Chiral N,N'-Dioxide/Mg(OTf)₂ Complex-Catalyzed Asymmetric [2,3]-Rearrangement of *in situ* Generated Ammonium Salts

Qianchi Lin, Bowen Hu, Xi Xu, Shunxi Dong, Xiaohua Liu 🗆 and Xiaoming Feng 🗆

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

E-mail: liuxh@scu.edu.cn, xmfeng@scu.edu.cn

Contents

(A)	General Information	2
(B)	Experimental Procedures	2
(C)	Characterization of Typical Substrates	3
(D)	Typical Experimental Procedure for Asymmetric [2,3]-Rearrangement of Allylic Ammonium Ylides .	7
(E)	Optimization of Conditions	8
(F)	Scope Limitation	12
(G)	X-ray Crystal Structure of Product 4u	13
(H)	Characterization of Typical [2,3]-Rearrangement Products	13
(I)	Copies of NMR Spectra for Substrates and Products	33
(J)	Copies of 2D NMR Spectra (2D NMR Spectra of 3h)	90
(K)	Copies of ¹ H NMR Spectra for the Determination of anti:syn ratio	92
(L)	Copies of CD Spectra in CH ₂ Cl ₂	96
(M)	References	105

(A) General Information

CH₂Cl₂, EtOAc, MeCN were freshly distilled from CaH₂ prior to use, THF, toluene, C₂H₅OC₂H₅ were freshly distilled from sodium metal prior to use, MeOH was freshly distilled from magnesium metal/I₂ prior to use. ¹H NMR spectra were recorded at 400 M Hz. The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet), coupling constants (Hz), integration. ¹³C{¹H} NMR data were collected at 100 MHz with complete proton decoupling. ¹⁹F{¹H} NMR was measured at 376 M Hz. Metal salts obtained from commercial sources were used without further purification. Enantiomeric excesses were determined by chiral HPLC analysis on Daicel Chiralcel IA/IE/IF/IG/IH/OJH/Lux 5u Cellulose-2 in comparison with the authentic racemates. Optical rotations were reported as follows: $[\alpha]^{T}_{D} = (c = g/100 \text{ mL}, \text{ in solvent, unless} otherwise noted, <math>\lambda = 589 \text{ nm}$). HRMS was recorded on a commercial apparatus (FTMS+c ESI/APCI). The chiral *N,N'*-dioxide ligands were synthesized by the same procedure in the literature.¹

(B) Experimental Procedures

1 General procedure for the synthesis of amino amide according to the literature procedure.²

1.1 Synthesis of amino esters from ethyl bromoacetates:

Ethyl bromoacetate (1.0 equiv) was dissolved in dry Et_2O (0.5 M), the corresponding amine (2.5 equiv) was added and the reaction mixture was stirred at rt for 30 min. The insoluble precipitate was removed by filtration and the filtrate was concentrated in vacuo. If no precipitate was observed, the reaction was quenched with aq. NaOH (1 M, equal volume). The phases were separated and the aqueous phase was extracted with Et_2O (2×equal volume). The combined organic layers were washed with brine, dried over anhydrous MgSO₄ filtered and concentrated in vacuo. The crude residue was used in next step without further purification or purified by flash column chromatography over silica gel or distillation as indicated.

1.2 Hydrolysis of amino esters:

A solution of amino ester (1.0 equiv) in water (10 mL/g amino ester) was treated with conc. aq. HCl (ca. 1 mL/g amino ester) and the reaction mixture was heated to reflux for 16 h. The solution was cooled to rt, washed with Et_2O (3×equal volume) and concentrated in vacuo to afford pure amino acid which was used in next step without further purification.

Note: residual water was removed by forming azeotrope with toluene.

1.3 Synthesis of amino amides from amino acids:

A solution of amino acid or the corresponding hydrochloride (1.1 equiv) in anhydrous CH_2Cl_2 (0.5 M) was cooled to 0 °C. Et_3N (1.1 equiv) was added and the resulting solution was stirred for 10 min at 0 °C. The 3,5-dimethyl-1*H*-pyrazole (1.0 equiv), EDCI (1.1 equiv) and a small amount of DMAP were successively added, the reaction mixture was warmed to rt and stirred for 24 h. To the mixture was added brine (equal volume) and the aqueous layer was separated and extracted with CH_2Cl_2 (3×equal volume). The combined organic extracts were dried over anhydrous Na_2SO_4 , filtered and concentrated. The residue was subjected to column chromatography (silica gel impregnated in the PET of 3‰ Et_3N) to give the product. The residue eluted with PET/EtOAc (v/v, 4:1) (exception, **1a**: PET/Ace, v/v, 10:1; **1c**: EtOAc).

2 General procedure for the synthesis of allylic bromides according to the literature procedure.³

2.1 Synthesis of α,β-unsaturated esters from aldehydes:

To a stirred solution of the aldehyde (1.0 equiv) in CH_2Cl_2 (10 mL/g aldehyde) was added ethyl (triphenylphosphoranylidene) acetate (1.05 equiv). The reaction was stirred overnight at rt. The solvent was removed in vacuo and the crude residue purified by flash chromatography on silica gel to give the pure α,β -unsaturated esters.

2.2 Synthesis of α , β -unsaturated esters from acids:

To a stirred solution of the α,β -unsaturated acid (1.0 equiv) in ethanol (10 mL/g acid) was added conc. H₂SO₄ (0.1 mL/g acid). The reaction was heated to reflux for 3 h, allowed to cool, and concentrated in vacuo. The residue was neutralised with sat aq. NaHCO₃, extracted with EtOAc (3×equal volume) and the combined organics were washed with brine (equal volume). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo to give the pure α,β -unsaturated esters.

2.3 Synthesis of allylic alcohols from α,β-unsaturated esters:

To a stirred solution of the α , β -unsaturated ester (1.0 equiv) in anhydrous CH₂Cl₂ (0.2 M) at -78 °C under N₂ was added DIBAL-H (1.0–1.5 M in toluene or hexane, 2.2 equiv) dropwise. The reaction was stirred for 1.5 h at -78 °C, and quenched with 10% aq. NaOH (equal volume). The resultant mixture was allowed to warm to rt and stirred for 1 h. The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2×equal volume). The combined organics were washed with brine (equal volume), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by column chromatography (PET/EtOAc = 4:1) to give the product.

2.4 Synthesis of allylic alcohols from aryl cinnamaldehydes:

A solution of aryl cinnamaldehyde (1.0 equiv) in methanol (0.5 M) was cooled to 0 °C. NaBH₄ (1.1 eq) was added and the reaction mixture was allowed to warm to rt and stirred for 1 h. The reaction was quenched by sat aq. NH₄Cl, extracted with EtOAc ($3\times$ equal volume) and the combined organics were washed with brine (equal volume). The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography (PET/EtOAc = 4:1) to give the product.

2.5 Synthesis of allylic bromides from allylic alcohols:

To a stirred solution of allylic alcohol (1.0 equiv) in diethylether (0.5 M) at 0 °C was added phosphorus tribromide (1.0 equiv). The reaction mixture was warmed to room temperature and stirred for 24 h. After a saturated solution of ammoniumchloride had been added, the organic layer was separated and the aqueous layer was extraced with diethylether (3×equal volume). The combined organics were successively washed with sat aq. $Na_2S_2O_3$ (equal volume) and brine (equal volume). The combined organic layers were dried with anhydrous Na_2SO_4 , filtered and concentrated in vacuo to afford pure amino acid that was used without further purification.

(C) Characterization of Typical Substrates

1-(3,5-Dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)ethan-1-one (1a)

Colorless liquid. ¹H NMR (400 MHz, Chloroform-*d*) δ = 5.96 (s, 1H), 3.97 (s, 2H), 2.56 (s, 3H), 2.45 (s, 6H), 2.23 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ = 170.4, 152.1, 144.2, 110.8, 61.1, 45.6, 14.3, 13.7 ppm. **IR** (neat): ν (cm⁻¹) 2931, 2772, 1737, 1583, 1445, 1385, 1321, 1248, 1174, 1043, 958, 862, 802, 748. **HRMS** (ESI-FT) calcd for C₈H₁₆N₃O⁺ ([M]+H⁺) = 182.1288, found 182.1288.

2-(Diethylamino)-1-(3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one (1b)

Colorless liquid. ¹**H** NMR (400 MHz, Chloroform-*d*) δ = 5.95 (s, 1H), 4.11 (s, 2H), 2.79 – 2.71 (m, 4H), 2.55 (d, *J* = 0.8 Hz, 3H), 2.23 (s, 3H), 1.10 (t, *J* = 3.2 Hz, 6H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ = 171.5, 152.0, 144.2, 110.7, 55.1, 47.8, 14.4, 13.8, 12.3 ppm. IR (neat): ν (cm⁻¹) 2969, 2931, 2361, 1734, 1582, 1452, 1381, 1316, 1246, 1169, 954, 801, 742. HRMS (ESI-FT) calcd for C₁₁H₂₀N₃O⁺ ([M]+H⁺) = 210.1601, found 210.1598.

1-(3,5-Dimethyl-1*H*-pyrazol-1-yl)-2-(piperidin-1-yl)ethan-1-one (1c)

White solid. **MP**: 63 – 66 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 5.95 (s, 1H), 3.97 (s, 2H), 2.60 (t, *J* = 1.6 Hz, 4H), 2.55 (d, *J* = 0.8 Hz, 3H), 2.23 (s, 3H), 1.71 – 1.63 (m, 4H), 1.51 – 1.42 (m, 2H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 170.5, 152.1, 144.4, 110.8, 60.9, 54.9, 25.9, 24.1, 14.4, 13.8 ppm. **IR** (neat): ν (cm⁻¹) 2930, 2852, 1736, 1582, 1445, 1403, 1319, 1242, 1171, 1114, 1037, 954, 862, 802, 744, 592, 548, 459. **HRMS** (ESI-FT) calcd for C₁₂H₂₀N₃O⁺ ([M]+H⁺) = 222.1601, found 222.1600.

2-(Azepan-1-yl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one (1d)

Colorless liquid. ¹**H** NMR (400 MHz, Chloroform-*d*) δ = 5.94 (s, 1H), 4.19 (s, 2H), 2.86 (t, *J* = 6.0 Hz, 4H), 2.55 (d, *J* = 0.8 Hz, 3H), 2.22 (s, 3H), 1.71 – 1.56 (m, 8H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ = 170.5, 152.1, 144.4, 110.8, 60.9, 54.9, 25.9, 24.1, 14.4, 13.8 ppm. **IR** (neat): v (cm⁻¹) 2924, 2852, 2362, 1734, 1582, 1448, 1407, 1143, 957, 801, 748. **HRMS** (ESI-FT) calcd for C₁₂H₂₀N₃O⁺ ([M]+H⁺) = 236.1757, found 236.1763.

1-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-morpholinoethan-1-one (1e)

White solid. **MP**: 50 – 53 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 5.97 (s, 1H), 4.01 (s, 2H), 3.79 (t, *J* = 4.8 Hz, 4H), 2.67 (t, *J* = 4.8 Hz, 4H), 2.55 (d, *J* = 0.8 Hz, 3H), 2.23 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 169.7, 152.2, 144.2, 110.9, 66.7, 60.3, 53.7, 14.2, 13.6 ppm. **IR** (neat): ν (cm⁻¹) 2853, 1735, 1582, 1450, 1407, 1318, 1244, 1170, 1115, 1070, 1035, 957, 917, 864, 805, 745, 552, 466. **HRMS** (ESI-FT) calcd for C₁₁H₁₈N₃O₂⁺ ([M]+H⁺) = 224.1394, found 224.1388.

2-(Benzyl(methyl)amino)-1-(3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one (1f)

Colorless liquid. ¹**H** NMR (400 MHz, Chloroform-*d*) $\delta = 7.42 - 7.37$ (m, 2H), 7.34 - 7.28 (m, 2H), 7.28 - 7.20 (m, 1H), 5.93 (s, 1H), 4.09 (s, 2H), 3.76 (s, 2H), 2.55 (d, J = 0.8 Hz, 3H), 2.46 (s, 3H), 2.20 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) $\delta = 170.9$, 152.1, 144.2, 138.8, 129.1, 128.3, 127.1, 110.9, 61.4, 58.7, 42.5, 14.4, 13.8 ppm. **IR** (neat): ν (cm⁻¹) 2925, 1734, 1582, 1450, 1382, 1318, 1245, 1177, 1139, 1054, 955, 871, 803, 741, 698, 461. **HRMS** (ESI-FT) calcd for C₁₅H₂₀N₃O⁺ ([M]+H⁺) = 258.1061, found 258.1062.

