Supplementary Information

Catalytic enantioselective arylative cyclizations of alkynyl 1,3diketones by 1,4-rhodium(I) migration

Alistair Groves,^{a,b} Jinwei Sun,^{a,b,c} Hal R. I. Parke,^{a,b} Michael Callingham,^{a,b} Stephen P. Argent,^b Laurence J. Taylor,^b and Hon Wai Lam^{*,a,b}

^a The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom

and

^b School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

and

^c Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044 (China)

Supplementary Information

General Information	2
Preparation of Substrates	3
Enantioselective Arylative Cyclizations of Alkynyl 1,3-Diketones	15
NMR Spectra of New Compounds	40
HPLC Traces	89
References	131

General Information

All air-sensitive reactions were carried out under an inert atmosphere using oven-dried apparatus. THF and toluene were dried and purified by passage through activated alumina columns using a solvent purification system. All commercially available reagents were used as received unless otherwise stated. Arylboronic acids were used as received unless the sample contained >10% boroxine as determined by ¹H NMR analysis. In this case, the boronic acid was stirred in a mixture of Et₂O and water for 30 min. The organic phase was separated, dried (Na₂SO₄), filtered, and concentrated in vacuo to give the corresponding boronic acid which was used without further purification. Petroleum ether refers to Sigma-Aldrich product 24587 (petroleum ether boiling point 40-60 °C). Thin layer chromatography (TLC) was performed on Merck DF Alufoilien 60F254 0.2 mm precoated plates. Compounds were visualized by exposure to UV light or by dipping the plates into solutions of potassium permanganate or vanillin followed by gentle heating. FIAS-H column chromatography was carried out using silica gel (Fisher Scientific 60 Å particle size 35–70 micron or Fluorochem 60 Å particle size 40-63 micron). Automated column chromatography was conducted using PuriFlash instrument from Interchim. Melting points were recorded on a Gallenkamp melting point apparatus and are uncorrected. The solvent of recrystallization is reported in parentheses. Infrared (IR) spectra were recorded on a Bruker platinum alpha FTIR spectrometer on the neat compound using the attenuated total refraction technique. NMR spectra were acquired on Bruker Ascend 400 or Ascend 500 spectrometers. ¹H and ¹³C NMR spectra were referenced to external tetramethylsilane *via* the residual protonated solvent (¹H) or the solvent itself (¹³C). ¹⁹F NMR spectra were referenced through the solvent lock (²H) signal according to the IUPAC-recommended secondary referencing method following Bruker protocols. All chemical shifts are reported in parts per million (ppm). For CDCl₃, the shifts are referenced to 7.27 ppm for ¹H NMR spectroscopy and 77.0 ppm for ¹³C NMR spectroscopy. Abbreviations used in the description of resonances are: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), br (broad) and m (multiplet). Coupling constants (J) are quoted to the nearest 0.1 Hz. ¹³C NMR assignments were made using the DEPT sequence with secondary pulses at 90° and 135°. High-resolution mass spectra were recorded using electrospray ionization (ESI). X-ray diffraction data were collected at 120 K on an Agilent SuperNova diffractometer using CuKa radiation. Chiral HPLC analysis was performed on Agilent 1200 Infinity series instruments using 4.6×250 mm columns. [Rh(cod)Cl]₂ was used as an achiral rhodium complex to obtain authentic racemic compounds.

Preparation of Substrates

Substrates **4a–4f** were prepared as described previously.¹

3-Methyl-3-(3-phenylprop-2-yn-1-yl)pentane-2,4-dione (1a)²

3-Methyl-2,4-pentanedione (1.75 mL, 15.0 mmol) was added dropwise to a solution of NaH (60% in mineral oil, 720 mg, 18.0 mmol) in THF (50 mL) at 0 °C under argon and the resulting mixture was stirred for 1 h. Alkynyl bromide $S1^3$ (80% wt. solution in toluene, 4.00 g, 16.5 mmol) was added dropwise and the solution was stirred at room temperature for 16 h, quenched with saturated aqueous NH₄Cl solution (50 mL), and extracted into Et₂O (3 × 50 mL). The combined organic layers were washed with brine (50 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (100% petroleum ether to 5% EtOAc/petroleum ether) gave alkynyl 1,3-diketone **1a** as an orange oil (1.64 g, 48%) whose spectroscopic data were consistent with those reported previously.²

3-Ethyl-3-(3-phenylprop-2-yn-1-yl)pentane-2,4-dione (1b)

3-Ethylpentane-2,4-dione (4.03 mL, 3.00 mmol) was added dropwise to a solution of NaH (60% in mineral oil, 144 mg, 3.60 mmol) in THF (30 mL) at 0 °C under argon and the resulting mixture was stirred at room temperature for 1 h. Alkynyl bromide **S1**³ (80% wt. solution in toluene, 1.46 g, 6.00 mmol) was added dropwise *via* syringe (using 2 mL of THF as a rinse) and the solution was stirred at 60 °C for 16 h. The reaction was cooled to room temperature, quenched with saturated aqueous NH₄Cl solution (50 mL), and extracted into Et₂O (3 × 50 mL). The combined organic layers were washed with brine (50 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the

residue by column chromatography (100% petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1b** as a yellow oil (580 mg, 82%). $R_f = 0.35$ (10% EtOAc/pentane); IR (ATR) 2971, 1696 (C=O), 1491, 1356, 1157, 1107, 937, 755, 691 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.32 (2H, m, Ar**H**), 7.30–7.26 (3H, m, Ar**H**), 2.98 (2H, s, \equiv CC**H**₂), 2.22–2.16 (2H, m, C**H**₂CH₃), 2.18 (6H, s, 2 × C**H**₃C=O), 0.82 (3H, t, *J* = 7.6 Hz, CH₂C**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 205.5 (2 × C), 131.6 (2 × CH), 128.2 (2 × CH), 128.1 (CH), 123.0 (C), 84.7 (C), 83.7 (C), 70.7 (C), 26.9 (2 × CH₃), 23.7 (CH₂), 20.1 (CH₂), 8.1 (CH₃); HRMS (ESI) Exact mass calculated for [C₁₆H₁₈NaO₂]⁺ [M+Na]⁺: 265.1199, found 265.1199.

3-Butyl-3-(3-phenylprop-2-yn-1-yl)pentane-2,4-dione (1c)

3-Butyl-2,4-pentanedione (506 µL, 3.00 mmol) was added dropwise to a solution of NaH (60% in mineral oil, 180 mg, 4.50 mmol) in THF (30 mL) at 0 °C under argon and the resulting mixture was stirred at room temperature for 1 h. Alkynyl bromide $S1^3$ (80% wt. solution in toluene, 1.46 g, 6.00 mmol) was added dropwise via syringe (using 2 mL of THF as a rinse) and the solution was stirred at 60 °C for 16 h. The reaction was cooled to room temperature, quenched with NH₄Cl (50 mL), and extracted into Et₂O (3×50 mL). The combined organic layers were washed with brine (50 mL), dried (MgSO₄), filtered, and concentrated in vacuo. Purification of residue by column chromatography (100% petroleum ether to 10% EtOAc/petroleum ether) gave alkynyl 1,3-diketone 1c as a yellow oil (713 mg, 88%). R_f = 0.35 (10% EtOAc/pentane); IR (ATR) 2958, 2933, 2873, 1698 (C=O), 1356, 1185, 1158, 1116, 756, 691 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.37–7.33 (2H, m, ArH), 7.30–7.26 $(3H, m, ArH), 2.99 (2H, s) \equiv CCH_2), 2.18 (6H, s, 2 \times CH_3C=O), 2.17-2.10 (2H, m, CH_2CH_2CH_2CH_3),$ 1.39 (2H, sext, J = 7.4 Hz, CH₂CH₂CH₃), 1.12–1.06 (2H, m, CH₂CH₂CH₃), 0.93 (3H, t, J = 7.4 Hz, CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 205.5 (2 × C), 131.6 (2 × CH), 128.2 (2 × CH), 128.0 (CH), 123.0 (C), 84.8 (C), 83.7 (C), 70.4 (C), 30.5 (CH₂), 26.9 (2 × CH₃), 25.9 (CH₂), 23.1 (CH₂), 21.6 (CH₂), 13.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₈H₂₂NaO₂⁺ [M+Na]⁺: 293.1512, found: 293.1504.

Synthesis of Substrate 1d

Me Bn

Me

0~

Bn

Me

3-Benzylpentane-2,4-dione (S2).⁴ Na₂CO₃ (6.86 g, 65.0 mmol) was added portionwise over 15 min to a solution of pentane-2,4-dione (5.10 mL, 50.0 mmol) in acetone (25 mL)

at 0 °C and the solution was stirred for 15 min. A solution of benzyl bromide (5.95 mL, 50.0 mmol) in acetone (25 mL) was added dropwise over 15 min and the solution was heated at reflux for 24 h. The reaction was cooled to room temperature, filtered, and the filtrate was concentrated *in vacuo*. Purification of the residue by column chromatography (10% Et₂O/petroleum ether) gave diketone **S2** as a yellow oil (5.16 g, 54%, 24:76 ratio of keto:enol tautomers) whose spectroscopic data were consistent with those reported previously.⁴

3-Benzyl-3-(3-phenylprop-2-yn-1-yl)pentane-2,4-dione (1d). 3-Benzylpentane-2,4-dione (**S2**, 1.90 g, 10.0 mmol) was added dropwise *via* syringe (using 2 mL of THF as a rinse) to a solution of NaH (60% in mineral oil, 480 mg, 12.0 mmol) in

THF (30 mL) at 0 °C under argon and the resulting mixture was stirred at room temperature for 1 h. Alkynyl bromide **S1**³ (80% wt. solution in toluene, 2.67 g, 11.0 mmol) *via* syringe (using 2 mL of THF as a rinse) was added dropwise and the solution was stirred at room temperature for 16 h, quenched with saturated aqueous NH₄Cl solution (50 mL), and extracted into Et₂O (3×50 mL). The combined organic layers were washed with brine (50 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (100% petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1d** as a yellow oil (1.16 g, 38%). R_f = 0.19 (10% EtOAc/pentane); IR (ATR) 3069, 3029, 2956, 1695 (C=O), 1489, 1441, 1359, 1172, 1148, 755, 689 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.46–7.40 (2H, m, ArH), 7.36–7.26 (6H, m, ArH), 7.19–7.14 (2H, m, ArH), 3.47 (2H, s, PhCH₂), 2.89 (2H, s, =CCH₂), 2.27 (6H, s, 2 × CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 204.7 (2 × C), 135.6 (C), 131.6 (2 × CH), 129.7 (2 × CH), 128.5 (2 × CH), 128.3 (2 × CH), 128.2 (CH), 127.1 (CH), 122.9 (C), 84.8 (C), 84.7 (C), 71.3 (C), 36.9 (CH₂), 27.4 (2 × CH₃), 21.7 (CH₂); HRMS (ESI) Exact mass calculated for C₂₁H₂₀NaO₂⁺ [M+Na]⁺: 327.1356, found: 327.1355.

Synthesis of Substrate 1e

Me

Me

0-

O²

3-(4-Methoxybenzyl)-3-(prop-2-yn-1-yl)pentane-2,4-dione (S4). 3-(Prop-2yn-1-yl)pentane-2,4-dione (**S3**,⁵ 690 mg, 5.00 mmol) was added dropwise *via* syringe (using 2 mL of THF as a rinse) to a solution of NaH (60% in mineral oil, 240 mg, 6.00 mmol) in THF (30 mL) at 0 °C under argon and the resulting

mixture was stirred at room temperature for 1 h. 4-Methoxybenzyl bromide⁶ (1.08 mL, 7.50 mmol) was added dropwise and the solution was stirred at room temperature for 24 h, quenched with saturated aqueous NH₄Cl solution (50 mL), and extracted into Et₂O (3 × 50 mL). The combined organic layers were washed with brine (50 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (20% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **S4** as a yellow oil (771 mg, 60%). $R_f = 0.33$ (20% EtOAc/pentane); IR (ATR) 2959, 1696 (C=O), 1513, 1360, 1266, 1171, 1151, 1027, 755, 690 cm⁻¹; ⁻¹H NMR (500 MHz, CDCl₃) δ 7.03 (2H, d, *J* = 8.6 Hz, Ar**H**), 6.80 (2H, d, *J* = 8.3 Hz, Ar**H**), 3.78 (2H, s, OCH₃), 3.34 (2H, s, ArCH₂), 2.64 (2H, d, *J* = 2.7 Hz, \equiv CCH₂), 2.20 (6H, s, 2 × CH₃C=O), 2.14 (1H, t, *J* = 2.7 Hz, C=CH); ¹³C NMR (101 MHz, CDCl₃) δ 204.6 (2 × C), 158.7 (C), 130.6 (2 × CH), 127.3 (C), 113.9 (2 × CH), 79.7 (C), 72.6 (C), 71.1 (CH), 55.2 (CH₃), 35.8 (CH₂), 27.4 (2 × CH₂), 20.7 (CH₂); HRMS (ESI) Exact mass calculated for C₁₆H₁₈NaO₃⁺ [M+Na]⁺: 281.1148, found: 281.1149.

3-(4-Methoxybenzyl)-3-(3-phenylprop-2-yn-1-yl)pentane-2,4-dione (1e). A degassed solution of terminal alkyne S4 (516 mg, 2.00 mmol), iodobenzene (448 μL, 4.00 mmol), (PPh₃)₂PdCl₂ (70.2 mg, 0.10 mmol), and CuI (38.1 mg, 0.20 M (20 mL) was heated at 60 °C for 18 h. The reaction was cooled to room temperature.

mmol) in Et₃N (20 mL) was heated at 60 °C for 18 h. The reaction was cooled to room temperature, quenched with 1.0 M aqueous HCl solution (25 mL), and extracted into EtOAc (3 × 25 mL). The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by automated column chromatography (5% EtOAc/petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1e** as a brown oil (525 mg, 79%). $R_f = 0.20$ (20% EtOAc/petroleum); IR (ATR) 2997, 2958, 2933, 1720 (C=O), 1512, 1356, 1246, 1176, 1032, 756, 691 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.46–7.37 (2H, m, Ar**H**), 7.36–7.30 (3H, m, Ar**H**), 7.07 (2H, d, J = 8.7 Hz, Ar**H**), 6.81 (2H, d, J = 8.7 Hz, Ar**H**), 3.78 (3H, s, OCH₃), 3.40 (2H, s, ArCH₂), 2.87 (2H,

s, \equiv CCH₂), 2.24 (6H, s, 2 × CH₃C=O); ¹³C NMR (101 MHz, CDCl₃) δ 204.9 (2 × C), 158.7 (C), 131.6 (2 × CH), 130.7 (2 × CH), 128.3 (2 × CH), 128.2 (CH), 127.4 (C), 123.0 (C), 114.0 (2 × CH), 84.9 (C), 84.6 (C), 71.4 (C), 55.2 (CH₃), 36.1 (CH₂), 27.5 (2 × CH₃), 21.7 (CH₂); HRMS (ESI) Exact mass calculated for C₂₂H₂₂NaO₃⁺ [M+Na]⁺: 357.1461, found: 357.1460.

3-Methyl-3-[3-(p-tolyl)prop-2-yn-1-yl]pentane-2,4-dione (1f)

A degassed solution of terminal alkyne **S5**² (608 mg, 4.00 mmol), 4-iodotoluene (1.74 g, 8.00 mmol), (PPh₃)₂PdCl₂ (140 mg, 0.20 mmol), and CuI (76.2 mg, 0.40 mmol) in Et₃N (40 mL) was heated at 60 °C for 18 h. The reaction was cooled to room temperature, quenched with 1.0 M aqueous HCl solution (50 mL), and extracted into EtOAc (3 × 50 mL). The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by automated column chromatography (5% EtOAc/petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1f** as an orange oil (415 mg, 43%). R_f = 0.21 (10% EtOAc/petroleum ether); IR (ATR) 3031, 2977, 2960, 2915, 1694 (C=O), 1509, 1355, 1160, 1097, 814, 589, 526 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.25 (2H, d, *J* = 8.2 Hz, Ar**H**), 7.09 (2H, d, *J* = 8.3 Hz, Ar**H**), 2.96 (2H, s, ≡CCH₂), 2.34 (3H, s, ArCH₃), 2.20 (6H, s, 2 × CH₃C=O), 1.54 (3H, s, CH₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 205.6 (2 × C), 138.2 (C), 131.4 (2 × CH), 129.0 (2 × CH), 119.9 (C), 84.0 (C), 83.9 (C), 66.4 (C), 26.6 (2 × CH₃), 25.4 (CH₂), 21.4 (CH₃), 18.7 (CH₃); HRMS (ESI) Exact mass calculated for C₁₆H₁₈NaO₂⁺ [M+Na]⁺: 265.1199, found: 265.1196.

3-[3-(4-Chlorophenyl)prop-2-yn-1-yl]-3-methylpentane-2,4-dione (1g)

A degassed solution of terminal alkyne $S5^2$ (456 mg, 3.00 mmol), 4-chloro-1-iodobenzene (1.43 g, 6.00 mmol), (PPh₃)₂PdCl₂ (105 mg, 0.15 mmol), and CuI (57.1 mg, 0.30 mmol) in Et₃N (30 mL) was heated at 60 °C for 18 h. The reaction was cooled to room temperature, quenched with 1.0 M aqueous HCl (50 mL) solution, and extracted into EtOAc (3 × 50 mL). The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by automated column chromatography (5% EtOAc/petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1g** as a yellow oil (373 mg, 47%). R_f= 0.20 (10% EtOAc/petroleum ether);

IR (ATR) 2980, 2937, 1698 (C=O), 1489, 1356, 1089, 827, 526 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.25 (4H, m, Ar**H**), 2.97 (2H, s, \equiv CCH₂), 2.21 (6H, s, 2 × C**H**₃C=O), 1.54 (3H, s, C**H**₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 205.3 (2 × C), 134.1 (C), 132.8 (2 × CH), 128.5 (2 × CH), 121.4 (C), 85.9 (C), 82.7 (C), 66.3 (C), 26.5 (2 × CH₃), 25.3 (CH₂), 18.6 (CH₃); HRMS (ESI) Exact mass calculated for C₁₅ClH₁₅NaO₂⁺ [M+Na]⁺: 285.0653, found: 285.0645.

