Data Parameters NAME SSK-23-AP-26-F-19F FXDNO		
PROCNO 1	E SPN	
F2 - Acquisition Parameters	N	
Date20190905	1N3	
11me 22.20	9	
INSTRUM spect	26	
PROBHD 5 mm PABBO BB/	20	
PULPROG zgfhigqn.2		
TD 131072		
SOLVENT CDCl3		
NS 17		
DS 0		
SWH 113636.367 Hz		
FIDRES 0.866977 Hz		
AQ 0.5767168 sec		
RG 197.27		
DW 4.400 usec		
DE 6.50 usec		
TE 296.8 K		
D1 1.0000000 sec		
D11 0.03000000 sec		
D12 0.00002000 sec		
TD0 1		
====== CHANNEL fl =======		
SF01 470.5453180 MHz		
NUC1 19F		
P1 19.75 usec		
PLW1 55.0000000 W		
====== CHANNEL f2 =======		
SF02 500.1320005 MHz		
NUC2 1H		
CPDPRG[2 waltz16		
PCPD2 80.00 usec		
PLW2 16.0000000 W		i i
PLW12 0.44556001 W		
F2 - Processing parameters		
SI 65536		
SF 470.5923770 MHz		
WDW EM		
SSB 0		
LB 0.30 Hz		
GB U		
PC 1.00		

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ppm

SSK-23-AP-26-F-19F

10

0

-10 -20

-30

-40

-50

-60

-70 -80

— -188.26

Current Data Parameters NAME SSK-23-AP-166-13C EXPNO 6 PPOCMO 1	133.47	94.68 92.81 92.81 85.77 85.77 73.68 69.43 69.43 69.27 69.27 59.96	16.51
F2 - Acquisition Parameters Date_ 20180711 Time 5.55 INSTRUM spect PROBHD 5 mm PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 88 DS 0 SWH 26041.666 Hz AQ 1.2582912 sec RG 2050 DW 19.200 DE 6.50 DE 6.50 USC TE 296.3 K D1 1.0000000 TD0 1	HO F	O SPh N ₃ 27	
======= CHANNEL f1 ======= NUC1 13C P1 8.50 usec PL1 -2.00 dB PL1W 56.53121948 W SF01 100.6238364 MHz			
====== CPDPRG[2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 -1.00 dB PL12 13.69 dB PL13 14.50 dB PL12W 10.56200695 W PL12W 0.35871249 W PL13W 0.29767781 W SF02 400.1316005 MHz	1		
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40			Among a faile, any balant solar address to be a stand by star bars, but ready, and binds data any star star as
ͺͺϗϫͷϳϦϳϗϫϔͷϳϒϳϷϳ·ͷ;ϒͻͷͺϲͻ϶Ͽͷ;ϳϒϲϿϿϲϲ;ϒϲϒͺ;ϒϲϲ϶Ϙͷϲϲϒͻϒϒϫ·ϿϏϏϒͷϿͺϒϒ϶ͻͷϾϏͷ·ϒͷϒͺϴͷϒϲϫϤͺϿͷϒϲϫϤϲͷϲϿϲϲͷϲͻϹϲͷͷϲͿϲͷϨͷ϶ϾϏͷ϶Ϗϫͷͷϐ϶ϫ	and for a first proper product from the first of the firs	a definition and an and define a second s	a da la la la casa da sensar a la casa da da sensar da sensar da sensar da sensar da sensar da sensar da sensa

·····	••••											•••••						•••••	•••••	•••••		••••		•••••
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

F2 - Acquisition Parameters Date 20190905		
Time 22.29	27	
INSTRUM SPECT		
PILLPROG zafhjaan.2		
TD 131072		
SOLVENT CDCl3		
NS 12		
DS 0		
SWH 113636.367 Hz		
10 0.5757168 sec		
RG 197.27		
DW 4.400 usec		
DE 6.50 usec		
ТЕ 296.8 К		
D1 1.0000000 sec		
D11 0.0000000 sec		
TD0 1		
====== CHANNEL fl =======		
SF01 470.5453180 MHz		
NUCL 19F		
PLW1 55.00000000 W		
====== CHANNEL f2 =======		
SF02 500.1320005 MHz		
CDDDDC[2 Waltz]6		I
PCPD2 80.00 used		
PLW2 16.0000000 W		
PLW12 0.44556001 W		
E2 - Brocessing narameters		
SI 65536		
SF 470.5923770 MHz		
WDW EM		
SSB 0		
CP 0 0.30 Hz		
PC 1.00		