2-(Diisopropylamino)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)ethan-1-one (1g)

Pale yellow liquid. ¹**H** NMR (400 MHz, Chloroform-*d*) δ = 5.95 (s, 1H), 4.06 (s, 2H), 3.19 – 3.11 (m, 2H), 2.54 (s, 3H), 2.25 (s, 3H), 1.06 (d, *J* = 6.8 Hz, 12H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ = 173.8, 151.7, 144.3, 110.6, 110.6, 49.88, 48.8, 20.8, 14.5, 14.4, 13.8, 13.8 ppm. **IR** (neat): ν (cm⁻¹) 2965, 1741, 1581, 1460, 1376, 1315, 1243, 1176, 1034, 957, 802, 578. **HRMS** (ESI-FT) calcd for C₁₃H₂₄N₃O⁺ ([M]+H⁺) = 238.1914, found 238.1904.

1-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)propan-1-one (1h)

Colorless liquid. ¹**H** NMR (400 MHz, Chloroform-*d*) δ = 5.94 (s, 1H), 4.75 – 4.67 (m, 1H), 2.54 – 2.50 (m, 3H), 2.43 – 2.37 (m, 6H), 2.30 – 2.19 (m, 3H), 1.37 – 1.31 (m, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ = 174.1, 151.9, 144.2, 111.4, 59.6, 41.6, 41.6, 14.6, 14.6, 14.3, 13.8 ppm. **IR** (neat): ν (cm⁻¹) 2977, 1647, 1458, 1375, 1270, 1218, 1145, 1093, 1065, 990, 792, 632. **HRMS** (ESI-FT) calcd for C₁₀H₁₈N₃O⁺ ([M]+H⁺) = 196.1444, found 196.1436.

2-(Dibenzylamino)-1-(3,5-dimethyl-1H-pyrazol-1-yl)ethan-1-one (1i)

White solid. **MP**: 51 – 54 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.46 – 7.40 (m, 4H), 7.32 – 7.25 (m, 4H), 7.23 – 7.17 (m, 2H), 5.87 (s, 1H), 4.14 (s, 2H), 3.90 (s, 4H), 2.54 (d, *J* = 0.4 Hz, 3H), 2.13 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 171.5, 152.0, 144.1, 139.5, 128.8, 128.4, 127.1, 110.9, 110.8, 57.8, 54.9, 14.5, 13.8, 13.8 ppm. **IR** (neat): ν (cm⁻¹) 2925, 1729, 1582, 1449, 1379, 1316, 1244, 1140, 1074, 1028, 952, 805, 739, 697, 477. **HRMS** (ESI-FT) calcd for C₂₁H₂₄N₃O⁺ ([M]+H⁺) = 334.1914, found 334.1912.

(E)-1-(3-Bromoprop-1-en-1-yl)-2-chlorobenzene (2b)

Pale yellow liquid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.56 - 7.50 (m, 1H), 7.38 - 7.33 (m, 1H), 7.26 - 7.16 (m, 2H), 7.04 (d, *J* = 15.6 Hz, 1H), 6.43 - 6.33 (m, 1H), 4.20 - 4.15 (m, 2H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ = 133.9, 133.4, 130.4, 129.8, 129.3, 127.9, 127.1, 127.0, 32.9 ppm. **IR** (neat): *v* (cm⁻¹) 3048, 1469, 1434, 1272, 1201, 1123, 1038, 961, 749, 696, 522, 580, 517, 451. **HRMS** (APCI-FT) calcd for C₉H₈^{34.9659}Cl⁺ ([M]-Br) = 151.0309, found 151.0309, C₉H₈^{36.9659}Cl⁺ ([M]-Br) = 153.0280, found 153.0279.

(E)-1-(3-Bromoprop-1-en-1-yl)-3-chlorobenzene (2c)

Pale yellow liquid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.38 – 7.34 (m, 1H), 7.27 – 7.20 (m, 3H), 6.56 (d, *J* = 15.6 Hz, 1H), 6.44 – 6.34 (m, 1H), 4.15 – 4.10 (m, 2H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ = 137.7, 134.6, 133.1, 129.9, 128.3, 126.7, 126.7, 125.0, 32.8 ppm. **IR** (neat): *v* (cm⁻¹) 2924, 1592, 1556, 1474, 1421, 1201, 1137, 1083, 960, 917, 882, 856, 776, 685, 627, 587, 533, 440. **HRMS** (APCI-FT) calcd for C₉H₈^{34.9659}Cl⁺ ([M]-Br) = 151.0309, found 151.0313, C₉H₈^{36.9659}Cl⁺ ([M]-Br) = 153.0280, found 153.0283.

(E)-1-(3-Bromoprop-1-en-1-yl)-4-chlorobenzene (2d)

White solid. **MP**: 61 – 64 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.34 – 7.28 (m, 4H), 6.69 (d, *J* = 15.6 Hz, 1H), 6.42 – 6.32 (m, 1H), 4.17 – 4.12 (m, 2H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 134.3, 134.1, 133.3, 128.9, 128.0, 125.9, 33.1 ppm. **IR** (neat): ν (cm⁻¹) 3038, 2361, 1644, 1590, 1488, 1434, 1403, 1300, 1265, 1205, 1140, 1093, 1058, 1010, 971, 817, 739, 684, 579, 513, 484. **HRMS** (APCI-FT) calcd for C₉H₈^{34.9659}Cl⁺ ([M]-Br) = 151.0309, found 151.0313, C₉H₈^{36.9659}Cl⁺ ([M]-Br) = 153.0280, found 153.0283.

(E)-4-(3-Bromoprop-1-en-1-yl)-1,2-dichlorobenzene (2e)

Colorless liquid. ¹**H** NMR (400 MHz, Chloroform-*d*) $\delta = 7.80$ (d, J = 2.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.15 – 7.10 (m, 1H), 6.47 (d, J = 15.6 Hz, 1H), 6.38 – 6.28 (m, 1H), 4.12 – 4.07 (m, 2H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) $\delta = 135.9$, 132.8, 132.0, 132.0, 130.6, 128.4, 127.2, 125.9, 32.6 ppm. **IR** (neat): ν (cm⁻¹) 3049, 1551, 1469, 1389, 1303, 1262, 1201, 1132, 1062, 1028, 959, 923, 884, 804, 702, 671, 600, 557, 438. HRMS (APCI-FT) calcd for C₉H₇^{34.9659}Cl₂+ ([M]-Br) = 184.9919, found 184.9927, C₉H₇^{34.9659}Cl^{36.9659}Cl⁺ ([M]-Br) = 186.9890, found 186.9898, C₉H₇^{36.9659}Cl₂+ ([M]-Br) = 188.9860, found 188.9871.

(E)-1-(3-Bromoprop-1-en-1-yl)-4-iodobenzene (2h)

White solid. **MP**: 100 – 103 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.68 – 7.62 (m, 2H), 7.14 – 7.08 (m, 2H), 6.56 (d, *J* = 15.6 Hz, 1H), 6.45 –6.34 (m, 1H), 4.16 – 4.10 (m, 2H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 137.8, 135.3, 133.4, 128.5, 126.1, 93.9, 33.0 ppm. **IR** (neat): ν (cm⁻¹) 2362, 1643, 1579, 1482, 1433, 1396, 1259, 1203, 1057, 1004, 972, 811, 754, 650, 573, 497. **HRMS** (APCI-FT) calcd for C₉H₈I⁺ ([M]-Br) = 242.9665, found 242.9668.

(E)-1-(3-Bromoprop-1-en-1-yl)-2-methylbenzene (2j)

Colorless liquid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.46 – 7.40 (m, 1H), 7.19 – 7.11 (m, 3H), 6.85 (d, *J* = 15.6 Hz, 1H), 6.33 – 6.22 (m, 1H), 4.19 – 4.14 (m, 2H), 2.34 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ = 135.8, 134.9, 132.3, 130.5, 128.3, 126.5, 126.2, 125.9, 33.7, 19.8 ppm. **IR** (neat): ν (cm⁻¹) 2952, 1484, 1200, 1139, 962, 748, 582, 510, 447. **HRMS** (ESI-FT) calcd for C₁₀H₁₂^{78.9183}Br⁺ ([M]+H⁺) = 211.0117, found 211.0118, C₁₀H₁₂^{80.9163}Br⁺ ([M]+H⁺) = 213.0096, found 213.0098.

(E)-1-(3-Bromoprop-1-en-1-yl)-3-methylbenzene (2k)

Colorless liquid. ¹**H NMR** (400 MHz, Chloroform-*d*) $\delta = 7.23 - 7.13$ (m, 3H), 7.09 - 7.03 (m, 1H), 6.57 (d, J = 15.6 Hz, 1H), 6.40 - 6.30 (m, 1H), 4.15 - 4.09 (m, 2H), 2.32 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) $\delta = 138.3$, 135.8, 134.7, 129.2, 128.6, 127.5, 125.1, 124.0, 33.7, 21.5 ppm. **IR** (neat): ν (cm⁻¹) 3030, 1644, 1603, 1485, 1433, 1200, 1136, 962, 776, 692, 631, 584, 527, 440. **HRMS** (ESI-FT) calcd for $C_{10}H_{12}^{78.9183}Br^+$ ([M]+H⁺) = 211.0117, found 211.0123, $C_{10}H_{12}^{80.9163}Br^+$ ([M]+H⁺) = 213.0096, found 213.0101.

(E)-1-(3-Bromoprop-1-en-1-yl)-4-methylbenzene (2l)

Pale yellow solid. **MP**: 60 – 62 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.27 (d, *J* = 7.6 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.60 (d, *J* = 15.6 Hz, 1H), 6.39 – 6.28 (m, 1H), 4.15 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 138.4, 1346, 133.1, 129.4, 126.7, 124.2, 33.9, 21.3 ppm. **IR** (neat): ν (cm⁻¹) 2912, 2361, 1642, 1608, 1510, 1429, 1199, 1142, 1062, 971, 803, 749, 582, 497. **HRMS** (ESI-FT) calcd for C₁₀H₁₂^{78.9183}Br⁺ ([M]+H⁺) = 211.0117, found 211.0113, C₁₀H₁₂^{80.9163}Br⁺ ([M]+H⁺) = 213.0096, found 213.0096.

(E)-2-(3-Bromoprop-1-en-1-yl)naphthalene (2m)

White solid. **MP**: 103 – 108 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.81 – 7.72 (m, 3H), 7.69 (s, 1H), 7.57 – 7.51 (m, 1H), 7.48 – 7.40 (m, 2H), 6.74 (d, *J* = 15.6 Hz, 1H), 6.63 – 6.42 (m, 1H), 4.20 – 4.15 (m, 2H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 134.7, 133.5, 133.4, 133.3, 128.4, 128.2, 127.8, 127.2, 126.5, 126.4, 125.6, 123.5, 33.7 ppm. **IR** (neat): ν (cm⁻¹) 3052, 2362, 1637, 1507, 1435, 1363, 1204, 969, 902, 861, 818, 743, 583, 513, 479. **HRMS** (ESI-FT) calcd for C₁₃H₁₂^{78.9183}Br⁺ ([M]+H⁺) = 247.0117, found 247.0119, C₁₃H₁₂^{80.9163}Br⁺ ([M]+H⁺) = 249.0096, found 249.0098.

(E)-2-(3-Bromoprop-1-en-1-yl)benzo[b]thiophene (2n) Br

Pale yellow solid. **MP**: 93 – 99 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.79 – 7.64 (m, 2H), 7.34 – 7.26 (m, 2H), 7.17 (s, 1H), 6.88 – 6.81 (m, 1H), 6.33 – 6.23 (m, 1H), 4.16 – 4.11 (m, 2H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 140.8, 139.8, 139.3, 128.3, 127.2, 125.2, 124.6, 124.3, 123.8, 122.3, 32.7 ppm. **IR** (neat): ν (cm⁻¹) 3054, 2361, 1632, 1432, 1309, 1274, 1199, 1130, 1067, 951, 864, 839, 811, 745, 677, 590, 554, 505, 441. **HRMS** (ESI-FT) calcd for C₁₁H₁₀^{78.9183}BrS⁺ ([M]+H⁺) = 252.9681, found 252.9688, C₁₁H₁₀^{80.9163}BrS⁺ ([M]+H⁺) = 254.9661, found 254.9657.