3-[3-(4-Methoxyphenyl)prop-2-yn-1-yl]-3-methylpentane-2,4-dione (1h)

A degassed solution of terminal alkyne **S5**² (456 mg, 3.00 mmol), 4-iodoanisole (1.40 g, 6.00 mmol), (PPh₃)₂PdCl₂ (105 mg, 0.15 mmol), and CuI (57.1 mg, 0.30 mmol) in Et₃N (30 mL) was heated at 60 °C for 18 h. The reaction was cooled to room temperature, quenched with 1.0 M aqueous HCl solution (50 mL), and extracted into EtOAc (3 × 50 mL). The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by automated column chromatography (5% EtOAc/petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1h** as a colorless oil (500 mg, 65%). R_f = 0.10 (10% EtOAc/petroleum ether); IR (ATR) 3097, 3031, 2993, 2959, 1721 (C=O), 1693 (C=O), 1509, 1245, 1091, 839, 679 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.29 (2H, d, *J* = 8.0 Hz, Ar**H**), 6.80 (2H, d, *J* = 8.0 Hz, Ar**H**), 3.80 (3H, s, OC**H**₃), 2.94 (2H, s, ≡CC**H**₂), 2.20 (6H, s, 2 × C**H**₃C=O), 1.53 (3H, s, C**H**₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 205.7 (2 × C), 159.4 (C), 132.9 (2 × CH), 115.1 (C), 113.8 (2 × CH), 83.6 (C), 83.2 (C), 66.4 (C), 55.3 (CH₃), 26.6 (2 × CH₃), 25.4 (CH₂), 18.7 (CH₃); HRMS (ESI) Exact mass calculated for C₁₅ClH₁₅NaO₃⁺ [M+Na]⁺: 281.1148, found: 281.1148.

3-{3-[(1,1'-Biphenyl)-4-yl]prop-2-yn-1-yl}-3-methylpentane-2,4-dione (1i)

A degassed solution of terminal $S5^2$ (456 mg, 3.00 mmol), 4-bromo-1,1'-biphenyl (762 mg, 3.30 mmol), (PPh₃)₂PdCl₂ (42.1 mg, 0.06 mmol), CuI (29 mg, 0.15 mmol), and Et₃N (0.71 mL, 5.1 mmol) in DMSO (10 mL) was heated at 90 °C for 18 h. The reaction was cooled to room temperature, quenched with 1.0 M aqueous HCl solution (50 mL), and extracted into EtOAc (3 × 10 mL). The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by automated column chromatography (5% EtOAc/petroleum ether to 10%)

EtOAc/petroleum ether) gave *alkynyl* 1,3-*diketone* **1i** as a white soild (711 mg, 78%). $R_f = 0.21$ (10% EtOAc/petroleum ether); m.p. (Et₂O) 78–79 °C; IR (ATR) 1690 (C=O), 1485, 1358, 1213, 1159, 1097, 962, 839, 686 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.54 (2H, m, Ar**H**), 7.54–7.48 (2H, m, Ar**H**), 7.46–7.39 (4H, m, Ar**H**), 7.38–7.32 (1H, m, Ar**H**), 2.99 (2H, s, \equiv CCH₂), 2.21 (6H, s, 2 × CH₃C=O), 1.56 (3H, s, CH₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 205.6 (2 × C), 140.9 (C), 140.3 (C), 132.0 (2 × CH), 128.8 (2 × CH), 127.6 (2 × CH), 127.0 (2 × CH), 126.9 (C), 121.9 (C), 110.0 (C), 85.5 (C), 83.7 (C), 66.4 (C), 26.6 (2 × CH₃), 25.4 (CH₂), 18.7 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₁H₂₀NaO₂]⁺ [M+Na]⁺: 327.1356, found 327.1347.

3-[3-(2-Fluorophenyl)prop-2-yn-1-yl]-3-methylpentane-2,4-dione (1j)

A degassed solution of terminal **S5**² (456 mg, 3.00 mmol), 1-fluoro-2-iodobenzene (700 µL, 6.00 mmol), (PPh₃)₂PdCl₂ (105 mg, 0.15 mmol), and CuI (57.1 mg, 0.30 mmol) in Et₃N (30 mL) was heated at 60 °C for 18 h. The reaction was cooled to room temperature, quenched with 1.0 M aqueous HCl (50 mL) solution, and extracted into EtOAc (3 × 50 mL). The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by automated column chromatography (5% EtOAc/petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl* 1,*3*-*diketone* **1j** as a colorless oil (526 mg, 71%). R_f = 0.12 (10% EtOAc/petroleum ether); IR (ATR) 2980, 2937, 1698 (C=O), 1492, 1357, 1215, 757, 694 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.32 (1H, m, Ar**H**), 7.31–7.24 (1H, m, Ar**H**), 7.11–7.00 (2H, m, Ar**H**), 3.01 (2H, s, \equiv CCH₂), 2.22 (6H, s, 2 × C**H**₃C=O), 1.57 (3H, s, C**H**₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 205.5 (2 × C), 162.9 (C, *J_{CF}* = 251 Hz), 133.4 (CH), 129.8 (CH, *J_{CF}* = 7.5 Hz), 123.8 (CH, *J_{CF}* = 3.7 Hz), 115.4 (CH, *J_{CF}* = 20.7 Hz), 111.5 (CH, *J_{CF}* = 16.0 Hz), 90.4 (C), 77.2 (C), 66.2 (C), 26.6 (2 × C), 25.6 (CH₂), 18.7 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ –111.5; HRMS (ESI) Exact mass calculated for C₁₅FH₁₅NaO₂⁺ [M+Na]⁺: 269.0948, found: 269.0947.

3-[3-(3,5-Dimethylphenyl)prop-2-yn-1-yl]-3-methylpentane-2,4-dione (1k)

A degassed solution of terminal alkyne **S5**² (456 mg, 3.00 mmol), 1-iodo-3,5-dimethylbenzene (0.87 mL, 6.00 mmol), (PPh₃)₂PdCl₂ (105 mg, 0.15 mmol), and CuI (57.1 mg, 0.30 mmol) in Et₃N (30 mL) was heated at 60 °C for 18 h. The reaction was cooled to room temperature, quenched with 1.0 M aqueous HCl solution (50 mL), and extracted into EtOAc (3×50 mL). The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by automated column chromatography (5% EtOAc/petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl* 1,*3-diketone* **1k** as a yellow oil (537 mg, 70%). R_f= 0.21 (10% EtOAc/petroleum ether); IR (ATR) 3031, 2978, 2919, 2867, 1699 (C=O), 1598, 1355, 1162, 1092, 849, 690, cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.99 (2H, s, Ar**H**), 6.93 (1H, s, Ar**H**), 2.95 (2H, s, \equiv CCH₂), 2.27 (6H, s, 2 × ArCH₃), 2.21 (6H, s, 2 × CH₃C=O), 1.54 (3H, s, CH₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 205.6 (2 × C), 137.8 (2 × C), 130.0 (CH), 129.2 (2 × CH), 122.6 (C), 84.1 (C), 84.0 (C), 66.4 (C), 26.6 (2 × CH₃), 25.3 (CH₂), 21.0 (2 × CH₃), 18.7 (CH₃); HRMS (ESI) Exact mass calculated for C₁₇H₂₀NaO₂⁺ [M+Na]⁺: 279.1356, found: 279.1349.

3-[3-(Benzo[d][1,3]dioxol-5-yl)prop-2-yn-1-yl]-3-methylpentane-2,4-dione (11)

A degassed solution of terminal alkyne $S5^2$ (456 mg, 3.00 mmol), 5-bromobenzo[*d*][1,3]dioxole (660 mg, 3.30 mmol), (PPh₃)₂PdCl₂ (42.1 mg, 0.06 mmol), CuI (29 mg, 0.15 mmol), and Et₃N (0.71 mL, 5.1 mmol) in DMSO (10 mL) was heated at 90 °C for 18 h. The reaction was cooled to room temperature, quenched with 1.0 M aqueous HCl solution (50 mL), and extracted into EtOAc (3 × 10 mL). The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by automated column chromatography (5% EtOAc/petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl* 1,3-*diketone* **1** as a yellow solid (481 mg, 75%). $R_f = 0.21$ (10% EtOAc/petroleum ether); m.p. (Et₂O) 69–70 °C IR (ATR) 2918, 1697 (C=O), 1502, 1481, 1361, 1251, 1210, 1031, 929, 872, 814, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.87 (1H, dd, J = 8.0, 1.6 Hz, Ar**H**), 6.79 (1H, d, J = 1.5 Hz, Ar**H**), 6.71 (1H, d, J = 8.0 Hz, Ar**H**), 5.94 (2H, s, OCH₂O), 2.93 (2H, s, \equiv CCH₂), 2.19 (6H, s, $2 \times$ CH₃C=O), 1.52 (3H, s, CH₃CC=O); ¹³C

NMR (101 MHz, CDCl₃) δ 205.6 (2 × C), 147.7 (C), 147.3 (C), 126.1 (C), 116.2 (CH), 111.6 (CH), 108.3 (CH), 101.2 (OCH₂), 83.6 (C), 83.1 (C), 66.4 (C), 26.6 (2 × CH₃), 25.3 (CH₂), 18.7 (CH₃); HRMS (ESI) Exact mass calculated for [C₁₆H₁₇O₄]⁺ [M+H]⁺: 273.1121, found 273.1116.

3-Methyl-3-[3-(naphthalen-2-yl)prop-2-yn-1-yl]pentane-2,4-dione (1m)

A degassed solution of terminal alkyne **S5**² (456 mg, 3.00 mmol), 2-bromonaphthalene (677 mg, 3.3 mmol), (PPh₃)₂PdCl₂ (42.1 mg, 0.06 mmol), CuI (29 mg, 0.15 mmol), and Et₃N (0.71 mL, 5.1 mmol) in DMSO (10 mL) was heated at 90 °C for 18 h. The reaction was cooled to room temperature, quenched with 1.0 M aqueous HCl solution (50 mL), and extracted into EtOAc (3 × 10 mL). The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by automated column chromatography (5% EtOAc/petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1m** as a yellow soild (711 mg, 78%). $R_f = 0.21$ (10% EtOAc/petroleum ether); m.p. (Et₂O) 42–43 °C; IR (ATR) 1698 (C=O), 1356, 1210, 1163, 959, 858, 815, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (1H, s, Ar**H**), 7.78–7.72 (2H, m, Ar**H**), 7.50–7.45 (2H, m, Ar**H**), 7.39 (1H, dd, *J* = 8.4, 1.4 Hz, Ar**H**), 3.02 (2H, s, =CC**H**₂), 2.23 (6H, s, 2 × C**H**₃C=O), 1.56 (3H, s, C**H**₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 205.6 (2 × C), 132.7 (C), 131.3 (C), 128.4 (CH), 127.9 (CH), 127.7 (CH), 127.6 (CH), 126.6 (CH), 126.5 (CH), 120.2 (CH), 110.0 (C), 85.2 (C), 84.2 (C), 66.4 (C), 26.6 (2 × CH₃), 25.4 (CH₂), 18.7 (CH₃); HRMS (ESI) Exact mass calculated for [C₁₉H₁₈NaO₂]⁺ [M+Na]⁺: 301.1199, found 301.1194.

3-Methyl-3-[3-(naphthalen-1-yl)prop-2-yn-1-yl]pentane-2,4-dione (1n)

A degassed solution of terminal alkyne $S5^2$ (456 mg, 3.00 mmol), 1-iodonaphthalene (0.87 mL, 6.00 mmol), (PPh₃)₂PdCl₂ (42.6 mg, 0.06 mmol), and CuI (22.9 mg, 0.12 mmol) in Et₃N (30 mL) was heated at 60 °C for 18 h. The reaction was cooled to room temperature, quenched with saturated aqueous NH₄Cl solution (50 mL), and extracted into EtOAc (3 × 50 mL). The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by automated column chromatography (5% EtOAc/petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl* 1,3-*diketone* **1n** as a brown oil (423 mg, 51%). R_f = 0.19 (10%

EtOAc/petroleum ether); IR (ATR) 3058, 2978, 2932, 1698 (C=O), 1355, 910, 799, 773 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.20 (1H, dd, *J* = 8.3, 1.1 Hz, Ar**H**), 7.97-7.72 (2H, m, Ar**H**), 7.65-7.50 (3H, m, Ar**H**), 7.40 (1H, dd, *J* = 8.3, 7.1 Hz, Ar**H**), 3.14 (2H, s, \equiv CC**H**₂), 2.25 (6H, s, 2 × ArC**H**₃), 1.64 (3H, s, C**H**₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 205.5 (2 × C), 133.3 (C), 133.1 (C), 130.5 (CH), 128.5 (CH), 128.2 (CH), 126.8 (CH), 126.3 (CH), 125.9 (CH), 125.1 (CH), 120.6 (C), 89.7 (C), 81.9 (C), 66.5 (C), 26.6 (2 × CH₃), 25.7 (CH₂), 18.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₉H₁₈NaO₂⁺ [M+Na]⁺: 301.1199, found: 301.1192.

3-Methyl-3-[3-(thiophen-2-yl)prop-2-yn-1-yl]pentane-2,4-dione (10)

A degassed solution of terminal alkyne $S5^2$ (456 mg, 3.00 mmol), 2-iodothiophene (663 µL, 6.00 mmol), (PPh₃)₂PdCl₂ (105 mg, 0.15 mmol), and CuI (57.1 mg, 0.30 mmol) in Et₃N (30 mL) was heated at 60 °C for 18 h. The reaction was cooled to room temperature, quenched with 1.0 M aqueous HCl solution (50 mL), and extracted into EtOAc (3 × 50 mL). The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by automated column chromatography (5% EtOAc/petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl* 1,3-*diketone* **10** as a yellow oil (445 mg, 63%). R_f= 0.17 (10% EtOAc/petroleum ether); IR (ATR) 2979, 2936, 1698 (C=O), 1304, 1163, 1091, 848, 701 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.20 (1H, dd, *J* = 5.2, 1.2 Hz, Ar**H**), 7.12 (1H, dd, *J* = 3.6, 1.2 Hz, Ar**H**), 6.94 (1H, dd, *J* = 5.2, 3.6 Hz, Ar**H**), 2.99 (2H, s, \equiv CCH₂), 2.20 (6H, s, 2 × CH₃C=O), 1.54 (3H, s, CH₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 205.4 (2 × C), 131.7 (CH), 126.8 (CH), 126.6 (CH), 122.9 (C), 88.9 (C), 77.0 (C), 66.2 (C), 26.6 (2 × CH₃), 25.6 (CH₂), 18.7 (CH₃); HRMS (ESI) Exact mass calculated for C₁₃H₁₄NaO₂S⁺ [M+Na]⁺: 257.0607, found: 257.0599.

3-Methyl-3-[3-(pyridin-2-yl)prop-2-yn-1-yl]pentane-2,4-dione (1p)

A degassed solution of terminal alkyne $S5^2$ (456 mg, 3.00 mmol), 2-bromopyridine (518 mg, 3.30 mmol), (PPh₃)₂PdCl₂ (42.1 mg, 0.06 mmol), CuI (29 mg, 0.15 mmol), and Et₃N (0.71 mL, 5.1 mmol) in DMSO (10 mL) was heated at 90 °C for 18 h. The reaction was cooled to room temperature, quenched with 1.0 M aqueous HCl solution (50 mL), and extracted into EtOAc (3 × 10 mL). The

combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by automated column chromatography (5% EtOAc/petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl* 1,3-*diketone* **1p** as a yellow oil (481 mg, 70%). $R_f = 0.21$ (10% EtOAc/petroleum ether); IR (ATR) 2976, 1698 (C=O), 1582, 1464, 1428, 1357, 1165, 1092, 957, 778, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (1H, s, Ar**H**), 7.61 (1H, tt, *J* = 7.8, 1.7 Hz, Ar**H**), 7.34 (1H, t, *J* = 9.8 Hz, Ar**H**), 7.23–7.17 (1H, m, Ar**H**), 3.00 (2H, d, *J* = 2.2 Hz, \equiv CCH₂), 2.20 (6H, d, *J* = 2.0 Hz, 2 × C**H**₃C=O), 1.56 (3H, d, *J* = 2.0 Hz, C**H**₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 205.3 (2 × C), 149.9 (CH), 143.0 (C), 136.1 (CH), 127.1 (CH), 122.8 (CH), 85.4 (C), 83.4 (C), 66.2 (C), 26.5 (2 × CH₃), 25.2 (CH₂), 18.7 (CH₃); HRMS (ESI) Exact mass calculated for [C₁₄H₁₅NNaO₂]⁺ [M+Na]⁺: 252.0995, found 252.0990.