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ppm

HO SPh F N₃

SSK-23-AP-27-F-19F

Current Data Parameters NAME SSK-23-AP-27-F-19F EXPNO 7 PROCNO 1

10

SSK-23-AP-112-1H

Current Data Parameters	00R-23-AI -112-130		
EXPNO 11 PROCNO 1	. 95 . 17 . 89	100400 100400 100400	35
$\begin{array}{llllllllllllllllllllllllllllllllllll$	133.		18.3
D11 0.03000000 sec TD0 1	N ₃ F-	SPh	
SFO1 125.7703637 MHz NUC1 13C P1 8.90 usec PLW1 103.00000000 W		28 ^N 3	
====== CHANNEL f2 ====== SFO2 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 16.0000000 W PLW12 0.44556001 W PLW13 0.22411001 W			
F2 - Processing parameters SI 32768 SF 125.7577890 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40			
		1	
****		<u>l</u> ll	

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30

20

10

ppm

SSK-23-AP-112-13C

	$N_3 \rightarrow 0$	
Current Data Parameters NAME SSK-23-AP-28-F-19F EXPNO 7 PROCNO 1	F-SPn N ₃	
F2 - Acquisition Parameters Date20190905 Time 22.36 INSTRUM spect PROBHD 5 mm PABB0 BB/ PULPROG zofhigan.2	20	
TD 131072 SOLVENT CDC13 NS 29 DS 0 SWH 113636.367 Hz		
Fluxts 0.80597/HZ AQ 0.5767166 sec RG 197.27 DW 4.400 usec DE 6.50 usec TE 296.8 K		
D1 1.0000000 sec D11 0.0300000 sec D12 0.0002000 sec TD0 1		
======= (HANNEL fl ======= SFOI 470.5453180 MHz NUC1 19F P1 19.75 usec PLW1 55.00000000 W		
====== CHANNEL f2 ====== SFO2 500.1320005 MHz NUC2 1H CPDPRG[2 walts16 PCPD2 16 00000 w#ec		
PLM12 0.44556001 W F2 - Processing parameters SI 65536 SF 470.5923770 MHz		
WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00		

-70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ppm

10

0

-10

-20 -30

-40 -50

-60

Current Data Parameters NAME ssk-23-ap-dat-3f-nhac-2-13c			ssk-23-a	p-dat-3	Sf-nhac-	2-13c								
EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20190426 Time 8.37 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgpg30 TD 65536 SOLVENT MeOD NS 554 DS 0 SWH 29761.904 Hz FIDRES 0.454131 Hz AQ 1.1010048 sec BC 407.27	<pre>172.11 171.95</pre>		133.05 131.91 128.57	~T21.47		92.32	< 85.47	74.19 74.14	55.85 55.72 54.24	~54.10		$\bigwedge_{21.32}^{21.44}$		
RG 19/27 DW 16.800 usec DE 6.50 usec TE 299.0 K D1 1.00000000 sec D1 0.03000000 sec D1 1.03000000 sec TD0 1 ====== SF01 125.7703637 MHz NUC1 13C P1 8.90 usec PLW1 103.0000000 W ======= SF02 500.132005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 16.0000000 W PLW2 10.4055001 W					AcHN	FN 29) IHAc	Ph						
PLW13 0.22411001 W F2 - Processing parameters SI 32768 SF 125.7577890 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40														
و الفاستالة، فق رباط والفالغ وتلغ ومنهو القالم عن إلى إن القو على أن ور حام القر و حام	1 1 . Later J Harrison and Jacobian	, bi (d.1. šana) k Mayan akadish il 13 (k da		e bil. so to a shediou s	1 Julie - Marine Marine and Marine and	, south the state of the state)				a the data of a special difference of the special s	l, ded touch	lå den fra bere dig vide stå	abilitati dan se a da
210 200 190 18	0 170	160 150	140 130	120	110	100 90	תראשת ארונדאי ווייים ךיייייי 8	0 70				20	ננה נאישי אישה אשר אידי 10	

