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Additional Experimental Details

Standardization of FTIR spectra

All FTIR spectra obtained from NIST was truncated so that only peaks occurring from 400cm-1 to 4000cm-

1 remain.  The FTIR spectra available in the NIST webbook has varying degrees of resolution, which is 
problematic for a multilayer perceptron (MLP) network as this architecture requires a discrete and 
consistent number of input dimensions.  To address this, we standardized all FTIR spectra so that each 
spectrum would have the same number of peaks by defining an FTIR dimension as being the percent 
transmittance in a wavenumber bin.  For example, if a compound has a transmittance of 30% between 
400cm-1 and 401cm-1, then this dimension has a value of 0.30.  Since the most common resolution present 
in the NIST data is approximately 3.25cm-1, we decided to use this resolution to standardize all FTIR spectra 
in our dataset. However, other ranges may be better suited for the problem at hand, and the selection of 
an optimized resolution remains as to be done as future work. To standardize all the spectra, we 
performed linear interpolation on each IR spectra and evaluated the fitted function at the same set of 
discrete points throughout each interpolated FTIR spectra.  This process yielded uniform FTIR spectra 
consisting of 1108 points, regardless of the resolution of the original FTIR data.

Standardization of MS spectra

Given the discrete nature of mass spectra, the standardization process for this type of spectra is 
straightforward.  The bin size for these spectra was chosen to be 1 m/z unit, and the counts present in 
each bin were averaged together for spectra with a resolution less than 1 m/z.  All the bin counts in each 
spectrum were divided by the largest count in the same spectrum to yield the relative abundance for all 
the m/z peaks present in the dataset. This resolution was selected as it is the best resolution provided for 
all spectra available in the NIST webbook.

Training and testing of neural networks

All Neural Networks reported in this work were created using the Keras Python Package[7].  All hidden 
layers were normalized using batch normalization and activated using rectified linear units, and a 
sigmoidal function is used to activate the final output layer.  During the training procedure, we applied a 
dropout procedure which randomly selects neurons given a per layer probability and sets their value to 
zero. We used binary cross entropy was used as the loss function for training the neural network as this 
loss function is standard for multi-label classification problems.  For each epoch of training, Keras 
calculated the loss of the training and validation sets and compared this loss to the loss of the previous 
epoch.  Early stopping with a patience of 5 epochs was used to prevent the model from overtraining.  All 
models were validated using 5-fold cross-validation, and sequential hyperparameter searching was used 
to optimize the final FTIR and MS model. The hyperparameters of the optimized model are given in the 
supporting information under Details of neural networks.

The overall mathematical representation of this model can be represented with Formula 1 given below.

(1)�⃗� =  𝑓(𝑎0,𝑊,�⃗� )



Here, ,  is the predicted functional groups from the model with a length equal to the number of functional �⃗�

groups defined in the previous section.  Each component of this vector represents the probability that the 

corresponding functional group is present in the molecule.  The vector  is the input spectra and has a 𝑎0

length equal to the number of components in the spectra. Matrix  is a weighting matrix and  is bias a 𝑊 �⃗�

vector. All terms are applied in the following manner:

(2)𝑓(𝑎0,𝑊,�⃗� ) = 𝜎(𝑊𝑎0 + �⃗�)

This function can be applied. multiple times with matrices of varying length, producing hidden ‘layers.’ 
The optimal number of layers, as well as their respective lengths, are ‘hyperparameters.’ For each neuron 
k in a layer l:
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Here,  is an activation function. For hidden layers:𝜎

(4)𝜎 = 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0,𝑥)

For the final layer:

(5)𝜎 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)

The cost function, or error in the model, is defined as follows using the binary cross entropy function:

(6)𝐶(�⃗�,�̃�) = �̃�log �⃗� + (1 ‒ �̃�)�̃�log (1 ‒ �⃗�)

Where  is the predicted functional groups and  are the true functional groups. The goal of back �⃗� �⃗�

propagation is to minimize the cost function, thereby making the model increasingly accurate. 