4-Methyl-4-(3-phenylprop-2-yn-1-yl)heptane-3,5-dione (1q)

4-Methylheptane-3,5-dione (**S6**,⁷ 710 mg, 5.00 mmol) was added dropwise *via* syringe (using 2 mL of THF as a rinse) to a solution of NaH (60% in mineral oil, 240 mg, 6.00 mmol) in THF (30 mL) at 0 °C under argon and the resulting mixture was stirred at room temperature for 1 h. Alkynyl bromide **S1**³ (80% wt. solution in toluene, 2.44 g, 10.0 mmol) was added dropwise *via* syringe (using 2 mL of THF as a rinse) and the solution was stirred at 60 °C for 16 h. The reaction was cooled to room temperature, quenched with saturated aqueous NH₄Cl solution (50 mL), and extracted into Et₂O (3 × 50 mL). The combined organic layers were washed with brine (50 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (100% petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1q** as a yellow oil (1.03 g, 78%). R_f = 0.35 (10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1q** as a yellow oil (1.03 g, 78%). R_f = 0.35 (10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1q** as a yellow oil (1.03 g, 78%). R_f = 0.35 (10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1q** as a yellow oil (1.03 g, 78%). R_f = 0.35 (10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1q** as a yellow oil (1.03 g, 78%). R_f = 0.35 (10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1q** as a yellow oil (1.03 g, 78%). R_f = 0.35 (10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1q** as a yellow oil (1.03 g, 78%). R_f = 0.35 (10% EtOAc/petroleum); IR (ATR) 2977, 1698 (C=O), 1490, 1347, 1202, 1088, 964, 755, 690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.32 (2H, m, ArH), 7.29–7.26 (3H, m, ArH), 2.98 (2H, s, \equiv CCH₂), 2.52–2.45 (4H, m, 2 × CH₂CH₃), 1.54 (3H, s, CH₃CC=O), 1.06 (6H, t, *J* = 7.2 Hz, 2 × CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 208.4 (2 × C), 131.6 (CH), 128.2 (CH), 128.0 (CH), 123.1 (C), 85.2 (C), 83.7 (C), 65.7 (C), 32.1 (CH₂), 25.5 (CH₂), 22.4 (CH₂), 18.8 (CH₃), 8.0 (2 × CH₃); HRMS (ESI) E

2-Methyl-1,3-diphenyl-2-(3-phenylprop-2-yn-1-yl)propane-1,3-dione (1r)

2-Methyl-1,3-diphenylpropane-1,3-dione (**S7**,⁸ 1.19 g, 5.00 mmol) was added dropwise *via* syringe (using 2 mL of THF as a rinse) to a solution of NaH (60% in mineral oil, 240 mg, 6.00 mmol) in THF (30 mL) at 0 °C under argon and the resulting mixture was stirred at room temperature for 1 h. Alkynyl bromide **S1**³ (80% wt. solution in toluene, 2.43 g, 10.0 mmol) was added dropwise *via* syringe (using 2 mL of THF as a rinse) and the solution was stirred at 60 °C for 16 h. The reaction was cooled to room temperature, quenched with saturated aqueous NH₄Cl solution (50 mL), and extracted into Et₂O (3×50 mL). The combined organic layers were washed with brine (50 mL), dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (100% petroleum ether to 10% EtOAc/petroleum ether) gave *alkynyl 1,3-diketone* **1r** as a yellow solid (1.41 g, 80%) whose spectroscopic data were consistent with those reported previously.¹¹

6-Phenylhex-5-yn-2-one (6)

A degassed solution of hex-5-yn-2-one⁹ (**S8**, 288 mg, 3.00 mmol), iodobenzene (669 μ L, 6.00 mmol), (PPh₃)₂PdCl₂ (42.6 mg, 0.06 mmol), and CuI (22.9 mg, 0.12 mmol) in Et₃N (30 mL) was heated at 60 °C for 18 h. The reaction was cooled to room temperature, quenched with saturated aqueous NH₄Cl solution (25 mL), and extracted into EtOAc (3 × 25 mL). The combined organic layers were washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography (5% EtOAc/petroleum ether to 10% EtOAc/petroleum ether) gave alkynyl ketone **6** as a yellow oil (194 mg, 38%) whose spectroscopic data were consistent with those reported previously.¹⁰

Enantioselective Arylative Cyclizations of Alkynyl 1,3-Diketones

General Procedure A

[Rh(C₂H₄)₂Cl]₂ (5.8 mg, 0.015 mmol) and (*S*)-DTBM-SEGPHOS (**L2**, 35.4 mg, 0.03 mmol) were added to an oven-dried microwave vial, which was sealed with a septum and purged with argon for 30 min. Degassed THF (5.5 mL) was added and the mixture was stirred at room temperature for 30 min under argon. In a separate oven-dried microwave vial the alkynyl 1,3-diketone **1** (0.30 mmol), boronic acid (0.60 mmol), and KF (26.1 mg, 0.45 mmol) were added. A septum was fitted and the vial was purged with argon for 30 min. The catalyst solution was added to the vial containing the alkynyl 1,3-diketone using additional THF (0.5 mL) as a rinse. *t*-Amyl alcohol (49 μ L, 0.45 mmol) was added and the mixture was stirred at 80 °C for 24 h. The reaction was cooled to room temperature, diluted with H₂O and saturated aqueous NH₄Cl solution and extracted with EtOAc. The combined organic layers were washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography gave the arylative cyclization product. In most cases, small quantities of minor products **3** were also observed in the ¹H NMR spectra of the crude material, but with the exception of the reaction forming arylative cyclization product **2a** (*vide infra*), they were not isolated.

1-{(1*S*,2*R*)-4-[(*E*)-Benzylidene]-1-hydroxy-1,2-dimethyl-1,2,3,4-tetrahydronaphthalen-2yl}ethanone (1a) and 3-methyl-6,6-diphenylhex-5-en-2-one (2a) and 3-methyl-6,6-diphenylhex-5-en-2-one (3a)

General Procedure A was followed using alkynyl 1,3-diketone **1a** (68.5 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol). Purification by column chromatography (5% to 10% EtOAc/pentane) gave *ketone* **3a** as a colorless oil (4.3 mg, 5%) followed by *arylative cyclization product* **2a** as a yellow solid (71.5 mg, 78%).

1-{(1*S*,2*R*)-4-[(*E*)-Benzylidene]-1-hydroxy-1,2-dimethyl-1,2,3,4-Me 0= tetrahydronaphthalen-2-yl}ethanone (2a). $R_f = 0.12$ (10% EtOAc/pentane); m.p. но 128–129 °C (MeOH); $[\alpha]_D^{20.5}$ –244 (c 1.00, CHCl₃); IR (ATR) 3476 (OH), 1682 (C=O), 1454, 1376, 1353, 1076, 929, 960, 694, 580, 538 cm⁻¹; ¹H NMR (500 MHz, $CDCl_3$) δ 7.80 (1H, dd, J = 7.8, 1.4 Hz, ArH), 7.65 (1H, d, J = 7.9 Hz, ArH), 7.44–7.41 (2H, m, ArH), 7.38–7.37 (2H, m, ArH), 7.35–7.29 (2H, m, ArH), 7.25–7.21 (1H, m, ArH), 7.17 (1H, d, J = 2.6 Hz, C=CH), 4.87 (1H, d, J = 1.4 Hz, OH), 3.41 (1H, dd, J = 16.5, 1.2 Hz, CH_aH_b), 2.94 (1H, dd, J = 16.5, 2.6 Hz, CH_aH_b), 1.89 (3H, s, CH₃C=O), 1.41 (3H, d, *J* = 1.4 Hz, CH₃COH), 1.36 (3H, s, CH₃CC=O); ¹³C NMR (101 MHz CDCl₃) δ 217.5 (C), 145.9 (C), 137.3 (C), 132.9 (C), 132.9 (C), 129.3 (2 × CH), 128.6 (2 × CH), 128.5 (CH), 127.1 (CH), 127.0 (CH), 125.7 (CH), 125.3 (CH), 123.3 (CH), 75.0 (C), 54.7 (C), 36.9 (CH₂), 26.8 (CH₃), 26.1 (CH₃), 18.8 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₁H₂₂NaO₂]⁺ [M+Na]⁺: 329.1512, found 329.1510; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 0.8 mL/min, 280 nm, 25 °C): t_r (minor) = 6.6 min, t_r (major) = 7.6 min, 98% ee.

3-Methyl-6,6-diphenylhex-5-en-2-one (3a). $R_f = 0.30$ (10% EtOAc/pentane); IR (ATR) 2964, 2924, 2852, 1709 (C=O), 1494, 1359, 1074, 758, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.29 (4H, m, Ar**H**), 7.26–7.15 (6H, m, Ar**H**), 6.01 (1H, t, J = 7.4 Hz, CH₂C**H**=), 2.63 (1H, quin, J = 6.8 Hz, O=CC**H**), 2.47 (1H, dt, J = 14.8, 6.8 Hz, C**H**_aH_bCH=), 2.23 (1H, dt, J = 14.8, 7.5 Hz, CH_a**H**_bCH=), 2.09 (3H, s, C**H**₃C=O), 1.11 (3H, d, J = 7.0 Hz, CHC**H**₃); δ ¹³C NMR (101 MHz, CDCl₃) δ 211.8 (C), 143.6 (C), 142.4 (C), 139.8 (C), 129.8 (2 × CH), 128.3 (2 × CH), 128.1 (2 × CH), 127.2 (2 × CH), 127.1 (2 × CH), 126.2 (CH), 47.6 (CH), 32.7 (CH₂), 28.1 (CH₃), 15.9 (CH₃); HRMS (ESI) Exact mass calcd for C₁₉H₂₀NaO⁺ [M+Na]⁺: 287.1406, found: 287.1395.

1-[(1S,2R,E)-4-Benzylidene-2-ethyl-1-hydroxy-1-methyl-1,2,3,4-

tetrahydronaphthalen-2-yl]ethanone (**2b**). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone **1b** (72.6 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column

chromatography (5% to 10% EtOAc/*n*-pentane) to give a yellow solid (64.2 mg, 67%). $R_f = 0.10$ (10% EtOAc/pentane); m.p. (Et₂O) 96–97 °C; $[\alpha]_D^{20.5}$ –60 (*c* 1.00, CHCl₃); IR (ATR) 3437 (OH), 1687 (C=O), 1493, 1354, 1220, 1110, 911, 789, 757 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (1H, dd, *J* = 7.8, 1.3 Hz, Ar**H**), 7.63 (1H, dd, *J* = 7.9, 1.2 Hz, Ar**H**), 7.43–7.40 (4H, m, Ar**H**), 7.34–7.29 (2H, m, Ar**H**), 7.25–7.21 (1H, m, Ar**H**), 7.12 (1H, s, C=C**H**), 4.84 (1H, d, *J* = 1.2 Hz, O**H**), 3.50 (1H, dd, *J* = 17.0, 1.4 Hz, C**H**_aH_bC=), 2.85 (1H, dd, *J* = 17.0, 2.6 Hz, CH_a**H**_bC=O), 2.28–2.18 (1H, m, C**H**_aH_bCH₃), 1.88 (3H, s, C**H**₃C=O), 1.72–1.62 (1H, 2H, m, CH_a**H**_bCH₃), 1.39 (3H, d, *J* = 1.2 Hz, C**H**₃COH), 1.00 (3H, t, *J* = 7.7 Hz, CH₂C**H**₃); ¹³C NMR (101 MHz CDCl₃) δ 218.6 (C), 145.9 (C), 137.3 (C), 133.6 (C), 133.1 (C), 129.3 (2 × CH), 128.5 (2 × CH), 127.2 (CH), 127.1 (CH), 126.0 (CH), 124.9 (CH), 123.4 (CH), 75.8 (C), 57.5 (C), 35.4 (CH₂), 28.9 (CH₃), 28.0 (CH₃), 26.1 (CH₂), 10.1 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₂H₂₄NaO₂]⁺ [M+Na]⁺: 343.1669, found 343.1666; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 25 °C): t_r (minor) = 5.8 min, t_r (major) = 6.5 min; 96% ee.

1-{(1*S*,2*R*)-4-[(*E*)-Benzylidene]-2-butyl-1-hydroxy-1-methyl-1,2,3,4-

Me

tetrahydronaphthalen-2-yl}ethan-1-one (2c). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone **1c** (81.0 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column

chromatography (10% EtOAc/pentane) to give a yellow oil (28.2 mg, 27%). $R_f = 0.17$ (10% EtOAc/pentane); $[\alpha]_D^{20.1}$ –64.0 (*c* 1.00, CHCl₃); IR (ATR) 3443 (OH), 2956, 2929, 2870, 1684 (C=O), 1354, 1038, 758, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (1H, dd, *J* = 7.8, 1.5 Hz, Ar**H**), 7.62 (1H, dd, *J* = 8.0, 1.3 Hz, Ar**H**), 7.47–7.38 (4H, m, Ar**H**), 7.36–7.28 (2H, m, Ar**H**), 7.29–7.19 (1H, m, Ar**H**), 7.12 (1H, t, *J* = 1.9 Hz, C=C**H**), 4.81 (1H, d, *J* = 1.3 Hz, O**H**), 3.49 (1H, dd, *J* = 17.0, 1.5 Hz, C**H**_aH_bC=), 2.87 (1H, dd, *J* = 17.0, 2.6 Hz, CH_aH_bC=), 2.16 (1H, td, *J* = 13.5, 4.3 Hz, C**H**_aH_bCH₂CH₂CH₃), 1.87 (3H, s, C**H**₃C=O), 1.61–1.57 (1H, m, CH_aH_bCH₂CH₂CH₃), 1.50–1.21 (7H, m, CH₃COH and C**H**₂C**H**₂CH₃), 0.91 (3H, t, *J* = 7.1 Hz, CH₂C**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ

218.5 (C), 145.9 (C), 137.4 (C), 133.6 (C), 133.2 (C), 129.3 (2 × CH), 128.54 (2 × CH), 128.53 (CH), 127.2 (CH), 127.1 (CH), 126.0 (CH), 125.0 (CH), 123.4 (CH), 75.7 (C), 57.4 (C), 35.8 (CH₂), 35.3 (CH₂), 28.7 (CH₃), 27.6 (CH₂), 26.2 (CH₃), 23.7 (CH₂), 13.9 (CH₃); HRMS (ESI) Exact mass calculated for $C_{24}H_{28}NaO_2^+$ [M+Na]⁺: 371.1982, found: 371.1973; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 4.2 min, t_r (major) = 5.8 min, 95% ee.

1-{(1*S*,2*R*)-2-Benzyl-4-[(*E*)-benzylidene]-1-hydroxy-1-methyl-1,2,3,4-

tetrahydronaphthalen-2-yl}ethanone (2d). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1d (91.2 mg, 0.30 mmol)

and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (5% to 10% EtOAc/pentane) to give a yellow solid (57.6 mg, 50%). $R_f = 0.13$ (10% EtOAc/pentane); m.p. 144–145 °C (Et₂O); $[\alpha]_D^{20.5}$ +96.0 (*c* 1.00, CHCl₃); IR (ATR) 3502 (OH), 1681 (C=O), 1492, 1362, 1229, 1069, 937, 867, 796, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (1H, dd, *J* = 7.7, 1.1 Hz, Ar**H**), 7.63 (1H, d, *J* = 7.8 Hz, Ar**H**), 7.48–7.41 (4H, m, Ar**H**), 7.36–7.21 (6H, m, Ar**H**), 7.16 (2H, d, *J* = 7.1 Hz, Ar**H**), 7.09 (1H, s, C=C**H**), 5.29 (1H, d, *J* = 1.2 Hz, O**H**), 3.65 (1H, d, *J* = 13.1 Hz, PhC**H**_aH_b), 3.51 (1H, d, *J* = 18.2 Hz, C**H**_aH_bC=), 3.05 (1H, dd, *J* = 18.2, 2.5 Hz, CH_a**H**_bC=), 2.88 (1H, d, *J* = 13.1 Hz, PhCH_a**H**_b), 1.44 (3H, s, C**H**₃), 1.37 (3H, s, C**H**₃); ¹³C NMR (101 MHz CDCl₃) δ 220.8 (C), 145.3 (C), 137.3 (C), 136.6 (C), 134.3 (C), 132.7 (2 × CH), 130.1 (2 × CH), 129.3 (2 × CH), 128.48 (2 × CH), 128.46 (CH), 127.4 (CH), 127.2 (CH), 126.9 (CH), 126.6 (CH), 124.3 (CH), 123.6 (CH), 75.6 (C), 57.2 (C), 40.4 (CH₂), 35.0 (CH₂), 31.4 (CH₃), 25.1 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₇H₂₆NaO₂]⁺ [M+Na]⁺: 405.1825, found 405.1821; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 0.8 mL/min, 280 nm, 25 °C): t_r (major) = 5.7 min, t_r (minor) = 7.2 min, 98% ee.