Time 22.45 INSTRUM spect	20	
PROBED 5 mm PABBO BB/ PULPROG zgfhigqn.2	29	
TD 131072 SOLVENT MeOD		
NS 17		
SWH 113636.367 Hz		
FIDRES 0.866977 Hz		
RG 197.27		
DW 4.400 usec		
TE 296.8 K		
D1 1.00000000 sec D11 0.03000000 sec		
D12 0.00002000 sec		
100 1		
====== CHANNEL f1 ====== SF01 470 5453180 MHz		
NUC1 19F		
PI 19.75 usec PLW1 55.0000000 W		
====== CHANNEL f2 =======		
SF02 500.1320005 MHz		
NUC2 1H CPDPRG[2 waltz16		
PCPD2 80.00 usec		
PLW2 16.0000000 W PLW12 0.44556001 W		
F2 - Processing parameters		
SI 65536		
SF 470.5923770 MHz WDW EM		
SSB 0		
GB 0		
PC 1.00		
		An and the second design of the second s

SPh

-100 -110 -120 -130 -140 -150 -160

AcHN-

— -189.98

-170 -180 -190 -200

-210 ppm

SSK-23-AP-3F-BAC-NHAC-19F

Current Data Parameters NAME SSK-23-AP-3F-BAC-NHAC-19F EXPNO 7 PROCNO 1

10

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

Current Data Parameters NAME SSK-23-AP-255-BAC-F-13CNEW EXPNO 7 PROCNO 1	6 0 3		SSI	≺-23-AP-2	255-BAC-	F-13C	NEW	_		10 01 m →		_			
F2 - Acquisition Parameters Date20181001 Time 16.33 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgpg30 TD 65536 SOLVENT MeOD NS 364 DS 0 SWH 29761.904 Hz FIDRES 0.454131 Hz AQ 1.010048 sec RG 197.27 DW 16.800 usec DE 6.50 usec TE 298.3 K D1 1.0000000 sec	$ = 172.3 \\ 172.1 \\ 172.1 \\ 169.3 $		AcHN	- M	0		87.81	10 10 10	68.44	55.55 55.42 52.38 52.38			19.25	20.0T	
D11 0.03000000 sec TD0 1 SF01 125.7703637 MHz NUC1 13C P1 8.90 usec				F AcHI											
PLW1 103.0000000 W ====== CHANNEL f2 ====== SF02 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 16.0000000 W PLW2 0.4556001 W PLW13 0.22411001 W				4											
F2 - Processing parameters SI 32768 SF 125.7577890 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40															
an and name has such should be an the second		. In . Harrin at a	hduha a diama an ta	day and an ered of	an the set of the set	a mada a second d		. I.i 16	11 Jan 14 -		ц. Б. а в Ба а ба	1		Laadhaan ah ah ah ah ah	ikati katu me
210 200 190 18	0 170		150 140	130 1′	2014/14/1955-14/14/14 	100	9 ()	80 7	0		4 ∩	30	2.0	1 0	
	5 1/0	T00 -		I		T 00	20	55 /	~	55 50	10	50	20	± 0	PPm

SSK-23-AP-156-1H

		133.45 130.94 129.11 128.61	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	17.62
Current Data Parameters NAME SSK-23-AP-156-13C EXPNO 18 PROCNO 1				
F2 - Acquisition Parameters Date_ 20180703 Time 13.05 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 27 DS 0 SWH 26041.666 Hz FIDRES 0.397364 Hz AQ 1.2582912 sec RG 2050 DW 19.200 usec DE 6.50 usec TE 296.0 K D1 1.00000000 sec D11 0.300000 sec TD0 1		۲ - F	N ₃ SPh	
CHANNEL fl NUC1 13C P1 8.50 PL1 -2.00 dB PL1W 56.53121948 W SFO1 100.6238364 MHz			30 ^{N3}	
CHANNEL f2 CDDPRG[2 waltzl6 NUC2 IH PCPD2 80.00 usec PL2 -1.00 dB PL12 13.69 dB PL13 14.50 dB PL2W 10.55200695 W PL12W 0.35871249 W SF02 400.1316005 MHz				
F2 - Processing parameters SI 32768 SF 100.6127690 WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40				
na ay an Tayay Magana ay ay an Ang				unde gaag, waa waa waa waa waada dhuu ya dhay aha waa waa aha dha ya aha waa dag waa waa dha aha ya aha aha ah
				·
230 220 210 200) 190 180 170 160 15 [,]) 140 130 120 110	100 90 80 70 60 50	0 40 30 20 10 0 mαα