(E)-(3-Bromo-2-methylprop-1-en-1-yl)benzene (2p)

Br

Pale yellow liquid. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.36 – 7.29 (m, 2H), 7.29 – 7.19 (m, 3H), 6.62 (s, 1H), 6.11 (d, *J* = 0.8 Hz, 2H), 2.00 (d, *J* = 1.2 Hz, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 136.9, 134.5, 130.2, 129.0, 128.3, 127.2, 42.3, 16.6 ppm. **IR** (neat): ν (cm⁻¹) 2953, 1597, 1490, 1439, 1387, 1205, 1074, 1009, 920, 849, 744, 695, 606, 513, 476. **HRMS** (ESI-FT) calcd for C₁₀H₁₂^{78.9183}Br⁺ ([M]+H⁺) = 211.0117, found 211.0117, C₁₀H₁₂^{80.9163}Br⁺ ([M]+H⁺) = 213.0096, found 213.0088.

Substrates that have been reported³

(D) Typical Experimental Procedure for Asymmetric [2,3]-Rearrangement of Allylic Ammonium Ylides

1 Typical procedure for the asymmetric [2,3]-rearrangement.

Procedure A: The reaction was conducted with Mg(OTf)₂ (0.02 mmol), **L-RaAd** (0.02 mmol) and NaBAr^F₄(0.04 mmol) in 0.8 mL of EtOAc. The mixture was stirred at 35 °C for 50 min under a N₂ atmosphere, and then concentrated in vacuo. The mixture was dissolved in 2.0 mL of MeCN. Allylic bromides **2** (0.20 mmol), amino amides **1** (0.20 mmol) and diisopropylamine (0.30 mmol) were added at -20 °C under a N₂ atmosphere, the resulting mixture was stirred at -20 °C. The reaction mixture was subjected to column chromatography on silica gel to afford the corresponding product **3**.

Procedure B: The reaction was conducted with $Mg(OTf)_2$ (0.02 mmol), **L-RaAd** (0.02 mmol) and $NaBArF_4(0.04 mmol)$ in 0.8 mL of EtOAc. The mixture was stirred at 35 °C for 50 min under a N₂ atmosphere, and then concentrated in vacuo. The mixture was dissolved in 2.0 mL of MeCN. Allylic bromides **2** (0.20 mmol), amino amides **1** (0.20 mmol) and diisopropylamine (0.30 mmol) were added at -20 °C under an N₂ atmosphere, the resulting mixture was stirred at -20 °C. The reaction mixture was subjected to column chromatography on silica gel to afford the corresponding product **3**. The product **3** was dissolved in 1.0 mL of methanol. The reaction was stirred at 60 °C overnight. The reaction mixture was subjected to column chromatography on silica gel to afford the corresponding product **4**.

2 General procedure for the preparation of the racemic products.

Procedure A: The reaction was conducted with amino amides 1 (0.10 mmol), allylic bromides 2 (0.10 mmol) and diisopropylamine (0.15 mmol) in 1.0 mL of MeCN. The mixture was stirred at 35 °C overnight. The reaction mixture was subjected to column chromatography on silica gel to afford the corresponding product **3**.

Procedure B: The reaction was conducted with amino amides 1 (0.10 mmol), allylic bromides 2 (0.10 mmol) and diisopropylamine (0.15 mmol) in 1.0 mL of MeCN. The mixture was stirred at 35 °C overnight. The reaction mixture was subjected to column chromatography on silica gel to afford the corresponding product 3. The product 3 was dissolved in 1.0 mL of methanol. The reaction was stirred at 60 °C overnight. The reaction mixture was subjected to column chromatography on silica gel to afford the corresponding product 4.

The racemic products **3a**, **3b** and **3p** were prepared with race-L-PiPr₂/Mg(OTf)₂ complex as catalyst. The purification processes were the same as those for the chiral products.

3 Procedure for the gram-scale of asymmetric [2,3]-rearrangement.

A 100 mL of dry round-bottom flask was charged with **L-RaAd** (10 mol%), Mg(OTf)₂ (10 mol%) and NaBAr^F₄ (20 mol%) under an N₂ atmosphere. Then EtOAc (12 mL) was added and the mixture was stirred at 35 °C for 5 h. The mixture was then concentrated in vacuo. The mixture was dissolved in 30 mL of MeCN. Allylic bromide **2n** (3.0 mmol), amino amide **1a** (3.0 mmol) and diisopropylamine (0.3 mmol) were added at -20 °C under a N₂ atmosphere, the resulting mixture was stirred at -20 °C for 3 days. The reaction mixture was subjected to column chromatography on silica gel to afford the corresponding major diastereomer **3r** (PET/EtOAc = 50/1 to PET/EtOAc = 30/1 as eluent) as pale yellow solid (0.9429 g, 89% yield, >19:1 *anti:syn*, 98:2 er). The *anti:syn* ratio was as determined by ¹H NMR analysis and the er value was determined by high-performance liquid chromatography (HPLC) with chiralcel Lux 5u Cellulose-2 column.

4 Experimental procedures for further transformations of product 4.

4a: >19:1 anti:syn, 97:3 er

5a: 88% yield, >19:1 anti:syn, 96.5:3.5 er

A dry tube was charged with 10% Pd/C (9.0 mg), 4a (0.17 mmol, 40.2 mg), then, MeOH (1.0 mL) was added. The mixture was stirred at room temperature for 48 h under an H₂ atmosphere. The reaction mixture was filtered with a pad of celite and the filtrate was concentrated in vacuo to afford the product (35.2 mg, 88% yield, >19:1 *anti:syn*, 96.5:3.5 er).

6a: 71% yield, >19:1 anti:syn, 97.5:2.5 er

To a solution of **4a** (29.3 mg, 0.13 mmol) in THF (1.0 mL) was added LiAlH₄ (14.3 mg, 0.39 mmol, 3.0 equiv.) at 0 °C. After stirring for 60 minutes at 0 °C, the reaction mixture was allowed to warm to room temperature for an additional 12 h. Then, the reaction mixture was diluted with Et₂O and cooled to 0 °C. H₂O (15 μ L), 15% NaOH (aq. 15 μ L) and H₂O (45 μ L) were added, the reaction mixture was allowed to warm to room temperature to stir for 15 minutes. The mixture was dried over Mg₂SO₄, filtered and evaporated in vacuo, and was subjected to column chromatography on silica gel (eluted with ethyl acetate) to give the product (18.3 mg, 71% yield, >19:1 *anti:syn*, 97.5:2.5 er).

(E) Optimization of Conditions

Table S1. Screening of metal salts

7	Mg(OTf) ₂	91	65:35	67.5:32.5/67.5:32.5	
8	$Mg(NTf)_2$	93	62:38	65.5:34.5/64.5:35.5	
9	Mg(ClO ₄) ₂	83	54:46	57.5:42.5/54.5:45.5	
10	MgBr ₂	83	54:46	57:43:54:46	
11^{d}		91	50:50	50:50/50:50	
^a Unless otherwise noted, all reactions were carried out with 1a (0.10 mmol), 2a (0.10 mmol), iPr ₂ NH (0.15 mmol) and metal salt/L-PrMe ₂ (1:1,					

10 mol%) in CH₂Cl₂(1.0 mL) at 30 °C for 14 h. ^b Isolated yield of **3a**. ^c Determined by HPLC on a chiral stationary phase. ^d Without metal salt/L-**PrMe**₂.

Table S2. Screening of chiral N,N'-dioxide ligands

entry ^a	ligand	yield of 3a (%) ^b	<i>anti:syn</i> of 4a ^c	er of $4a^c$
1	L-PrMe ₂	91	65:35	67.5:32.5/67.5:32.5
2	L-PrEt ₂	99	74:26	61:39/80:20
3	L-PrtBu	90	67:33	56.5:43.5/52.5:47.5
4	L-PrAd	98	84:16	75.5:24.5/57:43
5	L-PiAd	94	70:30	52.5:47.5/50:50
6	L-RaAd	91	74:26	81:19/54.5:45.5
7	L-RaCHPh ₂	84	74:26	45:55/56:44
8	L-RaBn	83	54:46	50:50/52:48
9	L-RaCy	83	58:42	47.5:52.5/56:44
10	L-RaAd ²	86	61:39	54.5:45.5/55.5:44.5
11	L-RaMe ₂	88	50:50	56.5:43.5/51:49
12	L-RaEt ₂	65	57:43	61:39/61.5:38.5
^{<i>a</i>} Unless otherwise noted	all reactions were carried out y	with 1_{0} (0.10 mmol) 2_{0} (0.10 m	amol) iPr.NH (0.15 mmol)	and Ma(OTf) /ligand (1:1-10

^{*a*} Unless otherwise noted, all reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol), **1**Pr₂NH (0.15 mmol) and Mg(O1f)₂/ligand (1:1, 10 mol%) in CH₂Cl₂ (1.0 mL) at 30 °C for 14 h. ^{*b*} Isolated yield of **3a**. ^{*c*} Determined by HPLC on a chiral stationary phase.

Table S3. Screening of bases

Table S4. Screening of solvents

⁶ Unless otherwise noted, all reactions were carried out with 1a (0.10 mmol), 2a (0.10 mmol), $H_{2}NH$ (0.15 mmol) and Mg(011)/L-KaAU (1.1, 10 m0%) in solvent (1.0 mL) at 30 °C for 14 h. Mg(OTf)/L-RaAU was pretreated by CH₂Cl₂. ^b Isolated yield of 3a. ^c Determined by HPLC on a chiral stationary phase. N.R.: no reaction.

Table S5. Screening of temperature

^{*a*} Unless otherwise noted, all reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol), iPr₂NH (0.15 mmol) and Mg(OTf)₂/**L-RaAd** (1:1, 10 mol%) in MeCN (1.0 mL) at T °C for 14 h. Mg(OTf)₂/**L-RaAd** was pretreated by CH₂Cl₂. ^{*b*} Isolated yield of **3a**. ^{*c*} Determined by HPLC on a chiral stationary phase. ^{*d*} stirred for 24 h.

Table S6. Screening of concentration of 1a

entry ^a	concentration	yield of 3a (%) ^b	<i>anti:syn</i> of 4a ^c	er of 4a ^c
1	2.0 M	62	70:30	83.5:16.5/52.5:47.5
2	1.0 M	82	92:8	95.5:4.5
3	0.7 M	70	92.8	95:5
4^d	1.0 M	40	60:40	50:50/50:50
aTT 1	11	1 1 (0 10 I) 0 (0 10	D D DUL (0.15 D)	

^{*a*} Unless otherwise noted, all reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol), iPr₂NH (0.15 mmol) and Mg(OTf)₂/**L-RaAd** (1:1, 10 mol%) in MeCN at -20 °C for 24 h. Mg(OTf)₂/**L-RaAd** was pretreated by CH₂Cl₂. ^{*b*} Isolated yield of **3a**. ^{*c*} Determined by HPLC on a chiral stationary phase. ^{*d*} Without Mg(OTf)₂/**L-RaAd**.

Table S7. Screening of the amount of NaBArF₄

Table S8. Screening of the solvent to pretreat L-RaAd/Mg(OTf)₂/NaBArF₄

^{*a*} Unless otherwise noted, all reactions were carried out with **1a** (0.10 mmol), **2a** (0.10 mmol), iPr₂NH (0.15 mmol) and **L-RaAd**/Mg(OTf)₂/NaBAr^F₄ (1:1:2, 10 mol%) in MeCN at -20 °C for 24 h. **L-RaAd**/Mg(OTf)₂/NaBAr^F₄ was pretreated by solvent. ^{*b*} Isolated yield of **3a**. ^{*c*} Determined by HPLC on a chiral stationary phase.

Table S9. Screening of the the amount of the L-RaAd/Mg(OTf)₂/NaBArF₄ complex

² Oness otherwise noted, an reactions were carried out with **Ta** (0.10 minor), **2a** (0.10 minor), **1**(0.15 minor) and Mg(011)/**L-RaAd** (1.1, X mol%) in MeCN at -20 °C for 24 h. **L-RaAd**/Mg(OTf)₂/NaBAr^F₄ was pretreated by EtOAc. ^b Isolated yield of **3a**. ^c Determined by HPLC on a chiral stationary phase.