1-{(1*S*,2*R*)-4-[(*E*)-Benzylidene]-1-hydroxy-2-(4-methoxybenzyl)-1-methyl-1,2,3,4-tetrahydronaphthalen-2-yl}ethan-1-one (2e). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1e (100 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column

chromatography (10% EtOAc/pentane) to give a yellow oil (65.6 mg, 53%). $R_f = 0.15$ (10% EtOAc/pentane); $[\alpha]_D^{20.3} + 184$ (*c* 1.00, CHCl₃); IR 3433 (OH), 2956, 2934, 1678 (C=O), 1511, 1353, 1246, 1032, 759, 693 (ATR) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (1H, dd, *J* = 7.9, 1.4 Hz, Ar**H**), 7.64 (1H, dd, *J* = 7.9, 1.2 Hz, Ar**H**), 7.48–7.40 (4H, m, Ar**H**), 7.40–7.22 (3H, m, Ar**H**), 7.12–7.04 (3H, m, Ar**H** and C=C**H**), 6.84 (2H, d, *J* = 8.6 Hz, Ar**H**), 5.30 (1H, m, O**H**), 3.80 (3H, s, OC**H**₃), 3.61 (1H, d, *J* = 13.3 Hz, ArC**H**_aH_b), 3.54 (1H, dd, *J* = 18.2, 2.1 Hz, C**H**_aH_bC=), 3.04 (1H, dd, *J* = 18.2,

2.6 Hz, $CH_aH_bC=$), 2.84 (1H, d, J = 13.3 Hz, $ArCH_aH_b$), 1.43 (3H, d, J = 1.4 Hz, CH_3COH), 1.41 (3H, s, CH₃C=O); ¹³C NMR (101 MHz, CDCl₃) δ 221.0 (C), 158.5 (C), 145.4 (C), 137.3 (C), 134.3 (C), 132.8 (C), 131.0 (2 × CH), 129.3 (2 × CH), 128.5 (2 × CH), 128.4 (CH), 128.3 (C), 127.4 (CH), 127.1 (CH), 126.5 (CH), 124.3 (CH), 123.6 (CH), 113.8 (2 × CH), 75.6 (C), 57.2 (C), 55.2 (CH₃), 39.5 (CH₂), 35.0 (CH₂), 31.5 (CH₃), 25.1 (CH₃); HRMS (ESI) Exact mass calculated for C₂₈H₂₈NaO₃⁺ [M+Na]⁺: 435.1931, found: 435.1927; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 0.8 mL/min, 280 nm, 23 °C): t_r (major) = 6.7 min, t_r (minor) = 8.2 min, 98% ee.

1-{1S,2R)-1-Hydroxy-1,2-dimethyl-4-[(E)-4-methylbenzylidene]-1,2,3,4-

0= Me HO Me

tetrahydronaphthalen-2-yl}ethan-1-one (2f). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1f (72.6 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (10% EtOAc/pentane) to give a yellow solid (78.9 mg, 82%). $R_f =$ 0.12 (10% EtOAc/pentane); m.p. 89–91 °C (Et₂O); [α]_D^{20.4} –216 (c 1.00, CHCl₃); IR (ATR) 3442 (OH), 3002, 2918, 2871, 1683 (C=O), 1510, 1354, 1072, 817, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (1H, dd, J = 7.8, 1.5 Hz, Ar**H**), 7.65 (1H, dd, J = 8.1, 1.3 Hz, Ar**H**), 7.35–7.31 (1H, m, Ar**H**) 7.30–7.27 (3H, m, ArH), 7.27–7.22 (3H, ArH), 7.15 (1H, br s, C=CH), 4.89 (1H, d, J = 1.3 Hz, OH), 3.43 (1H, dd, J = 16.6, 1.2 Hz, CH_aH_b), 2.94 (1H, dd, J = 16.6, 2.6 Hz, CH_aH_b), 2.42 (3H, s, ArCH₃), 1.91 (3H, s, CH₃C=O), 1.42 (3H, d, J = 1.3 Hz, CH₃COH), 1.38 (3H, s, CH₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 217.6 (C), 145.8 (C), 137.0 (C), 134.4 (C), 133.1 (C), 132.2 (C), 129.24 (2 × CH), 129.22 (2 × CH), 128.4 (CH), 127.0 (CH), 125.8 (CH), 125.3 (CH), 123.2 (CH), 75.1 (C), 54.7 (C), 37.0 (CH₂), 26.7 (CH₃), 26.1 (CH₃), 21.3 (CH₃), 18.9 (CH₃); HRMS (ESI) Exact mass calculated for C₂₂H₂₄NaO₂⁺ [M+Na]⁺: 343.1669, found: 343.1668; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 4.9 min, t_r (major) = 5.9 min, 97% ee.

1-{(1S,2R)-4-[(E)-4-Chlorobenzylidene]-1-hydroxy-1,2-dimethyl-1,2,3,4tetrahydronaphthalen-2-yl}ethan-1-one (2g). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1g (81.0 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (10% EtOAc/pentane) to give a yellow solid (77.4 mg, 76%). $R_f =$

0.13 (10% EtOAc/pentane); m.p. 144–146 °C (Et₂O); $[\alpha]_{D}^{20.1}$ –228 (c 1.00, CHCl₃); IR (ATR) 3448 (OH), 2971, 2936, 1681 (C=O), 1562, 1354, 1073, 825, 691 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (1H, dd, *J* = 8.0, 1.4 Hz, Ar**H**), 7.63 (1H, dd, *J* = 8.0, 1.2 Hz, Ar**H**), 7.41–7.37 (2H, m, Ar**H**), 7.36– 7.28 (3H, m, Ar**H**), 7.23 (1H, ddd, J = 8.6, 7.3, 1.4 Hz, Ar**H**), 7.10 (1H, app d, J = 1.8 Hz, C=C**H**), 4.84 (1H, d, J = 1.3 Hz, O**H**), 3.34 (1H, dd, J = 16.5, 1.1 Hz, C**H**_aH_b), 2.91 (1H, dd, J = 16.5, 2.7 Hz, CH_a**H**_b), 1.89 (3H, s, C**H**₃C=O), 1.41 (3H, d, J = 1.4 Hz, C**H**₃COH), 1.37 (3H, s, C**H**₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 217.2 (C), 146.0 (C), 135.7 (C), 133.6 (C), 132.9 (C), 132.6 (C), 130.5 (2 × CH), 128.9 (CH), 128.7 (2 × CH), 127.1 (CH), 125.4 (CH), 124.4 (CH), 123.3 (CH), 75.0 (C), 54.8 (C), 36.9 (CH₂), 26.8 (CH₃), 26.0 (CH₃), 18.9 (CH₃); HRMS (ESI) Exact mass calculated for C₂₁ClH₂₁NaO₂⁺ [M+Na]⁺: 363.1122, found: 363.1114; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 5.3 min, t_r (major) = 7.3 min, 97% ee.

Me Me HO Me 1-{(1S,2R)-1-Hydroxy-4-[(E)-4-methoxybenzylidene]-1,2-dimethyl-1,2,3,4tetrahydronaphthalen-2-yl}ethan-1-one (2h). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1h (77.4 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column

^{Me} chromatography (10% EtOAc/pentane) to give a yellow oil (48.7 mg, 48%). $R_f = 0.15$ (10% EtOAc/pentane); $[\alpha]_D^{20.2} -204$ (*c* 1.00, CHCl₃); IR (ATR) 3454 (OH), 2971, 2934, 1686 (C=O), 1604, 1509, 1175, 1073, 826, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (1H, dd, *J* = 7.8, 1.4 Hz, Ar**H**), 7.62 (1H, dd, *J* = 8.0, 1.3 Hz, Ar**H**), 7.36–7.28 (3H, m, Ar**H**), 7.24–7.19 (1H, m, Ar**H**), 7.10 (1H, app d, *J* = 2.5 Hz, C=C**H**), 6.99–6.93 (2H, m, Ar**H**), 4.88 (1H, d, *J* = 1.4 Hz, O**H**), 3.87 (3H, s, OC**H**₃), 3.41 (1H, dd, *J* = 16.5, 1.1 Hz, C**H**_aH_b), 2.92 (1H, dd, *J* = 16.5, 2.6 Hz, CH_aH_b), 1.90 (3H, s, C**H**₃C=O), 1.41 (3H, d, *J* = 1.3 Hz, C**H**₃COH), 1.37 (3H, s, C**H**₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 217.6 (C), 158.6 (C), 145.6 (C), 133.2 (C), 131.3 (C), 130.6 (2 × CH), 129.9 (C), 128.3 (CH), 127.0 (CH), 125.4 (CH), 125.2 (CH), 123.1 (CH), 113.9 (2 × CH), 75.1 (C), 55.3 (CH₃), 54.6 (C), 37.0 (CH₂), 26.7 (CH₃), 26.1 (CH₃), 18.9 (CH₃); HRMS (ESI) Exact mass calculated for C₂₂H₂₄ARO₃⁺ [M+Na]⁺: 359.1618, found: 359.1617; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 6.3 min, t_r (major) = 8.3 min, 88% ee.

1-{(1*S*,2*R*,*E*)-4-[(1,1'-Biphenyl)-4-ylmethylene]-1-hydroxy-1,2-dimethyl-1,2,3,4tetrahydronaphthalen-2-yl}ethanone (2i). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1i (91.2 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (5% to 10% EtOAc/pentane) to give a yellow solid (73.8 mg, 64%).

 $R_f = 0.14$ (10% EtOAc/pentane); m.p. (Et₂O) 151–152 °C; IR (ATR) 3463 (OH), 1686 (C=O), 1454, 1356, 1227, 1073, 930, 835, 765, 695 cm⁻¹; $[\alpha]_D^{20.6}$ –228 (c 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃)

δ 7.81 (1H, dd, J = 7.8, 1.2 Hz, Ar**H**), 7.70–7.60 (5H, m, Ar**H**), 7.49–7.45 (4H, m, Ar**H**), 7.42–7.30 (2H, m, Ar**H**), 7.26–7.21 (1H, m, Ar**H**), 7.19 (1H, app d, J = 1.6 Hz, C=C**H**), 4.89 (1H, s, O**H**), 3.48 (1H, dd, J = 16.6, 0.9 Hz, C**H**_aH_b), 2.99 (1H, dd, J = 16.6, 2.6 Hz, CH_aH_b), 1.93 (3H, s, C**H**₃C=O), 1.42 (3H, s, C**H**₃), 1.39 (3H, s, C**H**₃); ¹³C NMR (101 MHz CDCl₃) δ 217.6 (C), 145.9 (C), 140.4 (C), 139.8 (C), 136.3 (C), 133.04 (C), 132.98 (C), 129.8 (CH), 128.9 (2 × CH), 128.6 (2 × CH), 127.5 (2 × CH), 127.12 (2 × CH), 127.05 (CH), 126.9 (CH), 125.4 (CH), 125.3 (CH), 123.3 (CH), 75.1 (C), 54.7 (C), 37.1 (CH₂), 26.7 (CH₃), 26.2 (CH₃), 18.9 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₇H₂₆NaO₂]⁺ [M+Na]⁺: 405.1825, found 405.1822; Enantiomeric excess was determined by HPLC with Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 0.8 mL/min, 280 nm, 25 °C): t_r (minor) = 6.4 min, t_r (major) = 8.3 min; 85% ee.

1-{(1*S*,2*R*)-4-[(*E*)-2-Fluorobenzylidene]-1-hydroxy-1,2-dimethyl-1,2,3,4tetrahydronaphthalen-2-yl}ethan-1-one (2j). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1j (73.8 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (10% EtOAc/pentane) to give a yellow solid (83.8 mg, 86%). R_f

= 0.15 (10% EtOAc/pentane); m.p. 126–128 °C (Et₂O); $[\alpha]_D^{20.3}$ –232 (*c* 1.00, CHCl₃); IR (ATR) 3472 (OH), 2993, 2971, 2875, 1685 (C=O), 1485, 1352, 1229, 763, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (1H, dd, *J* = 7.9, 1.4 Hz, Ar**H**), 7.67 (1H, dd, *J* = 8.0, 1.2 Hz, Ar**H**), 7.39–7.28 (3H, m, Ar**H**), 7.26–7.13 (3H, m, Ar**H**), 7.12 (1H, app d, *J* = 1.8 Hz, C=C**H**), 4.90 (1H, d, *J* = 1.5 Hz, O**H**), 3.18 (1H, dd, *J* = 16.6, 1.1 Hz, C**H**_aH_b), 2.88 (1H, dd, *J* = 16.6, 2.7 Hz, CH_aH_b), 1.92 (3H, s, C**H**₃C=O), 1.42 (3H, d, *J* = 1.0 Hz, C**H**₃COH), 1.35 (3H, s, C**H**₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 217.4 (C), 160.2 (C, *J*_{CF} = 247.9 Hz), 146.1 (C), 135.1 (C), 132.3 (C), 130.7 (CH), 129.1 (CH, *J*_{CF} = 8.3 Hz), 128.9 (CH), 127.0 (CH), 125.5 (CH), 125.0 (C, *J*_{CF} = 14.6 Hz), 124.0 (CH, *J*_{CF} = 3.6 Hz), 123.5 (CH), 118.2 (CH), 115.8 (CH, *J*_{CF} = 22.0 Hz), 75.1 (C), 54.8 (C), 36.8 (CH₂), 26.9 (CH₃), 25.8 (CH₃), 18.7 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ –114.1; HRMS (ESI) Exact mass calculated for C₂₁H₂₁FNaO₂⁺ [M+Na]⁺: 347.1418, found: 347.1413; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 25 °C): t_r (minor) = 5.3 min, t_r (major) = 6.2 min; 97% ee.

Slow diffusion of pentane into a solution of **2j** in CH₂Cl₂ gave crystals that were suitable for X-ray crystallography:

1-{(1*S*,2*R*)-4-[(*E*)-3,5-Dimethylbenzylidene]-1-hydroxy-1,2-dimethyl-1,2,3,4tetrahydronaphthalen-2-yl}ethan-1-one (2k). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1k (76.8 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (10% EtOAc/pentane) to give a yellow oil (75.2 mg, 75%). $R_f =$

0.14 (10% EtOAc/pentane); $[\alpha]_D^{20.4}$ –196 (*c* 1.00, CHCl₃); IR (ATR) 3461 (OH), 2977, 2918, 2865, 1687 (C=O), 1596, 1353, 1073, 841, 683 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (1H, dd, *J* = 7.8, 1.4 Hz, Ar**H**), 7.63 (1H, dd, *J* = 8.0, 1.2 Hz, Ar**H**), 7.32 (1H, td, *J* = 7.5, 1.3 Hz, Ar**H**), 7.22 (1H, ddd, *J* = 8.5, 7.3, 1.5 Hz, Ar**H**), 7.11 (1H, app d, *J* = 2.5 Hz, C=C**H**), 6.98 (2H, s, Ar**H**), 6.95 (1H, s, Ar**H**), 4.89 (1H, d, *J* = 1.3 Hz, O**H**), 3.41 (1H, dd, *J* = 16.5, 1.1 Hz, C**H**_aH_b), 2.93 (1H, dd, *J* = 16.5, 2.6 Hz, CH_a**H**_b), 2.38 (6H, s, 2 × ArC**H**₃), 1.92 (3H, s, C**H**₃C=O), 1.42 (3H, d, *J* = 1.3 Hz, C**H**₃COH), 1.37 (3H, s C**H**₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 217.7 (C), 145.8 (C), 137.9 (2 × C), 137.2 (C), 133.1 (C), 132.4 (C), 128.9 (CH), 128.4 (CH), 127.1 (2 × CH), 127.0 (CH), 126.0 (CH), 125.3 (CH), 123.2 (CH), 75.1 (C), 54.7 (C), 36.9 (CH₂), 26.7 (CH₃), 26.2 (CH₃), 21.4 (CH₃), 18.9 (CH₃); HRMS (ESI) Exact mass calculated for C₂₃H₂₆NaO₂⁺ [M+Na]⁺: 357.1825, found: 357.1821; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 4.2 min, t_r (major) = 4.7 min, 99% ee.

 1-[(1*S*,2*R*,*E*)-4-(Benzo[*d*][1,3]dioxol-5-ylmethylene)-1-hydroxy-1,2-dimethyl-1,2,3,4-tetrahydronaphthalen-2-yl]ethanone (2l). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1l (81.6 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (5% to 10% EtOAc/pentane) to give a yellow oil (61.0 mg, 58%).

 $R_f = 0.10$ (10% EtOAc/pentane); $[\alpha]_D^{20.3} -220$ (*c* 1.00, CHCl₃); IR (ATR) 3455 (OH), 1687 (C=O), 1488, 1354, 1249, 1246, 1102, 1036, 922, 783, 730 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (1H,

dd, J = 7.8, 1.3 Hz, Ar**H**), 7.59 (1H, d, J = 7.4 Hz, Ar**H**), 7.34–7.27 (1H, m, Ar**H**), 7.24–7.16 (1H, m, Ar**H**), 7.05 (1H, app d, *J* = 1.7 Hz, C=C**H**), 6.88–6.82 (3H, m, Ar**H**), 6.05–5.98 (2H, m, OC**H**₂O), 4.86 (1H, d, J = 1.1 Hz, OH), 3.39 (1H, d, J = 16.4 Hz, CCH_aH_b), 2.89 (1H, dd, J = 16.4, 2.5 Hz, CCH_aH_b), 1.91 (3H, s, $CH_3C=O$), 1.39 (3H, d, J = 1.0 Hz, CH_3COH), 1.37 (3H, s, $CH_3CC=O$); ¹³C NMR (101 MHz CDCl₃) δ 217.5 (C), 147.7 (C), 146.6 (C), 145.8 (C), 133.0 (C), 131.9 (C), 131.4 (C), 128.4 (CH), 127.0 (CH), 125.5 (CH), 125.3 (CH), 123.4 (CH), 123.1 (CH), 109.3 (CH), 108.5 (CH), 101.2 (CH₂), 75.0 (C), 54.7 (C), 37.0 (CH₂), 26.7 (CH₃), 26.1 (CH₃), 18.9 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₂H₂₂NaO₄]⁺ [M+Na]⁺: 373.1410, found 373.1411; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:i-PrOH, 1.0 mL/min, 230 nm, 25 °C): t_r (minor) = 8.5 min, t_r (major) = 11.2 min, 90% ee.