 We define the error of any neuron to be

(7)
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For the final layer of the model, we can compute this value via the chain rule:
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This expression can be rewritten as the following for a matrix operation:

(9)𝛿𝐿 = ∇𝑎𝐶 ⊙ 𝜎'(𝑧𝐿)

Once the derivative of the final layer is obtained, the derivative of the penultimate layer can be 
calculated as follows:

(10)𝛿𝑙 = ((𝑊𝑙 + 1)𝑇𝛿𝑙 + 1) ⊙ 𝜎'(𝑧𝑙)



One can continue to ‘backpropagate’ this derivative until the derivative of the first layer is calculated. Now 

that  can be calculated for all layers, the derivate of the total cost function with respect to a bias term 𝛿𝑙
𝑗

can be written as

(11)
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Additionally, the following for the weighting terms:
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Now that all backpropagation terms can be calculated for all layers, we can define a modified version of 
this procedure referred to as guided backpropagation.  This procedure begins with an already-trained 
network consisting of  and . The network is predicted in the forward direction to obtain . Then 𝑊 �⃗� �⃗�

equations (9) and (10) are used to calculate the weights of the input vector . Note that all negative 𝑎0

gradients are set to 0 during the application of (10). Details for the application of guided backpropagation 
in this work are given in the following section.

Use of backpropagation to identify patterns in the model

One of the most challenging problems of developing deep learning models is interpreting them in a 
chemical context[8], which results in many researchers treating these models as black-box representations, 
thereby neglecting to understand how features are used to predict results. Solving this problem to 
understand how various input features result in a given result is a challenging problem. Many new 
methods were proposed to address this problem which can be broadly classified into perturbation-based 
methods and backpropagation-based methods. Back propagation-based methods compute the gradient 
of the activations concerning the feature space and identify the section of the image which maximally 
activates that neuron. One such backpropagation based method is ‘guided backpropagation[9].’ Guided 
backpropagation is similar to the ‘probability’ approach[10], where the difference between these two 
methods arises from differences in the handling of backpropagation. The deconvnet approach computes 
the gradient-based on top gradient signal setting negative values to zero while backpropagation sets the 
gradient of negative activations in the forward pass to zero; avoiding the ‘flow’ of negative gradients 
during backpropagation.  We use this technique to identify the top 5 bins of an input FTIR spectra that 
was responsible for predicting a particular functional group of a molecule and present these results in 
Figure 4.

General Information:
FTIR spectra were recorded by ATR-IR method using Thermo Nicolet FTIR instrument and processed using 
OMNIC software. The compound mixtures were prepared by mixing two solid compounds (crushed with 
spatula to make fine powder, if necessary) and used directly for ATR-IR. MS spectra were recorded by 
Electron Spray Ionization method (ESI) using Agilent 6470 triple quadruple LC/MS. Solvents and 
commercially available compounds were used as it is without any further purification. 



Synthetic Models
We developed a control, which we have termed as ‘synthetic models’, for this work which are created 
using a predefined accuracy to assign functional groups.  To generate a synthetic model, one takes the 
original functional group matrix (where columns are functional groups and rows are molecules) and 
predicts each functional group for every molecule individually based on random numbers. The accuracy 
of each synthetic model is fixed, and the predictions are randomly assigned as correct or incorrect to 
obtain the specified accuracy. Unlike a truly random model, the synthetic model has access to the original 
functional group assignment matrix and the predictions of the matrix are not randomly assigned but are 
instead ‘purposefully’ correct or incorrect based on a uniform random distribution. For example, consider 
a synthetic model that has an accuracy of 50% and is being generated for 4 functional groups. It is given a 
molecule where only the first 2 functional groups are present ([1,1,0,0]). Four random numbers are 
generated using a uniform distribution, e.g.: 0.25, 0.75, 0.85, and 0.10.  Since the second and third random 
numbers are greater than the assigned accuracy (0.50), they are deemed incorrect and the model will 
predict ([1,0,1,0]). This example has a molecular recall of 0.5, a molecular precision of 0.5 and molecular 
perfection of 0.

Synthetic models with accuracies of 99%, 95%, and 90% are given below showing decrease in MPR with 
increase in number of functional group predictions. 