Table S10. Control experiment

4a

67:33 anti:syn, 80.5:19.5/52.5:47.5 er

entry ^a	T °C	<i>anti:syn</i> of $4a^b$	er of $4a^b$
10	30	68:32	81:19/52.5:47.5
2	0	67:33	80.5:19.5/52.5:47.5
3	-20	67:33	80.5:19.5/52.5:47.5
4 ^d	-20	67:33	81:19/52:48

^{*a*} Unless otherwise noted, all reactions were carried out with **3a** (20 mg), iPr₂NH (0.15 mmol) and **L-RaAd**/Mg(OTf)₂/NaBAr^F₄ (1:1:2, 0.01 mmol) in MeCN (1.0 mL) at T °C for 24 h. **L-RaAd**/Mg(OTf)₂/NaBAr^F₄ was pretreated by EtOAc. ^{*b*} Determined by HPLC on a chiral stationary phase. ^{*c*} Without NaBAr^F₄. ^{*d*} Without **L-RaAd**/Mg(OTf)₂/NaBAr^F₄.

(G) X-ray Crystal Structure of Product 4u

Figure S1. X-ray Crystal Structure of 4u, CCDC 1960932.

(H) Characterization of Typical [2,3]-Rearrangement Products

(2R,3S)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)-3-phenylpent-4-en-1-one (3a)

55.9 mg, 94% yield; colorless liquid; $R_f = 0.7$ (petroleum ether/ethyl acetate = 10/1). [α]²⁴_D = +82.0 (c = 1.02, in CH₂Cl₂). ¹H NMR (400 MHz, Chloroform-d) δ = 7.26 - 7.20 (m, 2H), 7.18 - 7.11 (m, 2H), 7.09 - 7.03 (m 1H), 6.26 - 6.14 (m, 1H), 5.76 (d, J = 0.4 Hz, 1H), 5.36 (d, J = 11.6 Hz, 1H), 5.16 - 5.08 (m, 2H), 3.95 - 3.87 (m, 1H), 2.44 (s, 6H), 2.30 (d, J = 0.8 Hz, 3H), 2.16 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-d) δ = 171.0, 151.3, 143.3, 140.4, 139.7, 128.5, 128.2, 126.6, 115.9, 111.1, 66.4, 49.9, 41.3, 14.4, 13.8 ppm. IR (neat): ν (cm⁻¹) 2933, 2788, 1713, 1583, 1451, 1410, 1378, 1350, 1302, 1222, 1175, 1031, 959, 914, 876, 815, 758, 700, 515. HRMS (ESI-FT) calcd for C₁₈H₂₄N₃O⁺ ([M]+H⁺) = 298.1914, found 298.1917.

Methyl (2R,3S)-2-(dimethylamino)-3-phenylpent-4-enoate (4a)

41.2 mg, 94% yield; colorless liquid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; HPLC (Chiralcel OJH, hexane/iPrOH = 99/1, flow rate 0.8 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 17.770 min, t_r (minor) = 9.324 min, ee = 94%; minor isomer: t_r (major) = 10.232 min, t_r (minor) = 14.628 min, ee = 57%. *anti:syn* = 95:5. $[\alpha]^{23}_{D}$ = +95.4 (*c* = 0.55, in CH₂Cl₂). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.30 - 7.24 (m, 2H), 7.23 - 7.15 (m, 3H), 6.18 - 6.06 (m, 1H), 5.16 - 5.06 (m, 2H), 3.79 - 3.71 (m, 1H), 3.58 (d, *J* = 12.0 Hz, 1H), 3.41 (s, 3H), 2.39 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ = 170.2, 140.8, 138.9, 128.6, 128.2, 126.9, 116.08, 71.7, 50.6, 49.8, 41.3 ppm. IR (neat): ν (cm⁻¹) 2943, 2788, 1729, 1452, 1342, 1158, 1036, 981, 914, 870, 760, 700, 515. HRMS (ESI-FT) calcd for C₁₄H₂₀NO₂⁺ ([M]+H⁺) = 234.1489, found 234.1486.

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 0.00 9.00 20.00 Minutes

	Retention Time	Area	% Area
1	7.770	4587849	91.69
2	9.324	147946	2.96
3	10.232	210501	4.21
4	14.628	57420	1.15

(2R,3S)-2-(Diethylamino)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-3-phenylpent-4-en-1-one (3b)

41.7 mg, 64% yield; colorless liquid; $R_f = 0.7$ (petroleum ether/ethyl acetate = 10/1). $[\alpha]^{26}{}_D = +116.0$ (c = 0.75, in CH₂Cl₂). ¹H NMR (400 MHz, Chloroform-*d*) $\delta = 7.25 - 7.20$ (m, 2H), 7.18 - 7.12 (m, 2H), 7.10 - 7.04 (m 1H), 6.29 - 6.18 (m, 1H), 5.77 (d, J = 0.4 Hz, 1H), 5.38 (d, J = 11.6 Hz, 1H), 5.11 - 5.05 (m, 1H), 5.00 - 4.92 (m, 1H), 3.96 - 3.88 (m, 1H), 2.99 - 2.87 (m, 2H), 2.52 - 2.42 (m, 2H), 2.29 (d, J = 0.8 Hz, 3H), 2.17 (s, 3H), 1.08 (t, J = 6.4 Hz, 6H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) $\delta = 172.7$, 151.0, 143.4, 140.8, 140.5, 128.7, 128.1, 126.4, 115.5, 110.9, 63.2, 49.8, 43.8, 14.2, 14.1, 13.7. ppm. IR (neat): ν (cm⁻¹) 2970, 2928, 1715, 1583, 1452, 1377, 1346, 1300, 1216, 1170, 1067, 959, 913, 802, 757, 697, 631, 591, 515. HRMS (ESI-FT) calcd for C₂₀H₂₈N₃O⁺ ([M]+H⁺) = 326.2227, found 326.2225.

Methyl (2R,3S)-2-(diethylamino)-3-phenylpent-4-enoate (4b)

29.2 mg, 87% yield; colorless liquid; $R_f = 0.60$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel IG, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 10.390 min, t_r (minor) = 10.935 min, ee = 90%; minor isomer: t_r (major) = 11.844 min, t_r (minor) = 13.009 min, ee = 54%. *anti:syn* = 95:5. $[\alpha]^{26}_{D}$ = +141.3 (*c* = 0.41, in CH₂Cl₂). ¹H **NMR** (400 MHz, Chloroform-*d*) δ = 7.30 - 7.24 (m, 2H), 7.22 - 7.15 (m, 3H), 6.21 - 6.10 (m, 1H), 5.10 - 5.04 (m, 1H), 5.00 - 4.93 (m, 1H), 3.84 - 3.76 (m, 1H), 3.70 (d, *J* = 11.2 Hz, 1H), 3.40 (s, 3H), 2.95 - 2.82 (m, 2H), 2.45 - 2.33 (m, 2H), 1.07 (t, *J* = 7.2 Hz, 6H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 171.5, 141.3, 139.6, 128.5, 128.4, 126.7, 115.7, 67.4, 50.6, 49.6, 44.1, 13.8. ppm. **IR** (neat): *v* (cm⁻¹) 2972, 1732, 1453, 1381, 1251, 1198, 1159, 1070, 984, 914, 760, 700. **HRMS** (ESI-FT) calcd for C₁₆H₂₄NO₂⁺ ([M]+H⁺) = 262.1802, found 262.1803.

	Retention Time	Area	% Area
1	10.390	4765938	90.40
2	10.935	245837	4.66
3	11.844	200217	3.80
4	13.009	60306	1.14

(2R,3S)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-3-phenyl-2-(piperidin-1-yl)pent-4-en-1-one (3c)

48.1 mg, 71% yield; pale yellow solid; $R_f = 0.7$ (petroleum ether/ethyl acetate = 10/1). [α]²⁶_D = +63.1 (*c* = 0.87, in CH₂Cl₂). **MP**: 55 – 60 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.25 – 7.20 (m, 2H), 7.18 – 7.12 (m, 2H), 7.10 – 7.04 (m 1H), 6.31 – 6.20 (m, 1H), 5.78 (d, *J* = 0.4 Hz, 1H), 5.29 (d, *J* = 11.6 Hz, 1H), 5.12 – 5.07 (m, 1H), 5.02 – 4.94 (m, 1H), 3.99 – 3.91 (m, 1H), 2.70 – 2.58 (m, 4H), 2.33 (d, *J* = 0.8 Hz, 3H), 2.16 (s, 3H), 1.64 – 1.35 (m, 6H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 171.1, 151.0, 143.2, 140.6, 140.0, 128.7, 128.2, 126.5, 115.4, 111.0, 67.4, 50.6, 48.8, 26.8, 24.8, 14.4, 13.8 ppm. **IR** (neat): *v*(cm⁻¹) 2929, 2805, 1713, 1583, 1448, 1409, 1377, 1352, 1303, 1223, 1162, 1101, 1032, 959, 910, 867, 798, 758, 698, 580, 514, 453. **HRMS** (ESI-FT) calcd for C₂₁H₂₈N₃O⁺ ([M]+H⁺) = 338.2227, found 338.2231.

Methyl (2R,3S)-3-phenyl-2-(piperidin-1-yl)pent-4-enoate (4c)

32.4 mg, 83% yield; pale yellow solid; $R_f = 0.60$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; HPLC (Chiralcel IA, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 210$ nm) major isomer: t_r (major) = 19.573 min, t_r (minor) = 11.793 min, ee = 89%; minor isomer: t_r (major) = 13.642 min, t_r (minor) = 10.787 min, ee = 35%. *anti:syn* = 98:2. [α]²²_D = +95.8 (*c* = 0.62, in CH₂Cl₂). MP: 75 – 77 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.30 – 7.23 (m, 2H), 7.21 – 7.14 (m, 3H), 6.23 – 6.12 (m, 1H), 5.11 – 5.05 (m, 1H), 5.01 – 4.93 (m, 1H), 3.85 – 3.78 (m, 1H), 3.51 (d, *J* = 11.6 Hz, 1H), 3.41 (s, 3H), 2.73 – 2.64 (m, 2H), 2.49 – 2.41 (m, 2H), 1.66 – 1.38 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ = 170.5, 141.0, 139.2, 128.5, 128.5, 126.7, 115.6, 72.6, 50.7, 50.5, 48.7, 26.5, 24.7 ppm. IR (neat): ν (cm⁻¹) 2932, 2808, 1730, 1449, 1342, 1198, 1158, 1120, 982, 912, 862, 762, 700, 513. HRMS (ESI-FT) calcd for C₁₇H₂₄NO₂⁺ ([M]+H⁺) = 274.1802, found 274.1802.

	Retention Time	Area	% Area
1	10.787	69433	0.64
2	11.793	606168	5.62
3	13.642	143210	1.33
4	19.573	9957891	92.40

(2R,3S)-2-(Azepan-1-yl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-3-phenylpent-4-en-1-one (3d)

45.4 mg, 65% yield; colorless liquid; $R_f = 0.8$ (petroleum ether/ethyl acetate = 10/1). $[\alpha]^{23}_D = +81.1$ (c = 0.79, in CH₂Cl₂). ¹H NMR (400 MHz, Chloroform-d) $\delta = 7.26 - 7.21$ (m, 2H), 7.19 - 7.13 (m, 2H), 7.10 - 7.04 (m 1H), 6.32 - 6.20 (m, 1H), 5.79 (s, 1H), 5.30 (d, J = 11.6 Hz, 1H), 5.13 - 5.08 (m, 1H), 5.04 - 4.96 (m, 1H), 3.99 - 3.91 (m, 1H), 2.99 - 2.84 (m, 4H), 2.31 (d, J = 0.8 Hz, 3H), 2.18 (s, 3H), 1.62 - 1.47 (m, 8H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-d) $\delta = 171.9$, 150.9, 143.5, 140.8, 140.4, 128.7, 128.2, 126.4, 115.7, 110.9, 67.8, 51.3, 49.6, 29.9, 27.2, 14.3, 13.8 ppm. IR (neat): ν (cm⁻¹) 1714, 1582, 1450, 1408, 1377, 1351, 1303, 1221, 1132, 1081, 960, 912, 870, 805, 757, 699, 591, 513. HRMS (ESI-FT) calcd for C₂₂H₃₀N₃O⁺ ([M]+H⁺) = 352.2383, found 352.2383.