1-[(1S,2R,E)-1-Hydroxy-1,2-dimethyl-4-(naphthalen-2-ylmethylene)-1,2,3,4-

Me 0= Me НΟיי Me

tetrahydronaphthalen-2-yl]ethanone (2m). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1m (83.4 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (5% to 10% EtOAc/pentane) to give a yellow solid (70.3 mg, 66%). $R_f = 0.11$ (10% EtOAc/pentane); m.p. 110–111 °C (Et₂O); $[\alpha]_D^{20.4}$ –248 (c 1.00, CHCl₃); IR (ATR) 3449 (OH), 1686 (C=O), 1454, 1353, 1168, 1073, 949, 866, 789, 665 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.86 (3H, m, Ar**H**), 7.84–7.82 (2H, m, Ar**H**), 7.71 (1H, d, J = 7.6 Hz, Ar**H**), 7.57–7.46 (3H, m, ArH), 7.39–7.30 (2H, m, ArH and C=CH), 7.28–7.21 (1H, m, ArCH), 4.89 (1H, d, J = 1.0 Hz, OH), 3.50 (1H, d, J = 16.5 Hz, CH_aH_b), 3.04 (1 H, dd, J = 16.5, 2.5 Hz, CH_aH_b), 1.88 (3H, s, CH₃C=O), 1.45 (3H, s, CH₃), 1.36 (3H, s, CH₃); ¹³C NMR (101 MHz CDCl₃) δ 217.4 (C), 146.0 (C), 134.8 (C), 133.3 (C), 132.8 (C), 132.3 (2 × C), 128.7 (C), 128.13 (CH), 128.08 (CH), 128.0 (CH), 127.7 (CH), 127.4 (CH), 127.0 (CH), 126.4 (CH), 126.2 (CH), 125.7 (CH), 125.4 (CH), 123.3 (CH), 75.1 (C), 54.9 (C), 37.0 (CH₂), 26.9 (CH₃), 26.0 (CH₃), 18.8 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₅H₂₄NaO₂]⁺ [M+Na]⁺: 379.1669, found 379.1664; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:i-PrOH, 1.0 mL/min, 280 nm, 25 °C): t_r (minor) = 5.9 min, t_r (major) = 6.9 min, 99% ee.

1-[(1S,2R,E)-1-Hydroxy-1,2-dimethyl-4-(naphthalen-1-ylmethylene)-1,2,3,4-tetrahydronaphthalen-2-yl]ethan-1-one (2n). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1n (83.4 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (5% Et₂O/CHCl₃) to give a yellow solid (42.7 mg,

40%). $R_f = 0.35$ (5% Et₂O/CHCl₃); m.p. 72-74 °C (Et₂O); $[\alpha]_D^{19.9} - 224$ (c 1.00, CHCl₃); IR (ATR)

3453 (OH), 3057, 2979, 2937, 1687 (C=O), 1353, 1106, 788, 763, 515 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (1H, dd, *J* = 8.4, 1.3 Hz, Ar**H**), 7.92 (1H, dd, *J* = 7.8, 1.6 Hz, Ar**H**), 7.88-7.83 (2H, m, Ar**H**), 7.80 (1H, dd, *J* = 8.1, 1.3 Hz, Ar**H**), 7.61 (1H, t, *J* = 1.6 Hz, C=C**H**), 7.56-7.47 (3H, m, Ar**H**), 7.44-7.35 (2H, m, Ar**H**), 7.32-7.28 (1H, m, Ar**H**), 4.85 (1H, d, *J* = 1.4 Hz, O**H**), 3.14 (1H, dd, *J* = 16.6, 1.0 Hz, C**H**_aH_b), 2.83 (1H, dd, *J* = 16.6, 2.6 Hz, CH_aH_b), 1.80 (3H, s, C**H**₃C=O), 1.44 (3H, d, *J* = 1.3 Hz, C**H**₃), 1.26 (3H, s, C**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 217.3 (C), 146.0 (C), 134.5 (C), 134.3 (C), 133.7 (C), 132.4 (C), 132.0 (C), 128.8 (CH), 128.6 (CH), 127.9 (CH), 127.1 (CH), 126.7 (CH), 126.3 (CH), 125.6 (CH), 125.4 (CH), 124.7 (CH), 123.5 (CH), 123.3 (CH), 75.1 (C), 55.0 (C), 37.0 (CH₂), 27.1 (CH₃), 25.9 (CH₃), 18.7 (CH₃); HRMS (ESI) Exact mass calculated for C₂₅H₂₄NaO₂⁺ [M+Na]⁺: 379.1669, found: 379.1661; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 0.5 mL/min, 210 nm, 23 °C): tr (minor) = 11.4 min, tr (major) = 12.7 min, 92% ee.

1-{(1S,2*R*,*E*)-1-Hydroxy-1,2-dimethyl-4-(thiophen-2-ylmethylene)-1,2,3,4tetrahydronaphthalen-2-yl}ethan-1-one (20). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 10 (70.2 mg, 0.30

mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (10% EtOAc/pentane) to give a yellow oil (61.5 mg, 66%). $R_f = 0.11$ (10% EtOAc/pentane); $[\alpha]_D^{20.3}$ +12 (*c* 1.00, CHCl₃); IR (ATR) 3461 (OH), 3064, 2974, 2928, 1684 (C=O), 1352, 1073, 758, 693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (1H, dd, *J* = 7.8, 1.4 Hz, Ar**H**), 7.62 (1H, dd, *J* = 8.0, 1.3 Hz, Ar**H**), 7.41 (1H, dd, *J* = 5.2, 1.0 Hz, Ar**H**), 7.34–7.28 (2H, m, Ar**H** and C=C**H**), 7.25–7.19 (2H, m, Ar**H**), 7.14 (1H, dd, *J* = 5.1, 3.6 Hz, Ar**H**), 4.92 (1H, s, O**H**), 3.55 (1H, dd, *J* = 17.9, 1.7 Hz, C**H**_aH_b), 2.91 (1H, dd, *J* = 17.9, 2.6 Hz, CH_aH_b), 2.01 (3H, s, C**H**₃C=O), 1.47 (3H, s, C**H**₃COH), 1.35 (3H, s, C**H**₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 218.4 (C), 145.8 (C), 140.7 (C), 133.2 (C), 130.3 (C), 128.6 (CH), 128.3 (CH), 127.4 (CH), 127.2 (CH), 126.2 (CH), 124.6 (CH), 123.2 (CH), 119.1 (CH), 75.0 (C), 53.7 (C), 37.5 (CH₂), 27.2 (CH₃), 25.3 (CH₃), 19.3 (CH₃); HRMS (ESI) Exact mass calculated for C1₉H₂₀NaO₂S⁺ [M+Na]⁺: 335.1076, found: 335.1072; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 5.9 min, t_r (major) = 7.1 min, 97% ee.

1-[(1S,2R,E)-1-Hydroxy-1,2-dimethyl-4-(pyridin-2-ylmethylene)-1,2,3,4-

tetrahydronaphthalen-2-yl]ethanone (2p). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone **1p** (68.7 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (5% to 10% EtOAc/pentane) to give a yellow oil (62.1 mg, 67%).

 R_f = 0.14 (10% EtOAc/pentane); [α]_D^{20.4} −12 (*c* 1.00, CHCl₃); IR (ATR) 3443 (OH), 1686 (C=O), 1456, 1377, 1149, 1073, 929, 865, 756, 674 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.69 (1H, dd, *J* = 4.8, 1.0 Hz, Ar**H**), 7.81 (1H, dd, *J* = 7.8, 1.2 Hz, Ar**H**), 7.71–7.67 (2H, m, Ar**H**), 7.37–7.29 (2H, m, Ar**H**), 7.25–7.20 (1H, m, Ar**H**), 7.14 (1H, ddd, *J* = 7.5, 4.8, 1.0 Hz, Ar**H**), 7.07 (1H, br s, C=C**H**), 4.95 (1H, d, *J* = 1.2 Hz, O**H**), 4.31 (1H, dd, *J* = 18.3, 1.2 Hz, C**H**_aH_b), 3.10 (1H, dd, *J* = 18.3, 2.6 Hz, CH_a**H**_b), 1.98 (3H, s, C**H**₃C=O), 1.43 (3H, s, C**H**₃CC=O), 1.39 (3H, d, *J* = 1.2 Hz, C**H**₃COH); ¹³C NMR (101 MHz CDCl₃) δ 218.6 (C), 156.7 (C), 149.2 (C), 146.9 (C), 137.5 (C), 136.2 (CH), 133.2 (CH), 129.1 (CH), 127.0 (CH), 125.5 (CH), 125.1 (CH), 123.8 (CH), 123.5 (CH), 121.1 (CH), 75.0 (C), 54.4 (C), 36.9 (CH₂), 26.8 (CH₃), 26.1 (CH₃), 19.1 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₀H₂₁NNaO₂]⁺ [M+Na]⁺: 330.1464, found 330.1459; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 0.8 mL/min, 280 nm, 25 °C): t_r (minor) = 8.2 min, t_r (major) = 11.3 min, 96% ee.

1-{(1*S*,2*R*)-4-[(*E*)-Benzylidene]-1-ethyl-1-hydroxy-2-methyl-1,2,3,4tetrahydronaphthalen-2-yl}propan-1-one (2q). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1q (76.8 mg, 0.30

mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (5% to 10% EtOAc/pentane) to give a yellow solid (62.9 mg, 63%). $R_f = 0.14$ (10% EtOAc/pentane); m.p. 107–108 °C (Et₂O); $[\alpha]_{D}^{20.3}$ +60 (c 1.00, CHCl₃); IR (ATR) 3409 (OH), 1679 (C=O), 1460, 1372, 1216, 1141, 1098, 997, 870, 763 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (1H, dd, J = 7.7, 1.4 Hz, ArH), 7.63 (1H, dd, J = 7.8, 1.2 Hz, ArH), 7.48–7.40 (4H, m, ArH), 7.33–7.26 (2H, m, Ar**H**), 7.22 (1H, ddd, *J* = 6.8, 6.2, 2.4 Hz, Ar**H**), 7.06 (1H, app d, *J* = 2.1 Hz, C=C**H**), 3.49 $(1H, dd, J = 18.2, 1.8, CH_aH_bC =), 2.99 (1H, dd, J = 18.2, 2.6 Hz, CH_aH_bC =), 2.48 (1H, dq, J = 18.6, 1.4)$ 7.1 Hz, $CH_3CH_2C=O$), 2.14 (1H, dq, J=18.6, 7.1 Hz, $CH_3CH_2C=O$), 1.88 (1H, dq, J=14.6, 7.3 Hz, CH₃CH₂COH), 1.57–1.46 (1H, m, CH₃CH₂COH), 1.35 (3H, s, CH₃CC=O), 0.77 (3H, t, J = 7.3 Hz, CH₃CH₂COH), 0.72 (3H, t, J = 7.1 Hz, CH₃CH₂C=O); ¹³C NMR (101 MHz CDCl₃) δ 221.1 (C), 143.3 (C), 137.5 (C), 134.2 (C), 133.1 (C), 129.3 (2 × CH), 128.5 (2 × CH), 127.4 (CH), 127.04 (CH), 127.01 (CH), 126.3 (CH), 126.0 (CH), 123.9 (CH), 76.6 (C), 54.2 (C), 36.1 (CH₂), 32.0 (CH₂), 27.8 (CH₂), 19.4 (CH₃), 7.4 (CH₃), 7.1 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₃H₂₆NaO₂]⁺ [M+Na]⁺: 357.1825, found 357.1815; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (97:03 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 25 °C): t_r (minor) = 6.2 min, t_r (major) = 7.6 min, 96% ee.

Ph Pr Me HOILPh Ph

{(1*S*,2*R*)-4-[(*E*)-Benzylidene]-1-hydroxy-2-methyl-1-phenyl-1,2,3,4tetrahydronaphthalen-2-yl}(phenyl)methanone (2*r*).¹¹ The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1*r* (105.6 mg,

0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (5% to 10% EtOAc/pentane) to give a white solid (62.2 mg, 48%) whose spectroscopic data were consistent with those reported previously.¹¹ $R_f = 0.14$ (10% EtOAc/pentane); $[\alpha]_D^{20.5}$ -160 (*c* 0.50, CHCl₃); IR (ATR) 3423 (OH), 1655 (C=O), 1445, 1368, 1179, 1041, 906, 758 cm⁻¹; m.p. 149–150 °C (Et₂O); ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.65 (2H, m, ArH), 7.37–7.28 (6H, m, ArH), 7.25 (1H, s, C=CH), 7.24–7.14 (6H, m, ArH), 7.04 (3H, m, ArH), 6.91 (2H, d, *J* =6.8 Hz, ArH), 5.88 (1H, s, OH), 3.48 (1H, d, *J* =16.7 Hz, CH_aH_b), 2.74 (1H, dd, *J* = 16.7, 2.6 Hz, CH_aH_b), 1.46 (3H, s, CH₃); ¹³C NMR (101 MHz CDCl₃) δ 213.5 (C), 144.5 (C), 142.7 (C), 138.8 (C), 137.0 (C), 134.4 (C), 132.7 (C), 130.9 (CH), 129.2 (2 × CH), 129.1 (2 × CH), 128.8 (CH), 128.0 (2 × CH), 127.6 (2 × CH), 127.4 (CH), 127.2 (3 × CH), 127.1 (CH), 127.0 (2 × CH), 126.7 (CH), 125.8 (CH), 122.7 (CH), 80.5 (C), 54.9 (C), 36.4 (CH₂), 20.1 (CH₃); HRMS (ESI) Exact mass calculated for [C₃₁H₂₆NaO₂]⁺ [M+Na]⁺: 453.1825, found 453.1814; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (97:3 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 25 °C): t_r (major) = 9.1 min, t_r (minor) = 19.8 min, 56% ee.

1-[(1S,2R,E)-4-Benzylidene-1-hydroxy-1,2-dimethyl-1,2,3,4-

was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 0.8 mL/min, 280 nm, 25 °C): t_r (minor) = 5.9 min, t_r (major) = 7.1 min, 94% ee.

1-{(1S,2R)-4-[(E)-Benzylidene]-1-hydroxy-7-methoxy-1,2-dimethyl-1,2,3,4tetrahydronaphthalen-2-yl-ethan-1-one (2t). The title compound was prepared HO according to General Procedure A using alkynyl 1,3-diketone 1a (68.4 mg, 0.30 mmol) and 4-methoxyphenylboronic acid (91.8 mg, 0.60 mmol), and purified by column chromatography (10% EtOAc/pentane) to give a yellow oil (53.2 mg, 53%). $R_f = 0.15$ (10% EtOAc/pentane); $[\alpha]_{D}^{20.1}$ -200 (c 1.00, CHCl₃); IR (ATR) 3450 (OH), 2965, 2935, 1686 (C=O), 1600, 1354, 1068, 1030, 768, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (1H, d, J = 8.7 Hz, ArH), 7.43– 7.40 (2H, m, ArH), 7.38–7.32 (3H, m, ArH), 7.31–7.28 (1H, m, ArH), 7.04 (1H, app d, J = 2.5 Hz, C=CH), 6.79 (1H, dd, J = 8.8, 2.8 Hz, ArH), 4.96 (1H, d, J = 1.4 Hz, OH), 3.86 (3H, s, OCH₃), 3.38 $(1H, dd, J = 16.7, 1.2 Hz, CH_aH_b), 2.92 (1H, dd, J = 16.7, 2.7 Hz, CH_aH_b), 1.90 (3H, s, CH_3C=O),$ 1.41 (3H, d, J = 1.4 Hz, CH₃COH), 1.36 (3H, s, CH₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 217.8 (C), 160.1 (C), 147.8 (C), 137.5 (C), 132.4 (C), 129.2 (2 × CH), 128.5 (2 × CH), 126.8 (CH), 125.6 (C), 124.9 (CH), 123.5 (CH), 114.1 (CH), 109.2 (CH), 75.2 (C), 55.3 (CH₃), 54.6 (C), 37.0 (CH₂), 26.6 (CH₃), 26.1 (CH₃), 18.9 (CH₃); HRMS (ESI) Exact mass calculated for C₂₂H₂₄NaO₃⁺ [M+Na]⁺: 359.1618, found: 359.1614; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 6.1 min, t_r (major) = 8.5 min, 96% ee.

Me Ph Me HOIN Me 1-{(1*S*,2*R*)-4-[(*E*)-Benzylidene]-7-fluoro-1-hydroxy-1,2-dimethyl-1,2,3,4tetrahydronaphthalen-2-yl}ethan-1-one (2u). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1a (68.4 mg, 0.30 mmol) and 4-fluorophenylboronic acid (84.0 mg, 0.60 mmol), and purified by column chromatography (10% EtOAc/pentane) to give a yellow solid (72.3 mg, 74%). $R_f =$

0.11 (10% EtOAc/pentane); m.p. 129–131 °C (Et₂O); $[\alpha]_D^{20.1}$ –228 (*c* 1.00, CHCl₃); IR (ATR) 3475 (OH), 2973, 2919, 1686 (C=O), 1479, 1374, 1064, 769, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (1H, dd, *J* = 8.8, 5.5 Hz, Ar**H**), 7.50 (1H, dd, *J* = 10.0, 2.8 Hz, Ar**H**), 7.46–7.40 (2H, m, Ar**H**), 7.38–7.29 (3H, m, Ar**H**), 7.08 (1H, app d, *J* = 1.7 Hz, C=C**H**), 6.92 (1H, ddd, *J* = 8.8, 7.9, 2.8 Hz, Ar**H**), 4.91 (1H, d, *J* = 1.4 Hz, O**H**), 3.39 (1H, dd, *J* = 16.6, 1.1 Hz, C**H**_aH_b), 2.91 (1H, dd, *J* = 16.6, 2.7 Hz, CH_a**H**_b), 1.89 (3H, s, C**H**₃C=O), 1.40 (3H, d, *J* = 1.4 Hz, C**H**₃COH), 1.36 (3H, s, C**H**₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 217.3 (C), 163.3 (C, *J*_{CF} = 248.0 Hz), 148.6 (C), 137.1 (C), 131.9 (C), 129.2 (2 × CH), 129.0 (C), 128.6 (2 × CH), 127.2 (CH), 125.4 (CH), 125.3 (CH, *J*_{CF} = 7.9 Hz), 114.4 (CH, *J*_{CF} = 22.0 Hz), 112.1 (CH, *J*_{CF} = 22.7 Hz), 74.9 (C), 54.7 (CH), 36.8 (CH₂), 26.7 (CH₃), 25.9

(CH₃), 18.8 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ –113.1; HRMS (ESI) Exact mass calculated for C₂₁H₂₁FNaO₂⁺ [M+Na]⁺: 347.1418, found: 347.1416; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (90:10 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 6.3 min, t_r (major) = 6.7 min, 93% ee.