The synthetic models shown in Figure 5d and Figure S5d are created to evaluate how molecular perfection 
rate varies with the introduction of additional functional groups to a machine learning model. Individual 
synthetic models with differing numbers of functional groups (X-axis) are created, and the corresponding 
molecular perfection rates are calculated for each synthetic model. Since the purpose of a synthetic model 
is to serve as a comparison to a machine learning model, the accuracies for each synthetic model is the 
average of a subset of functional group accuracies taken from the comparison model.  These functional 
group subsets are selected at random every time a synthetic model is created. For example, consider a 
machine learning model with functional group accuracies of 90%, 80%, and 70%; this allows for three 
synthetic models with two functional groups to be created with accuracies of 85%, 80%, and 75% and a 
single synthetic model with three functional groups to be created with an accuracy of 80%. For all figures 
produced in this work, 10 synthetic models are created for each number of functional groups considered 
(ticks on the X-axis), and the average molecular perfection rate of these 10 models are plotted on the Y-
axis.

Details of neural networks
The final optimization parameters for the FTIR+MS model:

Layer size Dropout
237 0.457866692938781
170 0.26437107014663824

Batch size: 178.0

For the FTIR model:
Layer size Dropout
240 0.3820803111613069
200 0.38822353533309584
131 0.008815281710900874

Batch size: 153.0



Supporting Figures

Figure S1: (a) The distribution of various functional groups in the NIST database. (b) The 
distribution of molecular masses present in the NIST database.



Figure S2: The comparison of Random Forest and Multi-Layered Perception validation set performance 
for the selected functional groups indicates that the MLP methodology outperforms RF for the majority 
of functional groups. Both methods were trained on the FTIR spectra only and no hyperparameters were 
used to optimize the model. Each bar represents the mean of a 5-fold cross-validation, and the error 
bars indicate the standard deviation over the 5-folds.  Here, the MLP model outperforms random forest 
and this is apparent for amides, acyl halides, amines, alkyl halides, ketones, and esters.



Figure S3:  Receiver Operator Characteristic (ROC) plots for the model trained on both FTIR and MS 
spectra. (a)  performance for carbonyl functional groups, (b) groups consisting of only carbon and 
hydrogen, and (c)the remaining functional groups.  The underperformance of amides and nitriles can be 
discerned from these plots.  These plots also allow us to select the best threshold value for each functional 
group which maximizes the F1 score for that functional group.



Figure S4: (a) Per functional group performance for an MLP model trained only on MS data shows that 
the model trained only FTIR data outperforms the model trained only on MS data during K-Fold validation. 
 Also, the MS only model tends to become overtrained in comparison to the FTIR model potentially due 
to a greater degree of generalization for FTIR data. (b) The improvement in performance for each 
functional group when MS spectra are introduced in addition to FTIR data.



Figure S5: A extended version of Figure 5 in the main text. Here, we show both training and validation 
set results for panels a-c in the original figure.



Figure S6 The molecular perfection rate calculated on molecules with a specific number of functional 
groups for both the original and new set of functional groups.



Figure S7: A version of Figure 5d which includes both the training set data and the autoencoder model. 
This figure shows that the autoencoder and training set data follow the same trend as the one found in 
the original model’s validation set.



Figure S8: Recorded ATR-IR spectrum for mixture 1.



Figure S9: Recorded ATR-IR spectrum for mixture 2.



Figure S10: Recorded ATR-IR spectrum for mixture 3. 



Supporting Tables

Functional Group Fold1 Fold2 Fold3 Fold4 Fold5
Alkane 0.979032 0.976801 0.975889 0.978278 0.982206
Alkene 0.648829 0.616949 0.578778 0.634441 0.689139
Alkyne 0.367347 0.629630 0.509804 0.458333 0.676471
Alcohols 0.902405 0.900000 0.919127 0.922293 0.924731
Amines 0.647303 0.695652 0.692982 0.695652 0.696517
Nitriles 0.246154 0.222222 0.181818 0.200000 0.172414
Aromatics 0.957637 0.958546 0.959868 0.965123 0.966496
Alkyl halides 0.679083 0.701001 0.723837 0.665765 0.667638
Esters 0.805556 0.842105 0.860215 0.816000 0.855072
Ketones 0.757991 0.720000 0.736364 0.725664 0.704663
Carboxylic acids 0.931217 0.944724 0.928230 0.921569 0.961905
Acyl halides 0.222222 0.105263 0.100000 0.400000 0.111111
Amides 0.050000 0.258065 0.071429 0.303003 0.148148

Table S1: Functional group F1 scores for the random forest model.