Methyl (2R,3S)-2-(azepan-1-yl)-3-phenylpent-4-enoate (4d)

37.4 mg, 99% yield; pale yellow liquid; $R_f = 0.7$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel **IF**, hexane/iPrOH = 99.8/0.2, flow rate 0.3 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 26.745 min, t_r (minor) = 25.262 min, ee = 81%; minor isomer: t_r (major) = 24.224 min, t_r (minor) = 26.007 min, ee = 97%. *anti:syn* = 99:1. $[\alpha]^{24}_D$ = +81.1 (*c* = 0.61, in CH₂Cl₂). ¹H **NMR** (400 MHz, Chloroform-*d*) δ = 7.29 - 7.23 (m, 2H), 7.21 - 7.15 (m, 3H), 6.25 - 6.14 (m, 1H), 5.11 - 5.06 (m, 1H), 5.00 - 4.94 (m, 1H), 3.80 - 3.72 (m, 1H), 3.58 (d, *J* = 11.6, 1H), 3.404 (s, 3H), 2.96 - 2.86 (m, 2H), 2.70 - 2.61 (m, 2H), 1.66 - 1.53 (m, 8H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 171.6, 141.2, 139.7, 128.5, 128.4, 126.7, 115.8, 72.7, 51.8, 50.6, 49.7, 29.48, 27.1 ppm. IR (neat): ν (cm⁻¹) 2924, 2851, 1731, 1452, 1343, 1243, 1154, 987, 913, 758, 700. **HRMS** (ESI-FT) calcd for C₁₈H₂₆NO₂⁺ ([M]+H⁺) = 288.1958, found 288.1957.

	Retention Time	Area	% Area
1	24.224	119500	0.81
2	25.262	1385197	9.33
3	26.007	1849	0.01
4	26.745	13335528	89.85

(2R,3S)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-morpholino-3-phenylpent-4-en-1-one (3e)

18.0 mg, 27% yield; white solid; $R_f = 0.3$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel **Lux 5u Cellulose-2**, hexane/iPrOH = 99.8/0.2, flow rate 0.3 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 19.926 min, t_r (minor) = 11.124 min, ee = 84%; minor isomer: t_r (major) = 25.173 min, t_r (minor) = 12.858 min, ee = 54%. *anti:syn* = 95:5. $[\alpha]^{26}{}_{D}$ = +74.1 (c = 0.22, in CH₂Cl₂). **MP**: 80–87 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) $\delta = 7.24 - 7.19$ (m, 2H), 7.19 - 7.13 (m, 2H), 7.12 - 7.05 (m 1H), 6.30 - 6.18 (m, 1H), 5.78 (d, J = 0.8 Hz, 1H), 5.33 (d, J = 12.0 Hz, 1H), 5.13 - 5.08 (m, 1H), 5.04 - 4.97 (m, 1H), 3.97 - 3.90 (m, 1H), 3.76 - 3.68 (m, 2H), 3.66 - 3.58 (m, 2H), 2.77 - 2.65 (m, 4H), 2.32 (d, J = 0.8 Hz, 3H), 2.16 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) $\delta = 170.5$, 151.5, 143.5, 140.2, 139.6, 128.6, 128.3, 126.7, 115.7, 111.3, 67.7, 66.8, 49.8, 48.6, 14.3, 13.8 ppm. **IR** (neat): ν (cm⁻¹) 2959, 2852, 1714, 1585, 1450, 1410, 1379, 1355, 1301, 1250, 1219, 1116, 960, 916, 865, 829, 761, 701, 516. **HRMS** (ESI-FT) calcd for C₂₀H₂₆N₃O₂+ ([M]+H⁺) = 340.2020, found 340.2021.

	Retention Time	Area	% Area
1	11.133	6870596	19.91
2	12.825	10407307	30.16
3	20.361	6841135	19.82
4	25.025	10391822	30.11

	Retention Time	Area	% Area
1	11.124	2729994	7.61
2	12.858	587683	1.64
3	19.926	31293083	87.19
4	25 173	1281359	3 57

3-(2-Chlorophenyl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)pent-4-en-1-one (3f)

39.5 mg, 60% yield; white solid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). MP: 83 – 92 °C. ¹H NMR (400 MHz, Chloroform-*d*) $\delta = 7.48 - 7.02$ (m, 4H), 6.17 – 6.05 (m 1H), 5.81 (s, 1H), 5.45 (d, J = 11.6 Hz, 1H), 5.17 – 4.89 (m, 2H), 4.62 – 4.51 (m 1H), 2.46 (s, 6H), 2.32 (d, J = 0.8 Hz, 3H), 2.20 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) $\delta = 171.4$, 170.3, 151.6, 151.4, 143.7, 143.4, 138.3, 137.8, 137.0, 134.3, 134.2, 129.8, 129.2, 129.0, 127.6, 127.5, 126.9, 126.6, 117.4, 116.5, 111.6, 111.2, 65.8, 65.1, 45.8, 44.6, 41.4, 14.7, 14.3, 13.9, 13.8 ppm. IR (neat): ν (cm⁻¹) 2934, 2789, 1714, 1583, 1447, 1410, 1379, 1353, 1325, 1223, 1178, 1135, 1033, 961, 805, 757, 685, 658. HRMS (ESI-FT) calcd for $C_{18}H_{23}^{34.9659}$ ClN₃O⁺ ([M]+H⁺) = 332.1524, found 332.1529, $C_{18}H_{23}^{36.9659}$ ClN₃O⁺ ([M]+H⁺) = 334.1495, found 334.1495.

Methyl 3-(2-chlorophenyl)-2-(dimethylamino)pent-4-enoate (4f)

24.3 mg (from 31.6 mg **3f**), 95% yield; colorless liquid; $R_f = 0.5$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel **IG**, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 210$ nm) major isomer: t_r (major) = 20.022 min, t_r (minor) = 14.613 min, ee = 9%; minor isomer: t_r (major) = 12.062 min, t_r (minor) = 12.613 min, ee = 31%. *anti:syn* = 29:71. ¹**H NMR** (400 MHz, Chloroform-*d*) $\delta = 7.38 - 7.10$ (m, 4H), 6.11 - 6.00 (m, 1H), 5.15 - 5.02 (m, 2H), 4.45 - 4.33 (m, 1H), 3.74 - 3.65 (m, 1H), 3.45 (s, 3H), 2.43 (s, 6H) ppm. ¹³C{¹**H**} **NMR** (100 MHz, Chloroform-*d*) $\delta = 170.9$, 169.8, 138.1, 137.9, 137.7, 136.8, 134.2, 134.1, 130.1, 129.9, 128.8, 127.9, 127.6, 127.0, 126.9, 117.6, 116.6, 70.7, 70.2, 50.8, 50.7, 45.9, 41.5 ppm. **IR** (neat): ν (cm⁻¹) 2945, 2788, 1729, 1637, 1437, 1350, 1159, 1033, 982, 920, 753, 558, 456. **HRMS** (ESI-FT) calcd for C₁₄H₁₉^{34.9659}CINO₂⁺ ([M]+H⁺) = 268.1099, found 268.1100, C₁₄H₁₉^{36.9659}CINO₂⁺ ([M]+H⁺) = 270.1069, found 270.1068.

2	12.623	11768852	10.22
3	14.613	37143447	32.25
4	20.022	44099217	38.29

 $(2R, 3S) \hbox{-} 3-(3-Chlorophenyl) \hbox{-} 1-(3, 5-dimethyl \hbox{-} 1H-pyrazol \hbox{-} 1-yl) \hbox{-} 2-(dimethylamino) pent-4-en-1-one (3g)$

58.1 mg, 88% yield; colorless liquid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). $[\alpha]^{25}_D = +76.7$ (c = 1.08, in CH₂Cl₂). ¹H NMR (400 MHz, Chloroform-d) $\delta = 7.29 - 7.24$ (m, 1H), 7.13 - 7.00 (m, 3H), 6.22 - 6.10 (m 1H), 5.79 (s, 1H), 5.30 (d, J = 11.6 Hz, 1H), 5.19 - 5.08 (m, 2H), 3.92 - 3.83 (m 1H), 2.44 (s, 6H), 2.33 (s 3H), 2.18 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-d) $\delta = 171.0$, 151.6, 143.3, 142.3, 138.9, 134.0, 129.4, 128.8, 126.8, 126.7, 116.5, 111.3, 66.2, 49.6, 41.2, 14.3, 13.8 ppm. IR (neat): ν (cm⁻¹) 2933, 2788, 1711, 1581, 1409, 1378, 1349, 1301, 1222, 1174, 1134, 957, 916, 815, 785, 759, 694, 663, 509. HRMS (ESI-FT) calcd for $C_{18}H_{23}^{34.9659}$ ClN₃O⁺ ([M]+H⁺) = 332.1524, found 332.1520, $C_{18}H_{23}^{36.9659}$ ClN₃O⁺ ([M]+H⁺) = 334.1495, found 334.1495.

Methyl (2R,3S)-3-(3-chlorophenyl)-2-(dimethylamino)pent-4-enoate (4g)

44.7 mg, 95% yield; colorless liquid; $R_f = 0.5$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel **OJH**, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 10.943 min, t_r (minor) = 12.111 min, ee = 90%; minor isomer: t_r (major) = 15.621 min, t_r (minor) = 17.491 min, ee = 12%. *anti:syn* = 95:5. $[\alpha]^{25}_D = +87.5$ (c = 0.74, in CH₂Cl₂). ¹H NMR (400 MHz, Chloroform-*d*) $\delta = 7.23 - 7.14$ (m, 3H), 7.10 - 7.04 (m, 1H), 6.13 - 6.02 (m, 1H), 5.17 - 5.12 (m, 1H), 5.12 - 5.05 (m, 1H), 3.76 - 3.69 (m, 1H), 3.52 (d, J = 11.6 Hz, 1H), 3.46 (s, 3H), 2.37 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) $\delta = 169.9$, 142.9, 138.2, 134.3, 129.8, 128.4, 127.1, 126.5, 116.7, 71.5, 50.7, 49.3, 41.3 ppm. IR (neat): ν (cm⁻¹) 2944, 2788, 1728, 1572, 1432, 1340, 1160, 1081, 1038, 981, 916, 783, 694, 445. HRMS (ESI-FT) calcd for C₁₄H₁₉^{34.9659}CINO₂⁺ ([M]+H⁺) = 268.1099, found 268.1100, C₁₄H₁₉^{36.9659}CINO₂⁺ ([M]+H⁺) = 270.1069, found 270.1077.

 $(2R, 3S) \hbox{-} 3-(4-Chlorophenyl) \hbox{-} 1-(3, 5-dimethyl \hbox{-} 1H-pyrazol \hbox{-} 1-yl) \hbox{-} 2-(dimethylamino) pent-4-en \hbox{-} 1-one (3h)$

41.6 mg, 63% yield; colorless liquid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel IA, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 9.722 min, t_r (minor) = 8.209 min, ee = 88%. *anti:syn* = 6:1. $[\alpha]^{24}_D = +106.1$ (c = 0.74, in CH₂Cl₂). ¹**H** NMR (400 MHz, Chloroform-d) $\delta = 7.20 - 7.15$ (m, 2H), 7.15 - 7.10 (m, 2H), 6.22 - 6.10 (m 1H), 5.81 (s, 1H), 5.31 (d, J = 11.6 Hz, 1H), 5.16 - 5.12 (m, 1H), 5.12 - 5.04 (m, 1H), 3.93 - 3.85 (m 1H), 2.42 (s, 6H), 2.34 (s, 3H), 2.17 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-d) $\delta = 170.6$, 151.5, 143.4, 139.2, 139.0, 132.3, 129.9, 128.4, 116.2, 111.4, 66.3, 49.0, 41.3, 41.3, 14.4, 13.8 ppm. IR (neat): ν (cm⁻¹) 2934, 2789, 1712, 1585, 1489, 1453, 1409, 1379, 1350, 1302, 1222, 1175, 1092, 1019, 959, 916, 876, 817, 761, 720, 622, 559, 521. HRMS (ESI-FT) calcd for C₁₈H₂₃^{34.9659}ClN₃O⁺ ([M]+H⁺) = 332.1524, found 332.1526, C₁₈H₂₃^{36.9659}ClN₃O⁺ ([M]+H⁺) = 334.1495.