1-[(1S,2R,E)-4-Benzylidene-7-chloro-1-hydroxy-1,2-dimethyl-1,2,3,4tetrahydronaphthalen-2-yl]ethanone (2v). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone **1a** (68.5 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (5% to 10% EtOAc/pentane) to give a yellow solid (53 mg, 52%). R_f = 0.16 (10% EtOAc/pentane); m.p. 109–110 °C (Et₂O); $[\alpha]_{D}^{24.9}$ –224 (c 1.00, CHCl₃); IR (ATR) 3471

(OH), 1684 (C=O), 1492, 1353, 1351, 1075, 931, 873, 759, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (1H, dd, J = 16.8, 4.0 Hz, ArH), 7.55 (1H, t, J = 11.5 Hz, ArH), 7.45–7.39 (2H, m, ArH), 7.38– 7.29 (3H, m, ArH), 7.18 (1H, dd, J = 8.6, 2.3 Hz, ArH), 7.12 (1H, app d, J = 2.1 Hz, C=CH), 4.88 (1H, d, J = 1.3 Hz, OH), 3.39 $(1H, dd, J = 16.6, 0.8 \text{ Hz}, CH_aH_b)$, 2.90 (1H, dd, J = 16.6, 2.6 Hz) $CH_{a}H_{b}$), 1.88 (3H, s, $CH_{3}C=O$), 1.39 (3H, d, J = 1.3 Hz, $CH_{3}COH$), 1.35 (3H, s, $CH_{3}CC=O$); ¹³C NMR (101 MHz CDCl₃) δ 217.2 (C), 147.7 (C), 136.9 (C), 134.6 (C), 131.8 (C), 131.4 (C), 129.3 (2 × CH), 128.6 (2 × CH), 127.32 (CH), 127.26 (CH), 126.2 (CH), 125.6 (CH), 124.8 (CH), 74.9 (C), 54.6 (C), 36.7 (CH₂), 26.7 (CH₃), 25.9 (CH₃), 18.7 (CH₃); HRMS (ESI) Exact mass calculated for [C₂₁H₂₁ClNaO₂]⁺ [M+Na]⁺: 363.1122, found 363.1119; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (93:7 isohexane:i-PrOH, 0.8 mL/min, 280 nm, 25 °C): tr $(minor) = 13.2 min, t_r (major) = 14.1 min, 88\% ee.$

1-{(1*S*,2*R*)-4-[(*E*)-Benzylidene]-1-hydroxy-1,2,6-trimethyl-1,2,3,4-

tetrahydronaphthalen-2-yl}ethan-1-one (2x). The title compound was prepared according to General Procedure A using alkynyl 1,3-diketone 1a (68.4 mg, 0.30 mmol) and 3-methylphenylboronic acid (81.6 mg, 0.60 mmol), and purified by

column chromatography (10% EtOAc/pentane) to give a yellow oil (70.8 mg, 74%). $R_f = 0.14$ (10% EtOAc/pentane); $[\alpha]_{D}^{20.1}$ -208 (c 1.00, CHCl₃); IR (ATR) 3471 (OH), 3021, 2979, 1681 (C=O), 1352, 1073, 768, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (1H, d, J = 8.0 Hz, Ar**H**), 7.46 (1H, s, Ar**H**), 7.44–7.41 (2H, m, ArH), 7.39–7.35 (2H, m, ArH), 7.34–7.28 (1H, m, ArH), 7.19–7.12 (2H, m, C=CH and Ar**H**), 4.85 (1H, d, J = 1.3 Hz, O**H**), 3.40 (1H, dd, J = 16.6, 1.2 Hz, C**H**_aH_b), 2.92 (1H, dd, J =16.5, 2.7 Hz, CH_aH_b), 2.36 (3H, s, ArCH₃), 1.89 (3H, s, CH₃C=O), 1.40 (1H, d, J = 1.4 Hz, CH₃COH), 1.35 (3H, s, CH₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 217.5 (C), 143.1 (C), 137.3 (C), 136.4 (C), 132.9 (C), 132.7 (C), 129.6 (CH), 129.3 (2 × CH), 128.5 (2 × CH), 127.0 (CH), 125.5 (CH), 125.3 (CH), 123.7 (CH), 75.0 (C), 54.8 (C), 36.9 (CH₂), 26.8 (CH₃), 26.1 (CH₃), 21.2 (CH₃), 18.8 (CH₃); HRMS (ESI) Exact mass calculated for $C_{22}H_{24}NaO_2^+$ [M+Na]⁺: 343.1669, found: 343.1663; Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column (95:5 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 7.1 min, t_r (major) = 7.8 min, 90% ee.

General Procedure B

[Rh(C₂H₄)₂Cl]₂ (2.9 mg, 0.0075 mmol) and (*S*)-DTBM-SEGPHOS (**L2**, 17.7 mg, 0.015 mmol) were added to an oven-dried microwave vial, which was sealed with a septum and purged with argon for 30 min. Degassed toluene (2.5 mL) was added and the mixture was stirred at room temperature for 30 min under argon. In a separate oven-dried microwave vial the alkynyl 1,3-diketone (0.30 mmol), boronic acid (0.45 mmol), and KF (26.1 mg, 0.45 mmol) were added. A septum was fitted and the vial was purged with argon for 30 min. The catalyst solution was added to the vial containing the alkynyl 1,3-diketone using additional toluene (0.5 mL) as a rinse. *t*-Amyl alcohol (49 μ L, 0.45 mmol) was added and the mixture was stirred at 50 °C for 18 h. The reaction was cooled to room temperature, diluted with H₂O and saturated aqueous NH₄Cl solution, and extracted with EtOAc. The combined organic layers were washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification of the residue by column chromatography gave the arylative cyclization product **5**. In most cases, small quantities of minor products **6** and **7** were also observed in the ¹H NMR spectra of the crude material, but with the exception of the reaction forming arylative cyclization product **5g** (*vide infra*), these were not isolated.

(3a*S*,9b*S*)-5-[(*E*)-Benzylidene)-9b-hydroxy-3a-methyl-1,2,3a,4,5,9b-hexahydro– 3*H*-cyclopenta[*a*]naphthalen-3-one (5a).¹ The title compound was prepared according to General Procedure B using alkynyl 1,3-diketone 4a (67.8 mg, 0.30 mmol)

and phenylboronic acid (54.9 mg, 0.45 mmol), and purified by column chromatography (10% EtOAc/petroleum ether) to give a white solid (63 mg, 69%) whose spectroscopic data matched those reported previously.¹ m.p. 145–147 °C (MeOH); $[\alpha]_D^{20.1}$ –164 (*c* 1.00, CH₂Cl₂); Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (80:20

isohexane:*i*-PrOH, 1.0 mL/min, 230 nm, 23 °C): t_r (minor) = 13.5 min, t_r (major) = 15.3 min, 95% ee.

(3a*S*,9b*S*)-9b-Hydroxy-5-[(*E*)-4-methoxybenzylidene]-3a-methyl-1,2,3a,4,5,9bhexahydro-3*H*-cyclopenta[*a*]naphthalene-3-one (5b).¹ The title compound was prepared according to General Procedure B using alkynyl 1,3-diketone 4b (76.8 mg, 0.30 mmol) and phenylboronic acid (54.8 mg, 0.45 mmol), and purified by column chromatography (20% EtOAc/pentane) to give a white solid (37.7 mg, 39%) whose

spectroscopic data matched those reported previously.¹ m.p. 173–175 °C (Et₂O); $[\alpha]_D^{20.1}$ –172 (*c* 1.00, CHCl₃); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 9.6 min, t_r (major) = 17.3 min, 98% ee.

(3aS,9bS)-9b-Hydroxy-5-[(*E*)-4-chlorobenzylidene]-3a-methyl-1,2,3a,4,5,9bhexahydro-3*H*-cyclopenta[*a*]naphthalen-3-one (5c).¹ The title compound was prepared according to General Procedure B using alkynyl 1,3-diketone 4c (78.2 mg, 0.30 mmol) and phenylboronic acid (54.8 mg, 0.45 mmol), and purified by column chromatography (10:8:1 petroleum ether/CH₂Cl₂/EtOAc) to give a pale yellow solid

(75.3 mg, 74%) whose spectroscopic data matched those reported previously.¹ m.p. 207–208 °C (MeOH); $[\alpha]_D^{22.0}$ –236 (*c* 1.00, CH₂Cl₂); Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 230 nm, 23 °C): t_r (minor) = 13.7 min, t_r (major) = 16.4 min, 99% ee.

(3aS,9bS)-9b-Hydroxy-3a-methyl-5-[(*E*)-3-methylbenzylidene]-1,2,3a,4,5,9b-hexahydro-3*H*-cyclopenta[*a*]naphthalen-3-one (5d).¹ The title compound was prepared according to a modification of General Procedure B (in that the quantities of the rhodium precatalyst, ligand, and boronic acid were increased) using [Rh(C₂H₄)₂Cl]₂ (5.8 mg, 0.015 mmol), (*S*)-DTBM-SEGPHOS

(L2, 35.4 mg, 0.03 mmol), alkynyl 1,3-diketone 4d (81.3 mg, 0.30 mmol), and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (10% Et₂O/CH₂Cl₂) to give a white solid (57.0 mg, 60%) whose spectroscopic data matched those reported previously.¹ m.p. 144–146 °C (Et₂O); $[\alpha]_D^{20.1}$ –204 (*c* 1.00, CHCl₃); Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (95:5 isohexane:*i*-PrOH, 0.8 mL/min, 254 nm, 23 °C): t_r (minor) = 18.8 min, t_r (major) = 22.7 min, 99% ee.

 $2-\{(E)-[(3aS,9bS)-9b-Hydroxy-3a-methyl-3-oxo-1,2,3,3a,4,9b-hexahydro-5H-cyclopenta[a]naphthalen-5-ylidene]methyl}benzonitrile (5e).¹ The title compound was prepared according to a modification of General Procedure B (in that the quantities of the rhodium precatalyst and ligand were increased) using [Rh(C₂H₄)₂Cl]₂ (5.8 mg, 0.015 mmol), (S)-DTBM-SEGPHOS (L2, 35.4 mg, 0.03$

mmol), alkynyl 1,3-diketone **4e** (75.3 mg, 0.30 mmol), and phenylboronic acid (54.9 mg, 0.45 mmol), and purified by column chromatography (10% Et₂O/CH₂Cl₂) to give a white solid (63.0 mg, 64%) whose spectroscopic data matched those reported previously.¹ $R_f = 0.23$ (10% Et₂O/CH₂Cl₂); m.p. 153–155 °C (Et₂O); $[\alpha]_D^{20.1}$ –116 (*c* 1.00, CHCl₃); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (80:20 isohexane:*i*-PrOH, 0.8 mL/min, 254 nm, 23 °C): t_r (minor) = 12.7 min, t_r (major) = 29.6 min, 61% ee.

 $\begin{array}{l} \underbrace{ \left(4aS, 10aS \right) - 9 - [(E) - Benzylidene] - 4a - hydroxy - 10a - methyl - 3, 4, 4a, 9, 10, 10a - hexahydrophenanthren - 1(2H) - one (5f).^1 The title compound was prepared according to General Procedure B using alkynyl 1, 3-diketone 4f (72.1 mg, 0.30 mmol) and phenylboronic acid (54.9 mg, 0.45 mmol), and purified by column chromatography (10:8:1 petroleum ether/CH₂Cl₂/EtOAc) to give a pale yellow solid (57.6 mg, 60%) whose spectroscopic data matched those reported previously.¹ R_f = 0.27 (5:4:1 petroleum ether/CH₂Cl₂/EtOAc); <math>\left[\alpha\right]_D^{20.8} - 96 (c 1.00, CH_2Cl_2)$; Enantiomeric excess was determined by HPLC with a Chiralpak IB-3 column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 230 nm, 23 °C): t_r (minor) = 14.0 min, t_r (major) = 15.5 min, 97% ee.

(3a*S*,9b*S*)-5-[(*E*)-Benzylidene]-9b-hydroxy-3a,8-dimethyl-1,2,3a,4,5,9b-hexahydro-3*H*cyclopenta[*a*]naphthalen-3-one (5g), (*E*)-2-methyl-2-[3-phenyl-3-(*p*-tolyl)allyl]cyclopentane-1,3-dione (6g), and (*Z*)-5-methyl-7-[phenyl(*p*-tolyl)methylene]cycloheptane-1,4-dione (7g)

General Procedure B was followed using alkynyl 1,3-diketone **4a** (67.8 mg, 0.30 mmol) and 4methylphenylboronic acid (61.2 mg, 0.45 mmol). Purification by column chromatography (20%

EtOAc/pentane) gave a 3:1 inseparable mixture of *products* **6g** and **7g** (22.7 mg, 23%) as a colorless oil followed by *arylative cyclization product* **5g** as a yellow solid (54.5 mg, 57%).

(3aS,9bS)-5-[(E)-Benzylidene]-9b-hydroxy-3a,8-dimethyl-1,2,3a,4,5,9bhexahydro-3*H*-cyclopenta[*a*]naphthalen-3-one (5g). \mathbf{R}_{f} = 0.25 (30%) ōн EtOAc/pentane); m.p. 152–154 °C (Et₂O); $[\alpha]_{D}^{20.1}$ –172 (c 1.00, CHCl₃); IR (ATR) 3414 (OH), 2922, 1720 (C=O), 1446, 1200, 1069, 841, 705 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (1H, d, J = 8.1 Hz, ArH), 7.52 (1H, s, ArH), 7.37–7.34 (2H, m, ArH and C=CH), 2.77 $(1H, d, J = 14.1 \text{ Hz}, CH_aH_bC=C), 2.68-2.57 (2H, m, CH_aH_bC=C \text{ and } CH_aH_bC=O), 2.54-2.27 (3H, CH_aH_bC=C), 2.54-2.27 (3H, CH_bH_bC=C), 2.54-2.27 (3H, CH_bH_bC$ m, CH_aH_bC=O and CH₂COH), 2.42 (3H, s, ArCH₃), 1.80 (1H, d, J = 2.2 Hz, OH), 1.00 (3H, s, 3H, s. CH₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 220.0 (C), 139.9 (C), 138.8 (C), 137.2 (C), 132.0 (C), 131.5 (C), 129.14 (CH), 129.09 (2 × CH), 128.4 (2 × CH), 127.0 (CH), 126.9 (CH), 124.1 (CH), 80.1 (C), 54.2 (C), 35.9 (CH₂), 35.2 (CH₂), 34.3 (CH₂), 21.3 (CH₃), 13.8 (CH₃); HRMS (ESI) Exact mass calculated for $C_{22}H_{22}NaO_2^+$ [M+Na]⁺ : 341.1517, found: 341.1506; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (80:20 isohexane:i-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 7.0 min, t_r (major) = 10.6 min, 99% ee.

Slow diffusion of pentane into a solution of 5g in CH_2Cl_2 gave crystals that were suitable for X-ray crystallography:

 $(E)-2-Methyl-2-[3-phenyl-3-(p-tolyl)allyl]cyclopentane-1,3-dione (6g). R_f$ = 0.28 (30% EtOAc/pentane); Characteristic NMR signals of 6g: ¹H NMR (400 MHz, CDCl₃) δ 5.87 (1H, t, J = 7.6 Hz, =CH), 2.80–2.65 (4H, m, CH₂CH₂), 2.43 (2H, d, J = 7.6 Hz, =CHCH₂), 2.32 (3H, s, ArCH₃), 1.12 (3H, s, CH₃CCH₂); ¹³C NMR (101 MHz, CDCl₃) δ 215.5 (2 × C), 139.2 (C), 139.1 (C), 137.3 (C), 131.6 (C), 129.7 (2 × CH), 128.8 (2 × CH), 128.3 (2 × CH), 127.3 (CH), 127.2 (2 × CH), 120.3 (CH), 57.0 (C), 35.8 (CH₂), 35.1 $(2 \times CH_2)$, 21.1 (CH₃), 17.1 (CH₃).

(Z)-5-Methyl-7-[phenyl(p-tolyl)methylene]cycloheptane-1,4-dione (7g). $R_f = 0.28$ (30% EtOAc/pentane); Characteristic NMR signals of **7g**: ¹H NMR (400 MHz, CDCl₃) δ 2.80–2.65 (6H, CH₂CH₂ and CHCH₂), 2.31 (3H, s, ArCH₃), 2.28–2.19 (1H, m, CHCH₃), 0.99 (3H, d, J = 6.4 Hz, CHCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 211.7 (C), 207.8 (C), 144.7 (C), 140.1 (C), 45.3 (CH), 39.0 (CH₂), 37.6 (CH₂), 34.4 (CH₂), 21.2 (CH₃), 15.6 (CH₃).