ppm

						N	3							
Current NAME EXPNO PROCNO	Data Parameters SSK-23-AP-30-F-19F 7 1					F-	10	~SPh						
F2 - Acc Date_ Time INSTRUM PROBHD PULPROG DD SSLVENT NS SSUVENT NS SSUVENT NS AQ RG AQ RG DM DE TE D1 D12 TD0	quisition Parameters 20190905 22.23 spect 5 mm PABB0 BB/ zgfhiggn.2 131072 CDC13 11 0.866977 Hz 0.866977 Hz 0.5767168 sec 197.27 4.400 usec 296.8 K 1.0000000 sec 0.03000000 sec 1						30 ^N 3							
SFO1 NUC1 P1 PLW1	E CHANNEL f1 ====== 470.5453180 MHz 19F 19.75 usec 55.00000000 W													
SF02 NUC2 CPDPRG[: PCPD2 PLW2 PLW12	= CHANNEL f2 ====== 500.1320005 MHz 1H 2 waltzl6 80.00 usec 16.0000000 W 0.44556001 W													
F2 - Pro SI SF WDW SSB LB GB PC	00000000000000000000000000000000000000													
		, 	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	

sk-23-ap-dat-f-nhac-11

0 0	0 H & H			
4 M	ЧЧО <i>Ф</i>	2180098704	4007	1 4 <i>0</i>
• •		0400400000	100 4	8 H M
\dashv \dashv	10 M			• • •
$ \sim \sim$	0 0 0 M	700077700F	1000	0 MM
\dashv \dashv	\neg	688877777	വവവവ	H 22
\bigvee	$\leq $		\bigvee	\vee

Current Data Parameters NAME ssk-23-ap-dat-f-nhac-13c EXPNO 2 PROCNO 1											
F2 - Acquisition Parameters Date_ 20190313 Time 3.09 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zgpg30 TD 65536 SOLVENT CDCI3 NS 66 DS 0 SWH 26041.666 Hz FIDRES 0.397364 Hz AQ 1.2582912 sec RG 1030 DW 19.200 usec DE 6.50 usec TE 297.6 K D1 1.00000000 sec D11 0.03000000 sec			Acl		∽SPh HAc						
Image: system is a											
====== CHANNEL f2 ====== CPDPRG[2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 -1.00 dB PL12 13.69 dB PL13 14.50 dB PL2W 10.56200695 W PL12W 0.35871249 W PL13W 0.29767781 W SFO2 400.1316005 MHz						l					
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40							I	h			
a hill a d-araille fa bha a dao hadir a ta chuirtean d'a bha a da anna hadi antar bail An fhairean ta ta chuir ann an anna an ta chuirte fa bhf tha ta da anna hadi antar an ta chuirte an ta chuirte An fhairean ta chuirte an t	Norman Mand. 54. Jones Johnson Programming and and and a state of the second state of	eller and heller and all the site of the second	n _e rdeet Mantelander	lans fra B ¹ las ann an 201 Barras Annalas Al aindi 1995 - Maria Sarras Annalas an Annalas		where the state of the	iyi ili pripritik daha ti		nden sich bester erfolgten bestechten beite dem Generationen beiter sich dem erfolgten bestechten beiter dem erfolgten beiter beiter dem erfolgten beiter beite Generationen beiter		ing dam fini ng katalang ka
210 200 190 180	170 160	150 140	130 1	20 110	100 90	80	70	60 50	40 30) 20	10 ppm

							F			SPh										
F2 - Acquisi	2010005						•		``											
Time	22.45								NHA	C.										
INSTRUM	spect																			
PROBHD 5 r	nm PABBO BB/																			
PULPROG	zgfhigqn.2							•	21											
TD	131072							•												
SOLVENT	MeOD																			
DS	1																			
SWH	113636.367 Hz																			
FIDRES	0.866977 Hz																			
AQ	0.5767168 sec																			
RG	197.27																			
DW	4.400 usec																			
DE	6.50 usec																			
D1	290.0 K																			
D11	0.03000000 sec																			
D12	0.00002000 sec																			
TDO	1																			
======= CH4	ANNEL II =======																			
SFOI NUC1	4/0.5453160 MHZ																			
Pl	19.75 usec																			
PLW1	55.00000000 W																			
====== CH2	ANNEL f2 =======																			
SFO2	500.1320005 MHz																			
CPDPRG[2	waltz16																			
PCPD2	80.00 usec																			
PLW2	16.0000000 W																			
PLW12	0.44556001 W																			
F2 - Process	ing parameters																			
SI	65536																			
SF	470.5923770 MHz																			
WDW	EM																1			
SSB 0																				
LB	0.30 Hz																			
GB U	1 00																			
10	1.00																			
							under ander die der einen eine					the second second						and the second second		
1					1															
10 0	-10 -20	-30	-40	-50 -0	60 -70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	ppm