1031820

16654839

5.83

94.17

(2R,3S)-3-(3,4-Dichloro	phenyl)-1-(3,5-dime	ethyl-1 <i>H</i> -pyrazo	l-1-yl)-2-(dimet	hylamino)pent-	4-en-1-one (3i)

8.469

9.867

1

2

54.4 mg, 75% yield; colorless liquid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel **IA**, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 9.813 min, t_r (minor) = 8.629 min, ee = 89%. *anti:syn* = 7:1. $[\alpha]^{24}_D = +93.2$ (c = 1.14, in CH₂Cl₂). ¹**H NMR** (400 MHz, Chloroform-*d*) $\delta = 7.38$ (d, J = 2.4 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 7.09 – 7.04 (m, 1H), 6.19 – 6.07 (m 1H), 5.83 (s, 1H), 5.30 (d, J = 12.0 Hz, 1H), 5.19 – 5.14 (m, 1H), 5.14 – 5.06 (m, 1H), 3.90 – 3.81 (m 1H), 2.42 (s, 6H), 2.36 (d, J = 0.8 Hz, 3H), 2.18 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) $\delta = 170.6$, 151.8, 143.4, 140.7, 138.6, 132.2, 130.6, 130.5, 130.1, 128.0, 116.7, 111.5, 66.1, 48.9, 41.2, 14.4, 13.8 ppm. **IR** (neat): ν (cm⁻¹) 2934, 2788, 1710, 1585, 1469, 1378, 1349, 1302, 1222, 1176, 1134, 1030, 957, 917, 817, 759, 707, 628, 446. **HRMS** (ESI-FT) calcd for C₁₈H₂₂^{34.9659}Cl₂N₃O⁺ ([M]+H⁺) = 366.1134, found 366.1134, C₁₈H₂₂^{34.9659}Cl₃O⁺ ([M]+H⁺) = 370.1075, found 370.1069.

	Retention Time	Area	% Area
1	8.629	1192303	5.59
2	9.813	20148106	94.41

(2R,3S)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)-3-(4-fluorophenyl)pent-4-en-1-one (3j)

35.9 mg, 57% yield; colorless liquid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel IA, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 9.722 min, t_r (minor) = 8.209 min, ee = 81%. *anti:syn* = 8:1. $[\alpha]^{23}_{D} = +64.0$ (c = 0.51, in CH₂Cl₂). **'H NMR** (400 MHz, Chloroform-*d*) $\delta = 7.23 - 7.16$ (m, 2H), 6.88 - 6.80 (m, 2H), 6.23 - 6.12 (m 1H), 5.80 (s, 1H), 5.31 (d, J = 11.6 Hz, 1H), 5.17 - 5.12 (m, 1H), 5.12 - 5.05 (m, 1H), 3.93 - 3.85 (m 1H), 2.43 (s, 6H), 2.33 (s, 3H), 2.17 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) $\delta = 170.9$, 161.5 (d, $J_{CF} = 243.1$ Hz), 151.4, 143.3, 139.5, 136.1, 130.01 (d, $J_{CF} = 79.0$ Hz), 116.0, 115.0 (d, $J_{CF} = 21.1$ Hz), 111.28, 66.46, 48.93, 41.26, 14.37, 13.78 ppm. ¹⁹F{¹H} NMR (376 MHz, Chloroform-*d*) $\delta = -116.38$ ppm. IR (neat): ν (cm⁻¹) 2935, 2789, 1713, 1584, 1509, 1453, 1410, 1379, 1350, 1302, 1224, 1163, 1035, 960, 917, 878, 825, 761, 716, 652, 589, 534. HRMS (ESI-FT) calcd for $C_{18}H_{23}FN_3O^+$ ([M]+H⁺) = 316.1820, found 316.1820.

	Retention Time	Area	% Area
1	8.209	1607827	9.57
2	9.722	15201171	90.43

(2R,3S)-3-(4-Bromophenyl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)pent-4-en-1-one (3k)

46.4 mg, 62% yield; colorless liquid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; HPLC (Chiralcel IA, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 12.311 min, t_r (minor) = 10.638 min, ee = 91%. *anti:syn* =

5:1. $[\alpha]^{23}_{D}$ = +110.1 (*c* = 0.91, in CH₂Cl₂). ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.31 – 7.25 (m, 2H), 7.14 – 7.09 (m, 2H), 6.21 – 6.09 (m 1H), 5.82 (s, 1H), 5.31 (d, *J* = 11.6 Hz, 1H), 5.16 – 5.11 (m, 1H), 5.11 – 5.05 (m, 1H), 3.92 – 3.84 (m 1H), 2.41 (s, 6H), 2.34 (d, *J* = 0.8 Hz, 3H), 2.17 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 170.5, 151.5, 143.4, 139.6, 139.2, 131.4, 130.3, 120.5, 116.3, 111.40, 66.2, 49.0, 41.2, 14.4, 13.8 ppm. **IR** (neat): ν (cm⁻¹) 2934, 2789, 1713, 1585, 1486, 1453, 1408, 1379, 1351, 1303, 1222, 1175, 1072, 1010, 960, 917, 876, 816, 761, 716, 518. **HRMS** (ESI-FT) calcd for C₁₈H₂₃^{78.9183}BrN₃O⁺ ([M]+H⁺) = 376.1019, found 376.1014, C₁₈H₂₃^{80.9163}ClN₃O⁺ ([M]+H⁺) = 378.0999, found 378.0992.

	Retention Time	Area	% Area
1	10.638	263288	4.50
2	12.331	5582456	95.50

(2R,3S)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)-3-(4-iodophenyl)pent-4-en-1-one (3l)

F

59.2 mg, 70% yield; colorless liquid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel IA, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 12.813 min, t_r (minor) = 11.172 min, ee = 92%; minor isomer: t_r (major) = 11.246 min, t_r (minor) = 9.893 min, ee = 28%. *anti:syn* = 4:1. $[\alpha]^{24}_D$ = +119.5 (*c* = 1.16, in CH₂Cl₂). ¹H **NMR** (400 MHz, Chloroform-*d*) δ = 7.51 - 7.44 (m, 2H), 7.02 - 6.97 (m, 2H), 6.20 - 6.08 (m 1H), 5.82 (s, 1H), 5.30 (d, *J* = 12.0 Hz, 1H), 5.15 - 5.11 (m, 1H), 5.11 - 5.04 (m, 1H), 3.90 - 3.82 (m 1H), 2.41 (s, 6H), 2.34 (d, *J* = 0.8 Hz, 3H), 2.17 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 170.5, 151.5, 143.4, 140.3, 139.2, 137.3, 130.5, 116.3, 111.4, 92.1, 66.1, 49.1, 41.3, 14.4, 13.8 ppm. **IR** (neat): *v* (cm⁻¹) 2932, 2786, 1711, 1583, 1481, 1452, 1407, 1377, 1349, 1301, 1221, 1174, 1032, 1004, 958, 916, 875, 807, 760, 714, 607, 547, 516. **HRMS** (ESI-FT) calcd for C₁₈H₂₃IN₃O⁺ ([M]+H⁺) = 424.0880, found 424.0880.

rectention 1m		7071104
1 11.043	26572010	50.06
2 12.631	26507981	49.94

(2R,3S)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)-3-(4-(trifluoromethyl)phenyl)pent-4-en-1-one (3m)

41.8 mg, 57% yield; white solid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel IA, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 9.331 min, t_r (minor) = 7.797 min, ee = 84%; minor isomer: t_r (major) = 10.131 min, t_r (minor) = 8.821 min, ee = 22%. *anti:syn* = 4:1. $[\alpha]^{21}_D$ = +85.6 (*c* = 0.72, in CH₂Cl₂). **MP**: 36 – 39 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.45 – 7.39 (m, 2H), 7.38 – 7.33 (m, 2H), 6.24 – 6.13 (m 1H), 5.81 (s, 1H), 5.36 (d, *J* = 11.6 Hz, 1H), 5.19 – 5.14 (m 1H), 5.14 – 5.07 (m 1H), 4.02 – 3.94 (m 1H), 2.43 (s, 6H), 2.33 (s, 3H), 2.17 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 170.5, 151.6, 144.6, 143.4, 138.8, 128.8, 125.5, 125.2 (q, J_{CF} = 4.0 Hz, J_{CF} = 8.0 Hz), 122.8, 116.6, 111.4, 66.2, 49.5, 41.3, 14.3, 13.8 ppm. ¹⁹F{¹H} **NMR** (376 MHz, Chloroform-*d*) δ = -62.53 ppm. **IR** (neat): *v* (cm⁻¹) 2936, 1714, 1380, 1327, 1166, 1126, 1068, 959, 824, 710. **HRMS** (ESI-FT) calcd for C₁₉H₂₃F₃N₃O⁺ ([M]+H⁺) = 366.1788, found 366.1788.

	Retention Time	Area	% Area
1	7.836	3748673	49.93
2	9.304	3758589	50.07

	Retention Lime	Area	% Area
1	8.821	6550336	33.85
2	10.131	12800855	66.15

1-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)-3-(o-tolyl)pent-4-en-1-one (3n)

33.5 mg, 54% yield; colorless liquid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). ¹H NMR (400 MHz, Chloroform-*d*) $\delta = 7.42 - 6.94$ (m 4H), 5.97 (s, 1H), 5.73 - 5.62 (m 1H), 5.54 (d, J = 11.6 Hz, 1H), 5.12 - 4.82 (m, 2H), 4.25 - 4.13 (m 1H), 2.57 (d, J = 0.8 Hz, 3H), 2.40 (s, 3H), 2.26 (s, 9H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) $\delta = 172.1$, 170.8, 151.5, 151.3, 143.6, 143.2, 139.5, 138.6, 138.4, 138.12, 136.4, 136.1, 130.6, 130.4, 127.4, 127.4, 126.3, 126.2, 126.1, 125.8, 116.4, 115.6, 111.6, 111.1, 66.2, 65.0, 45.6, 44.2, 41.4, 41.3, 19.9, 19.6, 14.7, 14.3, 13.9, 13.8 ppm. IR (neat): ν (cm⁻¹) 2933, 2786, 1713, 1583, 1454, 1409, 1378, 1352, 1324, 1173, 1030, 960, 918, 813, 755, 664, 627, 507, 454, 421. HRMS (ESI-FT) calcd for C₁₉H₂₆N₃O⁺ ([M]+H⁺) = 312.2070, found 312.2073.

Methyl 2-(dimethylamino)-3-(o-tolyl)pent-4-enoate (4n)

24.4 mg, 91% yield; colorless liquid; $R_f = 0.5$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; HPLC (Chiralcel OJH, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 13.805 min, t_r (minor) = 14.817 min, ee = 6%; minor isomer: t_r (major) = 10.833 min, t_r (minor) = 11.697 min, ee = 42%. *anti:syn* = 30:70. ¹H NMR (400 MHz, Chloroform-*d*) $\delta = 7.23 - 7.05$ (m, 4H), 6.10 - 5.66 (m, 1H), 5,10 - 4.96 (m, 2H), 4.11 - 3.96 (m, 1H), 3.73 - 3.67 (m, 1H), 3.71 (s, 3H), 2.37 (s, 3H), 2.23 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) $\delta = 171.4$, 170.1, 139.0, 138.6, 138.1, 138.0, 136.4, 136.1, 130.7, 130.6, 126.9, 126.8, 126.5, 126.3, 126.1, 116.6, 115.6, 71.3, 70.1, 50.7, 50.5, 45.5, 44.1, 41.5, 41.4, 19.8, 19.5 ppm. IR (neat): ν (cm⁻¹) 2946, 2787, 1730, 1456, 1160, 1036, 983, 918, 756, 667, 453. HRMS (ESI-FT) calcd for C₁₅H₂₂NO₂⁺ ([M]+H⁺) = 248.1645, found 248.1644.