(3aS,9bS)-5-[(E)-Benzylidene]-8-fluoro-9b-hydroxy-3a-methyl-1,2,3a,4,5,9b-

Ph ōн ||

hexahydro-3H-cyclopenta[a]naphthalen-3-one (5h). The title compound was prepared according to a modification of General Procedure B (in that the quantities of the rhodium precatalyst and ligand were increased) using $[Rh(C_2H_4)_2Cl]_2$ (5.8 mg, 0.015 mmol), (S)-DTBM-SEGPHOS (L2, 35.4 mg, 0.03 mmol), alkynyl 1,3-diketone 4a (67.8 mg, 0.30 mmol), and 4-fluorophenylboronic acid (63.0 mg, 0.45 mmol), and purified by column chromatography (20% EtOAc/pentane) to give an off-white solid (63.4 mg, 65%). $R_f = 0.42$ (40% EtOAc/pentane); m.p. 70–72 °C (Et₂O); $[\alpha]_{D}^{20.1}$ –200 (c 1.00, CHCl₃); IR (ATR) 3447 (OH), 2966, 1729 (C=O), 1605, 1582, 1446, 1239, 838, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (1H, dd, J = 8.8, 5.5 Hz, ArH), 7.43 (1H, dd, J = 9.6, 2.8 Hz, ArH), 7.40–7.37 (2H, m, ArH), 7.31–7.25 (4H, m, Ar**H**), 7.17 (1H, s, C=C**H**), 7.06 (1H, ddd, J = 8.8, 8.0, 2.8 Hz, Ar**H**), 2.80 (1H, d, J = 14.1 Hz, CH_aH_bC=C), 2.68–2.58 (2H, m, CH_aH_bC=C and CH_aH_bC=O), 2.52 (1H, ddd, *J* = 19.1, 9.0, 2.5 Hz, CH_a**H**_bC=O), 2.45–2.29 (2H, m, C**H**₂COH), 1.84 (1H, d, J = 2.3 Hz, O**H**), 1.02 (3H, s, C**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 219.3 (C), 163.2 (C, J_{CF} = 248.0 Hz), 142.4 (C, J_{CF} = 6.5 Hz), 136.9 (C), 131.2 (C), 130.4 (C, J_{CF} = 3.6 Hz), 129.1 (2 × CH), 128.5 (2 × CH), 127.7 (CH), 127.2 (CH), 126.3 (CH, J_{CF} = 8.1 Hz), 115.6 (CH, J_{CF} = 21.8 Hz), 113.1 (CH, J_{CF} = 22.0 Hz), 80.0 (C), 54.0 (C), 35.8 (CH₂), 35.0 (CH₂), 34.4 (CH₂), 13.7 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ –113.2; HRMS (ESI) Exact mass calculated for $C_{21}F_1H_{19}NaO_2^+$ [M+Na]⁺: 345.1261, found: 345.1259; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (80:20 isohexane:i-PrOH, 1.0 mL/min, 254 nm, 23 °C): t_r (minor) = 6.5 min, t_r (major) = 10.5 min, 99% ee.

(3aS,9bS)-5-[(E)-Benzylidene]-8-chloro-9b-hydroxy-3a-methyl-1,2,3a,4,5,9bhexahydro-3*H*-cyclopenta[*a*]naphthalen-3-one (5i).¹ The title compound was prepared according to General **Procedure B** using alkynyl 1,3-diketone 4a (67.8 mg, 0.30 mmol) and 4-chlorophenylboronic acid (70.4 mg, 0.45 mmol), and purified by column chromatography (20% EtOAc/pentane) to give an off-white solid (66.1 mg, 65%) whose spectroscopic data matched those reported previously.¹ $R_f = 0.43$ (40% EtOAc/pentane); m.p. 78–80 °C (Et₂O); $[\alpha]_D^{20.1}$ –224 (*c* 1.00, CHCl₃); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 6.9 min, t_r (major) = 12.3 min, 98% ee.

(3aS,9bS)-5-[(*E*)-Benzylidene]-9b-hydroxy-8-methoxy-3a-methyl-1,2,3a,4,5,9bhexahydro-3*H*-cyclopenta[*a*]naphthalen-3-one (5j).¹ The title compound was prepared according to General Procedure B using alkynyl 1,3-diketone 4a (67.8 mg,

 O_{Me} 0.30 mmol) and 4-methoxyphenylboronic acid (68.5 mg, 0.45 mmol), and purified by column chromatography (10:8:1 petroleum ether/CH₂Cl₂/EtOAc) to give a pale yellow solid (55 mg, 55%) whose spectroscopic data matched those reported previously.¹ m.p. 166–168 °C; $[\alpha]_D^{20.0}$ –188 (*c* 1.00, CH₂Cl₂); Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (80:20 isohexane:*i*-PrOH, 1 mL/min, 230 nm, 23 °C): t_r (minor) = 16.0 min, t_r (major) = 21.3 min, 99% ee.

(3aS,9bS)-5-[(E)-Benzylidene]-9b-hydroxy-3a-methyl-3-oxo-2,3,3a,4,5,9bhexahydro-1*H*-cyclopenta[*a*]naphthalen-8-yl acetate (5k). The title compound was prepared according to a modification of General Procedure B (in that the quantities of ōн || the rhodium precatalyst, ligand, and boronic acid were increased) using OAc [Rh(C₂H₄)₂Cl]₂ (5.8 mg, 0.015 mmol), (S)-DTBM-SEGPHOS (L2, 35.4 mg, 0.03 mmol), alkynyl 1,3-diketone 4a (67.8 mg, 0.30 mmol), and 4-acetoxyphenylboronic acid (108 mg, 0.60 mmol), and purified by column chromatography (10% Et_2O/CH_2Cl_2) to give a yellow solid (66.0 mg, 61%). $R_f =$ 0.30 (10% Et₂O/CH₂Cl₂); m.p. 95–97 °C (Et₂O); [α]_D^{20.1}–208 (*c* 1.00, CHCl₃); IR (ATR) 3466 (OH), 2955, 1735 (C=O), 1493, 1368, 1200, 815, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (1H, d, J = 8.7 Hz, ArH), 7.44 (1H, d, J = 2.5 Hz, ArH), 7.38–7.35 (2H, m, ArH), 7.29–7.25 (3H, m, ArH), 7.19 (1H, app d, J = 2.1 Hz, C=CH), 7.08 (1H, dd, J = 8.6, 2.5 Hz, ArH), 2.79 (1H, d, J = 14.2 Hz, $CH_{a}H_{b}C=$), 2.67–2.57 (2H, m, $CH_{a}H_{b}C=$ and $CH_{a}H_{b}C=$ O), 2.50 (1H, ddd, J = 19.1, 8.8, 2.6 Hz, CH_aH_bC=O), 2.42–2.29 (2H, m, CH₂COH), 2.35 (3H, s, CH₃C=O), 1.86 (1H, d, J = 2.3 Hz, OH), 1.00 (3H, s, CH₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 219.4 (C), 169.5 (C), 151.1 (C), 141.6 (C), 136.9 (C), 132.0 (C), 131.3 (C), 129.1 (2 × CH), 128.4 (2 × CH), 128.1 (CH), 127.2 (CH), 125.5 (CH), 121.7 (CH), 119.5 (CH), 80.0 (C), 54.0 (C), 35.8 (CH₂), 35.1 (CH₂), 34.4 (CH₂), 21.1 (CH₃), 13.7 (CH₃); HRMS (ESI) Exact mass calculated for $C_{23}H_{22}NaO_4^+$ [M+Na]⁺: 385.1410, found: 385.1411; Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 8.2 min, t_r (major) = 10.6 min, 99% ee.

Ethyl (3a*S*,9b*S*)-5-[(*E*)-benzylidene]-9b-hydroxy-3a-methyl-3-oxo–2,3,3a,4,5,9b-hexahydro-1*H*-cyclopenta[*a*]naphthalene-8-carboxylate (5l).¹ The title compound was prepared according to a modification of General Procedure B (in that the quantities of the rhodium precatalyst, ligand, and boronic acid were increased) using [Rh(C₂H₄)₂Cl]₂ (5.8 mg, 0.015 mmol), (*S*)-DTBM-SEGPHOS (**L2**, 35.4 mg, 0.03 mmol), alkynyl 1,3-diketone **4a** (67.8 mg, 0.30 mmol), and 4-ethoxycarbonylphenylboronic acid (140 mg, 0.72 mmol), and purified by column chromatography (10% Et₂O/CH₂Cl₂) to give a yellow oily solid (73.4 mg, 65%) whose spectroscopic data matched those reported previously.¹ [α]_D^{20.1} –180 (*c* 1.00, CHCl₃); Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (90:10 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 20.9 min, t_r (major) = 24.6 min, 99% ee.

(3aS,9bS)-5-[(*E*)-Benzylidene]-9b-hydroxy-3a,7-dimethyl-1,2,3a,4,5,9bhexahydro-3*H*-cyclopenta[*a*]naphthalen-3-one (5m).¹ The title compound was prepared according to General Procedure B using alkynyl 1,3-diketone 4a (67.8 mg, 0.30 mmol) and 3-methylphenylboronic acid (61.2 mg, 0.45 mmol), and purified by

column chromatography (20% EtOAc/pentane) to give a white solid (42.4 mg, 44%) whose spectroscopic data matched those reported previously.¹ m.p. 142–143°C (Et₂O); $[\alpha]_D^{20.1}$ –180 (*c* 1.00, CHCl₃); Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (80:20 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (minor) = 7.3 min, t_r (major) = 10.4 min, 99% ee.

(3aS,9bS)-5-[(*E*)-Benzylidene]-7-bromo-9b-hydroxy-3a-methyl-1,2,3a,4,5,9bhexahydro-3*H*-cyclopenta[*a*]naphthalen-3-one (5n).¹ The title compound was prepared according to General Procedure B using alkynyl 1,3-diketone 4a (67.8 mg,

0.30 mmol) and 3-bromophenylboronic acid (90.5 mg, 0.45 mmol), and purified by column chromatography (10:8:1 petroleum ether/CH₂Cl₂/EtOAc) to give a white solid (71 mg, 61%) whose spectroscopic data matched those reported previously.¹ m.p. 173–174 °C (MeOH); $[\alpha]_D^{20.4}$ –60 (*c* 1.00, CH₂Cl₂); Enantiomeric excess was determined by HPLC with a Chiralpak IA-3 column (80:20 isohexane:*i*-PrOH, 0.8 mL/min, 230 nm, 23 °C): t_r (minor) = 16.1 min, t_r (major) = 18.0 min, 99% ee.

(3aS,9bS)-5-[(E)-Benzylidene]-9b-hydroxy-7,8-dimethoxy-3a-methyl-Me 1,2,3a,4,5,9b-hexahydro-3*H*-cyclopenta[*a*]naphthalen-3-one (50). The title compound was prepared according to a modification of General Procedure B (in ōн OMe that the quantities of the rhodium precatalyst, ligand, and boronic acid were ÓМе increased) using [Rh(C₂H₄)₂Cl]₂ (5.8 mg, 0.015 mmol), (S)-DTBM-SEGPHOS (L2, 35.4 mg, 0.03 mmol), alkynyl 1,3-diketone 4a (67.8 mg, 0.30 mmol), and 3,4-dimethoxyphenylboronic acid (96.1 mg, 0.60 mmol), and purified by column chromatography (10% Et₂O/CH₂Cl₂) to give a yellow solid (50.7 mg, 46%). $R_f = 0.33 (10\% \text{ Et}_2\text{O/CH}_2\text{Cl}_2)$; m.p. 91–93 °C (Et₂O); $[\alpha]_D^{20.1}$ –164 (*c* 1.00, CHCl₃); IR (ATR) 3467 (OH), 2959, 2835, 1731 (C=O), 1446, 1200, 1052, 845, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.35 (2H, m, ArH), 7.30–7.26 (3H, m, ArH), 7.21 (1H, s, ArH), 7.14 (1H, s, Ar**H**), 7.12 (1H, app d, J = 2.0 Hz, C=C**H**), 3.98 (6H, s, $2 \times \text{OCH}_3$), 2.77 (1H, d, J = 14.0 Hz, $CH_{a}H_{b}C=$), 2.68–2.57 (2H, m, $CH_{a}H_{b}C=$ and $CH_{a}H_{b}C=$ O), 2.54–2.29 (3H, m, $CH_{a}H_{b}C=$ O and CH₂COH), 1.79 (1H, d, J = 2.2 Hz, OH), 1.02 (3H, s, CH₃CC=O); ¹³C NMR (101 MHz, CDCl₃) δ 219.8 (C), 150.1 (C), 149.0 (C), 137.2 (C), 132.9 (C), 132.0 (C), 129.1 (2 × CH), 128.4 (2 × CH), 126.9 (CH), 126.1 (CH), 108.6 (CH), 106.5 (CH), 80.1 (C), 56.05 (CH₃), 55.98 (CH₃), 54.2 (C), 35.7 (CH₂), 35.3 (CH₂), 34.5 (CH₂), 13.9 (CH₃); HRMS (ESI) Exact mass calculated for C₂₃H₂₄NaO₄⁺ [M+Na]⁺: 387.1567, found: 387.1573; Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (85:15 isohexane:*i*-PrOH, 0.3 mL/min, 210 nm, 23 °C): t_r (minor) = 40.9 min, t_r (major) = 42.4 min, 99% ee.

(3aS,11bS)-5-[(*E*)-Benzylidene]-11b-hydroxy-3a-methyl-1,2,3a,4,5,11bhexahydro-3*H*-cyclopenta[*a*]anthracen-3-one (5p).¹ The title compound was prepared according to General Procedure B using alkynyl 1,3-diketone 4a (67.8 mg, 0.30 mmol) and 2-naphthylboronic acid (77.4 mg, 0.45 mmol), and purified by column chromatography (20% EtOAc/pentane) to give a white solid (66.0 mg, 64%) whose spectroscopic data matched those reported previously.¹ m.p. 179–180 °C (Et₂O); $[\alpha]_D^{20.1}$ –212 (*c* 1.00, CHCl₃); Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (95:5 isohexane:*i*-PrOH, 1.0 mL/min, 210 nm, 23 °C): t_r (minor) = 30.8 min, t_r (major) = 33.7 min, 95% ee.
(5aS,8aR)-4-[(E)-Benzylidene]-8a-hydroxy-5a-methyl-4,5,5a,7,8,8a-hexahydro-6H-indeno[4,5-c]thiophen-6-one (5ra) and (5aS,8aR)-4-[(E)-benzylidene]-8a-hydroxy-5a-methyl-4,5,5a,7,8,8a-hexahydro-6H-indeno[4,5-b]thiophen-6-one (5rb)

A modification of General Procedure B (in that the quantities of the rhodium precatalyst, ligand, and boronic acid were increased) was followed using $[Rh(C_2H_4)_2Cl]_2$ (5.8 mg, 0.015 mmol), (*S*)-DTBM-SEGPHOS (**L2**, 35.4 mg, 0.03 mmol), alkynyl 1,3-diketone **4a** (67.8 mg, 0.30 mmol) and 3-thienylboronic acid (76.8 mg, 0.60 mmol), and purified by column chromatography (10% Et₂O/CH₂Cl₂) to give *arylative cyclizaton product* **5ra** (43.5 mg, 47%) as a yellow solid followed by *arylative cyclizaton product* **5rb** (16.7 mg, 18%) as a yellow solid.

(5aS,8aR)-4-[(*E*)-Benzylidene]-8a-hydroxy-5a-methyl-4,5,5a,7,8,8a-hexahydro-6*H*-indeno[4,5-*c*]thiophen-6-one (5ra). $R_f = 0.19$ (10% Et₂O/CH₂Cl₂); m.p. 126– 128 °C (Et₂O); $[\alpha]_D^{20.1}$ –196 (*c* 1.00, CHCl₃); IR (ATR) 3434 (OH), 2958, 2924, 2852, 1730, 1442, 1050, 962, 792, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (1H, d, *J* = 3.1 Hz, Ar**H**), 7.48 (1H, d, *J* = 3.1 Hz, Ar**H**), 7.38–7.35 (2H, m, Ar**H**), 7.29–7.27 (3H, m, Ar**H**), 7.16 (1H, app d, *J* = 2.3 Hz, C=C**H**), 2.75 (1H, dd, *J* = 14.8, 1.0 Hz, C**H**₄H_bC=), 2.68–2.56 (2H, m, CH₄H_bC= and C**H**₄H_bC=O), 2.52–2.36 (3H, m, CH₄H_bC=O and C**H**₂COH), 1.90 (1H, d, *J* = 2.0 Hz, O**H**), 0.99 (3H, s, C**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 219.2 (C), 142.9 (C), 137.5 (C), 136.6 (C), 129.1 (2 × CH), 128.4 (2 × CH), 127.0 (CH), 126.5 (CH), 122.3 (CH), 118.5 (CH), 79.4 (C), 55.1 (C), 35.3 (CH₂), 35.0 (CH₂), 34.8 (CH₂), 13.7 (CH₃); HRMS (ESI) Exact mass calculated for C₁₉H₁₈NaO₂S⁺ [M+Na]⁺: 333.0920, found: 333.0920; Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (90:10 isohexane:*i*-PrOH, 1.0 mL/min, 230 nm, 23 °C): t_r (major) = 12.5 min, t_r (minor) = 14.1 min, 99% ee.