AcHN

F

SPh

— -189.98

SSK-23-AP-3F-BAC-NHAC-19F

Current Data Parameters NAME SSK-23-AP-3F-BAC-NHAC-19F EXPNO 7 PROCNO 1

SSK-23-AP-246-13C

SSK-23-AP-168-13C

		133.48 131.22 128.98 128.54	92.05 92.05 90.12 85.76 85.76 85.76 85.69 77.38 77.38 77.38 77.38 77.38 76.74 60.52 60.34	20.59
Current Data Parameters NAME SSK-23-AP-168-13C EXPNO 2 PROCNO 1	I)) (r		ΙΥ
F2 - Acquisition Parameters Date_ 20180712 Time 10.43 INSTRUM spect PROBHD 5 mm PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 317 DS 0 SWH 26041.666 Hz FIDRES 0.397364 Hz AQ 1.2582912 sec		Δ	vcO	
RG 2050 DW 19.200 usec DE 6.50 usec TE 297.6 K D1 1.0000000 sec			F SPh	
D11 0.03000000 sec TD0 1			N ₃	
====== CHANNEL f1 NUC1 13C Pl 8.50 usec PL1 -2.00 dB PL1W 56.53121948 W SFO1 100.6238364 MHz			32	
====== CPDPRG[2 waltz16 NUC2 1H PCPD2 80.00 usec PL2 -1.00 dB PL12 13.69 dB PL13 14.50 dB PL2W 10.56200695 W PL12W 0.35871249 W PL13W 0.29767781 W SFO2 400.1316005 MHz				
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40				
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
230 220 210 200 190			,	0 30 20 10 0 -10 ppm

Current Data Parameters NAME SSK-23-AP-32-P-19F EXENO 7 DPCONO 1	F-SPh N ₂	
PRCON I $F2 - Acquisition Parameters$ Date20190905 Time 22.40 INSTRUM PABBO BB PULPROG zgfhight2 TD 131072 SOLVENT CC13 NS 6 SWH 113636.367 Hz PDRES 0.966977 Hz AQ 197.27 DM 4.400 usec TE 296.8 K DI 1.0000000 sec DI1 0.00002000 sec TD2 0.00002000 sec	32	
ESS CHANNEL f1 ======== SF01 470.5453180 MHz NUC1 19F P1 19.75 usec PLW1 55.0000000 W		
====== CHANNEL f2 ====== SF02 500.132005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLM2 16.0000000 W PLM12 0.4455601 W		
F2 - Processing parameters SI 65536 SF 470.5923770 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 1.00		

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ppm

SSK-23-AP-32-F-19F

10

-10

-20

-30

-40

-50

-60

-70

-80

0

					\bigvee_{51}		
ssk-23-ap-fuc-3f-nh	a						
Current Data Parameters NAME ssk-23-ap-fuc-3f-nhac-2-13c EXPNO 2 PROCNO 1		Ac	Q				
F2 - Acquisition Parameters Date20190426 Time 9.04 INSTRUM spect PROBHD 5 mm PABBO BB/ PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 77 DS 0 SWH 29761.904 Hz FIDRES 0.454131 Hz AQ 1.1010048 sec RG 197.27 DW 16.800 usec DE 6.50 usec TE 299.1 K D1 1.00000000 sec D11 0.03000000 sec TD0 1		F	NHAc 33				
CHANNEL f1 SF01 125.7703637 MHz NUC1 13C NUC1 13C 90 Usec P1 8.90 Usec PLW1 103.00000000 W 103.0000000 W 103.00000000 W 103.00000000 W							
CHANNEL f2 SFO2 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 usec PLW2 16.0000000 W PLW12 0.44556001 W PLW13 0.22411001 W							
F2 - Processing parameters SI 32768 SF 125.7577890 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40			11		1		
zan yang palipi tela Jandolaki apar anta melanta ja Jakang dali kang balaki kang balaki ang palipi tela Jandol Mang telapat pang te		ni a lat alem sense na station i anno station a print a brian la brian i anno anno anno anno anno anno anno			an a	a na disa di sua ta ta kana sa ta kana sa ta kana da kana sa	
210 200 190 18	30 170 160	150 140 130 120	110 100 90 80	70 60	50 40	30 20 10	ppm