(2R,3S)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)-3-(m-tolyl)pent-4-en-1-one (30)

52.0 mg, 83% yield; colorless liquid; $R_f = 0.7$ (petroleum ether/ethyl acetate = 10/1). [α]²⁵_D = +88.5 (*c* = 1.07, in CH₂Cl₂). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.10 – 6.99 (m, 3H), 6.91 – 6.83 (m, 1H), 6.25 – 6.12 (m 1H), 5.77(s, 1H), 5.36 (d, *J* = 11.6 Hz, 1H), 5.18 – 5.09 (m, 2H), 3.91 – 3.82 (m 1H), 2.46 (s, 6H), 2.30 (s, 3H), 2.21 (s, 3H), 2.18 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ = 171.2, 151.2, 143.3, 140.1, 139.8, 137.7, 129.2, 128.1, 127.3, 125.5, 115.7, 111.1, 66.3, 50.1, 41.3, 21.3, 14.3, 13.8 ppm. IR (neat): *v* (cm⁻¹) 2931, 2787, 1714, 1584, 1452, 1410, 1378, 1349, 1302, 1221, 1174, 1034, 959, 913, 818, 763, 704, 674. HRMS (ESI-FT) calcd for C₁₉H₂₆N₃O⁺ ([M]+H⁺) = 312.2070, found 312.2073

Methyl (2R,3S)-2-(dimethylamino)-3-(m-tolyl)pent-4-enoate (40)

40.5 mg, 98% yield; colorless liquid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; HPLC (Chiralcel OJH, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 13.718 min, t_r (minor) = 16.078 min, ee = 92%; minor isomer: t_r (major) = 17.314 min, t_r (minor) = 22.942 min, ee = 31%. *anti:syn* = 98:2. $[\alpha]^{24}_D = +91.3$ (c = 0.62, in CH₂Cl₂). ¹H NMR (400 MHz, Chloroform-*d*) $\delta = 7.08 - 7.13$ (m, 1H), 7.02 - 6.96 (m, 3H), 6.16 - 6.05 (m, 1H), 5.14 - 5.07 (m, 2H), 3.75 - 3.68 (m, 1H), 3.57 (d, J = 11.6 Hz, 1H), 3.43 (s, 3H), 2.39 (s, 6H), 2.31 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) $\delta = 170.2$, 140.7, 139.0, 138.2, 128.9, 128.4, 127.6, 125.1, 115.9, 71.7, 50.5, 49.7, 41.3, 21.5 ppm. IR (neat): ν (cm⁻¹) 2943, 2788, 1731, 1607, 1454, 1342, 1159, 1039, 983, 914, 776, 705. HRMS (ESI-FT) calcd for C₁₅H₂₂NO₂⁺ ([M]+H⁺) = 248.1645, found 248.1647.

	Retention Time	Area	% Area
1	14.236	1836143	30.40
2	16.292	1811517	29.99
3	17.559	1206933	19.98
4	23.249	1185349	19.63

	Retention Time	Area	% Area
1	13.718	7005094	94.61
2	16.078	270594	3.65
3	17.314	84334	1.14
4	22.942	44362	0.60

(2R,3S)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)-3-(p-tolyl)pent-4-en-1-one (3p)

53.4 mg, 86% yield; colorless liquid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). [α]²⁶_D = +107.4 (*c* = 0.86, in CH₂Cl₂). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.13 (d, *J* = 8.0 Hz, 2H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.23 – 6.12 (m 1H), 5.79(s, 1H), 5.35 (d, *J* = 11.6 Hz, 1H), 5.14 – 5.08 (m, 2H), 3.93 – 3.85 (m 1H), 2.43 (s, 6H), 2.33 (d, *J* = 0.4 Hz, 3H), 2.21 (s, 3H), 2.18 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ = 170.8, 151.2, 143.3, 140.0, 137.4, 136.0, 129.0, 128.3, 115.5, 111.1, 66.3, 49.4, 41.3, 21.0, 14.4, 13.8 ppm. IR (neat): ν (cm⁻¹) 2930, 2787, 1713, 1583, 1513, 1451, 1409, 1377, 1349, 1302, 1221, 1174, 1135, 1030, 959, 913, 877, 813, 759, 715, 654, 590, 526. HRMS (ESI-FT) calcd for C₁₉H₂₆N₃O⁺ ([M]+H⁺) = 312.2070, found 312.2071.

Methyl (2R,3S)-2-(dimethylamino)-3-(p-tolyl)pent-4-enoate (4p)

32.0 mg (from 42.7 mg **3p**), 94% yield; colorless liquid; $R_f = 0.5$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel **OJH**, hexane/iPrOH = 99/1, flow rate 0.8 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 6.863 min, t_r (minor) = 10.092 min, ee = 85%. *anti:syn* = 93:7. [α]²⁴_D = +89.2 (c = 0.38, in CH₂Cl₂). ¹**H NMR** (400 MHz, Chloroform-d) δ = 7.08 (s, 4H), 6.16 - 6.04 (m 1H), 5.14 - 5.05 (m, 2H), 3.76 - 3.67 (m 1H), 3.56 (d, J = 11.6 Hz, 1H), 3.44 (s, 3H), 2.39 (s, 6H), 2.29 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-d) δ = 170.2, 139.1, 137.7, 136.4, 129.3, 128.0, 115.8, 71.8, 50.6, 49.3, 41.3, 21.1 ppm. **IR** (neat): ν (cm⁻¹) 2946, 2787, 1730, 1456, 1160, 1036, 983, 918, 756, 667, 454. **HRMS** (ESI-FT) calcd for C₁₅H₂₂NO₂⁺ ([M]+H⁺) = 248.1645, found 248.1646.

	Retention Time	Area	% Area
1	6.960	2203794	26.22
2	8.171	1985607	23.63
3	10.628	4214185	50.15

	Retention Time	Area	% Area
1	6.863	1949129	87.38
2	8.102	157460	7.06
3	10.092	123995	5.56

(2R,3S)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)-3-(naphthalen-2-yl)pent-4-en-1-one (3q)

59.2 mg, 85% yield; white solid; $R_f = 0.7$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel **IA**, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 11.023 min, t_r (minor) = 10.181 min, ee = 93%. *anti:syn* > 19:1. $[\alpha]^{24}_D$ = +98.0 (*c* = 1.20, in CH₂Cl₂). **MP**: 83 - 87 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.76 - 7.64 (m, 4H), 7.43 - 7,34 (m, 3H), 6.35 - 6.24 (m 1H), 5.70 (s, 1H), 5.53 (d, *J* = 11.6 Hz, 1H), 5.19 (s, 1H), 5.18 - 5.13 (m, 1H), 4.15 - 4.07 (m 1H), 2.50 (s, 6H), 2.26 (s, 3H), 2.17 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 170.8, 151.3, 143.3, 139.6, 138.0, 133.5, 132.4, 127.9, 127.8, 127.5, 127.1, 127.0, 125.7, 125.4, 116.1, 111.2, 66.2, 49.8, 41.4, 14.3, 13.8 ppm. **IR** (neat): ν (cm⁻¹) 2933, 2787, 1712, 1635, 1584, 1451, 1409, 1376, 1348, 1303, 1221, 1176, 1032, 958, 914, 855, 817, 750, 663, 621, 585, 478. **HRMS** (ESI-FT) calcd for C₂₂H₂₆N₃O⁺ ([M]+H⁺) = 348.2070, found 348.2068.

	Retention Time	Area	% Area
1	10.181	240346	3.45
2	11.023	6735453	96.55

(2R,3R)-3-(Benzo[b]thiophen-2-yl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)pent-4-en-1-one (3r)

64.5 mg, 91% yield; pale yellow solid; $R_f = 0.7$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; HPLC (Chiralcel Lux 5u Cellulose-2, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 14.093 min, t_r (minor) = 15.309 min, ee = 93%. *anti:syn* > 19:1. [α]²⁴_D = +208.5 (*c* = 1.01, in CH₂Cl₂). MP: 87 – 92 °C. ¹H NMR (400 MHz, Chloroform-*d*) $\delta = 7.69$ (d, *J* = 12.0 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.27 – 7.16 (m, 2H), 7.12 (s, 1H), 6.24 – 6.12 (m, 1H), 5.82 (s, 1H), 5.39 (d, *J* = 11.6 Hz, 1H), 5.27 – 5.18 (m, 2H), 4.35 – 4.27 (m 1H), 2.43 – 2.38 (m, 9H), 2.20 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) $\delta = 169.8$, 151.7, 145.0, 143.6, 139.9, 139.5, 138.6, 123.9, 123.6, 123.2, 122.1, 121.3, 116.7, 111.5, 66.7, 45.0, 41.3, 14.5, 13.9 ppm. IR (neat): ν (cm⁻¹) 2945, 2786, 1704, 1588, 1434, 1410, 1377, 1352, 1299, 1218, 1029, 963, 861, 825, 753, 621. HRMS (ESI-FT) calcd for C₂₀H₂₄N₃OS⁺ ([M]+H⁺) = 354.1635, found 354.1632.

	Retention Time	Area	% Area
1	14.093	56835128	98.09
2	15.309	1109409	1.91

(2R,3R)-3-(Benzo[b]thiophen-2-yl)-2-(benzyl(methyl)amino)-1-(3,5-dimethyl-1H-pyrazol-1-yl)pent-4-en-1-one (3s)

52.0 mg, 60% yield; white solid; $R_f = 0.8$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel **IF**, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 17.551 min, t_r (minor) = 14.662 min, ee = 80%; minor isomer: t_r (major) = 13.500 min, t_r (minor) = 14.005 min, ee = 49%. *anti:syn* = 98:2. $[\alpha]^{25}_{D}$ = +123.6 (*c* = 0.45, in CH₂Cl₂). **MP**: 73 - 76 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.72 - 7.68 (m, 1H), 7.60 - 7.56 (m, 1H), 7.34 - 7.17 (m, 7H), 7.12 (s, 1H), 6.33 - 6.22 (m 1H), 5.86 (s, 1H), 5.52 (d, *J* = 11.6 Hz, 1H), 5.26 (s, 1H), 5.24 - 5.20 (m, 1H), 4.46 - 4.39 (m 1H), 3.77 (d, *J* = 2.8 Hz, 2H), 2.44 (d, *J* = 0.4 Hz, 3H), 2.28 (s, 3H), 2.20 (s, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 170.2, 151.7, 145.0, 143.8, 139.9, 139.8, 139.5, 138.8, 128.6, 128.1, 126.9, 123.9, 123.6, 123.2, 122.1, 121.4, 116.8, 111.5, 66.9, 58.4, 45.1, 37.2, 14.5, 13.8 ppm. **IR** (neat): ν (cm⁻¹) 1710, 1584, 1452, 1377, 1352, 1300, 1216, 1133, 1025, 960, 917, 825, 740, 700, 624, 472, 431. **HRMS** (ESI-FT) calcd for C₂₆H₂₈N₃OS⁺ ([M]+H⁺) = 430.1948, found 430.1949.

0.30 → 0.20 < 0.10												13.754	15.04			18.14	
	1.00 200	300	4.00	500 600	7.00	800	900	10.00 Minutes	11.00	1200	13.00	14.00	15.00	16.00	17.00	18.00	19.00

	Retention Time	Area	% Area
1	13.751	3811840	18.19
2	14.290	3909445	18.66
3	15.011	6631763	31.65
4	18.146	6599897	31.50

		Retention Time	Area	% Area
	1	13.500	546694	1.37
1	2	14.005	186833	0.47
1	3	14.662	3851022	9.63
4	4	17.551	35424681	88.54

(2R,3S,E)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)-5-phenyl-3-vinylpent-4-en-1-one (3t)

53.0 mg, 82% yield; pale yellow liquid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel **IE**, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 13.405 min, t_r (minor) = 14.578 min, ee = 94%. *anti:syn* > 19:1. $[\alpha]^{24}_D = +33.6$ (c = 0.79, in CH₂Cl₂). ¹**H NMR** (400 MHz, Chloroform-*d*) $\delta = 7.25 - 7.13$ (m, 5H), 6.42 (d, J = 15.6 Hz, 1H), 6.10 - 5.99 (m, 2H), 5.88 (d, J = 0.8 Hz, 1H), 5.26 - 5.17 (m, 2H), 5.06 (d, J = 11.2 Hz, 1H), 3.60 - 3.50 (m 1H), 2.47 (d, J = 0.8 Hz, 3H), 2.43 (s, 6H), 2.23 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) $\delta = 171.7$, 151.6, 143.6, 138.1, 137.3, 131.8, 128.5, 128.3, 127.2, 126.2, 116.2, 111.5, 66.0, 47.6, 41.3, 14.6, 13.9 ppm. **IR** (neat): ν (cm⁻¹) 2933, 2788, 1715, 1584, 1451, 1410, 1379, 1348, 1303, 1220, 1175, 1033, 961, 915, 811, 754, 694. **HRMS** (ESI-FT) calcd for C₂₀H₂₆N₃O⁺ ([M]+H⁺) = 324.2070, found 324.2069.

	recention rinne	1 li cu	70 I II Cu
1	13.405	31652467	96.95
2	14.578	997354	3.05

(2R,3S)-1-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)-4-methyl-3-phenylpent-4-en-1-one (3u)

59.1 mg, 95% yield; colorless liquid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). $[\alpha]^{25}_D = +145.6$ (c = 1.16, in CH₂Cl₂). ¹H NMR (400 MHz, Chloroform-*d*) $\delta = 7.33 - 7.28$ (m, 2H), 7.18 - 7.06 (m, 2H), 7.10 - 7.04 (m 1H), 5.84 (s, 1H), 5.62 (d, J = 12.4 Hz, 1H), 5.13 (s, 1H), 4.88 (t, J = 1.6 Hz, 1H), 4.05 (d, J = 12.4 Hz, 1H), 2.42 (s, 6H), 2.32 (d, J = 0.8 Hz, 3H), 2.26 (s, 3H), 1.75 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) $\delta = 170.5$, 151.4, 146.0, 143.4, 139.9, 128.3, 128.1, 126.5, 112.5, 111.2, 63.1, 52.8, 41.4, 18.8, 14.4, 13.9 ppm. IR (neat): ν (cm⁻¹) 2933, 2786, 1714, 1644, 1583, 1450, 1410, 1377, 1352, 1218, 1175, 1030, 958, 888, 802, 755, 700, 624, 593, 535. HRMS (ESI-FT) calcd for C₁₉H₂₆N₃O⁺ ([M]+H⁺) = 312.2070, found 312.2069.