 $\begin{array}{l} & (5aS,8aR)-4-[(E)-Benzylidene]-8a-hydroxy-5a-methyl-4,5,5a,7,8,8a-hexahydro-6H-indeno[4,5-b]thiophen-6-one (5rb). R_f = 0.14 (10\% Et_2O/CH_2Cl_2); m.p. 157-159 °C (Et_2O); [\alpha]_D^{20.1} -8.0 (c 0.20, CHCl_3); IR (ATR) 3362 (OH), 2948, 2928, 1721 (C=O), 1395, 1126, 1073, 755, 698 cm^{-1}; ^1H NMR (400 MHz, CDCl_3) \delta 7.41-7.28 (6H, m, ArH), \end{array}$

7.24 (1H, d, J = 5.3 Hz, Ar**H**), 7.01 (1H, s, C=C**H**), 2.92 (dd, J = 15.2, 1.9 Hz, C**H**_aH_bC=), 2.63 (1H, dd, J = 15.2, 1.6 Hz, CH_a**H**_bC=), 2.59–2.41 (3H, m, C**H**₂C=O and C**H**_aH_bCOH), 2.35–2.25 (1H, m, CH_a**H**_bCOH), 2.09 (1H, br s, O**H**), 1.10 (3H, s, C**H**₃); ¹³C NMR (101 MHz, CDCl₃) δ 217.9 (C), 141.9 (C), 138.1 (C), 136.7 (C), 129.1 (2 × CH), 129.0 (C), 128.4 (2 × CH), 127.0 (CH), 126.3 (CH), 125.9 (CH), 123.4 (CH), 78.2 (C), 54.9 (C), 35.8 (CH₂), 35.2 (CH₂), 33.2 (CH₂), 15.8 (CH₃); HRMS (ESI) Exact mass calculated for C₁₉H₁₈NaO₂S⁺ [M+Na]⁺ : 333.0920, found: 333.0927; Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (95:5 isohexane:*i*-PrOH, 1.0 mL/min, 280 nm, 23 °C): t_r (major) = 23.0 min, t_r (minor) = 29.2 min, 98% ee.

The structural similarity of the two products **5ra** and **5rb** make confirmation of their exact structure challenging. However, in the major product **5ra**, the coupling constant observed between the two thiophene protons are indicative of a thiophene 2,5-relationship (${}^{3}J = 3.1$ Hz vs expected range 0–4 Hz), whereas in the minor product **5rb**, the coupling constant observed between the two thiophene protons are indicative of a thiophene 2,3-relationship (${}^{2}J = 5.3$ Hz vs expected range 4–8 Hz).

(E)-4-Benzylidene-1-methyl-1,2,3,4-tetrahydronaphthalen-1-ol (7)

The title compound was prepared according to General Procedure A using alkynyl diketone **6** (51.6 mg, 0.30 mmol) and phenylboronic acid (73.2 mg, 0.60 mmol), and purified by column chromatography (5% to 10% EtOAc/pentane) to give an orange oil (62.8 mg, 84%). $R_f = 0.30$ (30% EtOAc/pentane); $[\alpha]_D^{25.0} -20.0$ (*c* 1.00, CHCl₃); IR (ATR) 3303 (OH), 3027, 2941, 2851, 1596, 1443, 1030, 922, 780, 695 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.68 (2H, ddd, J = 9.7, 7.7, 1.5 Hz, Ar**H**), 7.41–7.39 (4H, m, Ar**H**), 7.36–7.25 (3H, m, Ar**H**), 7.06 (1H, t, J = 1.7 Hz, C=C**H**), 3.01 (1H, dddd, J = 15.3, 6.5, 4.8, 1.7 Hz, =CC**H**_aH_b), 2.81 (1H, dddd, J = 15.3, 10.3, 4.8, 2.0 Hz, =CCH_aH_b), 2.04 (1H, ddd, J = 12.9, 6.1, 1.4 Hz, HOCC**H**_aH_b), 1.95 (1H, ddd, J = 12.9, 10.2, 4.8 Hz, HOCCH_aH_b), 1.79 (1H, br s, O**H**), 1.57 (3H, s, C**H**₃); ¹³C NMR (126 MHz, CDCl₃) δ 143.3 (C), 137.8 (C), 136.4 (C), 135.2 (C), 129.3 (2 × CH), 128.2 (2 × CH), 128.1 (CH), 127.6 (CH), 126.7 (CH), 125.3 (CH), 124.9 (CH), 124.4 (CH), 70.8 (C), 39.2 (CH₂), 29.5 (CH₃), 25.3 (CH₂); HRMS (ESI) Exact mass calculated for [C₁₈H₁₈NaO]⁺ [M+Na]⁺: 273.1250, found 273.1246; Enantiomeric excess was

determined by HPLC with a Chiralpak AS-H column (90:10 isohexane:*i*-PrOH, 0.5 mL/min, 280 nm, 25 °C): t_r (minor) = 14.0 min, t_r (major) = 15.0 min, 85% ee.

NMR Spectra of New Compounds

Supplementary Information Мe -Me 0″ Me 0/ `Me 1f

120 110 100 Chemical Shift (ppm)

120 110 100 Chemical Shift (ppm) 150 140 . 200 . 70 . 40

120 110 100 Chemical Shift (ppm)

120 110 100 Chemical Shift (ppm) . 170

120 110 100 Chemical Shift (ppm) . 220 150 140 . 90 . 70 . 40

HPLC Traces

6.369

7.220

BB

BB

0.1813

0.1987

385.180

392.669

32.7262

30.3892

49.52

50.48

RT [min]	Туре	Width [min]	Area	Height	Area%
6.627	MM	0.2520	20.633	1.3645	0.91
7.580	BB	0.2317	2248.980	149.3599	99.09

Signal: DAD1 G, Sig=280,4 Ref=360,100

RT [min]	Туре	Width [min]	Area	Height	Area%
5.654	BB	0.1395	112.808	12.2448	49.98
6.465	BB	0.1620	112.883	10.6227	50.02

RT [min]	Туре	Width [min]	Area	Height	Area%
5.824	BV	0.3101	62.928	2.9120	1.70
6.488	VB	0.2772	3643.215	197.4686	98.30

orginal.	2/12 / 0, 0.g 200, / 10/ 000, /00				
RT [min]	Туре	Width [min]	Area	Height	Area%
4.211	BB	0.1346	866.564	98.5235	49.89
5.530	BB	0.2268	870.260	59.4397	50.11

RT [min]	Туре	Width [min]	Area	Height	Area%
5.615	BV	0.1679	584.283	53.2843	50.33
7.138	VB	0.2893	576.689	30.9583	49.67

	· · · · · · · · · · · · · · · · · · ·				
RT [min]	Туре	Width [min]	Area	Height	Area%
5.665	BB	0.1780	3460.021	296.8958	99.21
7.163	BB	0.2614	27.504	1.4761	0.79

Signal.	DAD	1 O, Sig-200,	,4 IXel=300,100		
RT [min]	Туре	Width [min]	Area	Height '	Area%
6.526	BB	0.2176	849.526	60.5746	49.90
7.986	BB	0.3413	853.081	38.0871	50.10

 RT [min]
 Type
 Width [min]
 Area
 Height
 Area

 6.687
 BB
 0.2360
 1236.546
 80.1485
 99.03

 8.187
 MM
 0.4074
 12.110
 0.4955
 0.97

Type Width [min] Area RT [min] Height Area% 6.333 BB 0.3215 119.517 5.1742 6.07 8.298 BB 0.3056 1848.811 93.9347 93.93

RT [min]	Туре	Width [min]	Area	Height	Area%
6.430	MM	0.5427	50.668	1.5562	7.62
8.276	BB	0.3565	614.304	26.4922	92.38

RT [min]	Туре	Width [min]	Area	Height	Area%
5.326	BB	0.1616	17.168	1.6468	1.32
6.228	BB	0.2040	1286.342	97.4244	98.68

eignan	27.21 C, Olg 200, 1101 000, 100				
RT [min]	Туре	Width [min]	Area	Height	Area%
4.208	BV	0.1101	19.138	2.7877	0.68
4.752	VB	0.1577	2779.416	270.8972	99.32

Signal:	L: DAD1 D, Sig=230,4 Ref=360,100					
RT [min]	Туре	Width [min]	Area	Height	Area%	
8.263	BB	0.3877	307.980	11.9899	50.16	
11.543	BB	0.4536	306.069	10.5139	49.84	

olgilai.		1 D, Olg-200,			
RT [min]	Туре	Width [min]	Area	Height	Area%
8.493	BB	0.2625	38.115	2.0728	5.22
11.153	BB	0.4205	691.966	25.3479	94.78

	,			
Туре	Width [min]	Area	Height	Area%
BB	0.1988	28.923	2.3958	0.47
BB	0.2593	6074.113	362.8996	99.53
	Type BB BB	Type Width [min] BB 0.1988 BB 0.2593	Type Width [min] Area BB 0.1988 28.923 BB 0.2593 6074.113	Type Width [min] Area Height BB 0.1988 28.923 2.3958 BB 0.2593 6074.113 362.8996

12.674

VB

0.3925

5885.084

230.0381

51.15

Signal:	DAD1 B, Sig=210,4 Ref=360,100				
RT [min]	Туре	Width [min]	Area	Height	Area%
11.417	BB	0.3340	138.194	6.2987	4.21
12.691	BB	0.3914	3142.159	124.1093	95.79

Supplementary Information

Signal:	DAD1 A, Sig=254,4 Ref=360,100				
RT [min]	Туре	Width [min]	Area	Height	Area%
5.930	PM N	0.1470	21.025	2.3841	1.25
7.072	PM N	0.2399	1663.862	115.6015	98.75

RT [min]	Туре	Width [min]	Area	Height	Area%
8.134	MM	0.2909	34.667	1.9863	50.84
11.333	MM	0.4095	33.517	1.3641	49.16

		· •, •.g =••	,,		
RT [min]	Туре	Width [min]	Area	Height	Area%
8.154	BB	0.2554	50.928	3.0721	1.82
11.271	VB	0.3862	2741.028	109.4345	98.18

orginali	DAD	1 0, 01g-200	,4 1(61-000, 100		
RT [min]	Туре	Width [min]	Area	Height	Area%
6.181	BB	0.2629	76.907	4.5110	1.88
7.610	BB	0.3286	4018.512	184.1144	98.12

Signal:	DAD1 G, SIg=280,4 Ref=360,100				
RT [min]	Туре	Width [min]	Area	Height	Area%
5.910	BV	0.1693	508.823	45.2115	50.33
7.020	BV	0.2032	502.080	37.7338	49.67

RT [min]	Туре	Width [min]	Area	Height	Area%
5.945	BV	0.1512	56.946	5.2228	3.12
7.091	VB	0.2110	1767.300	128.0538	96.88

Signal: DAD1 G, Sig=280,4 Ref=360,100

RT [min]	Туре	Width [min]	Area	Height	Area%
6.079	BB	0.2281	166.735	11.3038	50.01
8.541	BB	0.3266	166.642	7.9484	49.99

RT [min]	Туре	Width [min]	Area	Height	Area%
6.065	MM	0.2370	9.691	0.6816	1.80
8.516	BB	0.3348	529.367	24.2407	98.20
6.727

VB

0.1722

3345.227

299.8261

Signal.	DAD	1 0, Sig-200	,4 1(01-300,100		
RT [min]	Туре	Width [min]	Area	Height	Area%
7.046	BV	0.2727	3799.888	212.3995	48.41
7.755	VB	0.2659	4048.956	234.0202	51.59

Signal:	DAD1 G, Sig=280,4 Ref=360,100					
RT [min]	Туре	Width [min]	Area	Height	Area%	
7.087	BV	0.3335	127.618	5.4832	4.76	
7.801	VB	0.2640	2553.390	150.4275	95.24	

Meas. R	Area %	Width	Symmetr.
13.541	2.652	0.613	1.206
15.252	97.348	0.658	0.395

Signal:	DAD	1 G, Sig=280			
RT [min]	Туре	Width [min]	Area	Height	Area%
9.731	VB	0.3813	23577.910	970.8066	50.01
17.836	BB	0.6946	23564.064	532.1541	49.99

Signal:	DAD1 G, Sig=280,4 Ref=360,100	
DT Contract	The second state for the first state of the second	

RT [min]	Туре	Width [min]	Area	Height	Area%
9.612	BB	0.2873	75.552	3.6830	0.87
17.304	BB	0.4934	8615.665	269.1923	99.13

Supplementary Information

Area%

Signal:	DAD	1 B, Sig=210,		
RT [min]	Туре	Width [min]	Area	Height

12.742	VV	0.4196	28137.887	1040.1501	50.00
29.995	BB	0.9488	28134.932	449.1726	50.00
DAD1 B SI-210 4 D-6-260 100					

Signal:	DAD1 B, Sig=210,4 Ref=360,100				
RT [min]	Туре	Width [min]	Area	Height	Area%
12.739	BB	0.3933	3382.737	130.9917	19.35
29.624	BB	0.8870	14094.945	231.2712	80.65

15.487

98.576

0.406

RT [min]	Туре	Width [min]	Area	Height	Area%
6.815	BV	0.1911	5552.653	434.4767	49.90
10.724	BBA	0.3103	5574.548	270.6377	50.10

BB

0.3750

35427.527

12.321

1440.2213

	,	, ,		
Туре	Width [min]	Area	Height	Area%
BB	0.3651	12532.396	555.7339	49.48
VB	0.5133	12796.297	402.0919	50.52
	Type BB VB	Type Width [min] BB 0.3651 VB 0.5133	Type Width [min] Area BB 0.3651 12532.396 VB 0.5133 12796.297	Type Width [min] Area Height BB 0.3651 12532.396 555.7339 VB 0.5133 12796.297 402.0919

RT [min]	Туре	Width [min]	Area	Height	Area%
8.156	MM	0.4294	43.995	1.7076	0.57
10.583	BB	0.3290	7608.078	350.8091	99.43

24.461

BB

1.1473

1311.834

14.2591

Meas.	R Area	% Width	Symmetr.
16.031 18.011	49.628 50.372	0.645 0.732	0.491

Meas. R	Area %	Width	Symmetr.
16.082	0.377	0.672	0.723
18.007	99.623	0.724	0.425

	, , ,			
Туре	Width [min]	Area	Height	Area%
BV	1.2876	4124.541	37.7838	47.39
VB	1.5132	4578.141	35.4374	52.61
	Type BV VB	Type Width [min] BV 1.2876 VB 1.5132	Type Width [min] Area BV 1.2876 4124.541 VB 1.5132 4578.141	Type Width [min] Area Height BV 1.2876 4124.541 37.7838 VB 1.5132 4578.141 35.4374

Signal:	DAD1 B, Sig=210,4 Ref=360,100
---------	-------------------------------

RT [min]	Туре	Width [min]	Area	Height	Area%
29.573	BB	1.2102	6634.788	79.9463	50.75
32.834	BB	1.2768	6439.603	62.2555	49.25

DAD	1 G, Sig=280,			
Туре	Width [min]	Area	Height	Area%
BV	0.3462	8285.378	365.8550	49.48
VB	0.3865	8459.277	335.0882	50.52
	Type BV VB	DAD1 G, SIg=280, Type Width [min] BV 0.3462 VB 0.3865	DAD1 G, SIg=280,4 Ret=360,100 Type Width [min] Area BV 0.3462 8285.378 VB 0.3865 8459.277	DAD1 G, SIg=280,4 Ref=360,100 Type Width [min] Area Height BV 0.3462 8285.378 365.8550 VB 0.3865 8459.277 335.0882

RT [min]	Туре	Width [min]	Area	Height	Area%
14.045	BV	0.3458	3446.738	152.4387	7.59
14.959	VB	0.3901	41937.324	1652.3798	92.41

References

- 1. B. M. Partridge, J. Solana González, H. W. Lam, Angew. Chem., Int. Ed. 2014, 53, 6523-6527.
- 2. S. Kallepu, K. K. Gollapelli, J. B. Nanubolu, R. Chegondi, *Chem. Commun.* **2015**, *51*, 16840-16843.
- 3. Prepared according to:A. I. Oliva, U. Christmann, D. Font, F. Cuevas, P. Ballester, H. Buschmann, A. Torrens, S. Yenes, M. A. Pericàs, *Org. Lett.* **2008**, *10*, 1617-1619.
- 4. M. Kenny, J. Christensen, S. J. Coles, V. Franckevičius, Org. Lett. 2015, 17, 3926-3929.
- 5. Prepared according to: I. Misztalewska, A. Z. Wilczewska, O. Wojtasik, K. H. Markiewicz, P. Kuchlewski, A. M. Majcher, *RSC Adv.* **2015**, *5*, 100281-100289.
- 6. Prepared according to: A. K. Ghosh, D. D. Anderson, Org. Lett. 2012, 14, 4730-4733.
- 7. Prepared according to: D. Kalaitzakis, J. D. Rozzell, S. Kambourakis, I. Smonou, *Eur. J. Org. Chem.* **2006**, 2309-2313.
- 8. Prepared according to: Z. He, H. Li, Z. Li, J. Org. Chem. 2010, 75, 4636-4639.
- 9. Prepared according to: C. Görl, H. G. Alt, *J. Organomet. Chem.* **2007**, *692*, 5727-5753. However, propargyl bromide (80% wt. in toluene) was used in place of propargyl chloride.
- 10. J.-i. Ito, K. Fujii, H. Nishiyama, Chem. Eur. J. 2013, 19, 601-605.
- 11. J. Yan, N. Yoshikai, ACS Catal. 2016, 6, 3738-3742.