33.09 32.01 28.94 27.77 71.19 70.56 9.33 7.80 5.46 5.40 2.41 0.07 9.95 1.28 1.13

3.49 0.64 6.57

EXPNO 7	h = 0	
PROCNO 1		
F2 - Acquisition Darameters	E SPh	
Date 20190905		
Time 22.53	`	
INSTRUM spect	NHAC	
PROBHD 5 mm PABBO BB/		
PULPROG zgfhigqn.2		
TD 131072		
SOLVENT CDC13	22	
NS 8	33	
SWH 115050.307 HZ FIDERS 0.866077 HZ		
10 0 5767168 sec		
RG 197.27		
DW 4.400 usec		
DE 6.50 usec		
те 296.7 к		
D1 1.00000000 sec		
D11 0.03000000 sec		
D12 0.00002000 sec		
====== CHANNEL fl =======		
SF01 470.5453180 MHz		
NUC1 19F		
P1 19.75 usec		
PLW1 55.0000000 W		
====== CHANNEL f2 =======		
SF02 500.1320005 MHz		
NUC2 1H		
CPDPRG[2 waltz16		
PCPD2 80.00 usec		
PLW2 16.0000000 W		
PLW12 0.44556001 W		
F2 - Processing parameters		
SI 65536		
SF 470.5923770 MHz		
WDW EM		
SSB 0		
LB 0.30 Hz		
rç 1.00		

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ppm

SSK-23-AP-3F-FUC-NHAC-19F

10

0

-10

-20

-30

-40

-50

-60

-70

-80

SSK-23-AP-FUCOSE-FINAL-1H

Current Data Parameters NAME SSK-23-AP-FUCOSE-FINAL-1H EXPNO 11 PROCNO 1 F2 - Acquisition Parameters Date Date 20181005 Time 11.40 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zg30 TD 54274 SOLVENT CDC13 NS 25 DS 0 SWH 8223.685 Hz FIDRES 0.151522 Hz AQ 3.2998593 sec RG 203 DW 60.800 usec DE 6.50 usec TE 297.3 K DT 1.00000000 sec				AcO F	O AcHN OAc				
1D0 1 ======== CHANNEL f1 ====== NUC1 1H P1 14.75 usec PL1 -1.00 dB PL1W 10.56200695 W SF01 400.1324710 MHz F2 - Processing parameters SI 32768 SF 400.1300095 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00		7	ſ	Λ	<i>ح</i>			Ş	
8.5 8.0 7.5	7.0	6.5 6.0	5.5		4.0 3.5	3.0	2.5 2.0 1.5 56,66,66	5 1.0 0.9	5 0.0 ppm

	70.49 70.29 68.87				91.93 91.84 87.60 85.69	59.77 59.61 57.12 57.07	ł7.59 ł7.40	23.27 20.97 20.69 20.07	
	\mathbb{N}				$\langle \rangle$		4.4		
Current Data Parameters NAME SSK-23-AP-FUCOSE-13CNEW EXPNO 4 PROCNO 1 F2 - Acquisition Parameters Date_ 20180928 Time 12.01 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG zgpg30 TD 65536 SOLVENT CDC13 NS 603 DS 0 SWH 26041.666 Hz FIDRES 0.397364 Hz AQ 1.2582912 sec RG 1030 DW 19.200 usec DE 6.50 usec TE 297.0 K D1 1.00000000 sec		AcO F	O CHN OAC 6						
TD0 1									
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40		and and to days the late	andraa aa dharaa a	1444 1 44			ter territet alle an ins an		a dha ar a
n na senden an de ser and de ser and ser an de ser an de ser an de ser An de ser and te an de ser and ser and ser and ser an de ser and ser an	d di kang di kang ang kang kang kang kang kang kang	n bei feligensen alle son for den sen sen sen sen sen sen sen sen sen s	ting the state of the solution of the solution of a paper sys- rice support on a grant of the systems of a paper sys-	and determined the second state of the	r gan ste ne fin de fin terre den blinder for en ste ne de anne fin de fin terre den blinder for en ster Finne fin de fin terre de fin terre de fin terre ster	n melhala halki dahi atah kanadari a 1. Berku atah kanadari atah	dlina ballata, col ni "U anta l danis pig. Ni yayayi yapar (i pipige ' niya' ya i pi	dia ahi dana piki pika ahi ani ka ahi ani da ahi na ani ahi fa ana ana ahi ahi ahi ahi ahi na nga sa pang na pang nga pan nga pang nga pang ng	
210 200 190 180) 170 160	150 140	130 120	110 100	90 80	70 60	50 40	30 20 10	ppm