Functional Group Fold1 Fold2 Fold3 Fold4 Fold5
Alkanes 0.969475 0.979757 0.970094 0.971729 0.980640
Alkenes 0.689459 0.728291 0.706849 0.706849 0.789644
Alkynes 0.423077 0.678571 0.677966 0.520000 0.739726
Alcohols 0.923497 0.932015 0.955446 0.944649 0.958333
Amines 0.788530 0.776371 0.847826 0.807407 0.819672
Nitriles 0.238806 0.243243 0.289157 0.273973 0.438356
Aromatics 0.974011 0.969907 0.969461 0.971098 0.970862
Alkyl halides 0.768229 0.749672 0.786842 0.788698 0.765743
Esters 0.926380 0.916944 0.903427 0.909747 0.917492
Ketones 0.876404 0.874172 0.868526 0.873563 0.870293
Carboxylic acids 0.953846 0.920000 0.939535 0.912621 0.962617
Acyl halides 0.416667 0.714286 0.689655 0.666667 0.866667
Amides 0.333333 0.600000 0.550000 0.651163 0.500000

Table S2: Functional group F1 scores for the initial neural network model.



Molecular Perfection Rate Molecular F-1
Training set 85.2767% 0.963177
Validation set 72.5011% 0.923357

Table S3: MPR and MF1 values for a multitask model trained on only FTIR spectra

Molecular Perfection Rate Molecular F-1
Training set 92.5571% 0.982041
Validation set 74.9085% 0.931506

Table S4: MPR and MF1 values for a multitask model trained on FTIR and MS spectra



Functional Group Training set F1 Validation set F1
Alkane 0.983057 0.962597
Alkene 0.866956 0.771962
Alkyne 0.891495 0.824410
Alcohols 0.978567 0.946291
Amines 0.916645 0.829724
Nitriles 0.682049 0.493131
Aromatics 0.987723 0.971455
Alkyl halides 0.883381 0.794842
Esters 0.945287 0.906326
Ketones 0.933960 0.851401
Carboxylic acids 0.970379 0.938528
Acyl halides 0.901172 0.767982
Amides 0.726499 0.562125

Table S5: Functional group F1 scores for the neural network model trained on only FTIR spectra

Functional Group Training set F1 Validation set F1
Alkane 0.999203 0.988438
Alkene 0.854542 0.629076
Alkyne 0.823007 0.586774
Alcohols 0.944003 0.738918
Amines 0.940923 0.686877
Nitriles 0.821942 0.431075
Aromatics 0.999599 0.990165
Alkyl halides 0.990067 0.916458
Esters 0.844197 0.561388
Ketones 0.843226 0.565298
Carboxylic acids 0.981144 0.574958
Acyl halides 0.589059 0.210796
Amides 0.701243 0.282036

Table S6: Functional group F1 scores for the neural network model trained on only MS spectra



Functional Group Training set F1 Validation set F1
Alkane 0.992912 0.969812
Alkene 0.934595 0.820889
Alkyne 0.928958 0.833759
Alcohols 0.982569 0.943450
Amines 0.964915 0.867276
Nitriles 0.846275 0.617405
Aromatics 0.993621 0.979649
Alkyl halides 0.950192 0.855821
Esters 0.974097 0.913863
Ketones 0.956765 0.855171
Carboxylic acids 0.985346 0.932786
Acyl halides 0.938061 0.778668
Amides 0.813684 0.563190

Table S7: Functional group F1 scores for the neural network model trained on both FTIR and MS 
spectra

Functional Group Fold1 Fold2 Fold3 Fold4 Fold5
Alkane 0.975453 0.97485 0.977956 0.984628 0.971593
Alkene 0.820779 0.796657 0.813648 0.782396 0.833333
Alkyne 0.818182 0.852941 0.857143 0.900000 0.707071
Alcohols 0.951654 0.931789 0.932515 0.931436 0.929397
Amines 0.879433 0.879433 0.879699 0.853047 0.861314
Nitriles 0.647059 0.715596 0.533333 0.637931 0.632653
Aromatics 0.979167 0.982739 0.978748 0.984438 0.982416
Alkyl halides 0.871338 0.849449 0.878107 0.881748 0.875931
Esters 0.929487 0.900000 0.914286 0.924528 0.923588
Ketones 0.853755 0.892308 0.817814 0.881890 0.828571
Carboxylic acids 0.92093 0.900990 0.955665 0.940594 0.897561
Acyl halides 0.785714 0.857143 0.833333 0.838710 0.709677
Amides 0.612245 0.640000 0.478261 0.612245 0.690909