Methyl (2R,3S)-2-(dimethylamino)-4-methyl-3-phenylpent-4-enoate (4u)

19.8 mg (from 27.1 mg **3u**), 92% yield; colorless solid; $R_f = 0.5$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; **HPLC** (Chiralcel **OJH**, hexane/iPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 26.044 min, t_r (minor) = 17.568 min, ee = 98%. *anti:syn* = 97:3. [α]²³_D = +120.0 (*c* = 0.10, in CH₂Cl₂). **MP**: 79 – 84 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.29 – 7.22 (m, 4H), 7.22 – 7.15 (m, 1H), 5.05 (d, *J* = 0.4 Hz, 1H), 4.87 (t, *J* = 1.6 Hz, 1H), 3.85 (s, 2H), 3.45 (s, 3H), 2.39 (s, 6H), 1.66 (d, *J* = 0.4 Hz, 3H) ppm. ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ = 170.1, 145.2, 139.9, 128.3, 128.0, 126.8, 112.5, 68.1, 52.6, 50.6, 41.5, 19.0 ppm. **IR** (neat): *v*(cm⁻¹) 2948, 2785, 1713, 1641, 1494, 1451, 1364, 1250, 1160, 1030, 983, 885, 761, 706, 622, 539. **HRMS** (ESI-FT) calcd for C₁₅H₂₂NO₂⁺ ([M]+H⁺) = 248.1645, found 248.1647.

19949849

95.86

Methyl (2R,3S)-2-(dimethylamino)-3-phenylpentanoate (5a)

3

26.044

35.2 mg, 88% yield; colorless liquid; $R_f = 0.6$ (petroleum ether/ethyl acetate = 10/1). Dissolved in hexane for HPLC; HPLC (Chiralcel OJH, hexane/iPrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 254$ nm) major isomer: t_r (major) = 12.949 min, t_r (minor) = 14.002 min, ee = 93%; minor isomer: t_r (major) = 18.058 min, t_r (minor) = 23.955 min, ee = 69%. *anti:syn* = 95:5. [α]²⁵_D = +21.6 (*c* = 0.54, in CH₂Cl₂, λ = 436 nm). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.29 – 7.23 (m, 2H), 7.21 – 7.13 (m, 3H), 7.38 (d, *J* = 7.2 Hz, 1H), 3.34 (s, 3H), 2.92 – 2.83 (m, 1H), 2.37 (s, 6H), 2.15 – 2.03 (m, 1H), 1.56 – 1.43 (m, 1H), 0.72 (t, *J* = 12.0 Hz, 3H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ = 170.8, 141.3, 128.6, 128.2, 126.6, 72.5, 50.3, 46.9, 41.3, 24.8, 11.5 ppm. IR (neat): ν (cm⁻¹) 2936, 2788, 1730, 1453, 1328, 1156, 1100, 1040, 972, 893, 757, 699, 612, 557, 525. HRMS (ESI-FT) calcd for C₁₄H₂₂NO₂⁺ ([M]+H⁺) = 236.1645, found 236.1649.

	Retention Time	Area	% Area
1	12.563	1508574	36.82
2	13.951	1507490	36.79
3	17.451	546159	13.33
4	24.098	535188	13.06

	Retention Time	Area	% Area
1	12.949	7172153	91.42
2	14.002	249183	3.18
3	18.058	357307	4.55
4	23.955	66571	0.85

(2R,3S)-2-(Dimethylamino)-3-phenylpent-4-en-1-ol (6a)

18.3 mg, 71% yield; colorless liquid; $R_f = 0.2$ (ethyl acetate). Dissolved in hexane for HPLC; **HPLC** (Chiralcel **IH**, hexane/iPrOH = 96/4, flow rate 1 mL/min, $\lambda = 210$ nm) major isomer: t_r (major) = 21.412 min, t_r (minor) = 17.182 min, ee = 95%; minor isomer: t_r (major) = 13.051 min, t_r (minor) = 10.232 min, ee = 45%. *anti:syn* = 95:5. $[\alpha]^{20}_D = +105.3$ (c = 0.28, in CH₂Cl₂). ¹**H** NMR (400 MHz, Chloroform-d) $\delta = 7.32 - 7.25$ (m, 2H), 7.22 - 7.17 (m, 1H), 7.16 - 7.11 (m, 2H), 6.23 - 6.11 (m, 1H), 5.15 - 5.08 (m, 1H), 5.07 - 5.02 (m, 1H), 3.52 - 3.43 (m, 1H), 3.12 - 2.96 (m, 3H), 2.55 (s, 6H) ppm. ¹³C{¹H} NMR (100 MHz, Chloroform-d) $\delta = 141.6$, 141.2, 128.9, 127.5, 126.7, 115.6, 68.0, 59.7, 51.5, 40.6 ppm. **IR** (neat): ν (cm⁻¹) 3393, 2927, 1636, 1453, 1411, 1279, 1178, 1026, 913, 848, 751, 701, 525. HRMS (ESI-FT) calcd for C₁₃H₂₀NO⁺ ([M]+H⁺) = 206.1539, found 206.1542.

	Retention Time	Area	% Area
1	9.924	3340501	35.46
2	12.967	3318066	35.22
3	17.078	1375223	14.60
4	22.421	1387380	14.73

	Retention Time	Area	% Area
1	10.232	310040	1.36
2	13.051	819346	3.60
3	17.182	538259	2.37
4	21.412	21085999	92.67

Analysis results of 2D NMR spectra of typical compounds (3h)

Number of Atom	С	Н	Number of Atom	С	Н
1	13.8	2.17	9	49.0	3.93 - 3.85
2	151.5		10	139.2	6.22 - 6.10
3	111.4	5.81	11	116.2	5.16 - 5.04
4	143.4		12	139.0	
5	14.4	2.34	13	129.9	7.20 - 7.15
6	170.6		14	128.4	7.15 - 7.10
7	41.3	2.42	15	132.3	
8	66.3	5.31			

(I) Copies of NMR Spectra for Substrates and Products

1-(3,5-Dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)ethan-1-one (1a)

1-(3,5-Dimethyl-1 <i>H</i> -pyrazol-1-yl)-2-(dimethylamino)propan-1-one (1h)									
94		689 689 689 689 689 689 689 689 689 689		6666666666	33445335				
ي ا	,	4444444444		000000000					

90 80 f1 (ppm)

2-(Dibenzylamino)-1-(3,5-dimethyl-1 <i>H</i> -pyrazol-1-yl)ethan-1-one (1i)										
77.24 77.22 77.22 77.22 77.23 77.23 77.24 77.23 77.24 77.23 77.24 77.24 77.24 77.24 77.24 77.24 77.24 77.24 77.24 77.24 77.24 77.24 77.24 77.24 77.74	5.87	4.14	3.90	₹2.54 2.54	-2.13					

(E)-2-(3-Bromoprop-1-en-1-yl)naphthalene (2m) 6433 4.18 4.16 4.16 Br 5 -00 6.7 6.0 f1 (ppm) 6.5 6.9 6.8 6.6 6.4 3.09-2.06-8 -90 7.6 f1 (ppm) 7.8 7.7 7.5 7.4 2.00-4.17 f1 (ppm) 1.21 4.19 4.15 2.00 H 1.01-1.00-3.09 1.03 1.06 1.06 2.06 4 7.5 4.0 f1 (ppm) 2.5 2.0 0.5 0.0 7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 1.5 1.0 $\begin{array}{c} 134.74\\ 133.49\\ 133.36\\ 128.43\\ 128.43\\ 127.77\\ 128.43\\ 126.57\\ 126.55\\ 125.57\\$ -33.71 Br 125 f1 (ppm) 136 135 134 f1 (ppm) 129 127 123 133 132 70 65 f1 (ppm) 135 125 115 105 95 90 85 80 75 60 55 50 45 40 35 30 25 20 15 10 5 0

45 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -£ f1 (ppm)

(2R,3S)-2-(Diethylamino)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-3-phenylpent-4-en-1-one (3b)

3-(2-Chlorophenyl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)pent-4-en-1-one (3f)

Methyl 3-(2-chlorophenyl)-2-(dimethylamino)pent-4-enoate (4f)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-00110000044000000	00000000444400000000004
<i><u><u><u></u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></i>	000	
トトトトトトトトトトト	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	000000000000004444000000000000000000000

![](_page_62_Figure_2.jpeg)

![](_page_63_Figure_0.jpeg)

![](_page_64_Figure_0.jpeg)

![](_page_65_Figure_0.jpeg)

![](_page_66_Figure_0.jpeg)

![](_page_67_Figure_0.jpeg)

![](_page_68_Figure_1.jpeg)

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-120	-140	-160	-180	-200	
										1	f1 (ppm)						

![](_page_69_Figure_0.jpeg)

![](_page_70_Figure_0.jpeg)

<b>3I-minor product</b>	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	.3.89 3.87 3.86 3.86 3.84	<pre> &lt;256 &lt;225 &lt;225 &lt;225 &lt;225 </pre>	
	_			
5.00 ^H 7.5 7.0		4.0 3.5 3.0 f1 (ppm)		1.0 0.5 0.C
-171.29	-151.67 7143.64 7141.11 7138.18 -130.34 -116.90 -111.62	- 91.87	49.65 41.16	×14.64 13.91
I				
андания	150 140 130 120 110 100	онцирания 		німицаний выкуленниций на


---62.53



10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 -100 f1 (ppm)	-120	-140	-160	-180	-200	
3m-mino	or pro	oduct														
400	44	0	0 2 0 00	566	19.0	244	4 7 8	999		00000		55 25 25				
1-1-1-	5	L	ဂိုက်ကို	မြောက်	ပ်ပုံပုံ	in in i	ρ φ φ	44		4000		99.99				





20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

























Methyl (2*R*,3*S*)-2-(dimethylamino)-3-phenylpentanoate (5a)

340	90 87 87 87 87 87 87 87 87 87 87 87 87 87	037 09 07 07	71744460
5 C C	NONN	2000000	





## (J) Copies of 2D NMR Spectra (2D NMR Spectra of 3h)

#### HSQC spectra of 3h



COSY spectra of 3h



#### HMBC spectra of 3h



# (K) Copies of ¹H NMR Spectra for the Determination of *anti:syn* ratio











(L) Copies of CD Spectra in CH₂Cl₂





















### (M)References

(1) Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin and X. M. Feng, Synlett, 2005, 2005, 2445.

(2) S. S. M. Spoehrle, T. H. West, J. E. Taylor, A. M. Z. Slawin and A. D. Smith, J. Am. Chem. Soc., 2017, 139, 11895.

(3) (a) T. H. West, D. S. B. Daniels, A. M. Z. Slawin and A. D. Smith, *J. Am. Chem. Soc.*, 2014, **136**, 4476; (b) U. Kroesen, L. Knauer and C. Strohmann, *Angew. Chem., Int. Ed.*, 2017, **56**, 6232; (c) G. A. Pinna, G. Cignarella, G. Loriga, G. Murineddu, J.-M. Mussinu, S. Ruiu, P. Fadda and W. Fratta, *Bioorg. Med. Chem.*, 2002, **10**, 1929; (d) H. X. Wang, J. C. Yang and S. L. Buchwald, *J. Am. Chem. Soc.*, 2017, **139**, 8428.