Table S8: Functional group F-1 scores for single neural networks trained on both FTIR and MS spectra



Functional Group Training set F1 Validation set F1
Alkanes 0.966563 0.932969
Alkenes 0.898341 0.823709
Alkynes 0.946598 0.847545
Alcohols 0.981538 0.957765
Amines 0.948083 0.877436
Aitriles 0.739183 0.525128
Aromatics 0.991503 0.976025
Alkyl halides 0.907264 0.825761
Esters 0.978914 0.933366
Ketones 0.952114 0.882585
Aldehydes 0.982074 0.927797
Carboxylic acids 0.974353 0.944752
Acyl halides 0.936764 0.822867
Amides 0.783791 0.620740
Methyl 0.962598 0.928545
Ether 0.977310 0.935875
Nitro 0.986419 0.953173

Table S9: Functional group F1 scores for a model trained on only IR with the new definitions of 
functional groups

Functional Group Training set F1 Validation set F1
Alkane 0.983110 0.935748
Alkene 0.951914 0.825343
Alkyne 0.966157 0.869274
Alcohols 0.985552 0.935951
Amines 0.969121 0.873207
Nitriles 0.887506 0.598101
Aromatics 0.997007 0.981913
Alkyl halides 0.966182 0.865727
Esters 0.970721 0.912860
Ketones 0.965129 0.867477
Aldehydes 0.979790 0.903850
Carboxylic acids 0.977540 0.930756
Acyl halides 0.945896 0.788083
Amides 0.832065 0.595560
Methyls 0.977781 0.932062
Ethers 0.984980 0.923053
Nitros 0.990951 0.931536

Table S10: Functional group F1 scores for a model trained on FTIR and MS spectra with the new 
definitions of functional groups



Molecular Perfection Rate Molecular F-1
Training set 79.1323% 0.955077
Validation set 64.0335% 0.909212

Table S11: MPR and MF1 values for a multitask model trained on only FTIR spectra with the new 
definitions of functional groups

Molecular Perfection Rate Molecular F-1
Training set 87.8871% 0.975642
Validation set 65.2510% 0.912017

Table S12: MPR and MF1 values for a multitask model trained on FTIR and MS spectra



Functional Group Training set F1 Validation set F1
Alkane 0.968777 0.93169
Alkene 0.907346 0.812864
Alkyne 0.945042 0.851205
Alcohols 0.97892 0.944236
Amines 0.946405 0.852841
Nitriles 0.717182 0.488428
Aromatics 0.992644 0.974879
Alkyl halides 0.907742 0.810426
Esters 0.979923 0.922709
Ketones 0.951888 0.867387
Aldehydes 0.976048 0.918015
Carboxylic acids 0.971139 0.941297
Acyl halides 0.920298 0.791876
Amides 0.788451 0.597016
Methysl 0.963815 0.932059
Ethers 0.973455 0.923417
Nitros 0.98336 0.946973

Table S13: Functional group F1 scores for a model trained using an autoencoder on only FTIR with the 
new definitions of functional groups

Functional Group Training set F1 Validation set F1
Alkane 0.984136 0.932257
Alkene 0.947195 0.819603
Alkyne 0.958650 0.848086
Alcohols 0.978334 0.910960
Amines 0.960173 0.852991
Nitriles 0.854644 0.553305
Aromatics 0.996893 0.982649
Alkyl halides 0.963728 0.855594
Esters 0.969606 0.913754
Ketones 0.964384 0.857152
Aldehydes 0.979850 0.866663
Carboxylic acids 0.979510 0.917079
Acyl halides 0.952464 0.736802
Amides 0.844232 0.557778
Methyls 0.978014 0.930977
Ethers 0.980859 0.919104
Nitros 0.987188 0.933380

Table S14: Functional group F1 scores for a model trained using an autoencoder on FTIR and MS with 
the new definitions of functional groups



Molecular Perfection Rate Molecular F-1
Training set 78.8955% 0.955907
Validation set 62.5593% 0.904820

Table S15: MPR and MF1 values for a model trained using an autoencoder on only FTIR and with the 
new definitions of functional groups

Molecular Perfection Rate Molecular F-1
Training set 86.8895% 0.973454
Validation set 62.5726% 0.905013

Table S16: MPR and MF1 values for a model trained using an autoencoder on FTIR and MS and with 
the new definitions of functional groups
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